1
|
Liu X, Wang J, Wu LJ, Trinh B, Tsai RYL. IMPDH Inhibition Decreases TERT Expression and Synergizes the Cytotoxic Effect of Chemotherapeutic Agents in Glioblastoma Cells. Int J Mol Sci 2024; 25:5992. [PMID: 38892179 PMCID: PMC11172490 DOI: 10.3390/ijms25115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
IMP dehydrogenase (IMPDH) inhibition has emerged as a new target therapy for glioblastoma multiforme (GBM), which remains one of the most refractory tumors to date. TCGA analyses revealed distinct expression profiles of IMPDH isoenzymes in various subtypes of GBM and low-grade glioma (LGG). To dissect the mechanism(s) underlying the anti-tumor effect of IMPDH inhibition in adult GBM, we investigated how mycophenolic acid (MPA, an IMPDH inhibitor) treatment affected key oncogenic drivers in glioblastoma cells. Our results showed that MPA decreased the expression of telomerase reverse transcriptase (TERT) in both U87 and U251 cells, and the expression of O6-methylguanine-DNA methyltransferase (MGMT) in U251 cells. In support, MPA treatment reduced the amount of telomere repeats in U87 and U251 cells. TERT downregulation by MPA was associated with a significant decrease in c-Myc (a TERT transcription activator) in U87 but not U251 cells, and a dose-dependent increase in p53 and CCCTC-binding factor (CTCF) (TERT repressors) in both U87 and U251 cells. In U251 cells, MPA displayed strong cytotoxic synergy with BCNU and moderate synergy with irinotecan, oxaliplatin, paclitaxel, or temozolomide (TMZ). In U87 cells, MPA displayed strong cytotoxic synergy with all except TMZ, acting primarily through the apoptotic pathway. Our work expands the mechanistic potential of IMPDH inhibition to TERT/telomere regulation and reveals a synthetic lethality between MPA and anti-GBM drugs.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Junying Wang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Laura J. Wu
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Britni Trinh
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
| | - Robert Y. L. Tsai
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA; (X.L.); (J.W.); (L.J.W.); (B.T.)
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Gan Y, Deng J, Hao Q, Huang Y, Han T, Xu JG, Zhao M, Yao L, Xu Y, Xiong J, Lu H, Wang C, Chen J, Zhou X. UTP11 deficiency suppresses cancer development via nucleolar stress and ferroptosis. Redox Biol 2023; 62:102705. [PMID: 37087976 PMCID: PMC10149416 DOI: 10.1016/j.redox.2023.102705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
The eukaryotic ribosome is essential for cancer cell survival. Perturbation of ribosome biogenesis induces nucleolar stress or ribosomal stress, which restrains cancer growth, as rapidly proliferating cancer cells need more active ribosome biogenesis. In this study, we found that UTP11 plays an important role in the biosynthesis of 18S ribosomal RNAs (rRNA) by binding to the pre-rRNA processing factor, MPP10. UTP11 is overexpressed in human cancers and associated with poor prognoses. Interestingly, depletion of UTP11 inhibits cancer cell growth in vitro and in vivo through p53-depedednt and -independent mechanisms, whereas UTP11 overexpression promotes cancer cell growth and progression. On the one hand, the ablation of UTP11 impedes 18S rRNA biosynthesis to trigger nucleolar stress, thereby preventing MDM2-mediated p53 ubiquitination and degradation through ribosomal proteins, RPL5 and RPL11. On the other hand, UTP11 deficiency represses the expression of SLC7A11 by promoting the decay of NRF2 mRNA, resulting in reduced levels of glutathione (GSH) and enhanced ferroptosis. Altogether, our study uncovers a critical role for UTP11 in maintaining cancer cell survival and growth, as depleting UTP11 leads to p53-dependent cancer cell growth arrest and p53-independent ferroptosis.
Collapse
Affiliation(s)
- Yu Gan
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yingdan Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tao Han
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jin-Guo Xu
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Litong Yao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yingying Xu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Chunmeng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China.
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Liu X, Sato N, Yabushita T, Li J, Jia Y, Tamura M, Asada S, Fujino T, Fukushima T, Yonezawa T, Tanaka Y, Fukuyama T, Tsuchiya A, Shikata S, Iwamura H, Kinouchi C, Komatsu K, Yamasaki S, Shibata T, Sasaki AT, Schibler J, Wunderlich M, O'Brien E, Mizukawa B, Mulloy JC, Sugiura Y, Takizawa H, Shibata T, Miyake K, Kitamura T, Goyama S. IMPDH inhibition activates TLR-VCAM1 pathway and suppresses the development of MLL-fusion leukemia. EMBO Mol Med 2022; 15:e15631. [PMID: 36453131 PMCID: PMC9832838 DOI: 10.15252/emmm.202115631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme in de novo guanine nucleotide synthesis pathway. Although IMPDH inhibitors are widely used as effective immunosuppressants, their antitumor effects have not been proven in the clinical setting. Here, we found that acute myeloid leukemias (AMLs) with MLL-fusions are susceptible to IMPDH inhibitors in vitro. We also showed that alternate-day administration of IMPDH inhibitors suppressed the development of MLL-AF9-driven AML in vivo without having a devastating effect on immune function. Mechanistically, IMPDH inhibition induced overactivation of Toll-like receptor (TLR)-TRAF6-NF-κB signaling and upregulation of an adhesion molecule VCAM1, which contribute to the antileukemia effect of IMPDH inhibitors. Consequently, combined treatment with IMPDH inhibitors and the TLR1/2 agonist effectively inhibited the development of MLL-fusion AML. These findings provide a rational basis for clinical testing of IMPDH inhibitors against MLL-fusion AMLs and potentially other aggressive tumors with active TLR signaling.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Naru Sato
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Tomohiro Yabushita
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Jingmei Li
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Yuhan Jia
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Moe Tamura
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Shuhei Asada
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan,The Institute of Laboratory Animals, Tokyo Women's Medical UniversityTokyoJapan
| | - Takeshi Fujino
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Tsuyoshi Fukushima
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Taishi Yonezawa
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| | - Yosuke Tanaka
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Tomofusa Fukuyama
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Akiho Tsuchiya
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Shiori Shikata
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Hiroyuki Iwamura
- FUJIFILM Corporation: Pharmaceutical Products DivisionTokyoJapan
| | - Chieko Kinouchi
- FUJIFILM Corporation: Bio Science & Engineering LaboratoriesKanagawaJapan
| | - Kensuke Komatsu
- FUJIFILM Corporation: Bio Science & Engineering LaboratoriesKanagawaJapan
| | - Satoshi Yamasaki
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Atsuo T Sasaki
- Division of Hematology and Oncology, Department of Internal MedicineUniversity of CincinnatiCincinnatiOHUSA
| | - Janet Schibler
- Division of Experimental Hematology and Cancer BiologyCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer BiologyCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Eric O'Brien
- Division of Oncology, Department of Pediatrics, University of CincinnatiCincinnatiOHUSA
| | - Benjamin Mizukawa
- Division of Experimental Hematology and Cancer BiologyCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer BiologyCincinnati Children's Hospital Medical CenterCincinnatiOHUSA
| | - Yuki Sugiura
- Department of BiochemistryKeio University School of MedicineTokyoJapan
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | - Takuma Shibata
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and ImmunologyThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Toshio Kitamura
- Division of Cellular Therapy, The Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
4
|
Kim K, Narasimhan M, Mahimainathan L, Zhang R, Araj E, Kim E, Tharpe W, Greenberg BM, Greenberg DE, Li QZ, Cheng CA, Sarode R, Malladi S, Muthukumar A. Translation suppression underlies the restrained COVID-19 mRNA vaccine response in the high-risk immunocompromised group. Front Immunol 2022; 13:1020165. [DOI: 10.3389/fimmu.2022.1020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundImmunocompromised (IC) patients show diminished immune response to COVID-19 mRNA vaccines (Co-mV). To date, there is no ‘empirical’ evidence to link the perturbation of translation, a rate-limiting step for mRNA vaccine efficiency (VE), to the dampened response of Co-mV.Materials and methodsImpact of immunosuppressants (ISs), tacrolimus (T), mycophenolate (M), rapamycin/sirolimus (S), and their combinations on Pfizer Co-mV translation were determined by the Spike (Sp) protein expression following Co-mV transfection in HEK293 cells. In vivo impact of ISs on SARS-CoV-2 spike specific antigen (SpAg) and associated antibody levels (IgGSp) in serum were assessed in Balb/c mice after two doses (2D) of the Pfizer vaccine. Spike Ag and IgGSp levels were assessed in 259 IC patients and 50 healthy controls (HC) who received 2D of Pfizer or Moderna Co-mV as well as in 67 immunosuppressed solid organ transplant (SOT) patients and 843 non-transplanted (NT) subjects following three doses (3D) of Co-mV. Higher Co-mV concentrations and transient drug holidays were evaluated.ResultsWe observed significantly lower IgGSP response in IC patients (p<0.0001) compared to their matched controls in 2D and 3D Co-mV groups. IC patients on M or S showed a profound dampening of IgGSP response relative to those that were not on these drugs. M and S, when used individually or in combination, significantly attenuated the Co-mV-induced Sp expression, whereas T did not exert significant influence. Sirolimus combo pretreatment in vivo significantly attenuated the Co-mV induced IgMSp and IgGSp production, which correlated with a decreasing trend in the early levels (after day 1) of Co-mV induced Sp immunogen levels. Neither higher Co-mV concentrations (6μg) nor withholding S for 1-day could overcome the inhibition of Sp protein levels. Interestingly, 3-days S holiday or using T alone rescued Sp levels in vitro.ConclusionsThis is the first study to demonstrate that ISs, sirolimus and mycophenolate inhibited Co-mV-induced Sp protein synthesis via translation repression. Selective use of tacrolimus or drug holiday of sirolimus can be a potential means to rescue translation-dependent Sp protein production. These findings lay a strong foundation for guiding future studies aimed at improving Co-mV responses in high-risk IC patients.
Collapse
|
5
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
6
|
Han T, Tong J, Wang M, Gan Y, Gao B, Chen J, Liu Y, Hao Q, Zhou X. Olaparib Induces RPL5/RPL11-Dependent p53 Activation via Nucleolar Stress. Front Oncol 2022; 12:821366. [PMID: 35719981 PMCID: PMC9204002 DOI: 10.3389/fonc.2022.821366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
Abstract
The poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) Olaparib is a widely used targeted therapy for a variety of solid tumors with homologous recombination deficiency (HRD) caused by mutation of BRCA1/2 or other DNA repair genes. The anti-tumor activity of Olaparib has been largely attributed to its ability to inhibit PARP enzymes and block DNA single-strand break (SSB) repair, which eventually leads to the most detrimental DNA damage, double-strand breaks (DSB), in HRD cells. Although PARPi was found to induce p53-dependent cell death, the underlying molecular mechanism remains incompletely understood. Here, we report that Olaparib treatment leads to p53 stabilization and activation of its downstream target genes in a dose- and time-dependent manner. Mechanistically, Olaparib triggers nucleolar stress by inhibiting biosynthesis of the precursor of ribosomal RNAs (pre-rRNA), resulting in enhanced interaction between ribosomal proteins (RPs), RPL5 and RPL11, and MDM2. Consistently, knockdown of RPL5 and RPL11 prevents Olaparib-induced p53 activation. More importantly, Olaparib efficiently suppresses breast and colorectal cancer cell survival and proliferation through activation of p53. Altogether, our study demonstrates that Olaparib activates the nucleolar stress-RPs-p53 pathway, suggesting rRNA biogenesis as a novel target for PARPi.
Collapse
Affiliation(s)
- Tao Han
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jing Tong
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengxin Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yu Gan
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Bo Gao
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jiaxiang Chen
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Youxun Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Targeting Ribosome Biogenesis in Cancer: Lessons Learned and Way Forward. Cancers (Basel) 2022; 14:cancers14092126. [PMID: 35565259 PMCID: PMC9100539 DOI: 10.3390/cancers14092126] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Cells need to produce ribosomes to sustain continuous proliferation and expand in numbers, a feature that is even more prominent in uncontrollably proliferating cancer cells. Certain cancer cell types are expected to depend more on ribosome biogenesis based on their genetic background, and this potential vulnerability can be exploited in designing effective, targeted cancer therapies. This review provides information on anti-cancer molecules that target the ribosome biogenesis machinery and indicates avenues for future research. Abstract Rapid growth and unrestrained proliferation is a hallmark of many cancers. To accomplish this, cancer cells re-wire and increase their biosynthetic and metabolic activities, including ribosome biogenesis (RiBi), a complex, highly energy-consuming process. Several chemotherapeutic agents used in the clinic impair this process by interfering with the transcription of ribosomal RNA (rRNA) in the nucleolus through the blockade of RNA polymerase I or by limiting the nucleotide building blocks of RNA, thereby ultimately preventing the synthesis of new ribosomes. Perturbations in RiBi activate nucleolar stress response pathways, including those controlled by p53. While compounds such as actinomycin D and oxaliplatin effectively disrupt RiBi, there is an ongoing effort to improve the specificity further and find new potent RiBi-targeting compounds with improved pharmacological characteristics. A few recently identified inhibitors have also become popular as research tools, facilitating our advances in understanding RiBi. Here we provide a comprehensive overview of the various compounds targeting RiBi, their mechanism of action, and potential use in cancer therapy. We discuss screening strategies, drug repurposing, and common problems with compound specificity and mechanisms of action. Finally, emerging paths to discovery and avenues for the development of potential biomarkers predictive of therapeutic outcomes across cancer subtypes are also presented.
Collapse
|
8
|
Lin Y, Breugem CC, Maas SM, de Bakker BS, Li G. The important role of RPS14, RPL5 and MDM2 in TP53-associated ribosome stress in mycophenolic acid-induced microtia. Int J Pediatr Otorhinolaryngol 2021; 151:110916. [PMID: 34537545 DOI: 10.1016/j.ijporl.2021.110916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Mycophenolate embryopathy (ME) is a congenital malformation induced by mycophenolic acid (MA). Microtia is the most common ME phenotype. This study aimed to identify the key genes in the pathological process of microtia caused by mycophenolate mofetil (MM) through bioinformatics methods, to explore the potential pathogenesis, and to provide a direction for future genetic research on aetiology. METHODS Genes related to MM and microtia were obtained from the GeneCards database for bioinformatics. Metacore was used to identify and visualize the upstream and downstream gene relationships in the protein-protein interaction (PPI) results of these genes. The clusterProfiler R software package was used to simulate and visualize the enrichment results based on data from Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. RESULTS Fifty-nine genes were associated with microtia and MM/MA. The hub genes with the most significant effects on MM/MA-induced microtia pathogenesis included tumour protein P53 (p53), MDM2 proto-oncogene (MDM2), ribosomal protein L5 (RPL5) and ribosomal protein S14 (RBS14). The GO term with the most enriched genes was peptidyl-tyrosine phosphorylation. For the KEGG terms, there was significant enrichment regarding the haematopoietic cell lineage, apoptosis, p53 signalling, proteasome and necroptosis. CONCLUSIONS We propose that an axis composed of MA, microtia, TP53 and related genes is involved in ME pathogenesis. The important role of TP53-associated ribosome stress in ME pathogenesis is consistent with our previous findings from MA-induced cleft lip and palate. Deregulation of genes protective against TP53 overexpression, such as MDM2, could be a strategy for constructing a microtia animal model.
Collapse
Affiliation(s)
- Yangyang Lin
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Amsterdam Medical Centre, Amsterdam, the Netherlands; Plastic Surgery Hospital, Peking Union Medical College, Beijing, China
| | - Corstiaan C Breugem
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Amsterdam Medical Centre, Amsterdam, the Netherlands
| | - Saskia M Maas
- Amsterdam UMC, Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands
| | - Bernadette S de Bakker
- Department of Medical Biology, Section Clinical Anatomy & Embryology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Gaofeng Li
- Department of Plastic and Cosmeitc Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, 61 Jiefangxi road, Changsha, 410005, Hunan, PR China.
| |
Collapse
|
9
|
Wang P, Leung J, Lam A, Lee S, Calabrese DR, Hays SR, Golden JA, Kukreja J, Singer JP, Wolters PJ, Tang Q, Greenland JR. Lung transplant recipients with idiopathic pulmonary fibrosis have impaired alloreactive immune responses. J Heart Lung Transplant 2021; 41:641-653. [PMID: 34924263 PMCID: PMC9038662 DOI: 10.1016/j.healun.2021.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Telomere dysfunction is associated with idiopathic pulmonary fibrosis (IPF) and worse outcomes following lung transplantation. Telomere dysfunction may impair immunity by upregulating p53 and arresting proliferation, but its influence on allograft-specific immune responses is unknown. We hypothesized that subjects undergoing lung transplantation for IPF would have impaired T cell proliferation to donor antigens. METHODS We analyzed peripheral blood mononuclear cells (PBMC) from 14 IPF lung transplant recipients and 12 age-matched non-IPF subjects, before and 2 years after transplantation, as well as PBMC from 9 non-transplant controls. We quantified T cell proliferation and cytokine secretion to donor antigens. Associations between PBMC telomere length, measured by quantitative PCR, and T cell proliferation to alloantigens were evaluated with generalized estimating equation models. RESULTS IPF subjects demonstrated impaired CD8+ T cell proliferation to donor antigens pre-transplant (p < 0.05). IL-2, IL-7, and IL-15 cytokine stimulation restored T cell proliferation, while p53 upregulation blocked proliferation. IPF subjects had shorter PBMC telomere lengths than non-IPF subjects (p < 0.001), and short PBMC telomere length was associated with impaired CD8+ T cell proliferation to alloantigens (p = 0.002). CONCLUSIONS IPF as an indication for lung transplant is associated with short PBMC telomere length and impaired T cell responses to donor antigens. However, the rescue of proliferation following cytokine exposure suggests that alloimmune anergy could be overcome. Telomere length may inform immunosuppression strategies for IPF recipients.
Collapse
Affiliation(s)
- Ping Wang
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Joey Leung
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Alice Lam
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Seoyeon Lee
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Daniel R Calabrese
- Department of Medicine, University of California San Francisco, San Francisco, California; Medical Service, San Francisco VA Health Care System, San Francisco, California
| | - Steven R Hays
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Jeffery A Golden
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Jasleen Kukreja
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - Jonathan P Singer
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Paul J Wolters
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco, San Francisco, California
| | - John R Greenland
- Department of Medicine, University of California San Francisco, San Francisco, California; Medical Service, San Francisco VA Health Care System, San Francisco, California.
| |
Collapse
|
10
|
Delgado-Román I, Muñoz-Centeno MC. Coupling Between Cell Cycle Progression and the Nuclear RNA Polymerases System. Front Mol Biosci 2021; 8:691636. [PMID: 34409067 PMCID: PMC8365833 DOI: 10.3389/fmolb.2021.691636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic life is possible due to the multitude of complex and precise phenomena that take place in the cell. Essential processes like gene transcription, mRNA translation, cell growth, and proliferation, or membrane traffic, among many others, are strictly regulated to ensure functional success. Such systems or vital processes do not work and adjusts independently of each other. It is required to ensure coordination among them which requires communication, or crosstalk, between their different elements through the establishment of complex regulatory networks. Distortion of this coordination affects, not only the specific processes involved, but also the whole cell fate. However, the connection between some systems and cell fate, is not yet very well understood and opens lots of interesting questions. In this review, we focus on the coordination between the function of the three nuclear RNA polymerases and cell cycle progression. Although we mainly focus on the model organism Saccharomyces cerevisiae, different aspects and similarities in higher eukaryotes are also addressed. We will first focus on how the different phases of the cell cycle affect the RNA polymerases activity and then how RNA polymerases status impacts on cell cycle. A good example of how RNA polymerases functions impact on cell cycle is the ribosome biogenesis process, which needs the coordinated and balanced production of mRNAs and rRNAs synthesized by the three eukaryotic RNA polymerases. Distortions of this balance generates ribosome biogenesis alterations that can impact cell cycle progression. We also pay attention to those cases where specific cell cycle defects generate in response to repressed synthesis of ribosomal proteins or RNA polymerases assembly defects.
Collapse
Affiliation(s)
- Irene Delgado-Román
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. Del Rocío, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Mari Cruz Muñoz-Centeno
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. Del Rocío, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
11
|
PRDX2 promotes the proliferation of colorectal cancer cells by increasing the ubiquitinated degradation of p53. Cell Death Dis 2021; 12:605. [PMID: 34117220 PMCID: PMC8196203 DOI: 10.1038/s41419-021-03888-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
Colorectal cancer is the most common gastrointestinal cancer and causes severe damage to human health. PRDX2 is a member of the peroxiredoxin family reported to have a high level of expression in colorectal cancer. However, the mechanisms by which PRDX2 promotes the proliferation of colorectal cancer are still unclear. Here, the results indicated that PRDX2 expression was upregulated in colorectal cancer and closely correlated with poor prognosis. Functionally, PRDX2 promoted the proliferation of colorectal cancer cells. Mechanistically, PRDX2 could bind RPL4, reducing the interaction between RPL4 and MDM2. These findings demonstrate that the oncogenic property of PRDX2 may be attributed to its regulation of the RPL4-MDM2-p53 pathway, leading to p53 ubiquitinated degradation.
Collapse
|
12
|
Lin Y, Song T, Ronde EM, Ma G, Cui H, Xu M. The important role of MDM2, RPL5, and TP53 in mycophenolic acid-induced cleft lip and palate. Medicine (Baltimore) 2021; 100:e26101. [PMID: 34032749 PMCID: PMC8154508 DOI: 10.1097/md.0000000000026101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Mycophenolate embryopathy (MPE) is a mycophenolic acid (MPA)-induced congenital malformation with distinctive symptoms. Cleft lip/palate (CLP) is one of the most common symptoms of MPE. The aim of this study was to screen and verify hub genes involved in MPA-induced CLP and to explore the potential molecular mechanisms underlying MPE.Overlapping genes related to MPA and CLP were obtained from the GeneCards database. These genes were further analyzed via bioinformatics. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis results were visualized with the Cytoscape ClueGO plug-in. Gene protein-protein interaction (PPI) networks were constructed based on data obtained from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database.Overall, 58 genes related to MPA and CLP were identified. The genes most relevant to MPA-induced CLP included ABCB1, COL1A1, Rac1, TGFβ1, EDN1, and TP53, as well as the TP53-associated genes MDM2 and RPL5. GO analysis demonstrated gene enrichment regarding such terms as ear, mesenchymal, striated muscle, and ureteric development. KEGG analysis demonstrated gene enrichment in such pathways as the HIF-1 signaling pathway, glycosylphosphatidylinositol-anchor biosynthesis, the TNF signaling pathway, and hematopoietic stem cell development.Bioinformatic analysis was performed on the genes currently known to be associated with MPA-induced CLP pathogenesis. MPA-induced CLP is mediated by multiple ribosome stress related genes and pathways. MDM2, RPL5 and TP53 could be the main contributor in this pathogenesis, along with several other genes. ABCB1 polymorphism could be related to the probability of MPA-induced CLP.
Collapse
Affiliation(s)
- Yangyang Lin
- Plastic Surgery Hospital of Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Amsterdam Medical Centre, Amsterdam, The Netherlands
- People's Hospital of Guangxi Zhuang Autonomous Region, Nanning
| | - Tao Song
- Plastic Surgery Hospital of Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing
| | - Elsa M. Ronde
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC, Amsterdam Medical Centre, Amsterdam, The Netherlands
| | - Gang Ma
- People's Hospital of Guangxi Zhuang Autonomous Region, Nanning
| | - Huiqin Cui
- The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Meng Xu
- Plastic Surgery Hospital of Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing
| |
Collapse
|
13
|
Benjanuwattra J, Chaiyawat P, Pruksakorn D, Koonrungsesomboon N. Therapeutic potential and molecular mechanisms of mycophenolic acid as an anticancer agent. Eur J Pharmacol 2020; 887:173580. [PMID: 32949604 DOI: 10.1016/j.ejphar.2020.173580] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil (MMF), an immunosuppressive drug approved for the prophylaxis of allograft rejection in transplant recipients. Recent advances in the role of the type II isoform of inosine-5'-monophosphate dehydrogenase (IMPDH2) in the tumorigenesis of various types of cancer have called for a second look of MPA, the first IMPDH2 inhibitor discovered a hundred years ago, to be repurposed as an anticancer agent. Over a half century, a number of in vitro and in vivo experiments have consistently shown anticancer activity of MPA against several cell lines obtained from different malignancies and murine models. However, a few clinical trials have been conducted to investigate its anticancer activity in humans, and most of which have shown unsatisfactory results. Understanding of available evidence and underlying mechanism of action is a key step to be done so as to facilitate further investigations of MPA to reach its full therapeutic potential as an anticancer agent. This article provides a comprehensive review of non-clinical and clinical evidence available to date, with the emphasis on the molecular mechanism of action in which MPA exerts its anticancer activities: induction of apoptosis, induction of cell cycle arrest, and alteration of tumor microenvironment. Future perspective for further development of MPA to be an anticancer agent is extensively discussed, with the aim of translating the anticancer property of MPA from bench to bedside.
Collapse
Affiliation(s)
| | - Parunya Chaiyawat
- Musculoskeletal Science and Translational Research Center (MSTR), Faculty of Medicine, Chiang Mai University, Thailand; Omics Center for Health Sciences (OCHS), Faculty of Medicine, Chiang Mai University, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research Center (MSTR), Faculty of Medicine, Chiang Mai University, Thailand; Omics Center for Health Sciences (OCHS), Faculty of Medicine, Chiang Mai University, Thailand; Biomedical Engineering Institute, Chiang Mai University, Thailand
| | - Nut Koonrungsesomboon
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Thailand; Musculoskeletal Science and Translational Research Center (MSTR), Faculty of Medicine, Chiang Mai University, Thailand.
| |
Collapse
|
14
|
Jung JH, Lee H, Zeng SX, Lu H. RBM10, a New Regulator of p53. Cells 2020; 9:cells9092107. [PMID: 32947864 PMCID: PMC7563659 DOI: 10.3390/cells9092107] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
The tumor suppressor p53 acts as a transcription factor that regulates the expression of a number of genes responsible for DNA repair, cell cycle arrest, metabolism, cell migration, angiogenesis, ferroptosis, senescence, and apoptosis. It is the most commonly silenced or mutated gene in cancer, as approximately 50% of all types of human cancers harbor TP53 mutations. Activation of p53 is detrimental to normal cells, thus it is tightly regulated via multiple mechanisms. One of the recently identified regulators of p53 is RNA-binding motif protein 10 (RBM10). RBM10 is an RNA-binding protein frequently deleted or mutated in cancer cells. Its loss of function results in various deformities, such as cleft palate and malformation of the heart, and diseases such as lung adenocarcinoma. In addition, RBM10 mutations are frequently observed in lung adenocarcinomas, colorectal carcinomas, and pancreatic ductal adenocarcinomas. RBM10 plays a regulatory role in alternative splicing. Several recent studies not only linked this splicing regulation of RBM10 to cancer development, but also bridged RBM10's anticancer function to the p53 pathway. This review will focus on the current progress in our understanding of RBM10 regulation of p53, and its role in p53-dependent cancer prevention.
Collapse
MESH Headings
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/metabolism
- Adenocarcinoma of Lung/pathology
- Alternative Splicing
- Apoptosis/genetics
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Cycle Checkpoints/genetics
- Cell Movement
- Cell Proliferation
- Cellular Senescence
- Cleft Palate/genetics
- Cleft Palate/metabolism
- Cleft Palate/pathology
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Gene Expression Regulation, Neoplastic
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Heart Defects, Congenital/pathology
- Humans
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Signal Transduction
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: or (J.H.J.); (H.L.); Tel.: +82-10-961-9597 (J.H.J.); +1-504-988-5293 (H.L.)
| | - Hyemin Lee
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (H.L.); (S.X.Z.)
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (H.L.); (S.X.Z.)
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (H.L.); (S.X.Z.)
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Correspondence: or (J.H.J.); (H.L.); Tel.: +82-10-961-9597 (J.H.J.); +1-504-988-5293 (H.L.)
| |
Collapse
|
15
|
Sorino C, Catena V, Bruno T, De Nicola F, Scalera S, Bossi G, Fabretti F, Mano M, De Smaele E, Fanciulli M, Iezzi S. Che-1/AATF binds to RNA polymerase I machinery and sustains ribosomal RNA gene transcription. Nucleic Acids Res 2020; 48:5891-5906. [PMID: 32421830 PMCID: PMC7293028 DOI: 10.1093/nar/gkaa344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Originally identified as an RNA polymerase II interactor, Che-1/AATF (Che-1) has now been recognized as a multifunctional protein involved in cell-cycle regulation and cancer progression, as well as apoptosis inhibition and response to stress. This protein displays a peculiar nucleolar localization and it has recently been implicated in pre-rRNA processing and ribosome biogenesis. Here, we report the identification of a novel function of Che-1 in the regulation of ribosomal RNA (rRNA) synthesis, in both cancer and normal cells. We demonstrate that Che-1 interacts with RNA polymerase I and nucleolar upstream binding factor (UBF) and promotes RNA polymerase I-dependent transcription. Furthermore, this protein binds to the rRNA gene (rDNA) promoter and modulates its epigenetic state by contrasting the recruitment of HDAC1. Che-1 downregulation affects RNA polymerase I and UBF recruitment on rDNA and leads to reducing rDNA promoter activity and 47S pre-rRNA production. Interestingly, Che-1 depletion induces abnormal nucleolar morphology associated with re-distribution of nucleolar proteins. Finally, we show that upon DNA damage Che-1 re-localizes from rDNA to TP53 gene promoter to induce cell-cycle arrest. This previously uncharacterized function of Che-1 confirms the important role of this protein in the regulation of ribosome biogenesis, cellular proliferation and response to stress.
Collapse
Affiliation(s)
- Cristina Sorino
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy.,Department of Experimental Medicine, Sapienza-University of Rome, 00161 Rome, Italy
| | - Valeria Catena
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Tiziana Bruno
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesca De Nicola
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Stefano Scalera
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Gianluca Bossi
- Oncogenomic and Epigenetic Unit, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesca Fabretti
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50937 Cologne, Germany.,CECAD, University of Cologne, Faculty of Medicine and University Hospital of Cologne, 50931 Cologne, Germany
| | - Miguel Mano
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3060 197, Portugal
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza-University of Rome, 00161 Rome, Italy
| | - Maurizio Fanciulli
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Simona Iezzi
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
16
|
Pelletier J, Riaño-Canalias F, Almacellas E, Mauvezin C, Samino S, Feu S, Menoyo S, Domostegui A, Garcia-Cajide M, Salazar R, Cortés C, Marcos R, Tauler A, Yanes O, Agell N, Kozma SC, Gentilella A, Thomas G. Nucleotide depletion reveals the impaired ribosome biogenesis checkpoint as a barrier against DNA damage. EMBO J 2020; 39:e103838. [PMID: 32484960 PMCID: PMC7327477 DOI: 10.15252/embj.2019103838] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/07/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
Many oncogenes enhance nucleotide usage to increase ribosome content, DNA replication, and cell proliferation, but in parallel trigger p53 activation. Both the impaired ribosome biogenesis checkpoint (IRBC) and the DNA damage response (DDR) have been implicated in p53 activation following nucleotide depletion. However, it is difficult to reconcile the two checkpoints operating together, as the IRBC induces p21‐mediated G1 arrest, whereas the DDR requires that cells enter S phase. Gradual inhibition of inosine monophosphate dehydrogenase (IMPDH), an enzyme required for de novo GMP synthesis, reveals a hierarchical organization of these two checkpoints. We find that the IRBC is the primary nucleotide sensor, but increased IMPDH inhibition leads to p21 degradation, compromising IRBC‐mediated G1 arrest and allowing S phase entry and DDR activation. Disruption of the IRBC alone is sufficient to elicit the DDR, which is strongly enhanced by IMPDH inhibition, suggesting that the IRBC acts as a barrier against genomic instability.
Collapse
Affiliation(s)
- Joffrey Pelletier
- Laboratory of Cancer Metabolism, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Ferran Riaño-Canalias
- Laboratory of Cancer Metabolism, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Eugènia Almacellas
- Laboratory of Cancer Metabolism, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Caroline Mauvezin
- Laboratory of Cancer Metabolism, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Sara Samino
- Metabolomics Platform, IISPV & University Rovira i Virgili, Tarragona, Spain.,Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Sonia Feu
- Department of Biomedicine, Faculty of Medicine, IDIBAPS Biomedical Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Sandra Menoyo
- Laboratory of Cancer Metabolism, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Ana Domostegui
- Laboratory of Cancer Metabolism, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Marta Garcia-Cajide
- Laboratory of Cancer Metabolism, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Ramon Salazar
- Laboratory of Cancer Metabolism, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain.,Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Constanza Cortés
- Department of Genetics and Microbiology, Faculty of Biosciences, Autonomous University of Barcelona, Barcelona, Spain
| | - Ricard Marcos
- Department of Genetics and Microbiology, Faculty of Biosciences, Autonomous University of Barcelona, Barcelona, Spain
| | - Albert Tauler
- Laboratory of Cancer Metabolism, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain.,Department of Biochemistry and Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Oscar Yanes
- Metabolomics Platform, IISPV & University Rovira i Virgili, Tarragona, Spain.,Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Neus Agell
- Department of Biomedicine, Faculty of Medicine, IDIBAPS Biomedical Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Sara C Kozma
- Laboratory of Cancer Metabolism, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Antonio Gentilella
- Laboratory of Cancer Metabolism, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain.,Department of Biochemistry and Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - George Thomas
- Laboratory of Cancer Metabolism, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain.,Department of Physiological Sciences, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Determination and validation of mycophenolic acid by a UPLC-MS/MS method: Applications to pharmacokinetics and tongue tissue distribution studies in rats. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1136:121930. [DOI: 10.1016/j.jchromb.2019.121930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/11/2023]
|
18
|
Inhibition of tRNA Gene Transcription by the Immunosuppressant Mycophenolic Acid. Mol Cell Biol 2019; 40:MCB.00294-19. [PMID: 31658995 PMCID: PMC6908259 DOI: 10.1128/mcb.00294-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil, a drug that is widely used for immunosuppression in organ transplantation and autoimmune diseases, as well as anticancer chemotherapy. It inhibits IMP dehydrogenase, a rate-limiting enzyme in de novo synthesis of guanidine nucleotides. Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil, a drug that is widely used for immunosuppression in organ transplantation and autoimmune diseases, as well as anticancer chemotherapy. It inhibits IMP dehydrogenase, a rate-limiting enzyme in de novo synthesis of guanidine nucleotides. MPA treatment interferes with transcription elongation, resulting in a drastic reduction of pre-rRNA and pre-tRNA synthesis, the disruption of the nucleolus, and consequently cell cycle arrest. Here, we investigated the mechanism whereby MPA inhibits RNA polymerase III (Pol III) activity, in both yeast and mammalian cells. We show that MPA rapidly inhibits Pol III by depleting GTP. Although MPA treatment can activate p53, this is not required for Pol III transcriptional inhibition. The Pol III repressor MAF1 is also not responsible for inhibiting Pol III in response to MPA treatment. We show that upon MPA treatment, the levels of selected Pol III subunits decrease, but this is secondary to transcriptional inhibition. Chromatin immunoprecipitation (ChIP) experiments show that Pol III does not fully dissociate from tRNA genes in yeast treated with MPA, even though there is a sharp decrease in the levels of newly transcribed tRNAs. We propose that in yeast, GTP depletion may lead to Pol III stalling.
Collapse
|
19
|
Su H, Tang X, Zhang X, Liu L, Jing L, Pan D, Sun W, He H, Yang C, Zhao D, Zhang H, Qi B. Comparative proteomics analysis reveals the difference during antler regeneration stage between red deer and sika deer. PeerJ 2019; 7:e7299. [PMID: 31346498 PMCID: PMC6642628 DOI: 10.7717/peerj.7299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022] Open
Abstract
Deer antler, as the only mammalian regenerative appendage, provides an optimal model to study regenerative medicine. Antler harvested from red deer or sika deer were mainly study objects used to disclose the mechanism underlying antler regeneration over past decades. A previous study used proteomic technology to reveal the signaling pathways of antler stem cell derived from red deer. Moreover, transcriptome of antler tip from sika deer provide us with the essential genes, which regulated antler development and regeneration. However, antler comparison between red deer and sika deer has not been well studied. In our current study, proteomics were employed to analyze the biological difference of antler regeneration between sika deer and red deer. The proteomics profile was completed by searching the UniProt database, and differentially expressed proteins were identified by bioinformatic software. Thirty-six proteins were highly expressed in red deer antler, while 144 proteins were abundant in sika deer. GO and KEGG analysis revealed that differentially expressed proteins participated in the regulation of several pathways including oxidative phosphorylation, ribosome, extracellular matrix interaction, and PI3K-Akt pathway.
Collapse
Affiliation(s)
- Hang Su
- Practice Innovations Center, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaolei Tang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaocui Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Li Liu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Li Jing
- Practice Innovations Center, Changchun University of Chinese Medicine, Changchun, China
| | - Daian Pan
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Weijie Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Huinan He
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Chonghui Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - He Zhang
- School of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Bin Qi
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
20
|
Wu J, Qu J, Cao H, Jing C, Wang Z, Xu H, Ma R. Monoclonal antibody AC10364 inhibits cell proliferation in 5-fluorouracil resistant hepatocellular carcinoma via apoptotic pathways. Onco Targets Ther 2019; 12:5053-5067. [PMID: 31303763 PMCID: PMC6610299 DOI: 10.2147/ott.s206517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/16/2019] [Indexed: 01/18/2023] Open
Abstract
Background This study was designed to investigate the antitumor activity of the mAb (AC10364) in vitro and elucidate the related mechanisms of inhibition to cell growth using bel/fu cells treated with AC10364. Methods The inhibitory effects of AC10364 on the proliferation of Bel/fu cells were examined using a cytotoxicity assay. Apoptosis of Bel/fu cells was detected using FITC annexin V and PI staining following treatment with AC10364 for 24 h. The factors regulating apoptosis were identified by Western blot using lysates of Bel/fu cells treated with AC10364 for 0, 12, 24, or 36 h. Genes associated with tumorigenesis or growth were analyzed by reverse transcription–quantitative polymerase chain reaction using Bel/fu cells treated for 12, 24, or 36 h with AC10364. Results The early apoptotic ratios of Bel/fu cells treated with AC10364 increased in a dose-dependent manner. The levels of caspases, including cleaved caspase-3, caspase-3 and caspase-9, were significantly high in Bel/fu cells treated with AC10364 (P<0.001). Compared with untreated cells, those exposed to AC10364 had showed significant downregulation of the expression of binding protein gene (G protein subunit α 15, GNA15) and other protein-coding genes, including fms-related tyrosine kinase 1(FLT1), nicotinamide phosphoribosyltransferase (NAMPT), netrin 4 (NTN4), platelet-derived growth factor subunit A (PDGFA), S100 calcium binding protein A11 (S100A11), tubulin β 3 class III (TUBB3), aldo-keto reductase family 1 member C3 (AKR1C3), endothelial PAS domain protein 1 (EPAS1), and interferon α-inducible protein 27 (IFI27) (P<0.001). Two other genes, AXL receptor tyrosine kinase (AXL) and carboxypeptidase A4 (CPA4), were significantly upregulated (P<0.001). Conclusion AC10364 inhibited cell viability and proliferation through aberrant expression of multiple genes associated with tumorigenesis or growth, which suggests that these genes may be promising therapeutic candidates for cancer therapy.
Collapse
Affiliation(s)
- Jianzhong Wu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, People's Republic of China
| | - Junwei Qu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, People's Republic of China
| | - Haixia Cao
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, People's Republic of China
| | - Changwen Jing
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, People's Republic of China
| | - Zhuo Wang
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, People's Republic of China
| | - Heng Xu
- Laboratory of Pharmaceutical Chemistry, Jiangsu Province Institute of Materia Medica, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, People's Republic of China
| |
Collapse
|
21
|
Jung JH, Lee H, Kim JH, Sim DY, Ahn H, Kim B, Chang S, Kim SH. p53-Dependent Apoptotic Effect of Puromycin via Binding of Ribosomal Protein L5 and L11 to MDM2 and its Combination Effect with RITA or Doxorubicin. Cancers (Basel) 2019; 11:cancers11040582. [PMID: 31022952 PMCID: PMC6520892 DOI: 10.3390/cancers11040582] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 11/16/2022] Open
Abstract
Among ribosomal proteins essential for protein synthesis, the functions of ribosomal protein L5 (RPL5) and RPL11 still remain unclear to date. Here, the roles of RPL5 and RPL11 were investigated in association with p53/p21 signaling in the antitumor effect of puromycin mainly in HCT116 and H1299 cancer cells. Cell proliferation assays using 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assays and colony formation assays, cell cycle analysis, Reverse transcription polymerase chain reaction (RT-PCR) and Western blotting were performed in cancer cells. Puromycin exerted cytotoxic and anti-proliferative effects in p53 wild-type HCT116 more than in p53 null H1299 cells. Consistently, puromycin increased sub-G1, cleaved Poly (ADP-ribose) polymerase (PARP), activated p53, p21, and Mouse double minute 2 homolog (MDM2), and attenuated expression of c-Myc in HCT116 cells. Notably, puromycin upregulated the expression of RPL5 and RPL11 to directly bind to MDM2 in HCT116 cells. Conversely, deletion of RPL5 and RPL11 blocked the activation of p53, p21, and MDM2 in HCT116 cells. Also, puromycin enhanced the antitumor effect with reactivating p53 and inducing tumor apoptosis (RITA) or doxorubicin in HCT116 cells. These findings suggest that puromycin induces p53-dependent apoptosis via upregulation of RPL5 or RPL11 for binding with MDM2, and so can be used more effectively in p53 wild-type cancers by combination with RITA or doxorubicin.
Collapse
Affiliation(s)
- Ji Hoon Jung
- College of Kyung Hee Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Hyemin Lee
- College of Kyung Hee Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Ju-Ha Kim
- College of Kyung Hee Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Deok Yong Sim
- College of Kyung Hee Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Hyojin Ahn
- College of Kyung Hee Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Bonglee Kim
- College of Kyung Hee Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul 05505, Korea.
| | - Sung-Hoon Kim
- College of Kyung Hee Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
22
|
Nyhus C, Pihl M, Hyttel P, Hall VJ. Evidence for nucleolar dysfunction in Alzheimer's disease. Rev Neurosci 2019; 30:685-700. [PMID: 30849050 DOI: 10.1515/revneuro-2018-0104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/08/2019] [Indexed: 11/15/2022]
Abstract
The nucleolus is a dynamically changing organelle that is central to a number of important cellular functions. Not only is it important for ribosome biogenesis, but it also reacts to stress by instigating a nucleolar stress response and is further involved in regulating the cell cycle. Several studies report nucleolar dysfunction in Alzheimer's disease (AD). Studies have reported a decrease in both total nucleolar volume and transcriptional activity of the nucleolar organizing regions. Ribosomes appear to be targeted by oxidation and reduced protein translation has been reported. In addition, several nucleolar proteins are dysregulated and some of these appear to be implicated in classical AD pathology. Some studies also suggest that the nucleolar stress response may be activated in AD, albeit this latter research is rather limited and requires further investigation. The purpose of this review is to draw the connections of all these studies together and signify that there are clear changes in the nucleolus and the ribosomes in AD. The nucleolus is therefore an organelle that requires more attention than previously given in relation to understanding the biological mechanisms underlying the disease.
Collapse
Affiliation(s)
- Caitlin Nyhus
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| | - Maria Pihl
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| | - Poul Hyttel
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| | - Vanessa Jane Hall
- Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Grønnegårdsvej 7, Frederiksberg C DK-1870, Denmark
| |
Collapse
|
23
|
Derenzini E, Rossi A, Treré D. Treating hematological malignancies with drugs inhibiting ribosome biogenesis: when and why. J Hematol Oncol 2018; 11:75. [PMID: 29855342 PMCID: PMC5984324 DOI: 10.1186/s13045-018-0609-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/26/2018] [Indexed: 01/05/2023] Open
Abstract
It is well known that chemotherapy can cure only some cancers in advanced stage, mostly those with an intact p53 pathway. Hematological cancers such as lymphoma and certain forms of leukemia are paradigmatic examples of such scenario. Recent evidence indicates that the efficacy of many of the alkylating and intercalating agents, antimetabolites, topoisomerase, and kinase inhibitors used in cancer therapy is largely due to p53 stabilization and activation consequent to the inhibition of ribosome biogenesis. In this context, innovative drugs specifically hindering ribosome biogenesis showed preclinical activity and are currently in early clinical development in hematological malignancies. The mechanism of p53 stabilization after ribosome biogenesis inhibition is a multistep process, depending on specific factors that can be altered in tumor cells, which can affect the antitumor efficacy of ribosome biogenesis inhibitors (RiBi). In the present review, the basic mechanisms underlying the anticancer activity of RiBi are discussed based on the evidence deriving from available preclinical and clinical studies, with the purpose of defining when and why the treatment with drugs inhibiting ribosomal biogenesis could be highly effective in hematological malignancies.
Collapse
Affiliation(s)
- Enrico Derenzini
- European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy.
| | - Alessandra Rossi
- European Institute of Oncology, Via Ripamonti 435, 20141, Milan, Italy
| | - Davide Treré
- DIMES, Università di Bologna, Via Massarenti 9, Bologna, Italy.
| |
Collapse
|
24
|
Fang Z, Cao B, Liao JM, Deng J, Plummer KD, Liao P, Liu T, Zhang W, Zhang K, Li L, Margolin D, Zeng SX, Xiong J, Lu H. SPIN1 promotes tumorigenesis by blocking the uL18 (universal large ribosomal subunit protein 18)-MDM2-p53 pathway in human cancer. eLife 2018; 7:31275. [PMID: 29547122 PMCID: PMC5871334 DOI: 10.7554/elife.31275] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
Ribosomal proteins (RPs) play important roles in modulating the MDM2-p53 pathway. However, less is known about the upstream regulators of the RPs. Here, we identify SPIN1 (Spindlin 1) as a novel binding partner of human RPL5/uL18 that is important for this pathway. SPIN1 ablation activates p53, suppresses cell growth, reduces clonogenic ability, and induces apoptosis of human cancer cells. Mechanistically, SPIN1 sequesters uL18 in the nucleolus, preventing it from interacting with MDM2, and thereby alleviating uL18-mediated inhibition of MDM2 ubiquitin ligase activity toward p53. SPIN1 deficiency increases ribosome-free uL18 and uL5 (human RPL11), which are required for SPIN1 depletion-induced p53 activation. Analysis of cancer genomic databases suggests that SPIN1 is highly expressed in several human cancers, and its overexpression is positively correlated with poor prognosis in cancer patients. Altogether, our findings reveal that the oncogenic property of SPIN1 may be attributed to its negative regulation of uL18, leading to p53 inactivation.
Collapse
Affiliation(s)
- Ziling Fang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Bo Cao
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Jun-Ming Liao
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States.,School of Dentistry at Case Western University, Cleveland, United States
| | - Jun Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Kevin D Plummer
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Peng Liao
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Tao Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Wensheng Zhang
- Department of Computer Science, Bioinformatics Facility of Xavier RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, United States
| | - Kun Zhang
- Department of Computer Science, Bioinformatics Facility of Xavier RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, United States
| | - Li Li
- Laboratory of Translational Cancer Research, Ochsner Clinical Foundation, New Orleans, United States
| | - David Margolin
- Department of Colon and Rectal Surgery, Ochsner Clinical Foundation, New Orleans, United States
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| |
Collapse
|
25
|
mTOR: An attractive therapeutic target for osteosarcoma? Oncotarget 2018; 7:50805-50813. [PMID: 27177330 PMCID: PMC5226621 DOI: 10.18632/oncotarget.9305] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is a common primary malignant bone tumor with high morbidity and mortality in children and young adults. How to improve poor prognosis of OS due to resistance to chemotherapy remains a challenge. Recently, growing findings show activation of mammalian target of rapamycin (mTOR), is associated with OS cell growth, proliferation, metastasis. Targeting mTOR may be a promising therapeutic approach for treating OS. This review summarizes the roles of mTOR pathway in OS and present research status of mTOR inhibitors in the context of OS. In addition, we have attempted to discuss how to design a better treatment project for OS by combining mTOR inhibitor with other drugs.
Collapse
|
26
|
Liao P, Zeng SX, Zhou X, Chen T, Zhou F, Cao B, Jung JH, Del Sal G, Luo S, Lu H. Mutant p53 Gains Its Function via c-Myc Activation upon CDK4 Phosphorylation at Serine 249 and Consequent PIN1 Binding. Mol Cell 2017; 68:1134-1146.e6. [PMID: 29225033 PMCID: PMC6204219 DOI: 10.1016/j.molcel.2017.11.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/24/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022]
Abstract
TP53 missense mutations significantly influence the development and progression of various human cancers via their gain of new functions (GOF) through different mechanisms. Here we report a unique mechanism underlying the GOF of p53-R249S (p53-RS), a p53 mutant frequently detected in human hepatocellular carcinoma (HCC) that is highly related to hepatitis B infection and aflatoxin B1. A CDK inhibitor blocks p53-RS's nuclear translocation in HCC, whereas CDK4 interacts with p53-RS in the G1/S phase of the cells, phosphorylates it, and enhances its nuclear localization. This is coupled with binding of a peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) to p53-RS, but not the p53 form with mutations of four serines/threonines previously shown to be crucial for PIN1 binding. As a result, p53-RS interacts with c-Myc and enhances c-Myc-dependent rDNA transcription key for ribosomal biogenesis. These results unveil a CDK4-PIN1-p53-RS-c-Myc pathway as a novel mechanism for the GOF of p53-RS in HCC.
Collapse
Affiliation(s)
- Peng Liao
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xiang Zhou
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Tianjian Chen
- Haywood Genetics Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Fen Zhou
- Center for Experimental Medicine, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bo Cao
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ji Hoon Jung
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Giannino Del Sal
- Laboratorio Nazionale CIB, Area Science Park Padriciano and Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Shiwen Luo
- Center for Experimental Medicine, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
27
|
Wang H, Feng J, Zhou T, Wei L, Zhou J. Involvement of RPL11 in the enhancement of P53 stability by a podophyllum derivative, a topoisomerase II inhibitor. Cell Biol Int 2017; 42:121-129. [DOI: 10.1002/cbin.10877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/24/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Huai Wang
- School of Public Health; Nanchang University; 461 Ba Yi Avenue Nanchang, Jiangxi 330006 P. R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine; Nanchang University; 461 Ba Yi Avenue Nanchang, Jiangxi 330006 P. R. China
| | - Jiang Feng
- School of Public Health; Nanchang University; 461 Ba Yi Avenue Nanchang, Jiangxi 330006 P. R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine; Nanchang University; 461 Ba Yi Avenue Nanchang, Jiangxi 330006 P. R. China
| | - Tong Zhou
- School of Public Health; Nanchang University; 461 Ba Yi Avenue Nanchang, Jiangxi 330006 P. R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine; Nanchang University; 461 Ba Yi Avenue Nanchang, Jiangxi 330006 P. R. China
| | - Lijun Wei
- School of Public Health; Nanchang University; 461 Ba Yi Avenue Nanchang, Jiangxi 330006 P. R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine; Nanchang University; 461 Ba Yi Avenue Nanchang, Jiangxi 330006 P. R. China
| | - Jianming Zhou
- School of Public Health; Nanchang University; 461 Ba Yi Avenue Nanchang, Jiangxi 330006 P. R. China
- Jiangxi Provincial Key Laboratory of Preventive Medicine; Nanchang University; 461 Ba Yi Avenue Nanchang, Jiangxi 330006 P. R. China
| |
Collapse
|
28
|
Cao B, Wang K, Liao JM, Zhou X, Liao P, Zeng SX, He M, Chen L, He Y, Li W, Lu H. Inactivation of oncogenic cAMP-specific phosphodiesterase 4D by miR-139-5p in response to p53 activation. eLife 2016; 5. [PMID: 27383270 PMCID: PMC4959878 DOI: 10.7554/elife.15978] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence highlights the important roles of microRNAs in mediating p53’s tumor suppression functions. Here, we report miR-139-5p as another new p53 microRNA target. p53 induced the transcription of miR-139-5p, which in turn suppressed the protein levels of phosphodiesterase 4D (PDE4D), an oncogenic protein involved in multiple tumor promoting processes. Knockdown of p53 reversed these effects. Also, overexpression of miR-139-5p decreased PDE4D levels and increased cellular cAMP levels, leading to BIM-mediated cell growth arrest. Furthermore, our analysis of human colorectal tumor specimens revealed significant inverse correlation between the expression of miR-139-5p and that of PDE4D. Finally, overexpression of miR-139-5p suppressed the growth of xenograft tumors, accompanied by decrease in PDE4D and increase in BIM. These results demonstrate that p53 inactivates oncogenic PDE4D by inducing the expression of miR-139-5p. DOI:http://dx.doi.org/10.7554/eLife.15978.001 The human body is kept mostly free from tumors by the actions of so-called tumor suppressor genes. One such gene encodes a protein called p53, which prevents tumors from growing by regulating the activity of many other genes that either inhibit cell growth or cause cells to die. For example, p53 regulates genes that encode short molecules called microRNAs, which in turn suppress the activity of other target genes. Although a number of microRNAs have been reported as p53-regulated genes, there are still more to find. Discovering these genes would in turn help researchers to better understand exactly how p53 acts to suppress the growth of tumors, and to treat cancers caused by mutations in this tumor suppressor gene. Cao, Wang et al. now discover a new microRNA – called miR-139-5p – as one that is activated by p53 in human cells. Colon tumors produce much lower levels of this microRNA than normal tissues, while the cancer cells with a higher level of miR-139-5p grow slower than do the cancer cells with less miR-139-5p. Further experiments showed that this is because miR-139-5p can suppress the production of a protein called PDE4D, which is often highly expressed in human cancers. The suppression of PDE4D by this microRNA results in an increase in the levels of a protein that can cause cancer cells to die. Cao, Wang et al. suggest that miR-139-5p and PDE4D form part of a signaling pathway that plays an important role in suppressing the growth of colon cancer cells. Since microRNAs often have more than one target, future studies could explore if miR-139-5p regulates the production of other cancer-related proteins as well. DOI:http://dx.doi.org/10.7554/eLife.15978.002
Collapse
Affiliation(s)
- Bo Cao
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| | - Kebing Wang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jun-Ming Liao
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| | - Xiang Zhou
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| | - Peng Liao
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| | - Meifang He
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lianzhou Chen
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yulong He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen Li
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, United States
| |
Collapse
|
29
|
Heits N, Heinze T, Bernsmeier A, Kerber J, Hauser C, Becker T, Kalthoff H, Egberts JH, Braun F. Influence of mTOR-inhibitors and mycophenolic acid on human cholangiocellular carcinoma and cancer associated fibroblasts. BMC Cancer 2016; 16:322. [PMID: 27206490 PMCID: PMC4875636 DOI: 10.1186/s12885-016-2360-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/12/2016] [Indexed: 12/19/2022] Open
Abstract
Background The incidence of Cholangiocellular Carcinoma (CCA) is increasing in the western world. The tumour has a high proportion of desmoplastic stroma and is correlated with a worse prognosis when cancer associated myofibroblasts (CAFs) are present. Recent studies showed promising results after liver transplantation (LTx) in non-resectable early stage CCA. Mycophenolic acid (MPA) and the mTor inhibitor Everolimus are used to prevent organ rejection but recently were shown to exhibit an antiproliferative effect on CCA-cells. Little is known about the influence of immunosuppressive drugs on tumour cell proliferation and migration after paracrine stimulation by CAFs. Moreover, it is still unknown, which signaling pathways are activated following these specific cell-cell interactions. Methods CCA cell lines HuCCT1 and TFK1 were utilized for the study. CAFs were derived from resected CCA cancer tissue. Cell viability was measured by the crystal violet assay and tumour cell invasion was quantified using a modified co-culture transmigration assay. Semiquantitative cytokine-expression was measured using a cytokine-array. Protein expression and phosphorylation of ERK, STAT3 and AKT was determined by Western-blot analysis. Results CCA cells treated with MPA exhibited a dose related decrease in cell viability in contrast to Cyclosporine A (CSA) treatment which had no effect on cell viability. Everolimus significantly inhibited proliferation at very low concentrations. The pro-invasive effect of CAFs in co-culture transmigration assay was significantly reduced by Everolimus at a concentration of 1nM (p = 0.047). In contrast, MPA and CSA showed no effect on tumour cell invasion. Treatment of CAFs with 1nM Everolimus showed a significant reduction in the expression of IL 8, IL 13, MCP1, MIF and Serpin E1. CCA-cells showed significant increases in phosphorylation of ERK, STAT3 and AKT under the influence of conditioned CAF-media. This effect was suppressed by Everolimus. Conclusions The secretion of proinflammatory cytokines by CAFs may lead to increased activation of JAK/STAT3-, ERK- and AKT-signaling and increased migration of CCA-cells. Everolimus abrogates this effect and inhibits proliferation of CCA-cells even at low concentrations. LTx for non-resectable early stage CCA is currently performed in several clinical studies. Consistent with a role for common immunosuppressants in inhibiting tumour cell-proliferation and -invasion, our study indicates that a combination of standard therapies with Everolimus and MPA is a promising therapy option to treat CCA following LTx.
Collapse
Affiliation(s)
- Nils Heits
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Strasse 3 (Haus 18), 24105, Kiel, Germany.
| | - Tillmann Heinze
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Strasse 3 (Haus 18), 24105, Kiel, Germany.,Division of Molecular Oncology, Institute for Experimental Cancer Research, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller Str. 3, 24105, Kiel, Germany
| | - Alexander Bernsmeier
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Strasse 3 (Haus 18), 24105, Kiel, Germany
| | - Jannik Kerber
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller Str. 3, 24105, Kiel, Germany
| | - Charlotte Hauser
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Strasse 3 (Haus 18), 24105, Kiel, Germany
| | - Thomas Becker
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Strasse 3 (Haus 18), 24105, Kiel, Germany
| | - Holger Kalthoff
- Division of Molecular Oncology, Institute for Experimental Cancer Research, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller Str. 3, 24105, Kiel, Germany
| | - Jan-Hendrik Egberts
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Strasse 3 (Haus 18), 24105, Kiel, Germany
| | - Felix Braun
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, Arnold-Heller-Strasse 3 (Haus 18), 24105, Kiel, Germany
| |
Collapse
|
30
|
Zhou HY, Li M, Qu J, Jing S, Xu H, Zhao JZ, Zhang J, He MF. Effective Antitumor Candidates Based upon Ferrocenylseleno-Dopamine Derivatives: Growth Inhibition by Induction Cell Apoptosis and Antivascular Effects. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00237] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Jian Qu
- Institute
of Advanced Materials, Nanjing Tech University, Nanjing 210009, People’s Republic of China
| | | | | | - Juan-Zhi Zhao
- Laboratory
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, People’s Republic of China
| | - Jian Zhang
- Laboratory
of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, People’s Republic of China
| | | |
Collapse
|
31
|
He X, Li Y, Dai MS, Sun XX. Ribosomal protein L4 is a novel regulator of the MDM2-p53 loop. Oncotarget 2016; 7:16217-26. [PMID: 26908445 PMCID: PMC4941309 DOI: 10.18632/oncotarget.7479] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/09/2016] [Indexed: 12/29/2022] Open
Abstract
A number of ribosomal proteins (RPs) have been shown to play a critical role in coordinating ribosome biogenesis with cell growth and proliferation by suppressing MDM2 to induce p53 activation. While how the MDM2-p53 pathway is regulated by multiple RPs is unclear, it remains to be interesting to identify additional RPs that can regulate this pathway. Here we report that ribosomal protein L4 (RPL4) directly interacts with MDM2 at the central acidic domain and suppresses MDM2-mediated p53 ubiquitination and degradation, leading to p53 stabilization and activation. Interestingly, overexpression of RPL4 promotes the binding of MDM2 to RPL5 and RPL11 and forms a complex with RPL5, RPL11 and MDM2 in cells. Conversely, knockdown of RPL4 also induces p53 levels and p53-dependent cell cycle arrest. This p53-dependent effect requires both RPL5 and RPL11, suggesting that depletion of RPL4 triggers ribosomal stress. Together, our results reveal that balanced levels of RPL4 are critical for normal cell growth and proliferation via regulating the MDM2-p53 loop.
Collapse
Affiliation(s)
- Xia He
- Department of Molecular and Medical Genetics, School of Medicine and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Nanjing, China
| | - Yuhuang Li
- Department of Molecular and Medical Genetics, School of Medicine and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, School of Medicine and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine and the OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
32
|
Myc-dependent purine biosynthesis affects nucleolar stress and therapy response in prostate cancer. Oncotarget 2016; 6:12587-602. [PMID: 25869206 PMCID: PMC4494960 DOI: 10.18632/oncotarget.3494] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 03/07/2015] [Indexed: 11/25/2022] Open
Abstract
The androgen receptor is a key transcription factor contributing to the development of all stages of prostate cancer (PCa). In addition, other transcription factors have been associated with poor prognosis in PCa, amongst which c-Myc (MYC) is a well-established oncogene in many other cancers. We have previously reported that the AR promotes glycolysis and anabolic metabolism; many of these metabolic pathways are also MYC-regulated in other cancers. In this study, we report that in PCa cells de novo purine biosynthesis and the subsequent conversion to XMP is tightly regulated by MYC and independent of AR activity. We characterized two enzymes, PAICS and IMPDH2, within the pathway as PCa biomarkers in tissue samples and report increased efficacy of established anti-androgens in combination with a clinically approved IMPDH inhibitor, mycophenolic acid (MPA). Treatment with MPA led to a significant reduction in cellular guanosine triphosphate (GTP) levels accompanied by nucleolar stress and p53 stabilization. In conclusion, targeting purine biosynthesis provides an opportunity to perturb PCa metabolism and enhance tumour suppressive stress responses.
Collapse
|
33
|
Liao JM, Cao B, Deng J, Zhou X, Strong M, Zeng S, Xiong J, Flemington E, Lu H. TFIIS.h, a new target of p53, regulates transcription efficiency of pro-apoptotic bax gene. Sci Rep 2016; 6:23542. [PMID: 27005522 PMCID: PMC4804275 DOI: 10.1038/srep23542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/03/2016] [Indexed: 11/09/2022] Open
Abstract
Tumor suppressor p53 transcriptionally regulates hundreds of genes involved in various cellular functions. However, the detailed mechanisms underlying the selection of p53 targets in response to different stresses are still elusive. Here, we identify TFIIS.h, a transcription elongation factor, as a new transcriptional target of p53, and also show that it can enhance the efficiency of transcription elongation of apoptosis-associated bax gene, but not cell cycle-associated p21 (CDKN1A) gene. TFIIS.h is revealed as a p53 target through microarray analysis of RNAs extracted from cells treated with or without inauhzin (INZ), a p53 activator, and further confirmed by RT-q-PCR, western blot, luciferase reporter, and ChIP assays. Interestingly, knocking down TFIIS.h impairs, but overexpressing TFIIS.h promotes, induction of bax, but not other p53 targets including p21, by p53 activation. In addition, overexpression of TFIIS.h induces cell death in a bax- dependent fashion. These findings reveal a mechanism by which p53 utilizes TFIIS.h to selectively promote the transcriptional elongation of the bax gene, upsurging cell death in response to severe DNA damage.
Collapse
Affiliation(s)
- Jun-Ming Liao
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Bo Cao
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Jun Deng
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA.,Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Xiang Zhou
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Michael Strong
- Department of Pathology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Shelya Zeng
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Erik Flemington
- Department of Pathology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry &Molecular Biology and Cancer Center, Tulane University School of Medicine, 1430, Louisiana, LA 70112, USA
| |
Collapse
|
34
|
Jung JH, Liao JM, Zhang Q, Zeng S, Nguyen D, Hao Q, Zhou X, Cao B, Kim SH, Lu H. Inauhzin(c) inactivates c-Myc independently of p53. Cancer Biol Ther 2016; 16:412-9. [PMID: 25692307 DOI: 10.1080/15384047.2014.1002698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oncogene MYC is deregulated in many human cancers, especially in lymphoma. Previously, we showed that inauhzin (INZ) activates p53 and inhibits tumor growth. However, whether INZ could suppress cancer cell growth independently of p53 activity is still elusive. Here, we report that INZ(c), a second generation of INZ, suppresses c-Myc activity and thus inhibits growth of human lymphoma cells in a p53-independent manner. INZ(c) treatment decreased c-Myc expression at both mRNA and protein level, and suppressed c-Myc transcriptional activity in human Burkitt's lymphoma Raji cells with mutant p53. Also, we showed that overexpressing ectopic c-Myc rescues the inhibition of cell proliferation by INZ(c) in Raji cells, implicating c-Myc activity is targeted by INZ(c). Interestingly, the effect of INZ(c) on c-Myc expression was impaired by disrupting the targeting of c-Myc mRNA by miRNAs via knockdown of ribosomal protein (RP) L5, RPL11, or Ago2, a subunit of RISC complex, indicating that INZ(c) targets c-Myc via miRNA pathways. These results reveal a new mechanism that INZ
Collapse
Key Words
- Dox, doxorubicin
- FACS, Fluorescence-activated cell sorting
- GTP, guanosine triphosphate
- INZ, inauhzin
- Inauhzin
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- PBS, Phosphate Buffered Saline
- PI, propidium iodide
- RISC, RNA-induced silencing complex
- RP, ribosomal protein
- RPL11
- RPL5
- UTR, untranslated region
- c-Myc
- lymphoma
- microRNA
- q-RT-PCR, Real-time reverse transcription polymerase chain reaction
Collapse
Affiliation(s)
- Ji Hoon Jung
- a Department of Biochemistry & Molecular Biology and Cancer Center ; Tulane University School of Medicine ; New Orleans , LA USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Goudarzi KM, Nistér M, Lindström MS. mTOR inhibitors blunt the p53 response to nucleolar stress by regulating RPL11 and MDM2 levels. Cancer Biol Ther 2015; 15:1499-514. [PMID: 25482947 DOI: 10.4161/15384047.2014.955743] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a master regulator of cell growth through its ability to stimulate ribosome biogenesis and mRNA translation. In contrast, the p53 tumor suppressor negatively controls cell growth and is activated by a wide range of insults to the cell. The mTOR and p53 signaling pathways are connected by a number of different mechanisms. Chemotherapeutics that inhibit ribosome biogenesis often induce nucleolar stress and activation of p53. Here we have investigated how the p53 response to nucleolar stress is affected by simultaneous mTOR inhibition in osteosarcoma and glioma cell lines. We found that inhibitors of the mTOR pathway including rapamycin, wortmannin, and caffeine blunted the p53 response to nucleolar stress induced by actinomycin D. Synthetic inhibitors of mTOR (temsirolimus, LY294.002 and PP242) also impaired actinomycin D triggered p53 stabilization and induction of p21. Ribosomal protein (RPL11) is known to be required for p53 protein stabilization following nucleolar stress. Treatment of cells with mTOR inhibitors may lead to reduced synthesis of RPL11 and thereby destabilize p53. We found that rapamycin mimicked the effect of RPL11 depletion in terms of blunting the p53 response to nucleolar stress. However, the extent to which the levels of p53 and RPL11 were reduced by rapamycin varied between cell lines. Additional mechanisms whereby rapamycin blunts the p53 response to nucleolar stress are likely to be involved. Indeed, rapamycin increased the levels of endogenous MDM2 despite inhibition of its phosphorylation at Ser-166. Our findings may have implications for the design of combinatorial cancer treatments with mTOR pathway inhibitors.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- Act D, actinomycin D
- BrdU, bromodeoxyuridine
- CHX, cycloheximide
- DMSO, dimethylsulphoxide
- DOX, doxorubicin
- EGCG, epigallocatechin-3-gallate
- FACS, fluorescence-activated cell sorting
- MPA, mycophenolic acid
- MTT, (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide)
- PI, propidium iodide
- actinomycin D
- caffeine
- glioma
- mTOR
- mTOR, mechanistic target of rapamycin
- nutlin-3
- p21
- p53
- rapamycin
- ribosomal protein L11
- ribosome biogenesis
Collapse
Affiliation(s)
- Kaveh M Goudarzi
- a Department of Oncology-Pathology; Karolinska Institutet; Cancer Center Karolinska ; Karolinska University Hospital ; Stockholm , Sweden
| | | | | |
Collapse
|
36
|
Abstract
A veritable explosion of primary research papers within the past 10 years focuses on nucleolar and ribosomal stress, and for good reason: with ribosome biosynthesis consuming ~80% of a cell’s energy, nearly all metabolic and signaling pathways lead ultimately to or from the nucleolus. We begin by describing p53 activation upon nucleolar stress resulting in cell cycle arrest or apoptosis. The significance of this mechanism cannot be understated, as oncologists are now inducing nucleolar stress strategically in cancer cells as a potential anti-cancer therapy. We also summarize the human ribosomopathies, syndromes in which ribosome biogenesis or function are impaired leading to birth defects or bone narrow failures; the perplexing problem in the ribosomopathies is why only certain cells are affected despite the fact that the causative mutation is systemic. We then describe p53-independent nucleolar stress, first in yeast which lacks p53, and then in other model metazoans that lack MDM2, the critical E3 ubiquitin ligase that normally inactivates p53. Do these presumably ancient p53-independent nucleolar stress pathways remain latent in human cells? If they still exist, can we use them to target >50% of known human cancers that lack functional p53?
Collapse
Affiliation(s)
- Allison James
- a Department of Biological Sciences; Louisiana State University; Baton Rouge, LA USA
| | | | | | | | | |
Collapse
|
37
|
Direct relationship between the level of p53 stabilization induced by rRNA synthesis-inhibiting drugs and the cell ribosome biogenesis rate. Oncogene 2015; 35:977-89. [PMID: 25961931 DOI: 10.1038/onc.2015.147] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/16/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023]
Abstract
Many drugs currently used in chemotherapy work by hindering the process of ribosome biogenesis. In tumors with functional p53, the inhibition of ribosome biogenesis may contribute to the efficacy of this treatment by inducing p53 stabilization. As the level of stabilized p53 is critical for the induction of cytotoxic effects, it seems useful to highlight those cancer cell characteristics that can predict the degree of p53 stabilization following the treatment with inhibitors of ribosome biogenesis. In the present study we exposed a series of p53 wild-type human cancer cell lines to drugs such as actinomycin D (ActD), doxorubicin, 5-fluorouracil and CX-5461, which hinder ribosomal RNA (rRNA) synthesis. We found that the amount of stabilized p53 was directly related to the level of ribosome biogenesis in cells before the drug treatment. This was due to different levels of inactivation of the ribosomal proteins-MDM2 pathway of p53 digestion. Inhibition of rRNA synthesis always caused cell cycle arrest, independent of the ribosome biogenesis rate of the cells, whereas apoptosis occurred only in cells with a high rDNA transcription rate. The level of p53 stabilization induced by drugs acting in different ways from the inhibition of ribosome biogenesis, such as hydroxyurea (HU) and nutlin-3, was independent of the level of ribosome biogenesis in cells and always lower than that occurring after the inhibition of rRNA synthesis. Interestingly, in cells with a low ribosome biogenesis rate, the combined treatment with ActD and HU exerted an additive effect on p53 stabilization. These results indicated that (i) drugs inhibiting ribosome biogenesis may be highly effective in p53 wild-type cancers with a high ribosome biogenesis rate, as they induce apoptotic cell death, and (ii) the combination of drugs capable of stabilizing p53 through different mechanisms may be useful for treating cancers with a low ribosome biogenesis rate.
Collapse
|
38
|
Zhou X, Liao WJ, Liao JM, Liao P, Lu H. Ribosomal proteins: functions beyond the ribosome. J Mol Cell Biol 2015; 7:92-104. [PMID: 25735597 DOI: 10.1093/jmcb/mjv014] [Citation(s) in RCA: 445] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/05/2014] [Indexed: 01/05/2023] Open
Abstract
Although ribosomal proteins are known for playing an essential role in ribosome assembly and protein translation, their ribosome-independent functions have also been greatly appreciated. Over the past decade, more than a dozen of ribosomal proteins have been found to activate the tumor suppressor p53 pathway in response to ribosomal stress. In addition, these ribosomal proteins are involved in various physiological and pathological processes. This review is composed to overview the current understanding of how ribosomal stress provokes the accumulation of ribosome-free ribosomal proteins, as well as the ribosome-independent functions of ribosomal proteins in tumorigenesis, immune signaling, and development. We also propose the potential of applying these pieces of knowledge to the development of ribosomal stress-based cancer therapeutics.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wen-Juan Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jun-Ming Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Peng Liao
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
39
|
Gentilella A, Kozma SC, Thomas G. A liaison between mTOR signaling, ribosome biogenesis and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:812-20. [PMID: 25735853 DOI: 10.1016/j.bbagrm.2015.02.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 01/05/2023]
Abstract
The ability to translate genetic information into functional proteins is considered a landmark in evolution. Ribosomes have evolved to take on this responsibility and, although there are some differences in their molecular make-up, both prokaryotes and eukaryotes share a common structural architecture and similar underlying mechanisms of protein synthesis. Understanding ribosome function and biogenesis has been the focus of extensive research since the early days of their discovery. In the last decade however, new and unexpected roles have emerged that place deregulated ribosome biogenesis and protein synthesis at the crossroads of pathological settings, particularly cancer, revealing a set of novel cellular checkpoints. Moreover, it is also becoming evident that mTOR signaling, which regulates an array of anabolic processes, including ribosome biogenesis, is often exploited by cancer cells to sustain proliferation through the upregulation of global protein synthesis. The use of pharmacological agents that interfere with ribosome biogenesis and mTOR signaling has proven to be an effective strategy to control cancer development clinically. Here we discuss the most recent findings concerning the underlying mechanisms by which mTOR signaling controls ribosome production and the potential impact of ribosome biogenesis in tumor development. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Antonio Gentilella
- Laboratory of Metabolism and Cancer, Catalan Institute of Oncology, ICO, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain.
| | - Sara C Kozma
- Laboratory of Metabolism and Cancer, Catalan Institute of Oncology, ICO, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain; Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati Medical School, Cincinnati, 45267-0508 OH, USA
| | - George Thomas
- Laboratory of Metabolism and Cancer, Catalan Institute of Oncology, ICO, Bellvitge Biomedical Research Institute, IDIBELL, 08908 Barcelona, Spain; Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati Medical School, Cincinnati, 45267-0508 OH, USA.
| |
Collapse
|
40
|
Maehama T, Kawahara K, Nishio M, Suzuki A, Hanada K. Nucleolar stress induces ubiquitination-independent proteasomal degradation of PICT1 protein. J Biol Chem 2015; 289:20802-12. [PMID: 24923447 DOI: 10.1074/jbc.m114.571893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The nucleolar protein PICT1 regulates tumor suppressor p53 by tethering ribosomal protein L11 within the nucleolus to repress the binding of L11 to the E3 ligase MDM2. PICT1 depletion results in the release of L11 to the nucleoplasm to inhibit MDM2, leading to p53 activation. Here, we demonstrate that nucleolar stress induces proteasome-mediated degradation of PICT1 in a ubiquitin-independent manner. Treatment of H1299 cells with nucleolar stress inducers, such as actinomycin D, 5-fluorouridine, or doxorubicin, induced the degradation of PICT1 protein. The proteasome inhibitors MG132, lactacystin, and epoxomicin blocked PICT1 degradation, whereas the inhibition of E1 ubiquitin-activating enzyme by a specific inhibitor and genetic inactivation fail to repress PICT1 degradation. In addition, the 20 S proteasome was able to degrade purified PICT1 protein in vitro. We also found a PICT1 mutant showing nucleoplasmic localization did not undergo nucleolar stress-induced degradation, although the same mutant underwent in vitro degradation by the 20 S proteasome, suggesting that nucleolar localization is indispensable for the stress-induced PICT1 degradation. These results suggest that PICT1 employs atypical proteasome-mediated degradation machinery to sense nucleolar stress within the nucleolus.
Collapse
|
41
|
Zhang Q, Zhou X, Wu R, Mosley A, Zeng SX, Xing Z, Lu H. The role of IMP dehydrogenase 2 in Inauhzin-induced ribosomal stress. eLife 2014; 3. [PMID: 25347121 PMCID: PMC4209374 DOI: 10.7554/elife.03077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 10/06/2014] [Indexed: 11/13/2022] Open
Abstract
The 'ribosomal stress (RS)-p53 pathway' is triggered by any stressor or genetic alteration that disrupts ribosomal biogenesis, and mediated by several ribosomal proteins (RPs), such as RPL11 and RPL5, which inhibit MDM2 and activate p53. Inosine monophosphate (IMP) dehydrogenase 2 (IMPDH2) is a rate-limiting enzyme in de novo guanine nucleotide biosynthesis and crucial for maintaining cellular guanine deoxy- and ribonucleotide pools needed for DNA and RNA synthesis. It is highly expressed in many malignancies. We previously showed that inhibition of IMPDH2 leads to p53 activation by causing RS. Surprisingly, our current study reveals that Inauzhin (INZ), a novel non-genotoxic p53 activator by inhibiting SIRT1, can also inhibit cellular IMPDH2 activity, and reduce the levels of cellular GTP and GTP-binding nucleostemin that is essential for rRNA processing. Consequently, INZ induces RS and the RPL11/RPL5-MDM2 interaction, activating p53. These results support the new notion that INZ suppresses cancer cell growth by dually targeting SIRT1 and IMPDH2.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Xiang Zhou
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - RuiZhi Wu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Amber Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, United States
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Zhen Xing
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| |
Collapse
|
42
|
Zhou X, Hao Q, Zhang Q, Liao JM, Ke JW, Liao P, Cao B, Lu H. Ribosomal proteins L11 and L5 activate TAp73 by overcoming MDM2 inhibition. Cell Death Differ 2014; 22:755-66. [PMID: 25301064 DOI: 10.1038/cdd.2014.167] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 01/08/2023] Open
Abstract
Over the past decade, a number of ribosomal proteins (RPs) have been found to have a role in activating the tumor suppressor p53 by directly binding to MDM2 and impeding its activity toward p53. Herein, we report that RPL5 and RPL11 can also enhance the transcriptional activity of a p53 homolog TAp73, but through a distinct mechanism. Interestingly, even though RPL5 and RPL11 were not shown to bind to p53, they were able to directly associate with the transactivation domain of TAp73 independently of MDM2 in response to RS. This association led to perturbation of the MDM2-TAp73 interaction, consequently preventing MDM2 from its association with TAp73 target gene promoters. Furthermore, ectopic expression of RPL5 or RPL11 markedly induced TAp73 transcriptional activity by antagonizing MDM2 suppression. Conversely, ablation of either of the RPs compromised TAp73 transcriptional activity, as evident by the reduction of p21 and Puma expression, in response to 5-fluorouracil (5-FU). Consistently, overexpression of RPL5 or RPL11 enhanced, but knockdown of either of them hampered, TAp73-mediated apoptosis. Intriguingly, simultaneous knockdown of TAp73 and either of the RPs was required for rescuing the 5-FU-triggered S-phase arrest of p53-null tumor cells. These results demonstrate a novel mechanism underlying the inhibition of tumor cell proliferation and growth by these two RPs via TAp73 activation.
Collapse
Affiliation(s)
- X Zhou
- Department of Biochemistry & Molecular Biology, Tulane Cancer Center; Tulane University School of Medicine; New Orleans, Louisiana, USA
| | - Q Hao
- Department of Biochemistry & Molecular Biology, Tulane Cancer Center; Tulane University School of Medicine; New Orleans, Louisiana, USA
| | - Q Zhang
- Department of Biochemistry & Molecular Biology, Tulane Cancer Center; Tulane University School of Medicine; New Orleans, Louisiana, USA
| | - J-M Liao
- Department of Biochemistry & Molecular Biology, Tulane Cancer Center; Tulane University School of Medicine; New Orleans, Louisiana, USA
| | - J-W Ke
- 1] Department of Biochemistry & Molecular Biology, Tulane Cancer Center; Tulane University School of Medicine; New Orleans, Louisiana, USA [2] Department of Laboratory Medicine; Jiangxi Children's Hospital, Nanchang, Jiangxi, China
| | - P Liao
- Department of Biochemistry & Molecular Biology, Tulane Cancer Center; Tulane University School of Medicine; New Orleans, Louisiana, USA
| | - B Cao
- Department of Biochemistry & Molecular Biology, Tulane Cancer Center; Tulane University School of Medicine; New Orleans, Louisiana, USA
| | - H Lu
- Department of Biochemistry & Molecular Biology, Tulane Cancer Center; Tulane University School of Medicine; New Orleans, Louisiana, USA
| |
Collapse
|
43
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
44
|
Kardos GR, Dai MS, Robertson GP. Growth inhibitory effects of large subunit ribosomal proteins in melanoma. Pigment Cell Melanoma Res 2014; 27:801-12. [PMID: 24807543 DOI: 10.1111/pcmr.12259] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/29/2014] [Indexed: 12/26/2022]
Abstract
Ribosome biogenesis can modulate protein synthesis, a process heavily relied upon for cancer cell proliferation. In this study, involvement of large subunit ribosomal proteins (RPLs) in melanoma has been dissected and RPLs categorized based on modulation of cell proliferation and therapeutic targeting potential. Based on these results, two categories of RPLs were identified: the first causing negligible effects on cell viability, p53 expression, and protein translation, while the second category decreased cell viability and inhibited protein synthesis mediated with or without p53 protein stabilization. RPL13 represents the second category, where siRNA-mediated targeting inhibited tumor development through decreased cellular proliferation. Mechanistically, decreased RPL13 levels increased p53 stability mediated by RPL5 and RPL11 binding to and preventing MDM2 from targeting p53 for degradation. The consequence was p53-dependent cell cycle arrest and decreased protein translation. Thus, targeting certain category 2 RPL proteins can inhibit melanoma tumor development mediated through the MDM2-p53 pathway.
Collapse
Affiliation(s)
- Gregory R Kardos
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; The Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, PA, USA; The Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | |
Collapse
|
45
|
Dun B, Xu H, Sharma A, Liu H, Yu H, Yi B, Liu X, He M, Zeng L, She JX. Delineation of biological and molecular mechanisms underlying the diverse anticancer activities of mycophenolic acid. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:2880-2886. [PMID: 24294374 PMCID: PMC3843268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/30/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Mycophenolate mofetil (MMF), the prodrug of mycophenolic acid (MPA) which has been widely used for the prevention of acute graft rejection, is a potent inhibitor of inosine monophosphate dehydrogenase (IMPDH) that is up-regulated in many tumors and potentially a target for cancer therapy. MPA is known to inhibit cancer cell proliferation and induces apoptosis; however, the underlying molecular mechanisms remain elusive. METHODS We first demonstrated MPA's antiproliferative and proapoptotic activities using in vitro studies of 13 cancer cell lines and a xenograft model. Key proteins involved in cell cycle, proliferation and apoptosis were analyzed by Western blotting. RESULTS In vitro treatment of thirteen cancer cell lines indicated that five cell lines (AGS, NCI-N87, HCT-8, A2780 and BxPC-3) are highly sensitive to MPA (IC50 < 0.5 μg/ml), four cell lines (Hs746T, PANC-1, HepG2 and MCF-7) are very resistant to MPA (IC50 > 20 μg/ml) and the four other cell lines (KATO III, SNU-1, K562 and HeLa) have intermediate sensitivity. The anticancer activity of MPA was confirmed in vivo using xenograft model with gastric AGS cell line. Further in vitro analyses using AGS cells indicated that MPA can potently induce cell cycle arrest and apoptosis as well as inhibition of cell proliferation. Targeted proteomic analyses indicate that many critical changes responsible for MPA's activities occur at the protein expression and phosphorylation levels. MPA-induced cell cycle arrest is achieved through reduction of many cell cycle regulators such as CDK4, BUB1, BOP1, Aurora A and FOXM1. We also demonstrate that MPA can inhibit the PI3K/AKT/mTOR pathway and can induce caspase-dependent apoptosis. CONCLUSIONS These results suggest that MPA has beneficial activities for anticancer therapy through diverse molecular pathways and biological processes.
Collapse
Affiliation(s)
- Boying Dun
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences190 Kaiyuan Road, Guangzhou 510530, China
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University1120 15h Street, Augusta, GA 30912, USA
- Institute of Translational Medicine, School of Pharmaceutical Sciences, Nanjing University of TechnologyNanjing, China
| | - Heng Xu
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University1120 15h Street, Augusta, GA 30912, USA
- Institute of Translational Medicine, School of Pharmaceutical Sciences, Nanjing University of TechnologyNanjing, China
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University1120 15h Street, Augusta, GA 30912, USA
| | - Haitao Liu
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University1120 15h Street, Augusta, GA 30912, USA
| | - Hongfang Yu
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University1120 15h Street, Augusta, GA 30912, USA
| | - Bing Yi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University1120 15h Street, Augusta, GA 30912, USA
| | - Xiaoxin Liu
- Institute of Translational Medicine, School of Pharmaceutical Sciences, Nanjing University of TechnologyNanjing, China
| | - Mingfang He
- Institute of Translational Medicine, School of Pharmaceutical Sciences, Nanjing University of TechnologyNanjing, China
| | - Lingwen Zeng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences190 Kaiyuan Road, Guangzhou 510530, China
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University1120 15h Street, Augusta, GA 30912, USA
- Institute of Translational Medicine, School of Pharmaceutical Sciences, Nanjing University of TechnologyNanjing, China
| |
Collapse
|
46
|
Devine T, Dai MS. Targeting the ubiquitin-mediated proteasome degradation of p53 for cancer therapy. Curr Pharm Des 2013; 19:3248-62. [PMID: 23151129 DOI: 10.2174/1381612811319180009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/01/2012] [Indexed: 02/08/2023]
Abstract
Within the past decade, there has been a revolution in the types of drugs developed to treat cancer. Therapies that selectively target cancer-specific aberrations, such as kinase inhibitors, have made a dramatic impact on a subset of patients. In spite of these successes, there is still a dearth of treatment options for the vast majority of patients. Therefore, there is a need to design therapies with broader efficacy. The p53 tumor suppressor pathway is one of the most frequently altered in human cancers. However, about half of all cancers retain wild-type p53, yet through various mechanisms, the p53 pathway is otherwise inactivated. Targeting this pathway for reactivation truly represents the "holy grail" in cancer treatment. Most commonly, destabilization of p53 by various components of ubiquitin- proteasome system, notably the ubiquitin ligase MDM2 and its partner MDMX as well as various deubiquitinating enzymes (DUBs), render p53 inert and unresponsive to stress signals. Reinstating its function in cancer has been a long sought-after goal. Towards this end, a great deal of work has been devoted to the development of compounds that either interfere with the p53-MDM2 and p53- MDMX interactions, inhibit MDM2 E3 activity, or target individual DUBs. Here we review the current progress that has been made in the field, with a special emphasis on both MDM2 and DUB inhibitors. Developing inhibitors targeting the upstream of the p53 ubiquitination pathway will likely also be a valuable option.
Collapse
Affiliation(s)
- Tiffany Devine
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
47
|
Bursac S, Brdovcak MC, Donati G, Volarevic S. Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. Biochim Biophys Acta Mol Basis Dis 2013; 1842:817-30. [PMID: 24514102 DOI: 10.1016/j.bbadis.2013.08.014] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/27/2013] [Indexed: 12/31/2022]
Abstract
Errors in ribosome biogenesis can result in quantitative or qualitative defects in protein synthesis and consequently lead to improper execution of the genetic program and the development of specific diseases. Evidence has accumulated over the last decade suggesting that perturbation of ribosome biogenesis triggers a p53-activating checkpoint signaling pathway, often referred to as the ribosome biogenesis stress checkpoint pathway. Although it was originally suggested that p53 has a prominent role in preventing diseases by monitoring the fidelity of ribosome biogenesis, recent work has demonstrated that p53 activation upon impairment of ribosome biogenesis also mediates pathological manifestations in humans. Perturbations of ribosome biogenesis can trigger a p53-dependent checkpoint signaling pathway independent of DNA damage and the tumor suppressor ARF through inhibitory interactions of specific ribosomal components with the p53 negative regulator, Mdm2. Here we review the recent advances made toward understanding of this newly-recognized checkpoint signaling pathway, its role in health and disease, and discuss possible future directions in this exciting research field. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Sladana Bursac
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Maja Cokaric Brdovcak
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Giulio Donati
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute, Institut d'Investigacio' Biome'dica de Bellvitge (IDIBELL), 08908 Hospitalet de Llobregat, Barcelona, Spain
| | - Sinisa Volarevic
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia.
| |
Collapse
|
48
|
Liao JM, Zhou X, Gatignol A, Lu H. Ribosomal proteins L5 and L11 co-operatively inactivate c-Myc via RNA-induced silencing complex. Oncogene 2013; 33:4916-23. [PMID: 24141778 PMCID: PMC4026346 DOI: 10.1038/onc.2013.430] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/27/2013] [Accepted: 09/13/2013] [Indexed: 01/22/2023]
Abstract
Oncogene MYC is highly expressed in many human cancers and functions as a global regulator of ribosome biogenesis. Previously, we reported that ribosomal protein (RP) L11 binds to c-Myc and inhibits its transcriptional activity in response to ribosomal stress. Here, we show that RPL5, co-operatively with RPL11, guides the RNA-induced silencing complex (RISC) to c-Myc mRNA and mediates the degradation of the mRNA, consequently leading to inhibition of c-Myc activity. Knocking down of RPL5 induced c-Myc expression at both mRNA and protein levels, whereas overexpression of RPL5 suppressed c-Myc expression and activity. Immunoprecipitation revealed that RPL5 binds to 3'UTR of c-Myc mRNA and two subunits of RISC, TRBP (HIV-1 TAR RNA-binding protein) and Ago2, mediating the targeting of c-Myc mRNA by miRNAs. Interestingly, RPL5 and RPL11 co-resided on c-Myc mRNA and suppressed c-Myc expression co-operatively. These findings uncover a mechanism by which these two RPs can co-operatively suppress c-Myc expression, allowing a tightly controlled ribosome biogenesis in cells.
Collapse
Affiliation(s)
- J-M Liao
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - X Zhou
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - A Gatignol
- Lady Davis Institute for Medical Research, McGill University AIDS Centre, Montréal, Québec, Canada
| | - H Lu
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
49
|
PICT1 regulates TP53 via RPL11 and is involved in gastric cancer progression. Br J Cancer 2013; 109:2199-206. [PMID: 24045667 PMCID: PMC3798961 DOI: 10.1038/bjc.2013.561] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 11/08/2022] Open
Abstract
Background: The TP53 pathway is frequently inactivated in human cancers. PICT1 (also known as GLTSCR2) is a novel regulator of the MDM2-TP53 pathway via its interaction with the ribosomal protein RPL11 in the nucleolus. However, the clinical significance of PICT1 in gastric cancer remains unknown. Methods: To evaluate PICT1 function, we used shRNA to inhibit PICT1 expression in gastric cancer cells that expressed wild-type TP53. PICT1 expression and TP53 mutation status were quantified in 110 cases of primary gastric cancer to explore the impact of PICT1 expression levels on gastric cancer. Results: Deficiency of PICT1 significantly impaired cell proliferation and colony formation via TP53-mediated cell cycle arrest. Following induction of PICT1 deficiency, RPL11 translocated out of the nucleolus. Of the 110 gastric cancer samples tested, 70 (63.6%) and 40 (36.4%) tumours expressed wild-type and mutant TP53, respectively. In gastric cancer patients with wild-type TP53 tumours, patients with relatively low PICT1 expression levels had a better prognosis compared with high expression level patients (P=0.046). Conclusion: The findings suggest that PICT1 has a crucial role in gastric cancer progression by regulating the MDM2-TP53 pathway through RPL11. Clinically, PICT1 expression is a novel prognostic parameter in gastric cancer patients with wild-type TP53 tumours.
Collapse
|
50
|
Gómez-Herreros F, Rodríguez-Galán O, Morillo-Huesca M, Maya D, Arista-Romero M, de la Cruz J, Chávez S, Muñoz-Centeno MC. Balanced production of ribosome components is required for proper G1/S transition in Saccharomyces cerevisiae. J Biol Chem 2013; 288:31689-700. [PMID: 24043628 DOI: 10.1074/jbc.m113.500488] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell cycle regulation is a very accurate process that ensures cell viability and the genomic integrity of daughter cells. A fundamental part of this regulation consists in the arrest of the cycle at particular points to ensure the completion of a previous event, to repair cellular damage, or to avoid progression in potentially risky situations. In this work, we demonstrate that a reduction in nucleotide levels or the depletion of RNA polymerase I or III subunits generates a cell cycle delay at the G1/S transition in Saccharomyces cerevisiae. This delay is concomitant with an imbalance between ribosomal RNAs and proteins which, among others, provokes an accumulation of free ribosomal protein L5. Consistently with a direct impact of free L5 on the G1/S transition, rrs1 mutants, which weaken the assembly of L5 and L11 on pre-60S ribosomal particles, enhance both the G1/S delay and the accumulation of free ribosomal protein L5. We propose the existence of a surveillance mechanism that couples the balanced production of yeast ribosomal components and cell cycle progression through the accumulation of free ribosomal proteins. This regulatory pathway resembles the p53-dependent nucleolar-stress checkpoint response described in human cells, which indicates that this is a general control strategy extended throughout eukaryotes.
Collapse
Affiliation(s)
- Fernando Gómez-Herreros
- From the Departamento de Genética, Universidad de Sevilla and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|