1
|
Gui Z, Shi W, Zhou F, Yan Y, Li Y, Xu Y. The role of estrogen receptors in intracellular estrogen signaling pathways, an overview. J Steroid Biochem Mol Biol 2025; 245:106632. [PMID: 39551163 DOI: 10.1016/j.jsbmb.2024.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
To date five members of estrogen receptors (ESRs) have been reported. They are grouped into two classes, the nuclear estrogen receptors are members of the nuclear receptor family which found at nuclear, cytoplasm and plasma membrane, and the membrane estrogen receptors, such as G protein-coupled estrogen receptor 1, ESR-X and Gq-coupled membrane estrogen receptor. The structure and function of estrogen receptors, and interaction between ESR and coregulators were reviewed. In canonical pathway ESRs can translocate to the nucleus, bind to the target gene promotor with or without estrogen responsive element and regulate transcription, mediating the genomic effects of estrogen. Coactivators and corepressors are recruited to activate or inhibit transcription by activated ESRs. Many coactivators and corepressors are recruited to activate or inhibit ESR mediated gene transcription via different mechanisms. ESRs also indirectly bind to the promoter via interaction with other transcription factors, tethering the transcription factors. ESRs can be phosphorylated by several kinases such as p38, extracellular-signal-regulated kinase, and activated protein kinase B, and which activates transcription without ligand binding. Non-genomic estrogen action can be manifested by the increases of cytoplasmic NO and Ca2+ through the activation of membrane ESRs. In female, ESRs signaling is crucial for folliculogenesis, oocyte growth, ovulation, oviduct and uterus. In male, ESRs signaling modulates libido, erectile function, leydig cell steroidogenesis, sertoli cell's function, and epididymal fluid homeostatsis, supporting spermatogenesis and sperm maturation. The abnormal ESRs signaling is believed to be closely related to reproductive diseases and cancer.
Collapse
Affiliation(s)
- Zichang Gui
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China.
| | - Wei Shi
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Fangting Zhou
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yongqing Yan
- Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| | - Yuntian Li
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China.
| | - Yang Xu
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China; Yunnan Dasheng Biotechnology Co., LTD, Yuxi 653100, China.
| |
Collapse
|
2
|
Elli FM, Mattinzoli D, Ikehata M, Bagnaresi F, Maffini MA, Del Sindaco G, Pagnano A, Lucca C, Messa P, Arosio M, Castellano G, Alfieri CM, Mantovani G. Targeted silencing of GNAS in a human model of osteoprogenitor cells results in the deregulation of the osteogenic differentiation program. Front Endocrinol (Lausanne) 2024; 15:1296886. [PMID: 38828417 PMCID: PMC11140044 DOI: 10.3389/fendo.2024.1296886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/22/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction The dysregulation of cell fate toward osteoprecursor cells associated with most GNAS-based disorders may lead to episodic de novo extraskeletal or ectopic bone formation in subcutaneous tissues. The bony lesion distribution suggests the involvement of abnormal differentiation of mesenchymal stem cells (MSCs) and/or more committed precursor cells. Data from transgenic mice support the concept that GNAS is a crucial factor in regulating lineage switching between osteoblasts (OBs) and adipocyte fates. The mosaic nature of heterotopic bone lesions suggests that GNAS genetic defects provide a sensitized background for ectopic osteodifferentiation, but the underlying molecular mechanism remains largely unknown. Methods The effect of GNAS silencing in the presence and/or absence of osteoblastic stimuli was evaluated in the human L88/5 MSC line during osteodifferentiation. A comparison of the data obtained with data coming from a bony lesion from a GNAS-mutated patient was also provided. Results Our study adds some dowels to the current fragmented notions about the role of GNAS during osteoblastic differentiation, such as the premature transition of immature OBs into osteocytes and the characterization of the differences in the deposed bone matrix. Conclusion We demonstrated that our cell model partially replicates the in vivo behavior results, resulting in an applicable human model to elucidate the pathophysiology of ectopic bone formation in GNAS-based disorders.
Collapse
Affiliation(s)
- Francesca Marta Elli
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Deborah Mattinzoli
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Masami Ikehata
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Bagnaresi
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria A. Maffini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Del Sindaco
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Angela Pagnano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Camilla Lucca
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Piergiorgio Messa
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Maura Arosio
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giuseppe Castellano
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Carlo M. Alfieri
- Department of Nephrology, Dialysis and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Bouza C, Losada AP, Fernández C, Álvarez-Dios JA, de Azevedo AM, Barreiro A, Costas D, Quiroga MI, Martínez P, Vázquez S. A comprehensive coding and microRNA transcriptome of vertebral bone in postlarvae and juveniles of Senegalese sole (Solea senegalensis). Genomics 2024; 116:110802. [PMID: 38290593 DOI: 10.1016/j.ygeno.2024.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Understanding vertebral bone development is essential to prevent skeletal malformations in farmed fish related to genetic and environmental factors. This is an important issue in Solea senegalensis, with special impact of spinal anomalies in postlarval and juvenile stages. Vertebral bone transcriptomics in farmed fish mainly comes from coding genes, and barely on miRNA expression. Here, we used RNA-seq of spinal samples to obtain the first comprehensive coding and miRNA transcriptomic repertoire for postlarval and juvenile vertebral bone, covering different vertebral phenotypes and egg-incubation temperatures related to skeleton health in S. senegalensis. Coding genes, miRNA and pathways regulating bone development and growth were identified. Differential transcriptomic profiles and suggestive mRNA-miRNA interactions were found between postlarvae and juveniles. Bone-related genes and functions were associated with the extracellular matrix, development and regulatory processes, calcium binding, retinol and lipid metabolism or response to stimulus, including those revealed by the miRNA targets related to signaling, cellular and metabolic processes, growth, cell proliferation and biological adhesion. Pathway enrichment associated with fish skeleton were identified when comparing postlarvae and juveniles: growth and bone development functions in postlarvae, while actin cytoskeleton, focal adhesion and proteasome related to bone remodeling in juveniles. The transcriptome data disclosed candidate coding and miRNA gene markers related to bone cell processes, references for functional studies of the anosteocytic bone of S. senegalensis. This study establishes a broad transcriptomic foundation to study healthy and anomalous spines under early thermal conditions across life-stages in S. senegalensis, and for comparative analysis of skeleton homeostasis and pathology in fish and vertebrates.
Collapse
Affiliation(s)
- Carmen Bouza
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Ana P Losada
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Carlos Fernández
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - José A Álvarez-Dios
- Department of Applied Mathematics, Faculty of Mathematics, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Ana Manuela de Azevedo
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Andrés Barreiro
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Damián Costas
- Centro de Investigación Mariña, Universidade de Vigo, ECIMAT, Vigo 36331, Spain
| | - María Isabel Quiroga
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Sonia Vázquez
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Faculty of Veterinary, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
4
|
Dashti P, Thaler R, Hawse JR, Galvan ML, van der Eerden BJ, van Wijnen AJ, Dudakovic A. G-protein coupled receptor 5C (GPRC5C) is required for osteoblast differentiation and responds to EZH2 inhibition and multiple osteogenic signals. Bone 2023; 176:116866. [PMID: 37558192 PMCID: PMC10962865 DOI: 10.1016/j.bone.2023.116866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Osteoblast differentiation is epigenetically suppressed by the H3K27 methyltransferase EZH2, and induced by the morphogen BMP2 and transcription factor RUNX2. These factors also regulate distinct G protein coupled receptors (GPRCs; e.g., PTH1R, GPR30/GPER1). Because GPRCs transduce many physiological stimuli, we examined whether BMP2 or EZH2 inhibition (i.e., GSK126) regulates other GPRC genes in osteoblasts. RNA-seq screening of >400 mouse GPRC-related genes showed that many GPRCs are downregulated during osteogenic differentiation. The orphan receptor GPRC5C, along with a small subset of other GPRCs, is induced by BMP2 or GSK126 during Vitamin C dependent osteoblast differentiation, but not by all-trans retinoic acid. ChIP-seq analysis revealed that GSK126 reduces H3K27me3 levels at the GPRC5C gene locus in differentiating MC3T3-E1 osteoblasts, consistent with enhanced GPRC5C mRNA expression. Loss of function analyses revealed that shRNA-mediated depletion of GPRC5C decreases expression of bone markers (e.g., BGLAP and IBSP) and mineral deposition in response to BMP2 or GSK126. GPRC5C mRNA was found to be reduced in the osteopenic bones of KLF10 null mice which have compromised BMP2 signaling. GPRC5C mRNA is induced by the bone-anabolic activity of 17β-estradiol in trabecular but not cortical bone following ovariectomy. Collectively, these findings suggest that GPRC5C protein is a key node in a pro-osteogenic axis that is normally suppressed by EZH2-mediated H3K27me3 marks and induced during osteoblast differentiation by GSK126, BMP2, and/or 17β-estradiol. Because GPRC5C protein is an understudied orphan receptor required for osteoblast differentiation, identification of ligands that induce GPRC5C signaling may support therapeutic strategies to mitigate bone-related disorders.
Collapse
Affiliation(s)
- Parisa Dashti
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - John R Hawse
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Bram J van der Eerden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andre J van Wijnen
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Biochemistry, University of Vermont, Burlington, VT, USA.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
5
|
Zhang F, Cho WC. Therapeutic potential of RUNX1 and RUNX2 in bone metastasis of breast cancer. Expert Opin Ther Targets 2023; 27:413-417. [PMID: 37243490 DOI: 10.1080/14728222.2023.2219395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 05/28/2023]
Affiliation(s)
- Fei Zhang
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
6
|
Valdez-Salas B, Castillo-Uribe S, Beltran-Partida E, Curiel-Alvarez M, Perez-Landeros O, Guerra-Balcazar M, Cheng N, Gonzalez-Mendoza D, Flores-Peñaloza O. Recovering Osteoblast Functionality on TiO2 Nanotube Surfaces Under Diabetic Conditions. Int J Nanomedicine 2022; 17:5469-5488. [PMID: 36426372 PMCID: PMC9680990 DOI: 10.2147/ijn.s387386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Titanium (Ti) and its alloys (eg, Ti6Al4V) are exceptional treatments for replacing or repairing bones and damaged surrounding tissues. Although Ti-based implants exhibit excellent osteoconductive performance under healthy conditions, the effectiveness and successful clinical achievements are negatively altered in diabetic patients. Concernedly, diabetes mellitus (DM) contributes to osteoblastic dysfunctionality, altering efficient osseointegration. This work investigates the beneficial osteogenic activity conducted by nanostructured TiO2 under detrimental microenvironment conditions, simulated by human diabetic serum. Methods We evaluated the bone-forming functional properties of osteoblasts on synthesized TiO2 nanotubes (NTs) by anodization and Ti6Al4V non-modified alloy surfaces under detrimental diabetic conditions. To simulate the detrimental environment, MC3T3E-1 preosteoblasts were cultured under human diabetic serum (DS) of two diagnosed and metabolically controlled patients. Normal human serum (HS) was used to mimic health conditions and fetal bovine serum (FBS) as the control culture environment. We characterized the matrix mineralization under the detrimental conditions on the control alloy and the NTs. Moreover, we applied immunofluorescence of osteoblasts differentiation markers on the NTs to understand the bone-expression stimulated by the biochemical medium conditions. Results The diabetic conditions depressed the initial osteoblast growth ability, as evidenced by altered early cell adhesion and reduced proliferation. Nonetheless, after three days, the diabetic damage was suppressed by the NTs, enhancing the osteoblast activity. Therefore, the osteogenic markers of bone formation and the differentiation of osteoblasts were reactivated by the nanoconfigured surfaces. Far more importantly, collagen secretion and bone-matrix mineralization were stimulated and conducted to levels similar to those of the control of FBS conditions, in comparison to the control alloy, which was not able to reach similar levels of bone functionality than the NTs. Conclusion Our study brings knowledge for the potential application of nanostructured biomaterials to work as an integrative platform under the detrimental metabolic status present in diabetic conditions.
Collapse
Affiliation(s)
- Benjamin Valdez-Salas
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Sandra Castillo-Uribe
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Ernesto Beltran-Partida
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
- Correspondence: Ernesto Beltran-Partida, Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal, Mexicali, Baja California, C.P. 21280, México, Email
| | - Mario Curiel-Alvarez
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Oscar Perez-Landeros
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Minerva Guerra-Balcazar
- Facultad de Ingeniería, División de Investigación y Posgrado, Universidad Autónoma de Querétaro, Querétaro, México
| | | | - Daniel Gonzalez-Mendoza
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Olivia Flores-Peñaloza
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| |
Collapse
|
7
|
MiRNA-320a-5p contributes to the homeostasis of osteogenesis and adipogenesis in bone marrow mesenchymal stem cell. Regen Ther 2022; 20:32-40. [PMID: 35402661 PMCID: PMC8968203 DOI: 10.1016/j.reth.2022.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
Objective A number of miRNAs and their targets were dragged in the differentiation of bone marrow mesenchymal stem cells (BMSCs). We aimed to elaborate the underlying molecular mechanisms of miRNA-320a in the osteoblast and adipocyte differentiation. Methods Trauma-induced osteonecrosis of the femoral head (TIONFH) and normal control samples (n = 10 for each group) were collected, followed by miRNA chip analysis to identify the differentially expressed miRNAs. H&E staining was used to observe the pathological development of TIONFH. Lentiviral vector was used for overexpression and inhibition of miRNA-320a in vitro. Quantitative real-time PCR (qPCR), Western blotting and immunohistochemistry staining were employed to determine the expression of interested genes at mRNA or protein level. Luciferase report assay was employed to determine the binding of miRNA-320a and RUNX2. Alkaline phosphatase (ALP) and Alizarin red staining were performed to observe the osteogenesis and Oil red O staining were conducted to visualize the adipogenesis. Results Expression of miRNA-320a was up-regulated while RUNX2 expression was down-regulated in TIONFH than Normal control. Luciferase report assay confirmed that miRNA-320a directly targeted to the 3′UTR of RUNX2. miRNA-320a overexpression significantly declined the expressions of osteogenesis-related markers: RUNX2, OSTERIX, Collagen I, Osteocalcin and Osteopontin. ALP and Alizarin red staining confirmed the inhibition function of miRNA-320a in osteogenesis of BMSCs. miRNA-320a inhibition significantly decreased the expression of adipogenesis-related markers: AP2, C/EBPα, FABP4 and PPARγ. Oil Red O staining confirmed the miRNA-320a inhibition reduced adipogenesis of BMSCs. Conclusions miRNA-320a inhibits osteoblast differentiation via targeting RUNX2 and promotes adipocyte differentiation of BMSCs.
Collapse
|
8
|
Park BH, Jeong ES, Lee S, Jang JH. Bio-functionalization and in-vitro evaluation of titanium surface with recombinant fibronectin and elastin fragment in human mesenchymal stem cell. PLoS One 2021; 16:e0260760. [PMID: 34914752 PMCID: PMC8675760 DOI: 10.1371/journal.pone.0260760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
Titanium is a biomaterial that meets a number of important requirements, including excellent mechanical and chemical properties, but has low bioactivity. To improve cellular response onto titanium surfaces and hence its osseointegration, the titanium surface was bio-functionalized to mimic an extracellular matrix (ECM)-like microenvironment that positively influences the behavior of stem cells. In this respect, fibronectin and elastin are important components of the ECM that regulate stem cell differentiation by supporting the biological microenvironment. However, each native ECM is unsuitable due to its high production cost and immunogenicity. To overcome these problems, a recombinant chimeric fibronectin type III9-10 and elastin-like peptide fragments (FN9-10ELP) was developed herein and applied to the bio-functionalized of the titanium surface. An evaluation of the biological activity and cellular responses with respect to bone regeneration indicated a 4-week sustainability on the FN9-10ELP functionalized titanium surface without an initial burst effect. In particular, the adhesion and proliferation of human mesenchymal stem cells (hMSCs) was significantly increased on the FN9-10ELP coated titanium compared to that observed on the non-coated titanium. The FN9-10ELP coated titanium induced osteogenic differentiation such as the alkaline phosphatase (ALP) activity and mineralization activity. In addition, expressions of osteogenesis-related genes such as a collagen type I (Col I), Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), bone sialo protein (BSP), and PDZ-binding motif (TAZ) were further increased. Thus, in vitro the FN9-10ELP functionalization titanium not only sustained bioactivity but also induced osteogenic differentiation of hMSCs to improve bone regeneration.
Collapse
Affiliation(s)
- Bo-Hyun Park
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
| | - Eui-Seung Jeong
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
| | - Sujin Lee
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
- * E-mail:
| |
Collapse
|
9
|
Krieger NS, Bushinsky DA. Metabolic Acidosis Regulates RGS16 and G-protein Signaling in Osteoblasts. Am J Physiol Renal Physiol 2021; 321:F424-F430. [PMID: 34396788 DOI: 10.1152/ajprenal.00166.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic metabolic acidosis stimulates cell-mediated net calcium efflux from bone mediated by increased osteoblastic cyclooxygenase 2 (COX2), leading to prostaglandin E2-induced stimulation of RANKL-induced osteoclastic bone resorption. The osteoblastic H+-sensing G-protein coupled receptor (GPCR), OGR1, is activated by acidosis and leads to increased bne resorption. As regulators of G protein signaling (RGS) proteins limit GPCR signaling, we tested whether RGS proteins themselves are regulated by metabolic acidosis. Primary osteoblasts were isolated from neonatal mouse calvariae and incubated in physiological neutral (NTL) or acidic (MET) medium. Cells were collected and RNA extracted for real time PCR analysis with mRNA levels normalized to RPL13a. RGS1, RGS2, RGS3, RGS4, RGS10, RGS11 or RGS18mRNA did not differ between MET and NTL; however by 30' MET decreased RGS16 which persisted for 60' and 3h. Incubation of osteoblasts with the OGR1 inhibitor CuCl2 inhibited the MET induced increase in RGS16 mRNA. Gallein, a specific inhibitor of Gβγ signaling, was used to determine if downstream signaling by the βγ subunit was critical for the response to acidosis. Gallein decreased net Ca efflux from calvariae and COX2 and RANKL gene expression from isolated osteoblasts. These results indicate that regulation of RGS16 plays an important role in modulating the response of the osteoblastic GPCR, OGR1, to metabolic acidosis and subsequent stimulation of osteoclastic bone resorption.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
10
|
Bustamante-Barrientos FA, Méndez-Ruette M, Ortloff A, Luz-Crawford P, Rivera FJ, Figueroa CD, Molina L, Bátiz LF. The Impact of Estrogen and Estrogen-Like Molecules in Neurogenesis and Neurodegeneration: Beneficial or Harmful? Front Cell Neurosci 2021; 15:636176. [PMID: 33762910 PMCID: PMC7984366 DOI: 10.3389/fncel.2021.636176] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Estrogens and estrogen-like molecules can modify the biology of several cell types. Estrogen receptors alpha (ERα) and beta (ERβ) belong to the so-called classical family of estrogen receptors, while the G protein-coupled estrogen receptor 1 (GPER-1) represents a non-classical estrogen receptor mainly located in the plasma membrane. As estrogen receptors are ubiquitously distributed, they can modulate cell proliferation, differentiation, and survival in several tissues and organs, including the central nervous system (CNS). Estrogens can exert neuroprotective roles by acting as anti-oxidants, promoting DNA repair, inducing the expression of growth factors, and modulating cerebral blood flow. Additionally, estrogen-dependent signaling pathways are involved in regulating the balance between proliferation and differentiation of neural stem/progenitor cells (NSPCs), thus influencing neurogenic processes. Since several estrogen-based therapies are used nowadays and estrogen-like molecules, including phytoestrogens and xenoestrogens, are omnipresent in our environment, estrogen-dependent changes in cell biology and tissue homeostasis have gained attention in human health and disease. This article provides a comprehensive literature review on the current knowledge of estrogen and estrogen-like molecules and their impact on cell survival and neurodegeneration, as well as their role in NSPCs proliferation/differentiation balance and neurogenesis.
Collapse
Affiliation(s)
- Felipe A Bustamante-Barrientos
- Immunology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Maxs Méndez-Ruette
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Patricia Luz-Crawford
- Immunology Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Facultad de Medicina, School of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francisco J Rivera
- Laboratory of Stem Cells and Neuroregeneration, Faculty of Medicine, Institute of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Carlos D Figueroa
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Luis Federico Bátiz
- Neuroscience Program, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.,Facultad de Medicina, School of Medicine, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
11
|
Anagnostis P, Bosdou JK, Vaitsi K, Goulis DG, Lambrinoudaki I. Estrogen and bones after menopause: a reappraisal of data and future perspectives. Hormones (Athens) 2021; 20:13-21. [PMID: 32519298 DOI: 10.1007/s42000-020-00218-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022]
Abstract
Menopausal hormone therapy (MHT) is effective in preventing menopause-related bone loss and decreasing vertebral, non-vertebral and hip fracture risk. MHT contains estrogens that exert both antiosteoclastic and osteoanabolic effects. These effects are dose-dependent, as even ultra-low doses preserve or increase bone mineral density. The transdermal route of administration is effective on cancellous and cortical bone, although fracture data are still lacking. Hormone replacement therapy is the treatment of choice to preserve skeletal health in women with premature ovarian insufficiency and early menopause. MHT can be considered in women aged < 60 years or within 10 years since menopause as, in this population, benefits outweigh possible risks, such as breast cancer and cardiovascular events. Despite the ensuing bone loss after MHT discontinuation, a residual antifracture effect persists. However, in women at risk of fracture, subsequent antiosteoporotic therapy may be needed, either with an antiosteoclastic or osteoanabolic agent. In any case, longitudinal data from randomized controlled trials comparing different estrogen doses and routes of administration, as well as designating the optimal treatment strategy after MHT discontinuation, are needed to elucidate these issues further.
Collapse
Affiliation(s)
- Panagiotis Anagnostis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
- Department of Endocrinology, Police Medical Center of Thessaloniki, Thessaloniki, Greece.
| | - Julia K Bosdou
- Unit for Human Reproduction, 1st Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantina Vaitsi
- Department of Endocrinology, Police Medical Center of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Irene Lambrinoudaki
- 2nd Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Newton AH, Pask AJ. Evolution and expansion of the RUNX2 QA repeat corresponds with the emergence of vertebrate complexity. Commun Biol 2020; 3:771. [PMID: 33319865 PMCID: PMC7738678 DOI: 10.1038/s42003-020-01501-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/10/2020] [Indexed: 11/08/2022] Open
Abstract
Runt-related transcription factor 2 (RUNX2) is critical for the development of the vertebrate bony skeleton. Unlike other RUNX family members, RUNX2 possesses a variable poly-glutamine, poly-alanine (QA) repeat domain. Natural variation within this repeat is able to alter the transactivation potential of RUNX2, acting as an evolutionary 'tuning knob' suggested to influence mammalian skull shape. However, the broader role of the RUNX2 QA repeat throughout vertebrate evolution is unknown. In this perspective, we examine the role of the RUNX2 QA repeat during skeletal development and discuss how its emergence and expansion may have facilitated the evolution of morphological novelty in vertebrates.
Collapse
Affiliation(s)
- Axel H Newton
- Biosciences 4, The School of Biosciences, The University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia.
- Anatomy and Developmental Biology, The School of Biomedical Sciences, Monash University, Clayton, VIC, 3800, Australia.
| | - Andrew J Pask
- Biosciences 4, The School of Biosciences, The University of Melbourne, Royal Parade, Parkville, VIC, 3052, Australia
| |
Collapse
|
13
|
Berberine suppresses bone loss and inflammation in ligature-induced periodontitis through promotion of the G protein-coupled estrogen receptor-mediated inactivation of the p38MAPK/NF-κB pathway. Arch Oral Biol 2020; 122:104992. [PMID: 33338754 DOI: 10.1016/j.archoralbio.2020.104992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/04/2020] [Accepted: 11/15/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE This study aimed to explore the protective actions of berberine on inflammation, and alveolar bone loss in ligature-induced periodontitis, as well as its mechanism of action METHODS: Micro-computed tomography was conducted to analyze the alveolar bone loss, and hematoxylin and eosin staining was carried out to observe the histopathological changes and inflammation status. Furthermore, enzyme linked immunosorbent assay (ELISA) was conducted to evaluate the levels of TNF-α, IL-1β, and IL-10, as well as western blots to determine the levels of GPR30 and the activity of the p38MAPK/NF-κB pathway. RESULTS Berberine distinctly suppressed alveolar bone loss and inflammation in rats exposed to ligature-induced periodontitis. As well as this, berberine significantly decreased the levels of phosphorylated p38MAPK and phosphorylated NF-κB 65 through upregulating the GRP30 protein levels, this protective effects of berberine were reversed by injection of G15, along with the upregulated activity of the p38MAPK/NF-κB pathway in rats with periodontitis. CONCLUSIONS Berberine had a clear inhibitory effect on alveolar bone loss and inflammation in rats exposed to ligature-induced periodontitis, and its putative mechanism of action was attributed to the downregulation of the activity of the P38MAPK/NF-κB pathway, mediated by the G Protein-coupled estrogen receptor.
Collapse
|
14
|
Chuang SC, Chen CH, Chou YS, Ho ML, Chang JK. G Protein-Coupled Estrogen Receptor Mediates Cell Proliferation through the cAMP/PKA/CREB Pathway in Murine Bone Marrow Mesenchymal Stem Cells. Int J Mol Sci 2020; 21:ijms21186490. [PMID: 32899453 PMCID: PMC7555423 DOI: 10.3390/ijms21186490] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/12/2023] Open
Abstract
Estrogen is an important hormone to regulate skeletal physiology via estrogen receptors. The traditional estrogen receptors are ascribed to two nuclear estrogen receptors (ERs), ERα and ERβ. Moreover, G protein-coupled estrogen receptor-1 (GPER-1) was reported as a membrane receptor for estrogen in recent years. However, whether GPER-1 regulated osteogenic cell biology on skeletal system is still unclear. GPER-1 is expressed in growth plate abundantly before puberty but decreased abruptly since the very late stage of puberty in humans. It indicates GPER-1 might play an important role in skeletal growth regulation. GPER-1 expression has been confirmed in osteoblasts, osteocytes and chondrocytes, but its expression in mesenchymal stem cells (MSCs) has not been confirmed. In this study, we hypothesized that GPER-1 is expressed in bone MSCs (BMSC) and enhances BMSC proliferation. The cultured tibiae of neonatal rat and murine BMSCs were tested in our study. GPER-1-specific agonist (G-1) and antagonist (G-15), and GPER-1 siRNA (siGPER-1) were used to evaluate the downstream signaling pathway and cell proliferation. Our results revealed BrdU-positive cell counts were higher in cultured tibiae in the G-1 group. The G-1 also enhanced the cell viability and proliferation, whereas G-15 and siGPER-1 reduced these activities. The cAMP and phosphorylation of CREB were enhanced by G-1 but inhibited by G-15. We further demonstrated that GPER-1 mediates BMSC proliferation via the cAMP/PKA/p-CREB pathway and subsequently upregulates cell cycle regulators, cyclin D1/cyclin-dependent kinase (CDK) 6 and cyclin E1/CDK2 complex. The present study is the first to report that GPER-1 mediates BMSC proliferation. This finding indicates that GPER-1 mediated signaling positively regulates BMSC proliferation and may provide novel insights into addressing estrogen-mediated bone development.
Collapse
Affiliation(s)
- Shu-Chun Chuang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-C.C.); (C.-H.C.); (Y.-S.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-C.C.); (C.-H.C.); (Y.-S.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 807, Taiwan
| | - Ya-Shuan Chou
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-C.C.); (C.-H.C.); (Y.-S.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mei-Ling Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-C.C.); (C.-H.C.); (Y.-S.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medicinal Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 807, Taiwan
- Correspondence: (M.-L.H.); (J.-K.C.); Tel.: +886-7-3121101-2553 (M.-L.H.&J.-K.C.); Fax: +886-7-3219452 (M.-L.H.&J.-K.C.)
| | - Je-Ken Chang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-C.C.); (C.-H.C.); (Y.-S.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (M.-L.H.); (J.-K.C.); Tel.: +886-7-3121101-2553 (M.-L.H.&J.-K.C.); Fax: +886-7-3219452 (M.-L.H.&J.-K.C.)
| |
Collapse
|
15
|
Elshafae SM, Dirksen WP, Alasonyalilar-Demirer A, Breitbach J, Yuan S, Kantake N, Supsavhad W, Hassan BB, Attia Z, Rosol TJ. Canine prostatic cancer cell line (LuMa) with osteoblastic bone metastasis. Prostate 2020; 80:698-714. [PMID: 32348616 PMCID: PMC7291846 DOI: 10.1002/pros.23983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Osteoblastic bone metastasis represents the most common complication in men with prostate cancer (PCa). During progression and bone metastasis, PCa cells acquire properties similar to bone cells in a phenomenon called osteomimicry, which promotes their ability to metastasize, proliferate, and survive in the bone microenvironment. The mechanism of osteomimicry resulting in osteoblastic bone metastasis is unclear. METHODS We developed and characterized a novel canine prostatic cancer cell line (LuMa) that will be useful to investigate the relationship between osteoblastic bone metastasis and osteomimicry in PCa. The LuMa cell line was established from a primary prostate carcinoma of a 13-year old mixed breed castrated male dog. Cell proliferation and gene expression of LuMa were measured and compared to three other canine prostatic cancer cell lines (Probasco, Ace-1, and Leo) in vitro. The effect of LuMa cells on calvaria and murine preosteoblastic (MC3T3-E1) cells was measured by quantitative reverse-transcription polymerase chain reaction and alkaline phosphatase assay. LuMa cells were transduced with luciferase for monitoring in vivo tumor growth and metastasis using different inoculation routes (subcutaneous, intratibial [IT], and intracardiac [IC]). Xenograft tumors and metastases were evaluated using radiography and histopathology. RESULTS After left ventricular injection, LuMa cells metastasized to bone, brain, and adrenal glands. IT injections induced tumors with intramedullary new bone formation. LuMa cells had the highest messenger RNA levels of osteomimicry genes (RUNX2, RANKL, and Osteopontin [OPN]), CD44, E-cadherin, and MYOF compared to Ace-1, Probasco, and Leo cells. LuMa cells induced growth in calvaria defects and modulated gene expression in MC3T3-E1 cells. CONCLUSIONS LuMa is a novel canine PCa cell line with osteomimicry and stemness properties. LuMa cells induced osteoblastic bone formation in vitro and in vivo. LuMa PCa cells will serve as an excellent model for studying the mechanisms of osteomimicry and osteoblastic bone and brain metastasis in prostate cancer.
Collapse
Affiliation(s)
- Said M. Elshafae
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Dept. of Pathology, Faculty of Veterinary medicine, Benha University, Benha, Egypt
- Dept. of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Wessel P. Dirksen
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Dept. of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Aylin Alasonyalilar-Demirer
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Department of Pathology, Faculty of Veterinary Medicine, Bursa Uludag University, Turkey
| | - Justin Breitbach
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Shiyu Yuan
- Dept. of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Noriko Kantake
- Dept. of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Wachiraphan Supsavhad
- Dept. of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Bardes B. Hassan
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Dept. of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Zayed Attia
- Dept. of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Dept. of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Sadat City University, Sadat City, Egypt
| | - Thomas J. Rosol
- Dept. of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Correspondence to: Dr. Thomas Rosol, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 225 Irvine Hall, Athens, OH 45701, USA. , Phone: 740.593.2405
| |
Collapse
|
16
|
Mifamurtide and TAM-like macrophages: effect on proliferation, migration and differentiation of osteosarcoma cells. Oncotarget 2020; 11:687-698. [PMID: 32133045 PMCID: PMC7041936 DOI: 10.18632/oncotarget.27479] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/21/2020] [Indexed: 01/29/2023] Open
Abstract
Tumor-associated macrophages and their alternative activation states together with cytokines and growth factors trapped in tumor microenvironment contribute to the progression of OS. In contrast to other tumor types, M2 polarized macrophages, reduce metastasis and improve survival in osteosarcoma patients. Mifamurtide is an immunomodulatory drug given together with standard adjuvant chemotherapy in high-grade osteosarcoma to improve outcome. Macrophages obtained from peripheral blood mononucleated cells of healthy donors and MG63 cells were cultured alone and together, and treated with Mifamurtide. We analyzed the effects of Mifamurtide on macrophage polarization and on MG63 proliferation, migration and differentiation, evaluating the expression of M1/M2 and osteoblast markers and molecules involved in metastasis and proliferation pathways. Our data suggest that Mifamurtide, switching macrophage polarization towards a TAM-like intermediate M1/M2 phenotype, may modulate the delicate balance between pro-inflammatory and immunomodulatory macrophage functions. Moreover, Mifamurtide may inhibit the cellular proliferation and induce the tumor cell differentiation, probably through the down regulation of pSTAT3, pAKT and IL-17R.
Collapse
|
17
|
Vlad MD, Fernández Aguado E, Gómez González S, Ivanov IC, Şindilar EV, Poeată I, Iencean AŞ, Butnaru M, Avădănei ER, López López J. Novel titanium-apatite hybrid scaffolds with spongy bone-like micro architecture intended for spinal application: In vitro and in vivo study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110658. [PMID: 32204086 DOI: 10.1016/j.msec.2020.110658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Titanium alloy scaffolds with novel interconnected and non-periodic porous bone-like micro architecture were 3D-printed and filled with hydroxyapatite bioactive matrix. These novel metallic-ceramic hybrid scaffolds were tested in vitro by direct-contact osteoblast cell cultures for cell adhesion, proliferation, morphology and gene expression of several key osteogenic markers. The scaffolds were also evaluated in vivo by implanting them on transverse and spinous processes of sheep's vertebras and subsequent histology study. The in vitro results showed that: (a) cell adhesion, proliferation and viability were not negatively affected with time by compositional factors (quantitative MTT-assay); (b) the osteoblastic cells were able to adhere and to attain normal morphology (fluorescence microscopy); (c) the studied samples had the ability to promote and sustain the osteogenic differentiation, matrix maturation and mineralization in vitro (real-time quantitative PCR and mineralized matrix production staining). Additionally, the in vivo results showed that the hybrid scaffolds had greater infiltration, with fully mineralized bone after 6 months, than the titanium scaffolds without bioactive matrix. In conclusion, these novel hybrid scaffolds could be an alternative to the actual spinal fusion devices, due to their proved osteogenic performance (i.e. osteoinductive and osteoconductive behaviour), if further dimensional and biomechanical optimization is performed.
Collapse
Affiliation(s)
- Maria Daniela Vlad
- Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy from Iasi, Str. Kogălniceanu 9-13, 700454 Iasi, Romania; TRANSCEND Research Centre, Regional Institute of Oncology, Str. G-ral Henri Mathias Berthelot 2-4, 700483 Iași, Romania.
| | - Enrique Fernández Aguado
- Research Group of Interacting Surfaces in Bioengineering and Materials Science (InSup), Technical University of Catalonia (UPC), Avda. Diagonal 647, 08028 Barcelona, Spain
| | - Sergio Gómez González
- Research Group of Interacting Surfaces in Bioengineering and Materials Science (InSup), Technical University of Catalonia (UPC), Avda. Diagonal 647, 08028 Barcelona, Spain
| | - Iuliu Cristian Ivanov
- TRANSCEND Research Centre, Regional Institute of Oncology, Str. G-ral Henri Mathias Berthelot 2-4, 700483 Iași, Romania
| | - Eusebiu Viorel Şindilar
- Faculty of Veterinary Medicine, University "Ion Ionescu de la Brad" of Agricultural Sciences and Veterinary Medicine, Str. Aleea M. Sadoveanu, no. 8, 700489 Iasi, Romania
| | - Ion Poeată
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy from Iasi, Str. Universității no. 16, 700115 Iasi, Romania
| | - Andrei Ştefan Iencean
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy from Iasi, Str. Universității no. 16, 700115 Iasi, Romania
| | - Maria Butnaru
- Faculty of Medical Bioengineering, "Grigore T. Popa" University of Medicine and Pharmacy from Iasi, Str. Kogălniceanu 9-13, 700454 Iasi, Romania
| | - Elena Roxana Avădănei
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy from Iasi, Str. Universității no. 16, 700115 Iasi, Romania
| | - José López López
- Research Group of Interacting Surfaces in Bioengineering and Materials Science (InSup), Technical University of Catalonia (UPC), Avda. Diagonal 647, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Tsoi M, Morin M, Rico C, Johnson RL, Paquet M, Gévry N, Boerboom D. Lats1 and Lats2 are required for ovarian granulosa cell fate maintenance. FASEB J 2019; 33:10819-10832. [PMID: 31268774 PMCID: PMC6766663 DOI: 10.1096/fj.201900609r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/04/2019] [Indexed: 01/19/2023]
Abstract
Recent reports suggest that the Hippo signaling pathway influences ovarian follicle development; however, its exact roles remain unknown. Here, we examined the ovarian functions of the Hippo kinases large tumor suppressors (LATS)1 and 2, which serve to inactivate the transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Inactivation of Lats1/2 in murine granulosa cells either in vitro or in vivo resulted in a loss of granulosa cell morphology, function, and gene expression. Mutant cells further underwent changes in structure and gene expression suggestive of epithelial-to-mesenchymal transition and transdifferentiation into multiple lineages. In vivo, granulosa cell-specific loss of Lats1/2 caused the ovarian parenchyma to be mostly replaced by bone tissue and seminiferous tubule-like structures. Transdifferentiation into Sertoli-like cells and osteoblasts was attributed in part to the increased recruitment of YAP and TAZ to the promoters of sex-determining region Y box 9 and bone γ-carboxyglutamate protein, key mediators of male sex determination and osteogenesis, respectively. Together, these results demonstrate for the first time a critical role for Lats1/2 in the maintenance of the granulosa cell genetic program and further highlight the remarkable plasticity of granulosa cells.-Tsoi, M., Morin, M., Rico, C., Johnson, R. L., Paquet, M., Gévry, N., Boerboom, D. Lats1 and Lats2 are required for ovarian granulosa cell fate maintenance.
Collapse
Affiliation(s)
- Mayra Tsoi
- Département de Biomédecine Vétérinaire, Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Martin Morin
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Charlène Rico
- Département de Biomédecine Vétérinaire, Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Randy L. Johnson
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Marilène Paquet
- Département de Pathologie et de Microbiologie, Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Nicolas Gévry
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Derek Boerboom
- Département de Biomédecine Vétérinaire, Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
19
|
Tseng CC, Wu LY, Tsai WC, Ou TT, Wu CC, Sung WY, Kuo PL, Yen JH. Differential Expression Profiles of the Transcriptome and miRNA Interactome in Synovial Fibroblasts of Rheumatoid Arthritis Revealed by Next Generation Sequencing. Diagnostics (Basel) 2019; 9:diagnostics9030098. [PMID: 31426562 PMCID: PMC6787660 DOI: 10.3390/diagnostics9030098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Using next-generation sequencing to decipher the molecular mechanisms underlying aberrant rheumatoid arthritis synovial fibroblasts (RASF) activation, we performed transcriptome-wide RNA-seq and small RNA-seq on synovial fibroblasts from rheumatoid arthritis (RA) subject and normal donor. Differential expression of mRNA and miRNA was integrated with interaction analysis, functional annotation, regulatory network mapping and experimentally verified miRNA–target interaction data, further validated with microarray expression profiles. In this study, 3049 upregulated mRNA and 3552 downregulated mRNA, together with 50 upregulated miRNA and 35 downregulated miRNA in RASF were identified. Interaction analysis highlighted contribution of miRNA to altered transcriptome. Functional annotation revealed metabolic deregulation and oncogenic signatures of RASF. Regulatory network mapping identified downregulated FOXO1 as master transcription factor resulting in altered transcriptome of RASF. Differential expression in three miRNA and corresponding targets (hsa-miR-31-5p:WASF3, hsa-miR-132-3p:RB1, hsa-miR-29c-3p:COL1A1) were also validated. The interactions of these three miRNA–target genes were experimentally validated with past literature. Our transcriptomic and miRNA interactomic investigation identified gene signatures associated with RASF and revealed the involvement of transcription factors and miRNA in an altered transcriptome. These findings help facilitate our understanding of RA with the hope of serving as a springboard for further discoveries relating to the disease.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wen-Chan Tsai
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Wan-Yu Sung
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
20
|
Lin X, Li L, Wu S, Tian J, Zheng W. Activation of GPR30 promotes osteogenic differentiation of MC3T3-E1 cells: An implication in osteoporosis. IUBMB Life 2019; 71:1751-1759. [PMID: 31298483 DOI: 10.1002/iub.2118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/18/2019] [Indexed: 12/25/2022]
Abstract
Osteoporosis is an age-related disease characterized by reduced bone volume and disturbed bone metabolism. Novel therapies to rescue or prevent reduced bone mass by guiding the differentiation of pluripotent bone marrow stromal cells away from adipocyte differentiation and toward osteoblastic differentiation may serve as a valuable treatment option against osteoporosis. Estrogen has long been recognized as a key effector of bone formation and mineralization, but the exact mechanisms involved remain poorly understood. In the present study, we investigated the role of the estrogen-specific G protein-coupled receptor 30 (GPR30/GPER) using its specific agonist G1 in MC3T3-E1 preosteoblast cells. Our findings demonstrate that expression of GPR30 is upregulated during osteoblast differentiation and that agonism of GPR30 significantly increases some key markers of mineralization including alkaline phosphatase, osteocalcin, osterix, and type I collagen. We also demonstrate that GPR30 agonism upregulates expression of Runx2, which is recognized as an essential transcription factor involved in bone formation. Additionally, through a series of adenosine monophosphate-activated protein kinase (AMPK)-inhibition experiments using compound C, we show that the positive effects of GPR30 on mineralization and differentiation of preosteoblasts are mediated through the AMPK/anti-acetyl-CoA carboxylase (ACC) pathway. Taken together, the findings of the present study demonstrate the potential of GPR30 as a novel target for the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Xiaozong Lin
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuliang Wu
- Department of Anatomy, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jun Tian
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Weizhuo Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
21
|
The role of GPCRs in bone diseases and dysfunctions. Bone Res 2019; 7:19. [PMID: 31646011 PMCID: PMC6804689 DOI: 10.1038/s41413-019-0059-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
The superfamily of G protein-coupled receptors (GPCRs) contains immense structural and functional diversity and mediates a myriad of biological processes upon activation by various extracellular signals. Critical roles of GPCRs have been established in bone development, remodeling, and disease. Multiple human GPCR mutations impair bone development or metabolism, resulting in osteopathologies. Here we summarize the disease phenotypes and dysfunctions caused by GPCR gene mutations in humans as well as by deletion in animals. To date, 92 receptors (5 glutamate family, 67 rhodopsin family, 5 adhesion, 4 frizzled/taste2 family, 5 secretin family, and 6 other 7TM receptors) have been associated with bone diseases and dysfunctions (36 in humans and 72 in animals). By analyzing data from these 92 GPCRs, we found that mutation or deletion of different individual GPCRs could induce similar bone diseases or dysfunctions, and the same individual GPCR mutation or deletion could induce different bone diseases or dysfunctions in different populations or animal models. Data from human diseases or dysfunctions identified 19 genes whose mutation was associated with human BMD: 9 genes each for human height and osteoporosis; 4 genes each for human osteoarthritis (OA) and fracture risk; and 2 genes each for adolescent idiopathic scoliosis (AIS), periodontitis, osteosarcoma growth, and tooth development. Reports from gene knockout animals found 40 GPCRs whose deficiency reduced bone mass, while deficiency of 22 GPCRs increased bone mass and BMD; deficiency of 8 GPCRs reduced body length, while 5 mice had reduced femur size upon GPCR deletion. Furthermore, deficiency in 6 GPCRs induced osteoporosis; 4 induced osteoarthritis; 3 delayed fracture healing; 3 reduced arthritis severity; and reduced bone strength, increased bone strength, and increased cortical thickness were each observed in 2 GPCR-deficiency models. The ever-expanding number of GPCR mutation-associated diseases warrants accelerated molecular analysis, population studies, and investigation of phenotype correlation with SNPs to elucidate GPCR function in human diseases.
Collapse
|
22
|
RUNX family: Oncogenes or tumor suppressors (Review). Oncol Rep 2019; 42:3-19. [PMID: 31059069 PMCID: PMC6549079 DOI: 10.3892/or.2019.7149] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
Runt-related transcription factor (RUNX) proteins belong to a transcription factors family known as master regulators of important embryonic developmental programs. In the last decade, the whole family has been implicated in the regulation of different oncogenic processes and signaling pathways associated with cancer. Furthermore, a suppressor tumor function has been also reported, suggesting the RUNX family serves key role in all different types of cancer. In this review, the known biological characteristics, specific regulatory abilities and experimental evidence of RUNX proteins will be analyzed to demonstrate their oncogenic potential and tumor suppressor abilities during oncogenic processes, suggesting their importance as biomarkers of cancer. Additionally, the importance of continuing with the molecular studies of RUNX proteins' and its dual functions in cancer will be underlined in order to apply it in the future development of specific diagnostic methods and therapies against different types of cancer.
Collapse
|
23
|
Weinman MA, Fischer JA, Jacobs DC, Goodall CP, Bracha S, Chappell PE. Autocrine production of reproductive axis neuropeptides affects proliferation of canine osteosarcoma in vitro. BMC Cancer 2019; 19:158. [PMID: 30777054 PMCID: PMC6379937 DOI: 10.1186/s12885-019-5363-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/11/2019] [Indexed: 01/19/2023] Open
Abstract
Background Osteosarcoma strikes hundreds of people each year, of both advanced and younger ages, and is often terminal. Like many tumor types, these bone tumors will frequently undergo a neuroendocrine transition, utilizing autocrine and/or paracrine hormones as growth factors and/or promoters of angiogenesis to facilitate progression and metastasis. While many of these factors and their actions on tumor growth are characterized, some tumor-derived neuropeptides remain unexplored. Methods Using validated canine osteosarcoma cell lines in vitro, as well as cells derived from spontaneous tumors in dogs, we explored the autocrine production of two neuropeptides typically found in the hypothalamus, and most closely associated with reproduction: gonadotropin-releasing hormone (GnRH) and kisspeptin (Kiss-1). We evaluated gene expression and protein secretion of these hormones using quantitative RT-PCR and a sensitive radioimmunoassay, and explored changes in cell proliferation determined by MTS cell viability assays. Results Our current studies reveal that several canine osteosarcoma cell lines (COS, POS, HMPOS, D17, C4) synthesize and secrete GnRH and express the GnRH receptor, while COS and POS also express kiss1 and its cognate receptor. We have further found that GnRH and kisspeptin, exogenously applied to these tumor cells, exert significant effects on both gene expression and proliferation. Of particular interest, kisspeptin exposure stimulated GnRH secretion from COS, similarly to the functional relationship observed within the neuroendocrine reproductive axis. Additionally, GnRH and kisspeptin treatment both increased COS proliferation, which additionally manifested in increased expression of the bone remodeling ligand rankl within these cells. These effects were blocked by treatment with a specific GnRH receptor inhibitor. Both neuropeptides were found to increase expression of the specific serotonin (5HT) receptor htr2a, the activation of which has previously been associated with cellular proliferation, suggesting that production of these factors by osteosarcoma cells may act to sensitize tumors to circulating 5HT of local and/or enteric origin. Conclusions Here we report that kisspeptin and GnRH act as autocrine growth factors in canine osteosarcoma cells in vitro, modulating RANKL and serotonin receptor expression in a manner consistent with pro-proliferative effects. Pharmacological targeting of these hormones may represent new avenues of osteosarcoma treatment. Electronic supplementary material The online version of this article (10.1186/s12885-019-5363-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcus A Weinman
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Jacob A Fischer
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Dakota C Jacobs
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Cheri P Goodall
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Shay Bracha
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Patrick E Chappell
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
24
|
Sun F, Chen J, Jin S, Wang J, Man Y, Li J, Zou Q, Li Y, Zuo Y. Development of biomimetic trilayer fibrous membranes for guided bone regeneration. J Mater Chem B 2019; 7:665-675. [PMID: 32254799 DOI: 10.1039/c8tb02435a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
in order to build fibrous bone tissue scaffolds for guided bone regeneration and to mimic the trilayer structure and the multifunctional properties of the natural periosteum, we fabricated two fibrous trilayer membranes by conjugate electrospinning technology, in which poly(ε-caprolactone) (PCL) fiber was designed as an outer layer, the mixed fibers of PCL and polyurethane (co-PUPCL) as the interlayer, and degradable polyurethane fibers with or without nano-hydroxyapatite (n-HA) as the inner layer (PUHA or PU). The microstructure and characteristics of the trilayer membranes were evaluated and different monolayer fibers were fabricated as the contrast samples. The tensile strength values of each layer increased from the inner layer to the outer layer in the designed structure, while the step-by-step electrospinning method produced good adhesion of different layers. Furthermore, the degradable properties and hydrophilicity of the layers changed with dissymmetric fibrous structures. Cell proliferation assay and cell morphology observation indicated that the PUHA inner fibrous layer exhibited better cell attachment and proliferation than PU. In addition, the osteogenicity of the PUHA fibrous layer has been attested through protein expression by the differentiation of rat mesenchymal stem cells (rMSCs) into the osteogenic lineage. Cell infiltration testing on the two sides of the trilayer membranes in vitro and in vivo showed that the inner layer had good cellular penetration deep into the scaffolds, whereas the cells were barred by the outer layer. We have developed a trilayer structured membrane with different polymer fibers to replicate the natural periosteum by improving functional outcomes, which is a promising fibrous scaffold for clinical use in the repair of destroyed bone.
Collapse
Affiliation(s)
- Fuhua Sun
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Posritong S, Hong JM, Eleniste PP, McIntyre PW, Wu JL, Himes ER, Patel V, Kacena MA, Bruzzaniti A. Pyk2 deficiency potentiates osteoblast differentiation and mineralizing activity in response to estrogen or raloxifene. Mol Cell Endocrinol 2018; 474:35-47. [PMID: 29428397 PMCID: PMC6057828 DOI: 10.1016/j.mce.2018.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 02/07/2023]
Abstract
Bone remodeling is controlled by the actions of bone-degrading osteoclasts and bone-forming osteoblasts (OBs). Aging and loss of estrogen after menopause affects bone mass and quality. Estrogen therapy, including selective estrogen receptor modulators (SERMs), can prevent bone loss and increase bone mineral density in post-menopausal women. Although investigations of the effects of estrogen on osteoclast activity are well advanced, the mechanism of action of estrogen on OBs is still unclear. The proline-rich tyrosine kinase 2 (Pyk2) is important for bone formation and female mice lacking Pyk2 (Pyk2-KO) exhibit elevated bone mass, increased bone formation rate and reduced osteoclast activity. Therefore, in the current study, we examined the role of estrogen signaling on the mechanism of action of Pyk2 in OBs. As expected, Pyk2-KO OBs showed significantly higher proliferation, matrix formation, and mineralization than WT OBs. In addition we found that Pyk2-KO OBs cultured in the presence of either 17β-estradiol (E2) or raloxifene, a SERM used for the treatment of post-menopausal osteoporosis, showed a further robust increase in alkaline phosphatase (ALP) activity and mineralization. We examined the possible mechanism of action and found that Pyk2 deletion promotes the proteasome-mediated degradation of estrogen receptor α (ERα), but not estrogen receptor β (ERβ). As a consequence, E2 signaling via ERβ was enhanced in Pyk2-KO OBs. In addition, we found that Pyk2 deletion and E2 stimulation had an additive effect on ERK phosphorylation, which is known to stimulate cell differentiation and survival. Our findings suggest that in the absence of Pyk2, estrogen exerts an osteogenic effect on OBs through altered ERα and ERβ signaling. Thus, targeting Pyk2, in combination with estrogen or raloxifene, may be a novel strategy for the prevention and/or treatment of bone loss diseases.
Collapse
Affiliation(s)
- Sumana Posritong
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Jung Min Hong
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Pierre P Eleniste
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Patrick W McIntyre
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Jennifer L Wu
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Evan R Himes
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Vruti Patel
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Angela Bruzzaniti
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, 46202, USA.
| |
Collapse
|
26
|
Araya HF, Sepulveda H, Lizama CO, Vega OA, Jerez S, Briceño PF, Thaler R, Riester SM, Antonelli M, Salazar-Onfray F, Rodríguez JP, Moreno RD, Montecino M, Charbonneau M, Dubois CM, Stein GS, van Wijnen AJ, Galindo MA. Expression of the ectodomain-releasing protease ADAM17 is directly regulated by the osteosarcoma and bone-related transcription factor RUNX2. J Cell Biochem 2018; 119:8204-8219. [PMID: 29923217 DOI: 10.1002/jcb.26832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/06/2018] [Indexed: 01/04/2023]
Abstract
Osteoblast differentiation is controlled by transcription factor RUNX2 which temporally activates or represses several bone-related genes, including those encoding extracellular matrix proteins or factors that control cell-cell, and cell-matrix interactions. Cell-cell communication in the many skeletal pericellular micro-niches is critical for bone development and involves paracrine secretion of growth factors and morphogens. This paracrine signaling is in part regulated by "A Disintegrin And Metalloproteinase" (ADAM) proteins. These cell membrane-associated metalloproteinases support proteolytic release ("shedding") of protein ectodomains residing at the cell surface. We analyzed microarray and RNA-sequencing data for Adam genes and show that Adam17, Adam10, and Adam9 are stimulated during BMP2 mediated induction of osteogenic differentiation and are robustly expressed in human osteoblastic cells. ADAM17, which was initially identified as a tumor necrosis factor alpha (TNFα) converting enzyme also called (TACE), regulates TNFα-signaling pathway, which inhibits osteoblast differentiation. We demonstrate that Adam17 expression is suppressed by RUNX2 during osteoblast differentiation through the proximal Adam17 promoter region (-0.4 kb) containing two functional RUNX2 binding motifs. Adam17 downregulation during osteoblast differentiation is paralleled by increased RUNX2 expression, cytoplasmic-nuclear translocation and enhanced binding to the Adam17 proximal promoter. Forced expression of Adam17 reduces Runx2 and Alpl expression, indicating that Adam17 may negatively modulate osteoblast differentiation. These findings suggest a novel regulatory mechanism involving a reciprocal Runx2-Adam17 negative feedback loop to regulate progression through osteoblast differentiation. Our results suggest that RUNX2 may control paracrine signaling through regulation of ectodomain shedding at the cell surface of osteoblasts by directly suppressing Adam17 expression.
Collapse
Affiliation(s)
- Héctor F Araya
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Hugo Sepulveda
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Carlos O Lizama
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Oscar A Vega
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sofia Jerez
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pedro F Briceño
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Scott M Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Marcelo Antonelli
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Flavio Salazar-Onfray
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Pablo Rodríguez
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), University of Chile, Santiago, Chile
| | - Ricardo D Moreno
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Martine Charbonneau
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Claire M Dubois
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, The Robert Larner MD College of Medicine, University of Vermont, Burlington, Vermont
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Mario A Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
27
|
Du ZR, Feng XQ, Li N, Qu JX, Feng L, Chen L, Chen WF. G protein-coupled estrogen receptor is involved in the anti-inflammatory effects of genistein in microglia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 43:11-20. [PMID: 29747742 DOI: 10.1016/j.phymed.2018.03.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/01/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Genistein (GEN), a phytoestrogen that is extracted from leguminous plants, can bind to estrogen receptor and exert biological effects. G protein-coupled estrogen receptor (GPER), a novel membrane estrogen receptor, has been reported to be involved in the anti-inflammatory process. In the present study, using BV2 microglial cell line and primary microglial culture, we evaluated the involvement of GPER in the anti-inflammatory effects of genistein against lipopolysaccharide (LPS)-induced microglia activation. METHODS The anti-inflammatory effects of genistein were investigated in LPS-induced microglial activation in murine BV2 microglial cell line and primary microglial culture. Anti-inflammatory properties of genistein were determined by MTT, real time PCR, ELISA and western blot analysis. The pharmacological blockade and lentivirus-mediated siRNA knockdown of GPER were used to study the underlying mechanism. RESULTS The results showed that genistein exerted inhibitory effects on LPS-induced expressions of cyclooxygenase-2 (COX-2), inducible nitric oxide (iNOS), tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β) and interleukin-6 (IL-6). Pre-treatment with GPER antagonist G15 could significantly block the anti-inflammatory effects of genistein. Moreover, the inhibitory effects of genistein on LPS-induced activation of MAPKs and NF-κB signaling pathways could also be blocked by G15. Lentivirus-mediated siRNA knockdown of GPER significantly inhibited the anti-inflammatory effects of genistein in BV2 cells. Further study revealed that genistein treatment could increase the gene and protein expressions of GPER in BV2 cells. CONCLUSION Taken together, these data provide the first evidence that genistein exerts anti-inflammatory effects in microglial cells via GPER activation. These beneficial effects of genistein may represent a new strategy for the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Zhong-Rui Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China
| | - Xiao-Qing Feng
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China
| | - Na Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China
| | - Jiang-Xue Qu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China
| | - Lu Feng
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China
| | - Lei Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China
| | - Wen-Fang Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao 266071, China.
| |
Collapse
|
28
|
Fabrication, characterization and osteoblast responses of poly (octanediol citrate)/bioglass nanofiber composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.11.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Zhu WQ, Ming PP, Qiu J, Shao SY, Yu YJ, Chen JX, Yang J, Xu LN, Zhang SM, Tang CB. Effect of titanium ions on the Hippo/YAP signaling pathway in regulating biological behaviors of MC3T3-E1 osteoblasts. J Appl Toxicol 2018; 38:824-833. [PMID: 29377205 DOI: 10.1002/jat.3590] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/25/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022]
Abstract
Titanium (Ti) and its corresponding alloys have been widely applied in dental and orthopedic implants. Owing to abrasion and corrosion of implants in the unfavorable electrolytic aqueous environment of the host body, Ti ions could be released from implants and accumulated in local tissues. Recent studies have found that excessive Ti ions were toxic to osteoblasts in adjacent bone tissues and subsequently influenced long-term effects on implant prostheses. However, the potential molecular mechanisms underlying the damage to osteoblasts induced by Ti ions remained unclear. Hippo signaling has been confirmed to be involved in organ size and tissue regeneration in many organs, while its roles in osteoblasts differentiation and bone repair remained elusive. Therefore, we hypothesize that YAP, a regulator of Hippo pathway, inhibited osteoblast growth, skeletal development and bone repair, as well as excessive Ti ions promoted the progression of YAP activation. This study aimed to explore the role of Hippo/YAP signaling pathway in the biotoxicity effect of Ti ions on osteoblast behaviors. Here, we confirmed that 10 ppm Ti ions, a minimum concentration gradient previously reported that was capable of suppressing osteoblasts growth, induced nuclear expression of YAP in osteoblasts in our study. Furthermore, 10 ppm Ti ion-induced YAP activation was found to downregulate osteogenic differentiation of MC3T3-E1 cells. Most importantly, the hypothesis we proposed that knockdown of YAP did reverse the inhibitory effect of 10 ppm Ti ions on osteogenesis has been verified. Taken together, our work provides insights into the mechanism of which YAP is involved in regulating osteoblast behaviors under the effect of Ti ions, which may help to develop therapeutic applications for Ti implant failures and peri-implantitis.
Collapse
Affiliation(s)
- Wen-Qing Zhu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Pan-Pan Ming
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shui-Yi Shao
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying-Juan Yu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jia-Xi Chen
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jie Yang
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Li-Na Xu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| | - Song-Mei Zhang
- Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, Rochester, NY, USA
| | - Chun-Bo Tang
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
30
|
Oo ZM, Illendula A, Grembecka J, Schmidt C, Zhou Y, Esain V, Kwan W, Frost I, North TE, Rajewski RA, Speck NA, Bushweller JH. A tool compound targeting the core binding factor Runt domain to disrupt binding to CBFβ in leukemic cells. Leuk Lymphoma 2017; 59:2188-2200. [PMID: 29249175 DOI: 10.1080/10428194.2017.1410882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The core binding factor (CBF) gene RUNX1 is a target of chromosomal translocations in leukemia, including t(8;21) in acute myeloid leukemia (AML). Normal CBF function is essential for activity of AML1-ETO, product of the t(8;21), and for survival of several leukemias lacking RUNX1 mutations. Using virtual screening and optimization, we developed Runt domain inhibitors which bind to the Runt domain and disrupt its interaction with CBFβ. On-target activity was demonstrated by the Runt domain inhibitors' ability to depress hematopoietic cell formation in zebrafish embryos, reduce growth and induce apoptosis of t(8;21) AML cell lines, and reduce progenitor activity of mouse and human leukemia cells harboring the t(8;21), but not normal bone marrow cells. Runt domain inhibitors had similar effects on murine and human T cell acute lymphocytic leukemia (T-ALL) cell lines. Our results confirmed that Runt domain inhibitors might prove efficacious in various AMLs and in T-ALL.
Collapse
Affiliation(s)
- Zaw Min Oo
- a Abramson Family Cancer Research Institute , Philadelphia , PA , USA.,b Department of Cell and Molecular Biology , University of Pennsylvania , Philadelphia , PA , USA
| | - Anuradha Illendula
- c Department of Molecular Physiology and Biological Physics , University of Virginia , Charlottesville , VA , USA
| | - Jolanta Grembecka
- d Department of Pathology , University of Michigan , Ann Arbor , MI , USA
| | - Charles Schmidt
- c Department of Molecular Physiology and Biological Physics , University of Virginia , Charlottesville , VA , USA
| | - Yunpeng Zhou
- c Department of Molecular Physiology and Biological Physics , University of Virginia , Charlottesville , VA , USA
| | - Virginie Esain
- e Department of Pathology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Wanda Kwan
- e Department of Pathology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Isaura Frost
- e Department of Pathology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Trista E North
- e Department of Pathology , Beth Israel Deaconess Medical Center, Harvard Medical School , Boston , MA , USA
| | - Roger A Rajewski
- f Department of Pharmaceutical Chemistry , University of Kansas , Lawrence , KS , USA
| | - Nancy A Speck
- a Abramson Family Cancer Research Institute , Philadelphia , PA , USA.,b Department of Cell and Molecular Biology , University of Pennsylvania , Philadelphia , PA , USA
| | - John H Bushweller
- c Department of Molecular Physiology and Biological Physics , University of Virginia , Charlottesville , VA , USA
| |
Collapse
|
31
|
Molina L, Figueroa CD, Bhoola KD, Ehrenfeld P. GPER-1/GPR30 a novel estrogen receptor sited in the cell membrane: therapeutic coupling to breast cancer. Expert Opin Ther Targets 2017; 21:755-766. [PMID: 28671018 DOI: 10.1080/14728222.2017.1350264] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Breast cancer is clinically classified as 'estrogen-positive' when at least 1% of cancer cells stain for the estrogen receptor alpha (ERα). However, recent research on both basic and clinical aspects of breast cancer suggests that GPER-1 (G protein-coupled estrogen receptor-1) may have an important role in breast cancer. Areas covered: This review provides a comprehensive and systematic literature search on GPER-1. We have focused on the role of GPER-1 in breast cancer and on resistance to endocrine therapy, an unsolved clinical issue still under discussion. Expert opinion: The discovery of GPER-1 as a novel estrogen receptor is unique and the signaling pathways activated by its stimulation, when compared to the classical nuclear ERα, indicate a potential role of GPER-1 in the genesis and mechanisms of drug resistance in breast cancer. Tumors expressing ERα represent the largest group of breast cancer patients indicating that more women eventually die from ERα-positive breast tumors than from other more malignant breast cancer subtypes such as HER2-positive and the triple negative groups. It is important to develop new strategies on endocrine therapy with regard to ERα and GPER-1 receptors to achieve innovative successful therapeutic tools.
Collapse
Affiliation(s)
- Luis Molina
- a Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology , Universidad Austral de Chile , Valdivia , Chile
| | - Carlos D Figueroa
- a Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology , Universidad Austral de Chile , Valdivia , Chile
| | - Kanti D Bhoola
- a Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology , Universidad Austral de Chile , Valdivia , Chile
| | - Pamela Ehrenfeld
- a Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology , Universidad Austral de Chile , Valdivia , Chile
| |
Collapse
|
32
|
Elli FM, Boldrin V, Pirelli A, Spada A, Mantovani G. The Complex GNAS Imprinted Locus and Mesenchymal Stem Cells Differentiation. Horm Metab Res 2017; 49:250-258. [PMID: 27756094 DOI: 10.1055/s-0042-115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
All tissues and organs derive from stem cells, which are undifferentiated cells able to differentiate into specialized cells and self-renewal. In mammals, there are embryonic stem cells that generate germ layers, and adult stem cells, which act as a repair system for the body and maintain the normal turnover of regenerative organs. Mesenchymal stem cells (MSCs) are nonhematopoietic adult multipotent cells, which reside in virtually all postnatal organs and tissues, and, under appropriate in vitro conditions, are capable to differentiate into osteogenic, adipogenic, chondrogenic, myogenic, and neurogenic lineages. Their commitment and differentiation depend on several interacting signaling pathways and transcription factors. Most GNAS-based disorders have the common feature of episodic de novo formation of islands of extraskeletal, qualitatively normal, bone in skin and subcutaneous fat. The tissue distribution of these lesions suggests that pathogenesis involves abnormal differentiation of MSCs and/or more committed precursor cells that are present in subcutaneous tissues. Data coming from transgenic mice support the concept that GNAS is a key factor in the regulation of lineage switching between osteoblast and adipocyte fates, and that its role may be to prevent bone formation in tissues where bone should not form. Despite the growing knowledge about the process of heterotopic ossification in rare genetic disorders, the pathophysiological mechanisms by which alterations of cAMP signaling lead to ectopic bone formation in the context of mesenchymal tissues is not fully understood.
Collapse
Affiliation(s)
- F M Elli
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - V Boldrin
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Pirelli
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Spada
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - G Mantovani
- Department of Clinical Sciences and Community Health, Endocrinology and Diabetology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
33
|
Isolation and Characterization of Synovial Mesenchymal Stem Cell Derived from Hip Joints: A Comparative Analysis with a Matched Control Knee Group. Stem Cells Int 2017; 2017:9312329. [PMID: 28115945 PMCID: PMC5237455 DOI: 10.1155/2017/9312329] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/26/2016] [Accepted: 11/29/2016] [Indexed: 12/28/2022] Open
Abstract
Purpose. To determine the characteristics of MSCs from hip and compare them to MSCs from knee. Methods. Synovial tissues were obtained from both the knee and the hip joints in 8 patients who underwent both hip and knee arthroscopies on the same day. MSCs were isolated from the knee and hip synovial samples. The capacities of MSCs were compared between both groups. Results. The number of cells per unit weight at passage 0 of synovium from the knee was significantly higher than that from the hip (P < 0.05). While it was possible to observe the growth of colonies in all the knee synovial fluid samples, it was impossible to culture cells from any of the hip samples. In adipogenesis experiments, the frequency of Oil Red-O-positive colonies and the gene expression of adipsin were significantly higher in knee than in hip. In osteogenesis experiments, the expression of COL1A1 and ALPP was significantly less in the knee synovium than in the hip synovium. Conclusions. MSCs obtained from hip joint have self-renewal and multilineage differentiation potentials. However, in matched donors, adipogenesis and osteogenesis potentials of MSCs from the knees are superior to those from the hips. Knee synovium may be a better source of MSC for potential use in hip diseases.
Collapse
|
34
|
Antonini S, Meucci S, Parchi P, Pacini S, Montali M, Poggetti A, Lisanti M, Cecchini M. Human mesenchymal stromal cell-enhanced osteogenic differentiation by contact interaction with polyethylene terephthalate nanogratings. Biomed Mater 2016; 11:045003. [PMID: 27388559 DOI: 10.1088/1748-6041/11/4/045003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Among the very large number of polymeric materials that have been proposed in the field of orthopedics, polyethylene terephthalate (PET) is one of the most attractive thanks to its flexibility, thermal resistance, mechanical strength and durability. Several studies have been proposed that interface nano- or micro-structured surfaces with mesenchymal stromal cells (MSCs), demonstrating the potential of this technology for promoting osteogenesis. All these studies were carried out on biomaterials other than PET, which remains almost uninvestigated in terms of cell shaping, alignment and differentiation. Here, we study the effect of PET 350-depth nanogratings (NGs) with a ridge and lateral groove size of 500 nm (T1) or 1 μm (T2), on bone marrow-derived human MSC (hMSC) differentiation in relation to the osteogenic fate. We demonstrate that these substrates, especially T2, can promote the osteogenic phenotype more efficiently than standard flat surfaces and that this effect is more marked if cells are cultured in osteogenic medium than in basal medium. Finally, we show that the shape and disposition of calcium hydroxyapatite granules on the different substrates was influenced by the substrate symmetry, being more elongated and spatially organized on NGs than on flat surfaces.
Collapse
Affiliation(s)
- Sara Antonini
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, Pisa 56127, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Varela N, Aranguiz A, Lizama C, Sepulveda H, Antonelli M, Thaler R, Moreno RD, Montecino M, Stein GS, van Wijnen AJ, Galindo M. Mitotic Inheritance of mRNA Facilitates Translational Activation of the Osteogenic-Lineage Commitment Factor Runx2 in Progeny of Osteoblastic Cells. J Cell Physiol 2016; 231:1001-14. [PMID: 26381402 PMCID: PMC5812339 DOI: 10.1002/jcp.25188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/24/2022]
Abstract
Epigenetic mechanisms mediate the acquisition of specialized cellular phenotypes during tissue development, maintenance and repair. When phenotype-committed cells transit through mitosis, chromosomal condensation counteracts epigenetic activation of gene expression. Subsequent post-mitotic re-activation of transcription depends on epigenetic DNA and histone modifications, as well as other architecturally bound proteins that "bookmark" the genome. Osteogenic lineage commitment, differentiation and progenitor proliferation require the bone-related runt-related transcription factor Runx2. Here, we characterized a non-genomic mRNA mediated mechanism by which osteoblast precursors retain their phenotype during self-renewal. We show that osteoblasts produce maximal levels of Runx2 mRNA, but not protein, prior to mitotic cell division. Runx2 mRNA partitions symmetrically between daughter cells in a non-chromosomal tubulin-containing compartment. Subsequently, transcription-independent de novo synthesis of Runx2 protein in early G1 phase results in increased functional interactions of Runx2 with a representative osteoblast-specific target gene (osteocalcin/BGLAP2) in chromatin. Somatic transmission of Runx2 mRNAs in osteoblasts and osteosarcoma cells represents a versatile mechanism for translational rather than transcriptional induction of this principal gene regulator to maintain osteoblast phenotype identity after mitosis.
Collapse
Affiliation(s)
- Nelson Varela
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Alejandra Aranguiz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Carlos Lizama
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo Sepulveda
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Marcelo Antonelli
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roman Thaler
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., MSB 3-69, Rochester, MN 55905
| | - Ricardo D. Moreno
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Gary S. Stein
- Department of Biochemistry, HSRF 326, Vermont Cancer Center for Basic and Translational Research, University of Vermont Medical School, Burlington, VT
| | - Andre J. van Wijnen
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., MSB 3-69, Rochester, MN 55905
| | - Mario Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| |
Collapse
|
36
|
Ding X, Wu C, Ha T, Wang L, Huang Y, Kang H, Zhang Y, Liu H, Fan Y. Hydroxyapatite-containing silk fibroin nanofibrous scaffolds for tissue-engineered periosteum. RSC Adv 2016. [DOI: 10.1039/c5ra26752h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A simple, one-step technology is developed to generate a hydroxyapatite (HA)-containing silk fibroin nanofibrous scaffold which has great potential as osteogenesis promoting scaffolds for constructing tissue-engineered periosteum.
Collapse
Affiliation(s)
- Xili Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- International Research Center for Implantable and Interventional Medical Devices
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
| | - Chengqi Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- International Research Center for Implantable and Interventional Medical Devices
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
| | - Tong Ha
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- International Research Center for Implantable and Interventional Medical Devices
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- International Research Center for Implantable and Interventional Medical Devices
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
| | - Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- International Research Center for Implantable and Interventional Medical Devices
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
| | - Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- International Research Center for Implantable and Interventional Medical Devices
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
| | - Yingying Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- International Research Center for Implantable and Interventional Medical Devices
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- International Research Center for Implantable and Interventional Medical Devices
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- International Research Center for Implantable and Interventional Medical Devices
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100191
| |
Collapse
|
37
|
Tailoring chemical and physical properties of fibrous scaffolds from block copolyesters containing ether and thio-ether linkages for skeletal differentiation of human mesenchymal stromal cells. Biomaterials 2016; 76:261-72. [DOI: 10.1016/j.biomaterials.2015.10.071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 12/28/2022]
|
38
|
Roos A, Satterfield L, Zhao S, Fuja D, Shuck R, Hicks MJ, Donehower LA, Yustein JT. Loss of Runx2 sensitises osteosarcoma to chemotherapy-induced apoptosis. Br J Cancer 2015; 113:1289-97. [PMID: 26528706 PMCID: PMC4815801 DOI: 10.1038/bjc.2015.305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 07/22/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most common bone malignancy in the paediatric population, principally affecting adolescents and young adults. Minimal advancements in patient prognosis have been made over the past two decades because of the poor understanding of disease biology. Runx2, a critical transcription factor in bone development, is frequently amplified and overexpressed in OS. However, the molecular and biological consequences of Runx2 overexpression remain unclear. METHODS si/shRNA and overexpression technology to alter Runx2 levels in OS cells. In vitro assessment of doxorubicin (doxo)-induced apoptosis and in vivo chemosensitivity studies. Small-molecule inhibitor of c-Myc transcriptional activity was used to assess its role. RESULTS Loss of Runx2 sensitises cells to doxo-induced apoptosis both in vitro and in vivo. Furthermore, in conjunction with chemotherapy, decreasing Runx2 protein levels activates both the intrinsic and extrinsic apoptotic pathways. Transplanted tumour studies demonstrated that loss of endogenous Runx2 protein expression enhances caspase-3 cleavage and tumour necrosis in response to chemotherapy. Finally, upon doxo-treated Runx2 knockdown OS cells there was evidence of enhanced c-Myc expression and transcriptional activity. Inhibition of c-Myc under these conditions resulted in decreased activation of apoptosis, therefore insinuating a role for c-Myc in dox-induced activation of apoptotic pathways. CONCLUSIONS Therefore, we have established a novel molecular mechanism by which Runx2 provides a chemoprotective role in OS, indicating that in conjunction to standard chemotherapy, targeting Runx2 may be a new therapeutic strategy for patients with OS.
Collapse
Affiliation(s)
- Alison Roos
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laura Satterfield
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shuying Zhao
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030, USA
| | - Daniel Fuja
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan Shuck
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030, USA
| | - M John Hicks
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lawrence A Donehower
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason T Yustein
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
39
|
Stephens AS, Morrison NA. Novel target genes of RUNX2 transcription factor and 1,25-dihydroxyvitamin D3. J Cell Biochem 2015; 115:1594-608. [PMID: 24756753 DOI: 10.1002/jcb.24823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 01/15/2023]
Abstract
The RUNX2 transcription factor is indispensable for skeletal development and controls bone formation by acting as a signaling hub and transcriptional regulator to coordinate target gene expression. A signaling partner of RUNX2 is the nuclear vitamin D receptor (VDR) that becomes active when bound by its ligand 1,25-dihydroxyvitamin D3 (VD3). RUNX2 and VDR unite to cooperatively regulate the expression of numerous genes. In this study, we overexpressed RUNX2 in NIH3T3 fibroblasts concomitantly treated with VD3 and show that RUNX2 alone, or in combination with VD3, failed to promote an osteoblastic phenotype in NIH3T3 cells. However, the expression of numerous osteoblast-related genes was up-regulated by RUNX2 and large-scale gene expression profiling using microarrays identified over 800 transcripts that displayed a twofold of greater change in expression in response to RUNX2 overexpression or VD3 treatment. Functional analysis using gene ontology (GO) revealed GO terms for ossification, cellular motility, biological adhesion, and chromosome organization were enriched in the pool of genes regulated by RUNX2. For the set of genes whose expression was modulated by VD3, the GO terms response to hormone stimulus, chemotaxis, and metalloendopeptidase activity where overrepresented. Our study provides a functional insight into the consequences of RUNX2 overexpression and VD3 treatment in NIH3T3 cells in addition to identifying candidate genes whose expression is controlled by either factor individually or through their functional cooperation.
Collapse
Affiliation(s)
- Alexandre S Stephens
- School of Medical Science, Griffith University Gold Coast Campus, Southport, Queensland 4215, Australia
| | | |
Collapse
|
40
|
Wysokinski D, Blasiak J, Pawlowska E. Role of RUNX2 in Breast Carcinogenesis. Int J Mol Sci 2015; 16:20969-93. [PMID: 26404249 PMCID: PMC4613236 DOI: 10.3390/ijms160920969] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 12/12/2022] Open
Abstract
RUNX2 is a transcription factor playing the major role in osteogenesis, but it can be involved in DNA damage response, which is crucial for cancer transformation. RUNX2 can interact with cell cycle regulators: cyclin-dependent kinases, pRB and p21Cip1 proteins, as well as the master regulator of the cell cycle, the p53 tumor suppressor. RUNX2 is involved in many signaling pathways, including those important for estrogen signaling, which, in turn, are significant for breast carcinogenesis. RUNX2 can promote breast cancer development through Wnt and Tgfβ signaling pathways, especially in estrogen receptor (ER)-negative cases. ERα interacts directly with RUNX2 and regulates its activity. Moreover, the ERα gene has a RUNX2 binding site within its promoter. RUNX2 stimulates the expression of aromatase, an estrogen producing enzyme, increasing the level of estrogens, which in turn stimulate cell proliferation and replication errors, which can be turned into carcinogenic mutations. Exploring the role of RUNX2 in the pathogenesis of breast cancer can lead to revealing new therapeutic targets.
Collapse
Affiliation(s)
- Daniel Wysokinski
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| |
Collapse
|
41
|
Prossnitz ER, Hathaway HJ. What have we learned about GPER function in physiology and disease from knockout mice? J Steroid Biochem Mol Biol 2015; 153:114-26. [PMID: 26189910 PMCID: PMC4568147 DOI: 10.1016/j.jsbmb.2015.06.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 12/16/2022]
Abstract
Estrogens, predominantly 17β-estradiol, exert diverse effects throughout the body in both normal and pathophysiology, during development and in reproductive, metabolic, endocrine, cardiovascular, nervous, musculoskeletal and immune systems. Estrogen and its receptors also play important roles in carcinogenesis and therapy, particularly for breast cancer. In addition to the classical nuclear estrogen receptors (ERα and ERβ) that traditionally mediate predominantly genomic signaling, the G protein-coupled estrogen receptor GPER has become recognized as a critical mediator of rapid signaling in response to estrogen. Mouse models, and in particular knockout (KO) mice, represent an important approach to understand the functions of receptors in normal physiology and disease. Whereas ERα KO mice display multiple significant defects in reproduction and mammary gland development, ERβ KO phenotypes are more limited, and GPER KO exhibit no reproductive deficits. However, the study of GPER KO mice over the last six years has revealed that GPER deficiency results in multiple physiological alterations including obesity, cardiovascular dysfunction, insulin resistance and glucose intolerance. In addition, the lack of estrogen-mediated effects in numerous tissues of GPER KO mice, studied in vivo or ex vivo, including those of the cardiovascular, endocrine, nervous and immune systems, reveals GPER as a genuine mediator of estrogen action. Importantly, GPER KO mice have also demonstrated roles for GPER in breast carcinogenesis and metastasis. In combination with the supporting effects of GPER-selective ligands and GPER knockdown approaches, GPER KO mice demonstrate the therapeutic potential of targeting GPER activity in diseases as diverse as obesity, diabetes, multiple sclerosis, hypertension, atherosclerosis, myocardial infarction, stroke and cancer.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, United States; University of New Mexico Cancer Center, Albuquerque, NM 87131, United States.
| | - Helen J Hathaway
- Department of Cell Biology & Physiology, University of New Mexico, Albuquerque, NM 87131, United States; University of New Mexico Cancer Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
42
|
Del Mare S, Aqeilan RI. Tumor Suppressor WWOX inhibits osteosarcoma metastasis by modulating RUNX2 function. Sci Rep 2015; 5:12959. [PMID: 26256646 PMCID: PMC4542681 DOI: 10.1038/srep12959] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/15/2015] [Indexed: 12/19/2022] Open
Abstract
Osteosarcoma (OS) is among the most frequently occurring primary bone tumors, primarily affecting adolescents and young adults. This malignant osteoid forming tumor is characterized by its metastatic potential, mainly to lungs. We recently demonstrated that WW domain-containing oxidoreductase (WWOX) is frequently inactivated in human OS and that WWOX restoration in WWOX-negative OS cells suppresses tumorigenicity. Of note, WWOX levels are reduced in paired OS samples of post-treatment metastastectomies as compared to pre-treatment biopsies suggesting that decreased WWOX levels are associated with a more aggressive phenotype at the metastatic site. Nevertheless, little is known about WWOX function in OS metastasis. Here, we investigated the role of tumor suppressor WWOX in suppressing pulmonary OS metastasis bothin vitroandin vivo. We demonstrated that ectopic expression of WWOX in OS cells, HOS and LM-7, inhibits OS invasion and cell migration in vitro. Furthermore, WWOX expression reduced tumor burden in vivo and inhibited metastases’ seeding and colonization. Mechanistically, WWOX function is associated with reduced levels of RUNX2 metastatic target genes implicated in adhesion and motility. Our results suggest that WWOX plays a critical role in determining the aggressive phenotype of OS, and its expression could be an attractive therapeutic target to combat this devastating adolescent disease.
Collapse
Affiliation(s)
- Sara Del Mare
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel 91220
| | - Rami I Aqeilan
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Israel 91220
| |
Collapse
|
43
|
Khan K, Pal S, Yadav M, Maurya R, Trivedi AK, Sanyal S, Chattopadhyay N. Prunetin signals via G-protein-coupled receptor, GPR30(GPER1): Stimulation of adenylyl cyclase and cAMP-mediated activation of MAPK signaling induces Runx2 expression in osteoblasts to promote bone regeneration. J Nutr Biochem 2015; 26:1491-501. [PMID: 26345541 DOI: 10.1016/j.jnutbio.2015.07.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/13/2015] [Accepted: 07/20/2015] [Indexed: 01/26/2023]
Abstract
Prunetin is found in red clover and fruit of Prunus avium (red cherry). The effect of prunetin on osteoblast function, its mode of action and bone regeneration in vivo were investigated. Cultures of primary osteoblasts, osteoblastic cell line and HEK293T cells were used for various in vitro studies. Adult female rats received drill-hole injury at the femur diaphysis to assess the bone regenerative effect of prunetin. Prunetin at 10nM significantly (a) increased proliferation and differentiation of primary cultures of osteoblasts harvested from rats and (b) promoted formation of mineralized nodules by bone marrow stromal/osteoprogenitor cells. At this concentration, prunetin did not activate any of the two nuclear estrogen receptors (α and β). However, prunetin triggered signaling via a G-protein-coupled receptor, GPR30/GPER1, and enhanced cAMP levels in osteoblasts. G15, a selective GPR30 antagonist, abolished prunetin-induced increases in osteoblast proliferation, differentiation and intracellular cAMP. In osteoblasts, prunetin up-regulated runt-related transcription factor 2 (Runx2) protein through cAMP-dependent Erk/MAP kinase activation that ultimately resulted in the up-regulation of GPR30. Administration of prunetin at 0.25mg/kg given to rats stimulated bone regeneration at the site of drill hole and up-regulated Runx2 expression in the fractured callus and the effect was comparable to human parathyroid hormone, the only clinically used osteogenic therapy. We conclude that prunetin promotes osteoinduction in vivo and the mechanism is defined by signaling through GPR30 resulting in the up-regulation of the key osteogenic gene Runx2 that in turn up-regulates GPR30.
Collapse
Affiliation(s)
- Kainat Khan
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226021, India
| | - Subhashis Pal
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226021, India
| | - Manisha Yadav
- Division of Biochemistry, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226021, India
| | - Rakesh Maurya
- Division of Medicinal and Process Chemistry, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226021, India
| | - Arun Kumar Trivedi
- Division of Biochemistry, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226021, India
| | - Sabyasachi Sanyal
- Division of Biochemistry, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226021, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness, Central Drug Research Institute, Council of Scientific and Industrial Research, Lucknow 226021, India.
| |
Collapse
|
44
|
Dolcino M, Ottria A, Barbieri A, Patuzzo G, Tinazzi E, Argentino G, Beri R, Lunardi C, Puccetti A. Gene Expression Profiling in Peripheral Blood Cells and Synovial Membranes of Patients with Psoriatic Arthritis. PLoS One 2015; 10:e0128262. [PMID: 26086874 PMCID: PMC4473102 DOI: 10.1371/journal.pone.0128262] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/24/2015] [Indexed: 12/22/2022] Open
Abstract
Background Psoriatic arthritis (PsA) is an inflammatory arthritis whose pathogenesis is poorly understood; it is characterized by bone erosions and new bone formation. The diagnosis of PsA is mainly clinical and diagnostic biomarkers are not yet available. The aim of this work was to clarify some aspects of the disease pathogenesis and to identify specific gene signatures in paired peripheral blood cells (PBC) and synovial biopsies of patients with PsA. Moreover, we tried to identify biomarkers that can be used in clinical practice. Methods PBC and synovial biopsies of 10 patients with PsA were used to study gene expression using Affymetrix arrays. The expression values were validated by Q-PCR, FACS analysis and by the detection of soluble mediators. Results Synovial biopsies of patients showed a modulation of approximately 200 genes when compared to the biopsies of healthy donors. Among the differentially expressed genes we observed the upregulation of Th17 related genes and of type I interferon (IFN) inducible genes. FACS analysis confirmed the Th17 polarization. Moreover, the synovial trascriptome shows gene clusters (bone remodeling, angiogenesis and inflammation) involved in the pathogenesis of PsA. Interestingly 90 genes are modulated in both compartments (PBC and synovium) suggesting that signature pathways in PBC mirror those of the inflamed synovium. Finally the osteoactivin gene was upregulared in both PBC and synovial biopsies and this finding was confirmed by the detection of high levels of osteoactivin in PsA sera but not in other inflammatory arthritides. Conclusions We describe the first analysis of the trancriptome in paired synovial tissue and PBC of patients with PsA. This study strengthens the hypothesis that PsA is of autoimmune origin since the coactivity of IFN and Th17 pathways is typical of autoimmunity. Finally these findings have allowed the identification of a possible disease biomarker, osteoactivin, easily detectable in PsA serum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Antonio Puccetti
- Institute G. Gaslini, Genova, Italy
- University of Genova, Genova, Italy
- * E-mail:
| |
Collapse
|
45
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
46
|
Su YX, Hou CC, Yang WX. Control of hair cell development by molecular pathways involving Atoh1, Hes1 and Hes5. Gene 2014; 558:6-24. [PMID: 25550047 DOI: 10.1016/j.gene.2014.12.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/23/2014] [Accepted: 12/25/2014] [Indexed: 01/14/2023]
Abstract
Atoh1, Hes1 and Hes5 are crucial for normal inner ear hair cell development. They regulate the expression of each other in a complex network, while they also interact with many other genes and pathways, such as Notch, FGF, SHH, WNT, BMP and RA. This paper summarized molecular pathways that involve Atoh1, Hes1, and Hes5. Some of the pathways and gene regulation mechanisms discussed here were studied in other tissues, yet they might inspire studies in inner ear hair cell development. Thereby, we presented a complex regulatory network involving these three genes, which might be crucial for proliferation and differentiation of inner ear hair cells.
Collapse
Affiliation(s)
- Yi-Xun Su
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong-Cong Hou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
47
|
Suurväli J, Pahtma M, Saar R, Paalme V, Nutt A, Tiivel T, Saaremäe M, Fitting C, Cavaillon J, Rüütel Boudinot S. RGS16 Restricts the Pro-Inflammatory Response of Monocytes. Scand J Immunol 2014; 81:23-30. [DOI: 10.1111/sji.12250] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/26/2014] [Indexed: 02/02/2023]
Affiliation(s)
- J. Suurväli
- Department of Gene Technology; Tallinn University of Technology; Tallinn Estonia
| | - M. Pahtma
- Department of Gene Technology; Tallinn University of Technology; Tallinn Estonia
| | - R. Saar
- Department of Gene Technology; Tallinn University of Technology; Tallinn Estonia
| | - V. Paalme
- Department of Gene Technology; Tallinn University of Technology; Tallinn Estonia
| | - A. Nutt
- Department of Gene Technology; Tallinn University of Technology; Tallinn Estonia
| | - T. Tiivel
- Department of Gene Technology; Tallinn University of Technology; Tallinn Estonia
| | - M. Saaremäe
- Department of Gene Technology; Tallinn University of Technology; Tallinn Estonia
| | - C. Fitting
- Unité Cytokines & Inflammation; Institut Pasteur; Paris France
| | - J.M. Cavaillon
- Unité Cytokines & Inflammation; Institut Pasteur; Paris France
| | - S. Rüütel Boudinot
- Department of Gene Technology; Tallinn University of Technology; Tallinn Estonia
| |
Collapse
|
48
|
Jeong N, Park YC, Lee KM, Lee JH, Cha M. Effect of graphitic layers encapsulating single-crystal apatite nanowire on the osteogenesis of human mesenchymal stem cells. J Phys Chem B 2014; 118:13849-58. [PMID: 25302528 DOI: 10.1021/jp5075576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An ideally designed scaffold for tissue engineering must be able to provide an environment that recapitulates the physiological conditions to control stem cell function. Here, we compared vertically aligned single-crystal apatite nanowires sheathed in graphitic layers (SANGs) with single-crystal apatite nanowires (SANs), which had the same geometric properties as--but differing nanotopographic surface chemistry than--SANGs, in order to evaluate the effect of the graphitic layer on the behavior of human mesenchymal stem cells (hMSCs). The difference in nanotopographic surface chemistry did not affect hMSC adhesion, growth, or morphology. However, hMSCs were more effectively differentiated into bone cells on SANGs through interaction with graphitic layers, which later degraded and thereby allowed the cells to continue differentiation on the bare apatite nanowires. Thus, SANGs provide an excellent microenvironment for the osteogenic differentiation of hMCS.
Collapse
Affiliation(s)
- Namjo Jeong
- Energy Materials, Convergence Research Department, Korea Institute of Energy Research , 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Republic of Korea
| | | | | | | | | |
Collapse
|
49
|
Martin JW, Chilton-MacNeill S, Koti M, van Wijnen AJ, Squire JA, Zielenska M. Digital expression profiling identifies RUNX2, CDC5L, MDM2, RECQL4, and CDK4 as potential predictive biomarkers for neo-adjuvant chemotherapy response in paediatric osteosarcoma. PLoS One 2014; 9:e95843. [PMID: 24835790 PMCID: PMC4023931 DOI: 10.1371/journal.pone.0095843] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 03/31/2014] [Indexed: 12/04/2022] Open
Abstract
Osteosarcoma is the most common malignancy of bone, and occurs most frequently in children and adolescents. Currently, the most reliable technique for determining a patients’ prognosis is measurement of histopathologic tumor necrosis following pre-operative neo-adjuvant chemotherapy. Unfavourable prognosis is indicated by less than 90% estimated necrosis of the tumor. Neither genetic testing nor molecular biomarkers for diagnosis and prognosis have been described for osteosarcomas. We used the novel nanoString mRNA digital expression analysis system to analyse gene expression in 32 patients with sporadic paediatric osteosarcoma. This system used specific molecular barcodes to quantify expression of a set of 17 genes associated with osteosarcoma tumorigenesis. Five genes, from this panel, which encoded the bone differentiation regulator RUNX2, the cell cycle regulator CDC5L, the TP53 transcriptional inactivator MDM2, the DNA helicase RECQL4, and the cyclin-dependent kinase gene CDK4, were differentially expressed in tumors that responded poorly to neo-adjuvant chemotherapy. Analysis of the signalling relationships of these genes, as well as other expression markers of osteosarcoma, indicated that gene networks linked to RB1, TP53, PI3K, PTEN/Akt, myc and RECQL4 are associated with osteosarcoma. The discovery of these networks provides a basis for further experimental studies of role of the five genes (RUNX2, CDC5L, MDM2, RECQL4, and CDK4) in differential response to chemotherapy.
Collapse
Affiliation(s)
- Jeffrey W. Martin
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Susan Chilton-MacNeill
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Andre J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jeremy A. Squire
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- Departments of Genetics and Pathology, Faculdade de Medicina de Ribeirão Preto - USP, Ribeirão Preto, São Paulo, Brazil
- * E-mail:
| | - Maria Zielenska
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Fan JZ, Yang L, Meng GL, Lin YS, Wei BY, Fan J, Hu HM, Liu YW, Chen S, Zhang JK, He QZ, Luo ZJ, Liu J. Estrogen improves the proliferation and differentiation of hBMSCs derived from postmenopausal osteoporosis through notch signaling pathway. Mol Cell Biochem 2014; 392:85-93. [PMID: 24752351 PMCID: PMC4053611 DOI: 10.1007/s11010-014-2021-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/05/2014] [Indexed: 12/22/2022]
Abstract
Estrogen deficiency is the main reason of bone loss, leading to postmenopausal osteoporosis, and estrogen replacement therapy (ERT) has been demonstrated to protect bone loss efficiently. Notch signaling controls proliferation and differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Moreover, imperfect estrogen-responsive elements (EREs) were found in the 5'-untranslated region of Notch1 and Jagged1. Thus, we examined the molecular and biological links between estrogen and the Notch signaling in postmenopausal osteoporosis in vitro. hBMSCs were obtained from healthy women and patients with postmenopausal osteoporosis. Notch signaling molecules were quantified using real-time polymerase chain reaction (real-time PCR) and Western Blot. Luciferase reporter constructs with putative EREs were transfected into hBMSCs and analyzed. hBMSCs were transduced with lentiviral vectors containing human Notch1 intracellular domain (NICD1). We also used N-[N-(3, 5-diflurophenylacetate)-l-alanyl]-(S)-phenylglycine t-butyl ester, a γ-secretase inhibitor, to suppress the Notch signaling. We found that estrogen enhanced the Notch signaling in hBMSCs by promoting the expression of Jagged1. hBMSCs cultured with estrogen resulted in the up-regulation of Notch signaling and increased proliferation and differentiation. Enhanced Notch signaling could enhance the proliferation and differentiation of hBMSCs from patients with postmenopausal osteoporosis (OP-hBMSCs). Our results demonstrated that estrogen preserved bone mass partly by activating the Notch signaling. Because long-term ERT has been associated with several side effects, the Notch signaling could be a potential target for treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Jin-Zhu Fan
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|