1
|
Xu G, Huang Z, Sheng J, Gao X, Wang X, Garcia JQ, Wei G, Liu D, Gong J. FGF binding protein 3 is required for spinal cord motor neuron development and regeneration in zebrafish. Exp Neurol 2021; 348:113944. [PMID: 34896115 DOI: 10.1016/j.expneurol.2021.113944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/10/2021] [Accepted: 11/30/2021] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor binding protein 3 (Fgfbp3) have been known to be crucial for the process of neural proliferation, differentiation, migration, and adhesion. However, the specific role and the molecular mechanisms of fgfbp3 in regulating the development of motor neurons remain unclear. In this study, we have investigated the function of fgfbp3 in morphogenesis and regeneration of motor neuron in zebrafish. Firstly, we found that fgfbp3 was localized in the motor neurons and loss of fgfbp3 caused the significant decrease of the length and branching number of the motor neuron axons, which could be partially rescued by fgfbp3 mRNA injection. Moreover, the fgfbp3 knockdown (KD) embryos demonstrated similar defects of motor neurons as identified in fgfbp3 knockout (KO) embryos. Furthermore, we revealed that the locomotion and startle response of fgfbp3 KO embryos were significantly restricted, which were partially rescued by the fgfbp3 overexpression. In addition, fgfbp3 KO remarkably compromised axonal regeneration of motor neurons after injury. Lastly, the malformation of motor neurons in fgfbp3 KO embryos was rescued by overexpressing drd1b or neurod6a, respectively, which were screened by transcriptome sequencing. Taken together, our results provide strong cellular and molecular evidence that fgfbp3 is crucial for the axonal morphogenesis and regeneration of motor neurons in zebrafish.
Collapse
Affiliation(s)
- Guangmin Xu
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zigang Huang
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiajing Sheng
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiang Gao
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xin Wang
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jason Q Garcia
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Guanyun Wei
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Jie Gong
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
2
|
Steel TR, Hartinger CG. Metalloproteomics for molecular target identification of protein-binding anticancer metallodrugs. Metallomics 2020; 12:1627-1636. [PMID: 33063808 DOI: 10.1039/d0mt00196a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteomics has played an important role in elucidating the fundamental processes occuring in living cells. Translating these methods to metallodrug research ('metalloproteomics') has provided a means for molecular target identification of metal-based anticancer agents which should signifcantly advance the research field. In combination with biological assays, these techniques have enabled the mechanisms of action of metallodrugs to be linked to their interactions with molecular targets and aid understanding of their biological properties. Such investigations have profoundly increased our knowledge of the complex and dynamic nature of metallodrug-biomolecule interactions and have provided, at least for some compound types, a more detailed picture on their specific protein-binding patterns. This perspective highlights the progression of metallodrug proteomics research for the identification of non-DNA targets from standard analytical techniques to powerful metallodrug pull-down methods.
Collapse
Affiliation(s)
- Tasha R Steel
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | |
Collapse
|
3
|
Tassi E, Garman KA, Schmidt MO, Ma X, Kabbara KW, Uren A, Tomita Y, Goetz R, Mohammadi M, Wilcox CS, Riegel AT, Carlstrom M, Wellstein A. Fibroblast Growth Factor Binding Protein 3 (FGFBP3) impacts carbohydrate and lipid metabolism. Sci Rep 2018; 8:15973. [PMID: 30374109 PMCID: PMC6206164 DOI: 10.1038/s41598-018-34238-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
Secreted FGF binding proteins (FGFBP) mobilize locally-acting paracrine FGFs from their extracellular storage. Here, we report that FGFBP3 (BP3) modulates fat and glucose metabolism in mouse models of metabolic syndrome. BP3 knockout mice exhibited altered lipid metabolism pathways with reduced hepatic and serum triglycerides. In obese mice the expression of exogenous BP3 reduced hyperglycemia, hepatosteatosis and weight gain, blunted de novo lipogenesis in liver and adipose tissues, increased circulating adiponectin and decreased NEFA. The BP3 protein interacts with endocrine FGFs through its C-terminus and thus enhances their signaling. We propose that BP3 may constitute a new therapeutic to reverse the pathology associated with metabolic syndrome that includes nonalcoholic fatty liver disease and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Elena Tassi
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, School of Medicine, Washington, DC, 20007, USA
| | - Khalid A Garman
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, School of Medicine, Washington, DC, 20007, USA
| | - Marcel O Schmidt
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, School of Medicine, Washington, DC, 20007, USA
| | - Xiaoting Ma
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, School of Medicine, Washington, DC, 20007, USA
| | - Khaled W Kabbara
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, School of Medicine, Washington, DC, 20007, USA
| | - Aykut Uren
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, School of Medicine, Washington, DC, 20007, USA
| | - York Tomita
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, School of Medicine, Washington, DC, 20007, USA
| | - Regina Goetz
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Moosa Mohammadi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Christopher S Wilcox
- Division of Nephrology and Hypertension, Kidney, and Vascular Research Center, Georgetown University, School of Medicine, Washington, DC, 20007, USA
| | - Anna T Riegel
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, School of Medicine, Washington, DC, 20007, USA
| | - Mattias Carlstrom
- Division of Nephrology and Hypertension, Kidney, and Vascular Research Center, Georgetown University, School of Medicine, Washington, DC, 20007, USA.,Department of Physiology & Pharmacology, Karolinska Institutet S-17177, Stockholm, Sweden
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Department of Oncology, Georgetown University, School of Medicine, Washington, DC, 20007, USA.
| |
Collapse
|
4
|
Taetzsch T, Brayman VL, Valdez G. FGF binding proteins (FGFBPs): Modulators of FGF signaling in the developing, adult, and stressed nervous system. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2983-2991. [PMID: 29902550 DOI: 10.1016/j.bbadis.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/17/2018] [Accepted: 06/09/2018] [Indexed: 01/18/2023]
Abstract
Members of the fibroblast growth factor (FGF) family are involved in a variety of cellular processes. In the nervous system, they affect the differentiation and migration of neurons, the formation and maturation of synapses, and the repair of neuronal circuits following insults. Because of the varied yet critical functions of FGF ligands, their availability and activity must be tightly regulated for the nervous system, as well as other tissues, to properly develop and function in adulthood. In this regard, FGF binding proteins (FGFBPs) have emerged as strong candidates for modulating the actions of secreted FGFs in neural and non-neural tissues. Here, we will review the roles of FGFBPs in the peripheral and central nervous systems.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA.
| | - Vanessa L Brayman
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA.
| | - Gregorio Valdez
- Virginia Tech Carilion Research Institute, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
5
|
Li Y, Sun S, Ding Z, Yang C, Zhang G, Jiang Q, Zou Y. Temporal and spatial expression of fgfbp genes in zebrafish. Gene 2018; 659:128-136. [PMID: 29551495 DOI: 10.1016/j.gene.2018.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/22/2018] [Accepted: 03/12/2018] [Indexed: 01/20/2023]
Abstract
Fibroblast growth factor binding proteins (FGFBPs) are a class of secreted proteoglycans that function as an extracellular chaperone for locally stored FGFs and enhance FGF signaling. To date, all three human FGFBP genes have been identified and one orthologue fgfbp1a has been studied in zebrafish embryos. Here, we described the cloning and expression patterns of four novel FGFBP orthologues in zebrafish, fgfbp1b, fgfbp2a, fgfbp2b, and fgfbp3. Quantitative PCR and whole-mount in situ hybridization results showed that all transcripts except fgfbp2a are initially expressed in a maternal manner. fgfbp1b, fgfbp2b and fgfbp2a transcripts are expressed broadly in the head at 24 h post-fertilization (hpf), and then become restricted to the pharyngeal tissue, pectoral fins, and liver, respectively. fgfbp3 is abundantly expressed in the central nervous system (CNS) throughout embryonic and larval development. In adults, fgfbp family manifests the tissue specific patterns of expression with fgfbp3 robustly expressed in muscle and heart. Our work offers a starting point to uncover roles of FGFBP family genes and the possible mechanisms of FGF-dependent and -independent actions of FGFBP in vertebrates.
Collapse
Affiliation(s)
- Yana Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Shuna Sun
- Children's Hospital, Fudan University, Shanghai 200032, PR China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Chunjie Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Guoping Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Qiu Jiang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
6
|
Tassi E, Lai EY, Li L, Solis G, Chen Y, Kietzman WE, Ray PE, Riegel AT, Welch WJ, Wilcox CS, Wellstein A. Blood Pressure Control by a Secreted FGFBP1 (Fibroblast Growth Factor-Binding Protein). Hypertension 2018; 71:160-167. [PMID: 29158353 PMCID: PMC5730494 DOI: 10.1161/hypertensionaha.117.10268] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/06/2017] [Accepted: 10/13/2017] [Indexed: 12/29/2022]
Abstract
Fibroblast growth factors (FGFs) participate in organ development and tissue maintenance, as well as the control of vascular function. The paracrine-acting FGFs are stored in the extracellular matrix, and their release is controlled by a secreted FGF-binding protein (FGF-BP, FGFBP1, and BP1) that modulates FGF receptor signaling. A genetic polymorphism in the human FGFBP1 gene was associated with higher gene expression and an increased risk of familial hypertension. Here, we report on the effects of inducible BP1 expression in a transgenic mouse model. Induction of BP1 expression in adult animals leads to a sustained rise in mean arterial pressure by >30 mm Hg. The hypertensive effect of BP1 expression is prevented by candesartan, an angiotensin II (AngII) receptor antagonist, or by tempol, an inhibitor of reactive oxygen species. In vivo, BP1 expression sensitizes peripheral resistance vessels to AngII constriction by 20-fold but does not alter adrenergic vasoconstriction. FGF receptor kinase inhibition reverses the sensitization to AngII. Also, constriction of isolated renal afferent arterioles by AngII is enhanced after BP1 expression and blocked by FGF receptor kinase inhibition. Furthermore, AngII-mediated constriction of renal afferent arterioles is abolished in FGF2-/- mice but can be restored by add-back of FGF2 plus BP1 proteins. In contrast to AngII, adrenergic constriction is not affected in the FGF2-/- model. Proteomics and gene expression analysis of kidney tissues after BP1 induction show that MAPK (mitogen-activated protein kinase) signaling via MKK4 (MAPK kinase 4), p38, and JNK (c-Jun N-terminal kinase) integrates the crosstalk of the FGF receptor and AngII pathways and thus impact vascular tone and blood pressure.
Collapse
Affiliation(s)
- Elena Tassi
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - En Yin Lai
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Lingli Li
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Glenn Solis
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Yifan Chen
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - William E Kietzman
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Patricio E Ray
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Anna T Riegel
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - William J Welch
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Christopher S Wilcox
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.)
| | - Anton Wellstein
- From the Lombardi Cancer Center (E.T., W.E.K., A.T.R., A.W.) and Division of Nephrology and Hypertension (E.Y.L., L.L., G.S., Y.C., W.J.W., C.S.W.), Georgetown University, Washington, DC; Department of Physiology, Zhejiang University, Hangzhou, China (E.Y.L.); and Children's National Medical Center, George Washington University, DC (P.E.R.).
| |
Collapse
|
7
|
Jerebtsova M, Das JR, Tang P, Wong E, Ray PE. Angiopoietin-1 prevents severe bleeding complications induced by heparin-like drugs and fibroblast growth factor-2 in mice. Am J Physiol Heart Circ Physiol 2015; 309:H1314-25. [PMID: 26276817 DOI: 10.1152/ajpheart.00373.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/22/2015] [Indexed: 02/05/2023]
Abstract
Critically ill children can develop bleeding complications when treated with heparin-like drugs. These events are usually attributed to the anticoagulant activity of these drugs. However, previous studies showed that fibroblast growth factor-2 (FGF-2), a heparin-binding growth factor released in the circulation of these patients, could precipitate intestinal hemorrhages in mice treated with the heparin-like drug pentosan polysulfate (PPS). Yet very little is known about how FGF-2 induces bleeding complications in combination with heparin-like drugs. Here, we examined the mechanisms by which circulating FGF-2 induces intestinal hemorrhages in mice treated with PPS. We used a well-characterized mouse model of intestinal hemorrhages induced by FGF-2 plus PPS. Adult FVB/N mice were infected with adenovirus carrying Lac-Z or a secreted form of recombinant human FGF-2, and injected with PPS, at doses that do not induce bleeding complications per se. Mice treated with FGF-2 in combination with PPS developed an intestinal inflammatory reaction that increased the permeability and disrupted the integrity of submucosal intestinal vessels. These changes, together with the anticoagulant activity of PPS, induced lethal hemorrhages. Moreover, a genetically modified form of the endothelial ligand angiopoietin-1 (Ang-1*), which has powerful antipermeability and anti-inflammatory activity, prevented the lethal bleeding complications without correcting the anticoagulant status of these mice. These findings define new mechanisms through which FGF-2 and Ang-1* modulate the outcome of intestinal bleeding complications induced by PPS in mice and may have wider clinical implications for critically ill children treated with heparin-like drugs.
Collapse
Affiliation(s)
- Marina Jerebtsova
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, District of Columbia
| | - Jharna R Das
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, District of Columbia
| | - Pingtao Tang
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, District of Columbia
| | - Edward Wong
- Division of Laboratory Medicine, Children's National Medical Center, Washington, District of Columbia; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Patricio E Ray
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, District of Columbia; Division of Nephrology, Children's National Medical Center, Washington, District of Columbia; and Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
8
|
Babak MV, Meier SM, Huber KVM, Reynisson J, Legin AA, Jakupec MA, Roller A, Stukalov A, Gridling M, Bennett KL, Colinge J, Berger W, Dyson PJ, Superti-Furga G, Keppler BK, Hartinger CG. Target profiling of an antimetastatic RAPTA agent by chemical proteomics: relevance to the mode of action. Chem Sci 2015; 6:2449-2456. [PMID: 29308157 PMCID: PMC5647740 DOI: 10.1039/c4sc03905j] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/09/2015] [Indexed: 12/24/2022] Open
Abstract
The RAPTA pharmacophore was linked to beads to identify its biomolecular targets in cancer cells.
The clinical development of anticancer metallodrugs is often hindered by the elusive nature of their molecular targets. To identify the molecular targets of an antimetastatic ruthenium organometallic complex based on 1,3,5-triaza-7-phosphaadamantane (RAPTA), we employed a chemical proteomic approach. The approach combines the design of an affinity probe featuring the pharmacophore with mass-spectrometry-based analysis of interacting proteins found in cancer cell lysates. The comparison of data sets obtained for cell lysates from cancer cells before and after treatment with a competitive binder suggests that RAPTA interacts with a number of cancer-related proteins, which may be responsible for the antiangiogenic and antimetastatic activity of RAPTA complexes. Notably, the proteins identified include the cytokines midkine, pleiotrophin and fibroblast growth factor-binding protein 3. We also detected guanine nucleotide-binding protein-like 3 and FAM32A, which is in line with the hypothesis that the antiproliferative activity of RAPTA compounds is due to induction of a G2/M arrest and histone proteins identified earlier as potential targets.
Collapse
Affiliation(s)
- Maria V Babak
- School of Chemical Sciences , University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand . .,Institute of Inorganic Chemistry , University of Vienna , Waehringer Str. 42 , A-1090 Vienna , Austria
| | - Samuel M Meier
- Institute of Analytical Chemistry , University of Vienna , Waehringer Str. 38 , A-1090 Vienna , Austria
| | - Kilian V M Huber
- CeMM Research Center for Molecular Medicine , Lazarettgasse 14, AKH BT 25.3 , A-1090 Vienna , Austria
| | - Jóhannes Reynisson
- School of Chemical Sciences , University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand .
| | - Anton A Legin
- Institute of Inorganic Chemistry , University of Vienna , Waehringer Str. 42 , A-1090 Vienna , Austria
| | - Michael A Jakupec
- Institute of Inorganic Chemistry , University of Vienna , Waehringer Str. 42 , A-1090 Vienna , Austria
| | - Alexander Roller
- Institute of Inorganic Chemistry , University of Vienna , Waehringer Str. 42 , A-1090 Vienna , Austria
| | - Alexey Stukalov
- CeMM Research Center for Molecular Medicine , Lazarettgasse 14, AKH BT 25.3 , A-1090 Vienna , Austria
| | - Manuela Gridling
- CeMM Research Center for Molecular Medicine , Lazarettgasse 14, AKH BT 25.3 , A-1090 Vienna , Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine , Lazarettgasse 14, AKH BT 25.3 , A-1090 Vienna , Austria
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine , Lazarettgasse 14, AKH BT 25.3 , A-1090 Vienna , Austria
| | - Walter Berger
- Department of Medicine I , Institute of Cancer Research , Medical University Vienna , Borschkegasse 8a , A-1090 Vienna , Austria
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine , Lazarettgasse 14, AKH BT 25.3 , A-1090 Vienna , Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry , University of Vienna , Waehringer Str. 42 , A-1090 Vienna , Austria
| | - Christian G Hartinger
- School of Chemical Sciences , University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand .
| |
Collapse
|
9
|
Zhang J, Wang L, Zhang Y, Li L, Tang S, Xing C, Kim SH, Jiang C, Lü J. Chemopreventive effect of Korean Angelica root extract on TRAMP carcinogenesis and integrative "omic" profiling of affected neuroendocrine carcinomas. Mol Carcinog 2014; 54:1567-83. [PMID: 25307620 DOI: 10.1002/mc.22230] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/06/2014] [Accepted: 08/19/2014] [Indexed: 12/17/2022]
Abstract
Angelica gigas Nakai (AGN) root ethanol extract exerts anti-cancer activity in several allograft and xenograft models. Here we examined its chemopreventive efficacy through gavage administration against primary carcinogenesis in the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Male C57BL/6 TRAMP mice and wild type littermates were given a daily gavage (5 mg/mouse, Monday-Friday) of AGN or vehicle, beginning at 8 wk of age (WOA). All mice were terminated at 24 WOA, unless earlier euthanasia was necessitated by large tumors. Whereas AGN-treated TRAMP mice decreased dorsolateral prostate lesion growth by 30% (P = 0.009), they developed fewer and smaller neuroendocrine-carcinomas (NE-Ca) (0.12 g/mouse) than vehicle-treated counterparts (0.81 g/mouse, P = 0.037). We analyzed the proteome and transcriptome of banked NE-Ca to gain molecular insights. Angiogenesis-antibody array detected a substantial reduction in AGN-treated NE-Ca of basic fibroblast growth factor (FGF2), an angiogenesis stimulator. iTRAQ proteomics plus data mining suggested changes of genes upstream and downstream of FGF2 functionally consistent with AGN inhibiting FGF2/FGFR1 signaling at different levels of the transduction cascade. Moreover, AGN upregulated mRNA of genes related to immune responses, restored expression of many tumor suppressor genes, and prostate function and muscle differentiation genes. On the other hand, AGN down-regulated mRNA of genes related to neuron signaling, oncofetal antigens, inflammation, and mast cells, Wnt signaling, embryonic morphogenesis, biosynthesis, cell adhesion, motility, invasion, and angiogenesis. These changes suggest not only multiple cancer cell targeting actions of AGN but also impact on the tumor microenvironments such as angiogenesis, inflammation, and immune surveillance.
Collapse
Affiliation(s)
- Jinhui Zhang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| | - Lei Wang
- Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Yong Zhang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| | - Li Li
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| | - Suni Tang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Sung-Hoon Kim
- Cancer Preventive Material Development Research Center and Institute, College of Oriental Medicine, Kyunghee University, Seoul, Republic of Korea
| | - Cheng Jiang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| | - Junxuan Lü
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, Texas
| |
Collapse
|
10
|
Role of the nuclear receptor coactivator AIB1/SRC-3 in angiogenesis and wound healing. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1474-84. [PMID: 22342158 DOI: 10.1016/j.ajpath.2011.12.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/23/2011] [Accepted: 12/22/2011] [Indexed: 12/19/2022]
Abstract
The nuclear receptor coactivator amplified in breast cancer 1 (AIB1/SRC-3) has a well-defined role in steroid and growth factor signaling in cancer and normal epithelial cells. Less is known about its function in stromal cells, although AIB1/SRC-3 is up-regulated in tumor stroma and may, thus, contribute to tumor angiogenesis. Herein, we show that AIB1/SRC-3 depletion from cultured endothelial cells reduces their proliferation and motility in response to growth factors and prevents the formation of intact monolayers with tight junctions and of endothelial tubes. In AIB1/SRC-3(+/-) and (-/-) mice, the angiogenic responses to subcutaneous Matrigel implants was reduced by two-thirds, and exogenously added fibroblast growth factor (FGF) 2 did not overcome this deficiency. Furthermore, AIB1/SRC-3(+/-) and (-/-) mice showed similarly delayed healing of full-thickness excisional skin wounds, indicating that both alleles were required for proper tissue repair. Analysis of this defective wound healing showed reduced recruitment of inflammatory cells and macrophages, cytokine induction, and metalloprotease activity. Skin grafts from animals with different AIB1 genotypes and subsequent wounding of the grafts revealed that the defective healing was attributable to local factors and not to defective bone marrow responses. Indeed, wounds in AIB1(+/-) mice showed reduced expression of FGF10, FGFBP3, FGFR1, FGFR2b, and FGFR3, major local drivers of angiogenesis. We conclude that AIB1/SRC-3 modulates stromal cell responses via cross-talk with the FGF signaling pathway.
Collapse
|
11
|
Henning AL, Jiang MX, Yalcin HC, Butcher JT. Quantitative three-dimensional imaging of live avian embryonic morphogenesis via micro-computed tomography. Dev Dyn 2011; 240:1949-57. [PMID: 21761480 DOI: 10.1002/dvdy.22694] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Many clinically relevant congenital malformations arise during mid to late embryonic stages. This period is challenging to image quantitatively in live embryos, necessitating the use of multiple specimens with increased experimental variability. Here we establish X-ray and blood-pool computed tomography (CT) contrast agent toxicity and teratogenesis thresholds for 3D Micro-CT imaging of live avian embryos. Day 4 chick embryos micro-injected with Visipaque™ (VP) developed for an additional 6 days without defect. X-ray radiation up to 798 mGy was nontoxic. Peak average contrast of 1,060 HU occurred within 1 hr of imaging at 50 μm resolution. VP-enhanced contrast persisted past 24 hr with delayed accumulation in the allantois. Regional volumes of VP-injected embryos were statistically identical to those of fixed embryos perfused with osmium tetroxide. We further quantified longitudinal volumetric morphogenesis of the allantois over 30 hr. These results demonstrate the safety and efficacy of contrast enhanced quantitative micro-CT imaging for live embryos.
Collapse
Affiliation(s)
- Alyssa L Henning
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853-7501, USA
| | | | | | | |
Collapse
|
12
|
Tassi E, McDonnell K, Gibby KA, Tilan JU, Kim SE, Kodack DP, Schmidt MO, Sharif GM, Wilcox CS, Welch WJ, Gallicano GI, Johnson MD, Riegel AT, Wellstein A. Impact of fibroblast growth factor-binding protein-1 expression on angiogenesis and wound healing. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2220-32. [PMID: 21945411 DOI: 10.1016/j.ajpath.2011.07.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/07/2011] [Accepted: 07/13/2011] [Indexed: 12/30/2022]
Abstract
Fibroblast growth factors (FGFs) participate in embryonic development, in maintenance of tissue homeostasis in the adult, and in various diseases. FGF-binding proteins (FGFBP) are secreted proteins that chaperone FGFs stored in the extracellular matrix to their receptor, and can thus modulate FGF signaling. FGFBP1 (alias BP1, FGF-BP1, or HBp17) expression is required for embryonic survival, can modulate FGF-dependent vascular permeability in embryos, and is an angiogenic switch in human cancers. To determine the function of BP1 in vivo, we generated tetracycline-regulated conditional BP1 transgenic mice. BP1-expressing adult mice are viable, fertile, and phenotypically indistinguishable from their littermates. Induction of BP1 expression increased mouse primary fibroblast motility in vitro, increased angiogenic sprouting into subcutaneous matrigel plugs in animals and accelerated the healing of excisional skin wounds. FGF-receptor kinase inhibitors blocked these effects. Healing skin wounds showed increased macrophage invasion as well as cell proliferation after BP1 expression. Also, BP1 expression increased angiogenesis during the healing of skin wounds as well as after ischemic injury to hindlimb skeletal muscles. We conclude that BP1 can enhance FGF effects that are required for the healing and repair of injured tissues in adult animals.
Collapse
Affiliation(s)
- Elena Tassi
- Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Huang Y, Qi SH, Shu B, Chen L, Xie JL, Xu YB, Liu XS. Fibroblast Growth Factor-Binding Protein Facilitates the Growth and Migration of Skin-Derived Precursors. J Cutan Med Surg 2011; 15:201-9. [PMID: 21781626 DOI: 10.2310/7750.2011.10049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Fibroblast growth factors (FGFs) are important regulators of cell proliferation, migration, and differentiation during wound healing. FGF-binding protein (FGF-BP) plays a critical role in activating FGFs by releasing them from the extracellular matrix. Although previous studies have demonstrated a pivotal role for FGF-BP in wound healing and angiogenesis, little is known about the biologic effects of FGF-BP on skin stem cells that contribute to wound healing. Objective: To investigate the effects of FGF-BP on the growth and migration of skin-derived precursors (SKPs). Methods: FGF-BP was titrated to determine the optimal concentration that maximally stimulated cell proliferation. Cellular phenotype and telomerase activity were compared in the presence and absence of FGF-BP. The effect of FGF-BP on cell migration was observed by intravenously transplanting SKPs to adult mice. Results: Cell proliferation was maximally stimulated by FGF-BP at a concentration of 10 ng/mL without changing the intrinsic characteristics of SKPs. Low levels of telomerase activity were detected, and FGF-BP decreased the rate at which telomerase activity was downregulated. In vivo, FGF-BP remarkably enhanced the migration of SKPs to skin lesion sites. Conclusion: FGF-BP exerts a positive effect on the growth and migration of SKPs, suggesting a potential role for SKPs in wound healing.
Collapse
Affiliation(s)
- Yong Huang
- From the Departments of Burns and Emergency Surgery and Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Shao-Hai Qi
- From the Departments of Burns and Emergency Surgery and Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Bin Shu
- From the Departments of Burns and Emergency Surgery and Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Lei Chen
- From the Departments of Burns and Emergency Surgery and Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Ju-Lin Xie
- From the Departments of Burns and Emergency Surgery and Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Ying-Bin Xu
- From the Departments of Burns and Emergency Surgery and Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Xu-Sheng Liu
- From the Departments of Burns and Emergency Surgery and Laboratory of Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
14
|
Paban V, Chambon C, Manrique C, Touzet C, Alescio-Lautier B. Neurotrophic signaling molecules associated with cholinergic damage in young and aged rats: Environmental enrichment as potential therapeutic agent. Neurobiol Aging 2011; 32:470-85. [DOI: 10.1016/j.neurobiolaging.2009.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 10/20/2022]
|
15
|
Inactivation of fibroblast growth factor binding protein 3 causes anxiety-related behaviors. Mol Cell Neurosci 2011; 46:200-12. [DOI: 10.1016/j.mcn.2010.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/02/2010] [Accepted: 09/03/2010] [Indexed: 12/19/2022] Open
|
16
|
A distinct role for secreted fibroblast growth factor-binding proteins in development. Proc Natl Acad Sci U S A 2009; 106:8585-90. [PMID: 19433791 DOI: 10.1073/pnas.0810952106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FGFs modulate diverse biological processes including embryonic development. Secreted FGF-binding proteins (BPs) can release FGFs from their local extracellular matrix storage, chaperone them to their cognate receptors, and thus modulate FGF signaling. Here we describe 2 chicken BP homologs (chBP) that show distinct expression peaks at embryonic days E7.5 (chBP2) and E11.5 (chBP1), although their tissue distribution is similar (skin = intestine>lung>heart, liver). Embryos were grown ex ovo to monitor the phenotypic impact of a timed in vivo knockdown of expression peaks by microinjection of specific siRNAs targeted to either of the chBPs. Knockdown of peak expression of chBP2 caused embryonic lethality within <5 days. Surviving embryos showed defective ventral wall closure indicative of altered dorsoventral patterning. This defect coincided with reduced expression of HoxB7 but not HoxB8 that are involved in the control of thoracic/abdominal segment morphology. Also, MAPK phosphatase 3, a negative regulator of FGF signaling, and sonic hedgehog that can participate in feedback control of the FGF pathway were reduced, reflecting altered FGF signaling. Knockdown of the chBP1 expression peak caused embryonic lethality within <3 days although no distinct morphologic phenotype or pathways alterations were apparent. We conclude that BPs play a significant role in fine-tuning the complex FGF signaling network during distinct phases of embryonic development.
Collapse
|