1
|
Smith MJ, Hoffman NJ, Jose AJS, Burke LM, Opar DA. Nutritional Interventions to Attenuate Quadriceps Muscle Deficits following Anterior Cruciate Ligament Injury and Reconstruction. Sports Med 2025:10.1007/s40279-025-02174-w. [PMID: 39853659 DOI: 10.1007/s40279-025-02174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Following anterior cruciate ligament (ACL) injury, quadriceps muscle atrophy persists despite rehabilitation, leading to loss of lower limb strength, osteoarthritis, poor knee joint health and reduced quality of life. However, the molecular mechanisms responsible for these deficits in hypertrophic adaptations within the quadriceps muscle following ACL injury and reconstruction are poorly understood. While resistance exercise training stimulates skeletal muscle hypertrophy, attenuation of these hypertrophic pathways can hinder rehabilitation following ACL injury and reconstruction, and ultimately lead to skeletal muscle atrophy that persists beyond ACL reconstruction, similar to disuse atrophy. Numerous studies have documented beneficial roles of nutritional support, including nutritional supplementation, in maintaining and/or increasing muscle mass. There are three main mechanisms by which nutritional supplementation may attenuate muscle atrophy and promote hypertrophy: (1) by directly affecting muscle protein synthetic machinery; (2) indirectly increasing an individual's ability to work harder; and/or (3) directly affecting satellite cell proliferation and differentiation. We propose that nutritional support may enhance rehabilitative responses to exercise training and positively impact molecular machinery underlying muscle hypertrophy. As one of the fastest growing knee injuries worldwide, a better understanding of the potential mechanisms involved in quadriceps muscle deficits following ACL injury and reconstruction, and potential benefits of nutritional support, are required to help restore quadriceps muscle mass and/or strength. This review discusses our current understanding of the molecular mechanisms involved in muscle hypertrophy and disuse atrophy, and how nutritional supplements may leverage these pathways to maximise recovery from ACL injury and reconstruction.
Collapse
Affiliation(s)
- Miriam J Smith
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, VIC, Australia
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Nolan J Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Argell J San Jose
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
- OrthoSport Victoria Institute (OSVi), Richmond, VIC, Australia
| | - Louise M Burke
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - David A Opar
- School of Behavioural and Health Sciences, Australian Catholic University, Melbourne, VIC, Australia.
- Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, Australian Catholic University, Melbourne, VIC, Australia.
- , Level 1, Daniel Mannix Building, 17 Young Street, Fitzroy, VIC, 3065, Australia.
| |
Collapse
|
2
|
Hu H, Yin Y, Zhou H, Jiang B, Cai T, Wu S, Guo S. Umbilical cord mesenchymal stem cell-derived exosomal Follistatin inhibits fibrosis and promotes muscle regeneration in mice by influencing Smad2 and AKT signaling. Exp Cell Res 2025; 444:114396. [PMID: 39732451 DOI: 10.1016/j.yexcr.2024.114396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/22/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND Promoting muscle regeneration through stem cell therapy has potential risks. We investigated the effect of umbilical cord mesenchymal stem cells (UMSCs) Exosomes (Exo) Follistatin on muscle regeneration. METHODS The Exo was derived from UMSCs cells and was utilized to affect the mice muscle injury model and C2C12 cells myotubes atrophy model. The Western blot, qRT-PCR and IF were utilized to determine the effects of Exo on the levels of Follistatin, MyHC, MyoD, Myostatin, MuRF1, MAFbx, α-SMA, Collagen I, Smad2, and AKT. In addition, HE and Masson staining were used to assess muscle tissue damage in mice. RESULTS The level of Follistatin in Exo was significantly higher than that in UMSCs. UMSCs-Exo increased the levels of Follistatin, MyHC, MyoD, and p-Smad2 and decreased the levels of Myostatin, MuRF1, MAFbx, α-SMA, Collagen I, p-AKT, and p-mTOR in mice or C2C12 cells. In addition, UMSCs-Exo decreased levels of inflammation and fibrosis in mice. However, UMSCs-Exo-si-Follistatin reversed the effect of UMSCs-Exo. Transfection of oe-Smad2 up-regulated the protein levels of Collagen I, α-SMA, and changed the ratio of p-Smad2/Smad2 expression to 0.33, and 0.34, 0.73. LY294002 decreased the levels of MyHC, MyoD, and the ratio of p-AKT/AKT and p-mTOR/mTOR expression to 0.12, 0.17, 0.33, and 0.41, increased the levels of MuRF1 and MAFbx to 0.36 and 0.34. CONCLUSION This study demonstrated that Follistatin in UMSCs-Exo inhibits fibrosis and promotes muscle regeneration in mice by regulating Smad and AKT signaling.
Collapse
Affiliation(s)
- Hai Hu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, China
| | - Yuesong Yin
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hecheng Zhou
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Binbin Jiang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ting Cai
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, China
| | - Song Wu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Shuangfei Guo
- Department of Limbs (Foot and Hand) Microsurgery, Chenzhou No.1 People's Hospital, The First Clinical Medical College Affiliated to Southern Medical University, Chenzhou, Hunan, China.
| |
Collapse
|
3
|
Keane AJ, Sanz-Nogués C, Jayasooriya D, Creane M, Chen X, Lyons CJ, Sikri I, Goljanek-Whysall K, O'Brien T. miR-1, miR-133a, miR-29b and skeletal muscle fibrosis in chronic limb-threatening ischaemia. Sci Rep 2024; 14:29393. [PMID: 39592654 PMCID: PMC11599917 DOI: 10.1038/s41598-024-76415-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024] Open
Abstract
Chronic limb-threatening ischaemia (CLTI), the most severe manifestation of peripheral arterial disease (PAD), is associated with a poor prognosis and high amputation rates. Despite novel therapeutic approaches being investigated, no significant clinical benefits have been observed yet. Understanding the molecular pathways of skeletal muscle dysfunction in CLTI is crucial for designing successful treatments. This study aimed to identify miRNAs dysregulated in muscle biopsies from PAD cohorts. Using MIcroRNA ENrichment TURned NETwork (MIENTURNET) on a publicly accessible RNA-sequencing dataset of PAD cohorts, we identified a list of miRNAs that were over-represented among the upregulated differentially expressed genes (DEGs) in CLTI. Next, we validated the altered expression of these miRNAs and their targets in mice with hindlimb ischaemia (HLI). Our results showed a significant downregulation of miR-1, miR-133a, and miR-29b levels in the ischaemic limbs versus the contralateral non-ischaemic limb. A miRNA target protein-protein interaction network identified extracellular matrix components, including collagen-1a1, -3a1, and -4a1, fibronectin-1, fibrin-1, matrix metalloproteinase-2 and -14, and Sparc, which were upregulated in the ischaemic muscle of mice. This is the first study to identify miR-1, miR-133a, and miR-29b as potential contributors to fibrosis and vascular pathology in CLTI muscle, which supports their potential as novel therapeutic agents for this condition.
Collapse
Affiliation(s)
- Alan J Keane
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Clara Sanz-Nogués
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland.
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| | - Dulan Jayasooriya
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Michael Creane
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Xizhe Chen
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Caomhán J Lyons
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Isha Sikri
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Beas-Jiménez JD, León Garrigosa A, Doñoro Cuevas P, Álvarez Recio MI, Cofré Bolados C, Alonso JM. Fibrosis and Sports Injuries: Concept and Implications: The GESMUTE-SETRADE Consensus Statement. Orthop J Sports Med 2024; 12:23259671241266604. [PMID: 39291125 PMCID: PMC11406605 DOI: 10.1177/23259671241266604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background Musculoskeletal fibrosis can be frequently observed in the scope of sports medicine; however, there is no consensus regarding its definition, nor do we have substantial knowledge regarding its epidemiology or best therapeutic alternatives. Purpose The GESMUTE (Group for the Study of the Muscle Tendon System) Epidemiology Group, integrated into SETRADE (The Spanish Society for Sports Traumatology) propose a definition for musculoskeletal fibrosis within the field of physical exercise. Study Design Consensus statement. Methods A bibliographic review of the existing scientific evidence and consensus was developed by the authors on the definition of fibrosis in the field of sport. Results Our working group proposed the definition of fibrosis as an abnormal accumulation of extracellular matrix, usually with regards to an injury complication, showing various clinical findings affecting muscles, tendons, ligaments, articular capsules and nerves which, in turn, mars the recovery process, causing symptoms and finally leading to relapses. Conclusion Fibrosis in sport may be considered as an abnormal accumulation of extracellular matrix, usually related to complications of an injury, showing a wide range of clinical symptomatology, affecting muscles, tendons, ligaments, articular capsules, and nerves.
Collapse
Affiliation(s)
| | | | | | | | | | - J M Alonso
- Department of Sports Medicine, Aspetar Hospital, Doha, Qatar
| |
Collapse
|
5
|
Braun P, Alawi M, Saygi C, Pantel K, Wagers AJ. Expression profiling by high-throughput sequencing reveals GADD45, SMAD7, EGR-1 and HOXA3 activation in Myostatin (MSTN) and GDF11 treated myoblasts. Genet Mol Biol 2024; 47:e20230304. [PMID: 39012095 PMCID: PMC11256782 DOI: 10.1590/1678-4685-gmb-2023-0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/08/2024] [Indexed: 07/17/2024] Open
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (MSTN/GDF8) are closely related members of the transforming growth factor β (TGFβ) superfamily, sharing structural homology. Despite these structural similarities, recent research has shed light on the distinct roles these ligands play within muscle tissue. This study aims to uncover both the differences and similarities in gene expression at the transcriptome level by utilizing RNA sequencing. We conducted experiments involving five distinct groups, each with three biological replicates, using C2C12 cell cultures. The cells were subjected to high-throughput profiling to investigate disparities in gene expression patterns following preconditioning with either GDF11 or MSTN at concentrations of 1 nM and 10 nM, respectively. In addition, control groups were established. Our research revealed concentration-dependent gene expression patterns, with 38 genes showing significant differences when compared to the control groups. Notably, GADD45, SMAD7, EGR-1, and HOXA3 exhibited significant differential expression. We also conducted an over-representation analysis, highlighting the activation of MAPK and JNK signaling pathways, along with GO-terms related to genes that negatively regulate metabolic processes, biosynthesis, and protein phosphorylation. This study unveiled the activation of several genes not previously discussed in existing literature whose full biological implications are yet to be determined in future research.
Collapse
Affiliation(s)
- Platon Braun
- Harvard University, Department of Stem Cell and Regenerative Biology, Cambridge, MA, United States
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, Hamburg, Germany
- University Medical Center Hamburg-Eppendorf, Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, Hamburg, Germany
| | - Malik Alawi
- University Medical Center Hamburg-Eppendorf, Bioinformatics Core, Hamburg, Germany
| | - Ceren Saygi
- University Medical Center Hamburg-Eppendorf, Bioinformatics Core, Hamburg, Germany
| | - Klaus Pantel
- University Medical Center Hamburg-Eppendorf, Department of Tumor Biology, Hamburg, Germany
| | - Amy J. Wagers
- Harvard University, Department of Stem Cell and Regenerative Biology, Cambridge, MA, United States
- Joslin Diabetes Center, Inc., Boston, MA, United States
| |
Collapse
|
6
|
Brightwell CR, Latham CM, Keeble AR, Thomas NT, Owen AM, Reeves KA, Long DE, Patrick M, Gonzalez-Velez S, Abed V, Annamalai RT, Jacobs C, Conley CE, Hawk GS, Stone AV, Fry JL, Thompson KL, Johnson DL, Noehren B, Fry CS. GDF8 inhibition enhances musculoskeletal recovery and mitigates posttraumatic osteoarthritis following joint injury. SCIENCE ADVANCES 2023; 9:eadi9134. [PMID: 38019905 PMCID: PMC10686569 DOI: 10.1126/sciadv.adi9134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Musculoskeletal disorders contribute substantially to worldwide disability. Anterior cruciate ligament (ACL) tears result in unresolved muscle weakness and posttraumatic osteoarthritis (PTOA). Growth differentiation factor 8 (GDF8) has been implicated in the pathogenesis of musculoskeletal degeneration following ACL injury. We investigated GDF8 levels in ACL-injured human skeletal muscle and serum and tested a humanized monoclonal GDF8 antibody against a placebo in a mouse model of PTOA (surgically induced ACL tear). In patients, muscle GDF8 was predictive of atrophy, weakness, and periarticular bone loss 6 months following surgical ACL reconstruction. In mice, GDF8 antibody administration substantially mitigated muscle atrophy, weakness, and fibrosis. GDF8 antibody treatment rescued the skeletal muscle and articular cartilage transcriptomic response to ACL injury and attenuated PTOA severity and deficits in periarticular bone microarchitecture. Furthermore, GDF8 genetic deletion neutralized musculoskeletal deficits in response to ACL injury. Our findings support an opportunity for rapid targeting of GDF8 to enhance functional musculoskeletal recovery and mitigate the severity of PTOA after injury.
Collapse
Affiliation(s)
- Camille R. Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Christine M. Latham
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Alexander R. Keeble
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Nicholas T. Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Allison M. Owen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Kelsey A. Reeves
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Douglas E. Long
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Matthew Patrick
- Department of Biomedical Engineering, College of Engineering, University of Kentucky, Lexington, KY, USA
| | | | - Varag Abed
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Ramkumar T. Annamalai
- Department of Biomedical Engineering, College of Engineering, University of Kentucky, Lexington, KY, USA
| | - Cale Jacobs
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Caitlin E. Conley
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Gregory S. Hawk
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Austin V. Stone
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jean L. Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Katherine L. Thompson
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Darren L. Johnson
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Brian Noehren
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Christopher S. Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
7
|
Gluba-Sagr A, Franczyk B, Rysz-Górzyńska M, Ławiński J, Rysz J. The Role of miRNA in Renal Fibrosis Leading to Chronic Kidney Disease. Biomedicines 2023; 11:2358. [PMID: 37760798 PMCID: PMC10525803 DOI: 10.3390/biomedicines11092358] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic kidney disease (CKD) is an important health concern that is expected to be the fifth most widespread cause of death worldwide by 2040. The presence of chronic inflammation, oxidative stress, ischemia, etc., stimulates the development and progression of CKD. Tubulointerstitial fibrosis is a common pathomechanism of renal dysfunction, irrespective of the primary origin of renal injury. With time, fibrosis leads to end-stage renal disease (ESRD). Many studies have demonstrated that microRNAs (miRNAs, miRs) are involved in the onset and development of fibrosis and CKD. miRNAs are vital regulators of some pathophysiological processes; therefore, their utility as therapeutic agents in various diseases has been suggested. Several miRNAs were demonstrated to participate in the development and progression of kidney disease. Since renal fibrosis is an important problem in chronic kidney disease, many scientists have focused on the determination of miRNAs associated with kidney fibrosis. In this review, we present the role of several miRNAs in renal fibrosis and the potential pathways involved. However, as well as those mentioned above, other miRs have also been suggested to play a role in this process in CKD. The reports concerning the impact of some miRNAs on fibrosis are conflicting, probably because the expression and regulation of miRNAs occur in a tissue- and even cell-dependent manner. Moreover, different assessment modes and populations have been used. There is a need for large studies and clinical trials to confirm the role of miRs in a clinical setting. miRNAs have great potential; thus, their analysis may improve diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Anna Gluba-Sagr
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| | - Magdalena Rysz-Górzyńska
- Department of Ophthalmology and Visual Rehabilitation, Medical University of Lodz, 90-549 Lodz, Poland
| | - Janusz Ławiński
- Department of Urology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-055 Rzeszow, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Lodz, Poland
| |
Collapse
|
8
|
Culver A, Hamang M, Wang Y, Jiang H, Yanum J, White E, Gawrieh S, Vuppalanchi RK, Chalasani NP, Dai G, Yaden BC. GDF8 Contributes to Liver Fibrogenesis and Concomitant Skeletal Muscle Wasting. Biomedicines 2023; 11:1909. [PMID: 37509548 PMCID: PMC10377408 DOI: 10.3390/biomedicines11071909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Patients with end-stage liver disease exhibit progressive skeletal muscle atrophy, highlighting a negative crosstalk between the injured liver and muscle. Our study was to determine whether TGFβ ligands function as the mediators. Acute or chronic liver injury was induced by a single or repeated administration of carbon tetrachloride. Skeletal muscle injury and repair was induced by intramuscular injection of cardiotoxin. Activin type IIB receptor (ActRIIB) ligands and growth differentiation factor 8 (Gdf8) were neutralized with ActRIIB-Fc fusion protein and a Gdf8-specific antibody, respectively. We found that acute hepatic injury induced rapid and adverse responses in muscle, which was blunted by neutralizing ActRIIB ligands. Chronic liver injury caused muscle atrophy and repair defects, which were prevented or reversed by inactivating ActRIIB ligands. Furthermore, we found that pericentral hepatocytes produce excessive Gdf8 in injured mouse liver and cirrhotic human liver. Specific inactivation of Gdf8 prevented liver injury-induced muscle atrophy, similar to neutralization of ActRIIB ligands. Inhibition of Gdf8 also reversed muscle atrophy in a treatment paradigm following chronic liver injury. Direct injection of exogenous Gdf8 protein into muscle along with acute focal muscle injury recapitulated similar dysregulated muscle regeneration as that observed with liver injury. The results indicate that injured liver negatively communicate with the muscle largely via Gdf8. Unexpectedly, inactivation of Gdf8 simultaneously ameliorated liver fibrosis in mice following chronic liver injury. In vitro, Gdf8 induced human hepatic stellate (LX-2) cells to form a septa-like structure and stimulated expression of profibrotic factors. Our findings identified Gdf8 as a novel hepatomyokine contributing to injured liver-muscle negative crosstalk along with liver injury progression.
Collapse
Affiliation(s)
- Alexander Culver
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Matthew Hamang
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Yan Wang
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Huaizhou Jiang
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Jennifer Yanum
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Emily White
- Department of Biological Sciences, College of Science, Purdue University, West Lafayette, IN 46202, USA
| | - Samer Gawrieh
- Division of Gastroenterology and Hepatology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Raj K Vuppalanchi
- Division of Gastroenterology and Hepatology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Naga P Chalasani
- Division of Gastroenterology and Hepatology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Guoli Dai
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Benjamin C Yaden
- Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Bez Batti Angulski A, Hosny N, Cohen H, Martin AA, Hahn D, Bauer J, Metzger JM. Duchenne muscular dystrophy: disease mechanism and therapeutic strategies. Front Physiol 2023; 14:1183101. [PMID: 37435300 PMCID: PMC10330733 DOI: 10.3389/fphys.2023.1183101] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 07/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology. Here, we review the pathophysiological basis of DMD and discuss recent progress toward the development of therapeutic strategies for DMD that are currently close to or are in human clinical trials. The first section of the review focuses on DMD and the mechanisms contributing to membrane instability, inflammation, and fibrosis. The second section discusses therapeutic strategies currently used to treat DMD. This includes a focus on outlining the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, repair, and/or a range of dystrophin-independent approaches. The final section highlights the different therapeutic strategies for DMD currently in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
10
|
Khuu S, Fernandez JW, Handsfield GG. Delayed skeletal muscle repair following inflammatory damage in simulated agent-based models of muscle regeneration. PLoS Comput Biol 2023; 19:e1011042. [PMID: 37023170 PMCID: PMC10128985 DOI: 10.1371/journal.pcbi.1011042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 04/25/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Healthy skeletal muscle undergoes repair in response to mechanically localised strains during activities such as exercise. The ability of cells to transduce the external stimuli into a cascade of cell signalling responses is important to the process of muscle repair and regeneration. In chronic myopathies such as Duchenne muscular dystrophy and inflammatory myopathies, muscle is often subject to chronic necrosis and inflammation that perturbs tissue homeostasis and leads to non-localised, widespread damage across the tissue. Here we present an agent-based model that simulates muscle repair in response to both localised eccentric contractions similar to what would be experienced during exercise, and non-localised widespread inflammatory damage that is present in chronic disease. Computational modelling of muscle repair allows for in silico exploration of phenomena related to muscle disease. In our model, widespread inflammation led to delayed clearance of tissue damage, and delayed repair for recovery of initial fibril counts at all damage levels. Macrophage recruitment was delayed and significantly higher in widespread compared to localised damage. At higher damage percentages of 10%, widespread damage led to impaired muscle regeneration and changes in muscle geometry that represented alterations commonly observed in chronic myopathies, such as fibrosis. This computational work offers insight into the progression and aetiology of inflammatory muscle diseases, and suggests a focus on the muscle regeneration cascade in understanding the progression of muscle damage in inflammatory myopathies.
Collapse
Affiliation(s)
- Stephanie Khuu
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Justin W Fernandez
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Geoffrey G Handsfield
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Cabezas Perez RJ, Ávila Rodríguez MF, Rosero Salazar DH. Exogenous Antioxidants in Remyelination and Skeletal Muscle Recovery. Biomedicines 2022; 10:biomedicines10102557. [PMID: 36289819 PMCID: PMC9599955 DOI: 10.3390/biomedicines10102557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory, oxidative, and autoimmune responses cause severe damage to the nervous system inducing loss of myelin layers or demyelination. Even though demyelination is not considered a direct cause of skeletal muscle disease there is extensive damage in skeletal muscles following demyelination and impaired innervation. In vitro and in vivo evidence using exogenous antioxidants in models of demyelination is showing improvements in myelin formation alongside skeletal muscle recovery. For instance, exogenous antioxidants such as EGCG stimulate nerve structure maintenance, activation of glial cells, and reduction of oxidative stress. Consequently, this evidence is also showing structural and functional recovery of impaired skeletal muscles due to demyelination. Exogenous antioxidants mostly target inflammatory pathways and stimulate remyelinating mechanisms that seem to induce skeletal muscle regeneration. Therefore, the aim of this review is to describe recent evidence related to the molecular mechanisms in nerve and skeletal muscle regeneration induced by exogenous antioxidants. This will be relevant to identifying further targets to improve treatments of neuromuscular demyelinating diseases.
Collapse
|
12
|
Mishra R, Jha R, Mishra B, Kim YS. Maternal immunization against myostatin suppresses post-hatch chicken growth. PLoS One 2022; 17:e0275753. [PMID: 36201511 PMCID: PMC9536644 DOI: 10.1371/journal.pone.0275753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
Myostatin (MSTN) is a negative regulator of skeletal muscle growth, thus it was hypothesized that immunization of hens against MSTN would enhance post-hatch growth and muscle mass via suppression of MSTN activity by anti-MSTN IgY in fertilized eggs. This study investigated the effects of immunization of hens against chicken MSTN (chMSTN) or a MSTN fragment (Myo2) on the growth and muscle mass of offspring. In Experiment 1, hens mixed with roosters were divided into two groups and hens in the Control and chMSTN groups were immunized with 0 and 0.5 mg of chMSTN, respectively. In Experiment 2, hens in the chMSTN group were divided into chMSTN and Myo2 groups while the Control group remained the same. The Control and chMSTN groups were immunized in the same way as Experiment 1. The Myo2 group was immunized against MSTN peptide fragment (Myo2) conjugated to KLH. Eggs collected from each group were incubated, and chicks were reared to examine growth and carcass parameters. ELISA showed the production of IgYs against chMSTN and Myo2 and the presence of these antibodies in egg yolk. IgY from the chMSTN and Myo2 groups showed binding affinity to chMSTN, Myo2, and commercial MSTN in Western blot analysis but did not show MSTN-inhibitory capacity in a reporter gene assay. In Experiment 1, no difference was observed in the body weight and carcass parameters of offspring between the Control and chMSTN groups. In Experiment 2, the body weight of chicks from the Myo2 group was significantly lower than that of the Control or chMSTN groups. The dressing percentage and breast muscle mass of the chMSTN and Myo2 groups were significantly lower than those of the Control group, and the breast muscle mass of Myo2 was significantly lower than that of the chMSTN. In summary, in contrast to our hypothesis, maternal immunization of hens did not increase but decreased the body weight and muscle mass of offspring.
Collapse
Affiliation(s)
- Rajeev Mishra
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Yong Soo Kim
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
13
|
Myostatin deficiency decreases cardiac extracellular matrix in pigs. Transgenic Res 2022; 31:553-565. [PMID: 35978205 DOI: 10.1007/s11248-022-00322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Abstract
Myostatin (MSTN), a member of the TGF-β superfamily, negatively regulates muscle growth. MSTN inhibition has been known to cause a double-muscled phenotype in skeletal muscle and fibrosis reduction in the heart. However, the role of MSTN in the cardiac extracellular matrix (ECM) needs more studies in various species of animal models to draw more objective conclusions. The main objective of the present study was to investigate whether loss of MSTN affects the cardiac extracellular matrix in pigs. Three MSTN knockouts (MSTN-/-) and three wild type (WT) male pigs were generated by crossing MSTN ± heterozygous gilts and boars. Cardiac ECM and underlying mechanisms were determined post-mortem. The role of MSTN on collagen expression was investigated by treating cardiac fibroblasts with active MSTN protein in vitro. MSTN protein was detected in WT hearts, while no expression was detected in MSTN-/- hearts. The heart-to-body weight ratio was significantly decreased in MSTN-/- pigs. The morphometric analyses, including picrosirius red staining, immunofluorescent staining, and ultra-structural thickness examination of the endomysium, revealed a significant reduction of connective tissue content in MSTN-/- hearts compared to WT. Hydroxyproline, type I collagen (Col1A), and p-Smad3/Smad3 levels were significantly lower in MSTN-/- hearts in vivo. On the contrary, cardiac fibroblasts treated with exogenous MSTN protein overexpressed Col1A and activated Smad and AKT signaling pathways in vitro. The present study suggests that inhibition of MSTN decreases cardiac extracellular matrix.
Collapse
|
14
|
Sherlock SP, Palmer J, Wagner KR, Abdel-Hamid HZ, Bertini E, Tian C, Mah JK, Kostera-Pruszczyk A, Muntoni F, Guglieri M, Brandsema JF, Mercuri E, Butterfield RJ, McDonald CM, Charnas L, Marraffino S. Quantitative magnetic resonance imaging measures as biomarkers of disease progression in boys with Duchenne muscular dystrophy: a phase 2 trial of domagrozumab. J Neurol 2022; 269:4421-4435. [PMID: 35396602 PMCID: PMC9294028 DOI: 10.1007/s00415-022-11084-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 01/14/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive, neuromuscular disorder caused by mutations in the DMD gene that results in a lack of functional dystrophin protein. Herein, we report the use of quantitative magnetic resonance imaging (MRI) measures as biomarkers in the context of a multicenter phase 2, randomized, placebo-controlled clinical trial evaluating the myostatin inhibitor domagrozumab in ambulatory boys with DMD (n = 120 aged 6 to < 16 years). MRI scans of the thigh to measure muscle volume, muscle volume index (MVI), fat fraction, and T2 relaxation time were obtained at baseline and at weeks 17, 33, 49, and 97 as per protocol. These quantitative MRI measurements appeared to be sensitive and objective biomarkers for evaluating disease progression, with significant changes observed in muscle volume, MVI, and T2 mapping measures over time. To further explore the utility of quantitative MRI measures as biomarkers to inform longer term functional changes in this cohort, a regression analysis was performed and demonstrated that muscle volume, MVI, T2 mapping measures, and fat fraction assessment were significantly correlated with longer term changes in four-stair climb times and North Star Ambulatory Assessment functional scores. Finally, less favorable baseline measures of MVI, fat fraction of the muscle bundle, and fat fraction of lean muscle were significant risk factors for loss of ambulation over a 2-year monitoring period. These analyses suggest that MRI can be a valuable tool for use in clinical trials and may help inform future functional changes in DMD.Trial registration: ClinicalTrials.gov identifier, NCT02310763; registered December 2014.
Collapse
Affiliation(s)
| | | | - Kathryn R Wagner
- Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hoda Z Abdel-Hamid
- Division of Child Neurology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Enrico Bertini
- Unit of Neuromuscular Disease, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cuixia Tian
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Jean K Mah
- Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle, UK
| | | | - Eugenio Mercuri
- Pediatric Neurology, Catholic University, Rome, Italy
- Centro Nemo, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | | | | | | | | |
Collapse
|
15
|
BMP3 inhibits TGFβ2-mediated myofibroblast differentiation during wound healing of the embryonic cornea. NPJ Regen Med 2022; 7:36. [PMID: 35879352 PMCID: PMC9314337 DOI: 10.1038/s41536-022-00232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
Often acute damage to the cornea initiates drastic tissue remodeling, resulting in fibrotic scarring that disrupts light transmission and precedes vision impairment. Very little is known about the factors that can mitigate fibrosis and promote scar-free cornea wound healing. We previously described transient myofibroblast differentiation during non-fibrotic repair in an embryonic cornea injury model. Here, we sought to elucidate the mechanistic regulation of myofibroblast differentiation during embryonic cornea wound healing. We found that alpha-smooth muscle actin (αSMA)-positive myofibroblasts are superficial and their presence inversely correlates with wound closure. Expression of TGFβ2 and nuclear localization of pSMAD2 were elevated during myofibroblast induction. BMP3 and BMP7 were localized in the corneal epithelium and corresponded with pSMAD1/5/8 activation and absence of myofibroblasts in the healing stroma. In vitro analyses with corneal fibroblasts revealed that BMP3 inhibits the persistence of TGFβ2-induced myofibroblasts by promoting disassembly of focal adhesions and αSMA fibers. This was confirmed by the expression of vinculin and pFAK. Together, these data highlight a mechanism to inhibit myofibroblast persistence during cornea wound repair.
Collapse
|
16
|
Wu Y, Wu Y, Yang Y, Yu J, Wu J, Liao Z, Guo A, Sun Y, Zhao Y, Chen J, Xiao Q. Lysyl oxidase-like 2 inhibitor rescues D-galactose-induced skeletal muscle fibrosis. Aging Cell 2022; 21:e13659. [PMID: 35712918 PMCID: PMC9282848 DOI: 10.1111/acel.13659] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/25/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022] Open
Abstract
Aging-related sarcopenia is currently the most common sarcopenia. The main manifestations are skeletal muscle atrophy, replacement of muscle fibers with fat and fibrous tissue. Excessive fibrosis can impair muscle regeneration and function. Lysyl oxidase-like 2 (LOXL2) has previously been reported to be involved in the development of various tissue fibrosis. Here, we investigated the effects of LOXL2 inhibitor on D-galactose (D-gal)-induced skeletal muscle fibroblast cells and mice. Our molecular and physiological studies show that treatment with LOXL2 inhibitor can alleviate senescence, fibrosis, and increased production of reactive oxygen species in fibroblasts caused by D-gal. These effects are related to the inhibition of the TGF-β1/p38 MAPK pathway. Furthermore, in vivo, mice treatment with LOXL2 inhibitor reduced D-gal-induced skeletal muscle fibrosis, partially enhanced skeletal muscle mass and strength and reduced redox balance disorder. Taken together, these data indicate the possibility of using LOXL2 inhibitors to prevent aging-related sarcopenia, especially with significant fibrosis.
Collapse
Affiliation(s)
- Yongxin Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yaoxuan Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei Yang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianghao Wu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyin Liao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ai Guo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxing Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinliang Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
(-) - Epicatechin improves Tibialis anterior muscle repair in CD1 mice with BaCl2-induced damage. J Nutr Biochem 2022; 107:109069. [DOI: 10.1016/j.jnutbio.2022.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 02/05/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022]
|
18
|
An Antisense Oligonucleotide against a Splicing Enhancer Sequence within Exon 1 of the MSTN Gene Inhibits Pre-mRNA Maturation to Act as a Novel Myostatin Inhibitor. Int J Mol Sci 2022; 23:ijms23095016. [PMID: 35563408 PMCID: PMC9101285 DOI: 10.3390/ijms23095016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are agents that modulate gene function. ASO-mediated out-of-frame exon skipping has been employed to suppress gene function. Myostatin, encoded by the MSTN gene, is a potent negative regulator of skeletal muscle growth. ASOs that induce skipping of out-of-frame exon 2 of the MSTN gene have been studied for their use in increasing muscle mass. However, no ASOs are currently available for clinical use. We hypothesized that ASOs against the splicing enhancer sequence within exon 1 of the MSTN gene would inhibit maturation of pre-mRNA, thereby suppressing gene function. To explore this hypothesis, ASOs against sequences of exon 1 of the MSTN gene were screened for their ability to reduce mature MSTN mRNA levels. One screened ASO, named KMM001, decreased MSTN mRNA levels in a dose-dependent manner and reciprocally increased MSTN pre-mRNA levels. Accordingly, KMM001 decreased myostatin protein levels. KMM001 inhibited SMAD-mediated myostatin signaling in rhabdomyosarcoma cells. Remarkably, it did not decrease GDF11 mRNA levels, indicating myostatin-specific inhibition. As expected, KMM001 enhanced the proliferation of human myoblasts. We conclude that KMM001 is a novel myostatin inhibitor that inhibits pre-mRNA maturation. KMM001 has great promise for clinical applications and should be examined for its ability to treat various muscle-wasting conditions.
Collapse
|
19
|
Hillege MMG, Shi A, Galli RA, Wu G, Bertolino P, Hoogaars WMH, Jaspers RT. Lack of Tgfbr1 and Acvr1b synergistically stimulates myofibre hypertrophy and accelerates muscle regeneration. eLife 2022; 11:77610. [PMID: 35323108 PMCID: PMC9005187 DOI: 10.7554/elife.77610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/05/2022] [Indexed: 12/02/2022] Open
Abstract
In skeletal muscle, transforming growth factor-β (TGF-β) family growth factors, TGF-β1 and myostatin, are involved in atrophy and muscle wasting disorders. Simultaneous interference with their signalling pathways may improve muscle function; however, little is known about their individual and combined receptor signalling. Here, we show that inhibition of TGF-β signalling by simultaneous muscle-specific knockout of TGF-β type I receptors Tgfbr1 and Acvr1b in mice, induces substantial hypertrophy, while such effect does not occur by single receptor knockout. Hypertrophy is induced by increased phosphorylation of Akt and p70S6K and reduced E3 ligases expression, while myonuclear number remains unaltered. Combined knockout of both TGF-β type I receptors increases the number of satellite cells, macrophages and improves regeneration post cardiotoxin-induced injury by stimulating myogenic differentiation. Extra cellular matrix gene expression is exclusively elevated in muscle with combined receptor knockout. Tgfbr1 and Acvr1b are synergistically involved in regulation of myofibre size, regeneration, and collagen deposition.
Collapse
Affiliation(s)
- Michèle M G Hillege
- Department of Human Movement, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Andi Shi
- Department of Human Movement, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ricardo A Galli
- Department of Human Movement, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Philippe Bertolino
- Centre de Recherche en Cancérologie de Lyon, Université de Lyon, UMR INSERM U1052, CNRS 5286, Lyon, France
| | - Willem M H Hoogaars
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Richard T Jaspers
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Handsfield GG, Williams S, Khuu S, Lichtwark G, Stott NS. Muscle architecture, growth, and biological Remodelling in cerebral palsy: a narrative review. BMC Musculoskelet Disord 2022; 23:233. [PMID: 35272643 PMCID: PMC8908685 DOI: 10.1186/s12891-022-05110-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebral palsy (CP) is caused by a static lesion to the brain occurring in utero or up to the first 2 years of life; it often manifests as musculoskeletal impairments and movement disorders including spasticity and contractures. Variable manifestation of the pathology across individuals, coupled with differing mechanics and treatments, leads to a heterogeneous collection of clinical phenotypes that affect muscles and individuals differently. Growth of muscles in CP deviates from typical development, evident as early as 15 months of age. Muscles in CP may be reduced in volume by as much as 40%, may be shorter in length, present longer tendons, and may have fewer sarcomeres in series that are overstretched compared to typical. Macroscale and functional deficits are likely mediated by dysfunction at the cellular level, which manifests as impaired growth. Within muscle fibres, satellite cells are decreased by as much as 40-70% and the regenerative capacity of remaining satellite cells appears compromised. Impaired muscle regeneration in CP is coupled with extracellular matrix expansion and increased pro-inflammatory gene expression; resultant muscles are smaller, stiffer, and weaker than typical muscle. These differences may contribute to individuals with CP participating in less physical activity, thus decreasing opportunities for mechanical loading, commencing a vicious cycle of muscle disuse and secondary sarcopenia. This narrative review describes the effects of CP on skeletal muscles encompassing substantive changes from whole muscle function to cell-level effects and the effects of common treatments. We discuss growth and mechanics of skeletal muscles in CP and propose areas where future work is needed to understand these interactions, particularly the link between neural insult and cell-level manifestation of CP.
Collapse
Affiliation(s)
- Geoffrey G Handsfield
- Auckland Bioengineering Institute, University of Auckland, Auckland CBD, Auckland, 1010, New Zealand.
| | - Sîan Williams
- Liggins Institute, University of Auckland, Auckland CBD, Auckland, 1010, New Zealand
- School of Allied Health, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Stephanie Khuu
- Auckland Bioengineering Institute, University of Auckland, Auckland CBD, Auckland, 1010, New Zealand
| | - Glen Lichtwark
- School of Human Movement and Nutrition Sciences, University of Queensland, QLD, St Lucia, 4072, Australia
| | - N Susan Stott
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland CBD, Auckland, 1010, New Zealand
| |
Collapse
|
21
|
Rodgers BD, Ward CW. Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs. Endocr Rev 2022; 43:329-365. [PMID: 34520530 PMCID: PMC8905337 DOI: 10.1210/endrev/bnab030] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Muscle wasting disease indications are among the most debilitating and often deadly noncommunicable disease states. As a comorbidity, muscle wasting is associated with different neuromuscular diseases and myopathies, cancer, heart failure, chronic pulmonary and renal diseases, peripheral neuropathies, inflammatory disorders, and, of course, musculoskeletal injuries. Current treatment strategies are relatively ineffective and can at best only limit the rate of muscle degeneration. This includes nutritional supplementation and appetite stimulants as well as immunosuppressants capable of exacerbating muscle loss. Arguably, the most promising treatments in development attempt to disrupt myostatin and activin receptor signaling because these circulating factors are potent inhibitors of muscle growth and regulators of muscle progenitor cell differentiation. Indeed, several studies demonstrated the clinical potential of "inhibiting the inhibitors," increasing muscle cell protein synthesis, decreasing degradation, enhancing mitochondrial biogenesis, and preserving muscle function. Such changes can prevent muscle wasting in various disease animal models yet many drugs targeting this pathway failed during clinical trials, some from serious treatment-related adverse events and off-target interactions. More often, however, failures resulted from the inability to improve muscle function despite preserving muscle mass. Drugs still in development include antibodies and gene therapeutics, all with different targets and thus, safety, efficacy, and proposed use profiles. Each is unique in design and, if successful, could revolutionize the treatment of both acute and chronic muscle wasting. They could also be used in combination with other developing therapeutics for related muscle pathologies or even metabolic diseases.
Collapse
Affiliation(s)
| | - Christopher W Ward
- Department of Orthopedics and Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Esposito P, Picciotto D, Battaglia Y, Costigliolo F, Viazzi F, Verzola D. Myostatin: Basic biology to clinical application. Adv Clin Chem 2022; 106:181-234. [PMID: 35152972 DOI: 10.1016/bs.acc.2021.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myostatin is a member of the transforming growth factor (TGF)-β superfamily. It is expressed by animal and human skeletal muscle cells where it limits muscle growth and promotes protein breakdown. Its effects are influenced by complex mechanisms including transcriptional and epigenetic regulation and modulation by extracellular binding proteins. Due to its actions in promoting muscle atrophy and cachexia, myostatin has been investigated as a promising therapeutic target to counteract muscle mass loss in experimental models and patients affected by different muscle-wasting conditions. Moreover, growing evidence indicates that myostatin, beyond to regulate skeletal muscle growth, may have a role in many physiologic and pathologic processes, such as obesity, insulin resistance, cardiovascular and chronic kidney disease. In this chapter, we review myostatin biology, including intracellular and extracellular regulatory pathways, and the role of myostatin in modulating physiologic processes, such as muscle growth and aging. Moreover, we discuss the most relevant experimental and clinical evidence supporting the extra-muscle effects of myostatin. Finally, we consider the main strategies developed and tested to inhibit myostatin in clinical trials and discuss the limits and future perspectives of the research on myostatin.
Collapse
Affiliation(s)
- Pasquale Esposito
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Daniela Picciotto
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Yuri Battaglia
- Nephrology and Dialysis Unit, St. Anna University Hospital, Ferrara, Italy
| | - Francesca Costigliolo
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
23
|
Ben-Zaken S, Eliakim A, Nemet D, Kaufman L, Meckel Y. Genetic characteristics of competitive swimmers: a review. Biol Sport 2022; 39:157-170. [PMID: 35173374 PMCID: PMC8805353 DOI: 10.5114/biolsport.2022.102868] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/07/2020] [Accepted: 01/11/2021] [Indexed: 12/04/2022] Open
Abstract
A successful swimming performance is a multi-factorial accomplishment, resulting from a complex interaction of physical, biomechanical, physiological and psychological factors, all of which are strongly affected by the special medium of water as well as by genetic factors. The nature of competitive swimming is unique, as most of the competitive events last less than four minutes. Yet training regimens have an endurance nature (many hours and many kilometres of swimming every day), which makes it impossible to classify swimming by definitions of aerobic-type or anaerobic-type events, as in track and field sports. Therefore, genetic variants associated with swimming performance are not necessarily related to metabolic pathways, but rather to blood lactate transport (MCT1), muscle functioning (IGF1 axis), muscle damage (IL6) and others. The current paper reviews the main findings on the leading 12 genetic polymorphisms (located in the ACE, ACTN3, AMPD1, BDKRB2, IGF1, IL6, MCT1, MSTN, NOS3, PPARA, PPARGC1A, and VEGFR2 genes) related to swimming performance, while taking into consideration the unique environment of this sport.
Collapse
Affiliation(s)
- Sigal Ben-Zaken
- Genetics and Molecular Biology Laboratory, The Academic College at the Wingate, Wingate Institute, Netanya, Israel
| | - Alon Eliakim
- Child Health and Sports Center, Pediatric Department, Meir Medical Center, Kfar Saba, Israel
| | - Dan Nemet
- Child Health and Sports Center, Pediatric Department, Meir Medical Center, Kfar Saba, Israel
| | - Leonid Kaufman
- Exercise Physiology Laboratory, The Academic College at the Wingate, Wingate Institute, Netanya, Israel
| | - Yoav Meckel
- Exercise Physiology Laboratory, The Academic College at the Wingate, Wingate Institute, Netanya, Israel
| |
Collapse
|
24
|
Huang C, Ge F, Ma X, Dai R, Dingkao R, Zhaxi Z, Burenchao G, Bao P, Wu X, Guo X, Chu M, Yan P, Liang C. Comprehensive Analysis of mRNA, lncRNA, circRNA, and miRNA Expression Profiles and Their ceRNA Networks in the Longissimus Dorsi Muscle of Cattle-Yak and Yak. Front Genet 2021; 12:772557. [PMID: 34966412 PMCID: PMC8710697 DOI: 10.3389/fgene.2021.772557] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Cattle-yak, as the hybrid offspring of cattle (Bos taurus) and yak (Bos grunniens), demonstrates obvious heterosis in production performance. Male hybrid sterility has been focused on for a long time; however, the mRNAs and non-coding RNAs related to muscle development as well as their regulatory networks remain unclear. The phenotypic data showed that the production performance (i.e., body weight, withers height, body length, and chest girth) of cattle-yak was significantly better than that of the yak, and the economic benefits of the cattle-yak were higher under the same feeding conditions. Then, we detected the expression profiles of the longissimus dorsi muscle of cattle-yak and yak to systematically reveal the molecular basis using the high-throughput sequencing technology. Here, 7,126 mRNAs, 791 lncRNAs, and 1,057 circRNAs were identified to be differentially expressed between cattle-yaks and yaks in the longissimus dorsi muscle. These mRNAs, lncRNA targeted genes, and circRNA host genes were significantly enriched in myoblast differentiation and some signaling pathways related to muscle development (such as HIF-1 signaling pathway and PI3K-Akt signaling pathway). We constructed a competing endogenous RNA (ceRNA) network and found that some non-coding RNAs differentially expressed may be involved in the regulation of muscle traits. Taken together, this study may be used as a reference tool to provide the molecular basis for studying muscle development.
Collapse
Affiliation(s)
- Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fei Ge
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Renqing Dingkao
- Livestock Institute of Gannan Tibetan Autonomous Prefecture, Hezuo, China
| | - Zhuoma Zhaxi
- Haixi Agricultural and Animal Husbandry Technology Extension Service Center, Qinghai, China
| | - Getu Burenchao
- Haixi Agricultural and Animal Husbandry Technology Extension Service Center, Qinghai, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
25
|
Stilhano RS, Denapoli PMA, Gallo CC, Samoto VY, Ingham SJM, Abdalla RJ, Koh TJ, Han SW. Regenerative effect of platelet-rich plasma in the murine ischemic limbs. Life Sci 2021; 284:119934. [PMID: 34508762 DOI: 10.1016/j.lfs.2021.119934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/01/2022]
Abstract
AIMS The purpose of this study was to investigate the effect of PPRP (pure PRP) and LPRP (PRP with leukocytes) on recovery from limb ischemia and on expression of growth factors involved in angiogenesis, myogenesis and fibrogenesis. MATERIAL AND METHODS PPRP and LPRP prepared by centrifugation were added to cultures of C2C12 and NIH3T3 cells (1 or 10% PRPs) to evaluate alterations in cell metabolism and expression of growth factors by MTT, ELISA and RT-qPCR, respectively. To evaluate in vivo regenerative effects, PRPs were injected into the ischemic limbs of BALB/c mice and muscle mass/strength and histomorphometry were evaluated after 30 days. KEY FINDINGS Mice treated with PRPs after limb ischemia showed an increase in the size of myofibers and muscle strength, reduced fibrosis and adipocytes, and decreased capillary density and necrosis scores compared to untreated mice. In cell culture, serum deprivation reduced the viability of C2C12 and NIH3T3 cells to about 50%, but the addition of 1% PRPs completely recovered this loss. Both PRPs, downregulated most of the tested genes; however, angiogenic gene Vegfa in C2C12 and the fibrogenic genes Col1a1 and Col3a1 in NIH3T3 cells were upregulated by LPRP. SIGNIFICANCE PPRP and LPRP had similar effects in regulation of genes involved in angiogenesis, myogenesis and fibrogenesis. However, the presence of leucocytes did not significantly affect regenerative activities of PRP in the ischemic limb.
Collapse
Affiliation(s)
- Roberta Sessa Stilhano
- Center for Gene Therapy Investigation, Universidade Federal de São Paulo (UNIFESP), Brazil; Department of Physiological Sciences, Faculdade de Ciências Médicas da Santa Casa de São Paulo (FCMSCSP), Brazil
| | | | | | - Vivian Yochiko Samoto
- Center for Gene Therapy Investigation, Universidade Federal de São Paulo (UNIFESP), Brazil
| | | | - Rene Jorge Abdalla
- Department of Orthopedic Surgery, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil
| | - Timothy Jon Koh
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, United States of America
| | - Sang Won Han
- Center for Gene Therapy Investigation, Universidade Federal de São Paulo (UNIFESP), Brazil; Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
26
|
Masuzawa R, Takahashi K, Takano K, Nishino I, Sakai T, Endo T. DA-Raf and the MEK inhibitor trametinib reverse skeletal myocyte differentiation inhibition or muscle atrophy caused by myostatin and GDF11 through the non-Smad Ras-ERK pathway. J Biochem 2021; 171:109-122. [PMID: 34676394 DOI: 10.1093/jb/mvab116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022] Open
Abstract
Myostatin (Mstn) and GDF11 are critical factors that are involved in muscle atrophy in the young and sarcopenia in the elderly, respectively. These TGF-β superfamily proteins activate not only Smad signaling but also non-Smad signaling including the Ras-mediated ERK pathway (Raf-MEK-ERK phosphorylation cascade). Although Mstn and GDF11 have been shown to induce muscle atrophy or sarcopenia by Smad2/3-mediated Akt inhibition, participation of the non-Smad Ras-ERK pathway in atrophy and sarcopenia has not been well determined. We show here that both Mstn and GDF11 prevented skeletal myocyte differentiation but that the MEK inhibitor U0126 or trametinib restored differentiation in Mstn- or GDF11-treated myocytes. These MEK inhibitors induced the expression of DA-Raf1 (DA-Raf), which is a dominant-negative antagonist of the Ras-ERK pathway. Exogenous expression of DA-Raf in Mstn- or GDF11-treated myocytes restored differentiation. Furthermore, administration of trametinib to aged mice resulted in an increase in myofiber size, or recovery from muscle atrophy. The trametinib administration downregulated ERK activity in these muscles. These results imply that the Mstn/GDF11-induced Ras-ERK pathway plays critical roles in the inhibition of myocyte differentiation and muscle regeneration, which leads to muscle atrophy. Trametinib and similar approved drugs might be applicable to the treatment of muscle atrophy in sarcopenia or cachexia.
Collapse
Affiliation(s)
- Ryuichi Masuzawa
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan
| | - Kazuya Takahashi
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan
| | - Kazunori Takano
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo 187-8502, Japan
| | - Toshiyuki Sakai
- Drug Discovery Center and Department of Drug Discovery Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan
| |
Collapse
|
27
|
Li J, Fredericks M, Cannell M, Wang K, Sako D, Maguire MC, Grenha R, Liharska K, Krishnan L, Bloom T, Belcheva EP, Martinez PA, Castonguay R, Keates S, Alexander MJ, Choi H, Grinberg AV, Pearsall RS, Oh P, Kumar R, Suragani RN. ActRIIB:ALK4-Fc alleviates muscle dysfunction and comorbidities in murine models of neuromuscular disorders. J Clin Invest 2021; 131:138634. [PMID: 33586684 DOI: 10.1172/jci138634] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/29/2020] [Indexed: 01/06/2023] Open
Abstract
Patients with neuromuscular disorders suffer from a lack of treatment options for skeletal muscle weakness and disease comorbidities. Here, we introduce as a potential therapeutic agent a heterodimeric ligand-trapping fusion protein, ActRIIB:ALK4-Fc, which comprises extracellular domains of activin-like kinase 4 (ALK4) and activin receptor type IIB (ActRIIB), a naturally occurring pair of type I and II receptors belonging to the TGF-β superfamily. By surface plasmon resonance (SPR), ActRIIB:ALK4-Fc exhibited a ligand binding profile distinctly different from that of its homodimeric variant ActRIIB-Fc, sequestering ActRIIB ligands known to inhibit muscle growth but not trapping the vascular regulatory ligand bone morphogenetic protein 9 (BMP9). ActRIIB:ALK4-Fc and ActRIIB-Fc administered to mice exerted differential effects - concordant with SPR results - on vessel outgrowth in a retinal explant assay. ActRIIB:ALK4-Fc induced a systemic increase in muscle mass and function in wild-type mice and in murine models of Duchenne muscular dystrophy (DMD), amyotrophic lateral sclerosis (ALS), and disuse atrophy. Importantly, ActRIIB:ALK4-Fc improved neuromuscular junction abnormalities in murine models of DMD and presymptomatic ALS and alleviated acute muscle fibrosis in a DMD model. Furthermore, in combination therapy ActRIIB:ALK4-Fc increased the efficacy of antisense oligonucleotide M12-PMO on dystrophin expression and skeletal muscle endurance in an aged DMD model. ActRIIB:ALK4-Fc shows promise as a therapeutic agent, alone or in combination with dystrophin rescue therapy, to alleviate muscle weakness and comorbidities of neuromuscular disorders.
Collapse
Affiliation(s)
- Jia Li
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | | | - Kathryn Wang
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | - Dianne Sako
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | - Rosa Grenha
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | | | - Troy Bloom
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | | | | | - Sarah Keates
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | - Hyunwoo Choi
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | | - Paul Oh
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | |
Collapse
|
28
|
Demonbreun AR, Fallon KS, Oosterbaan CC, Vaught LA, Reiser NL, Bogdanovic E, Velez MP, Salamone IM, Page PGT, Hadhazy M, Quattrocelli M, Barefield DY, Wood LD, Gonzalez JP, Morris C, McNally EM. Anti-latent TGFβ binding protein 4 antibody improves muscle function and reduces muscle fibrosis in muscular dystrophy. Sci Transl Med 2021; 13:eabf0376. [PMID: 34516828 PMCID: PMC9559620 DOI: 10.1126/scitranslmed.abf0376] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Duchenne muscular dystrophy, like other muscular dystrophies, is a progressive disorder hallmarked by muscle degeneration, inflammation, and fibrosis. Latent transforming growth factor β (TGFβ) binding protein 4 (LTBP4) is an extracellular matrix protein found in muscle. LTBP4 sequesters and inhibits a precursor form of TGFβ. LTBP4 was originally identified from a genome-wide search for genetic modifiers of muscular dystrophy in mice, where there are two different alleles. The protective form of LTBP4, which contains an insertion of 12 amino acids in the protein’s hinge region, was linked to increased sequestration of latent TGFβ, enhanced muscle membrane stability, and reduced muscle fibrosis. The deleterious form of LTBP4 protein, lacking 12 amino acids, was more susceptible to proteolysis and promoted release of latent TGF-β, and together, these data underscored the functional role of LTBP4’s hinge. Here, we generated a monoclonal human anti-LTBP4 antibody directed toward LTBP4’s hinge region. In vitro, anti-LTBP4 bound LTBP4 protein and reduced LTBP4 proteolytic cleavage. In isolated myofibers, the LTBP4 antibody stabilized the sarcolemma from injury. In vivo, anti-LTBP4 treatment of dystrophic mice protected muscle against force loss induced by eccentric contraction. Anti-LTBP4 treatment also reduced muscle fibrosis and enhanced muscle force production, including in the diaphragm muscle, where respiratory function was improved. Moreover, the anti-LTBP4 in combination with prednisone, a standard of care for Duchenne muscular dystrophy, further enhanced muscle function and protected against injury in mdx mice. These data demonstrate the potential of anti-LTBP4 antibodies to treat muscular dystrophy.
Collapse
Affiliation(s)
- Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Katherine S Fallon
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Claire C Oosterbaan
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lauren A Vaught
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nina L Reiser
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elena Bogdanovic
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Matthew P Velez
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Isabella M Salamone
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Patrick G T Page
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michele Hadhazy
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mattia Quattrocelli
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - David Y Barefield
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
29
|
Leung DG, Bocchieri AE, Ahlawat S, Jacobs MA, Parekh VS, Braverman V, Summerton K, Mansour J, Stinson N, Bibat G, Morris C, Marraffino S, Wagner KR. A phase Ib/IIa, open-label, multiple ascending-dose trial of domagrozumab in fukutin-related protein limb-girdle muscular dystrophy. Muscle Nerve 2021; 64:172-179. [PMID: 33961310 DOI: 10.1002/mus.27259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/06/2022]
Abstract
INTRODUCTION/AIMS In this study we report the results of a phase Ib/IIa, open-label, multiple ascending-dose trial of domagrozumab, a myostatin inhibitor, in patients with fukutin-related protein (FKRP)-associated limb-girdle muscular dystrophy. METHODS Nineteen patients were enrolled and assigned to one of three dosing arms (5, 20, or 40 mg/kg every 4 weeks). After 32 weeks of treatment, participants receiving the lowest dose were switched to the highest dose (40 mg/kg) for an additional 32 weeks. An extension study was also conducted. The primary endpoints were safety and tolerability. Secondary endpoints included muscle strength, timed function testing, pulmonary function, lean body mass, pharmacokinetics, and pharmacodynamics. As an exploratory outcome, muscle fat fractions were derived from whole-body magnetic resonance images. RESULTS Serum concentrations of domagrozumab increased in a dose-dependent manner and modest levels of myostatin inhibition were observed in both serum and muscle tissue. The most frequently occurring adverse events were injuries secondary to falls. There were no significant between-group differences in the strength, functional, or imaging outcomes studied. DISCUSSION We conclude that, although domagrozumab was safe in patients in limb-girdle muscular dystrophy type 2I/R9, there was no clear evidence supporting its efficacy in improving muscle strength or function.
Collapse
Affiliation(s)
- Doris G Leung
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alex E Bocchieri
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shivani Ahlawat
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael A Jacobs
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vishwa S Parekh
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vladimir Braverman
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Katherine Summerton
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jennifer Mansour
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Nikia Stinson
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Genila Bibat
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Carl Morris
- Solid Biosciences, Cambridge, Massachusetts, USA
| | | | - Kathryn R Wagner
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Westman AM, Peirce SM, Christ GJ, Blemker SS. Agent-based model provides insight into the mechanisms behind failed regeneration following volumetric muscle loss injury. PLoS Comput Biol 2021; 17:e1008937. [PMID: 33970905 PMCID: PMC8110270 DOI: 10.1371/journal.pcbi.1008937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle possesses a remarkable capacity for repair and regeneration following a variety of injuries. When successful, this highly orchestrated regenerative process requires the contribution of several muscle resident cell populations including satellite stem cells (SSCs), fibroblasts, macrophages and vascular cells. However, volumetric muscle loss injuries (VML) involve simultaneous destruction of multiple tissue components (e.g., as a result of battlefield injuries or vehicular accidents) and are so extensive that they exceed the intrinsic capability for scarless wound healing and result in permanent cosmetic and functional deficits. In this scenario, the regenerative process fails and is dominated by an unproductive inflammatory response and accompanying fibrosis. The failure of current regenerative therapeutics to completely restore functional muscle tissue is not surprising considering the incomplete understanding of the cellular mechanisms that drive the regeneration response in the setting of VML injury. To begin to address this profound knowledge gap, we developed an agent-based model to predict the tissue remodeling response following surgical creation of a VML injury. Once the model was able to recapitulate key aspects of the tissue remodeling response in the absence of repair, we validated the model by simulating the tissue remodeling response to VML injury following implantation of either a decellularized extracellular matrix scaffold or a minced muscle graft. The model suggested that the SSC microenvironment and absence of pro-differentiation SSC signals were the most important aspects of failed muscle regeneration in VML injuries. The major implication of this work is that agent-based models may provide a much-needed predictive tool to optimize the design of new therapies, and thereby, accelerate the clinical translation of regenerative therapeutics for VML injuries.
Collapse
Affiliation(s)
- Amanda M. Westman
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Shayn M. Peirce
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Ophthalmology, University of Virginia, Charlottesville, Virginia, United States of America
| | - George J. Christ
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail: (GJC); (SSB)
| | - Silvia S. Blemker
- Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- Ophthalmology, University of Virginia, Charlottesville, Virginia, United States of America
- Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia, United States of America
- Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail: (GJC); (SSB)
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Recent terminations of clinical trials of myostatin inhibitors in muscular dystrophy have raised questions about the predictiveness of mouse models for this therapeutic strategy. RECENT FINDINGS A variety of myostatin inhibitors have been developed for preclinical and clinical studies. These inhibitors have ameliorated the phenotype of many but not all mouse models of muscular dystrophy. However, randomized double-blinded placebo controlled trials in both pediatric and adult muscular dystrophies have, as of yet, not demonstrated functional improvement. SUMMARY The present article will review the preclinical promise of myostatin inhibitors, the clinical trial experience to date of these inhibitors in muscular dystrophy, and the potential reasons for the lack of observed translation.
Collapse
|
32
|
Theret M, Rossi FMV, Contreras O. Evolving Roles of Muscle-Resident Fibro-Adipogenic Progenitors in Health, Regeneration, Neuromuscular Disorders, and Aging. Front Physiol 2021; 12:673404. [PMID: 33959042 PMCID: PMC8093402 DOI: 10.3389/fphys.2021.673404] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Normal skeletal muscle functions are affected following trauma, chronic diseases, inherited neuromuscular disorders, aging, and cachexia, hampering the daily activities and quality of life of the affected patients. The maladaptive accumulation of fibrous intramuscular connective tissue and fat are hallmarks of multiple pathologies where chronic damage and inflammation are not resolved, leading to progressive muscle replacement and tissue degeneration. Muscle-resident fibro-adipogenic progenitors are adaptable stromal cells with multilineage potential. They are required for muscle homeostasis, neuromuscular integrity, and tissue regeneration. Fibro-adipogenic progenitors actively regulate and shape the extracellular matrix and exert immunomodulatory functions via cross-talk with multiple other residents and non-resident muscle cells. Remarkably, cumulative evidence shows that a significant proportion of activated fibroblasts, adipocytes, and bone-cartilage cells, found after muscle trauma and disease, descend from these enigmatic interstitial progenitors. Despite the profound impact of muscle disease on human health, the fibrous, fatty, and ectopic bone tissues' origins are poorly understood. Here, we review the current knowledge of fibro-adipogenic progenitor function on muscle homeostatic integrity, regeneration, repair, and aging. We also discuss how scar-forming pathologies and disorders lead to dysregulations in their behavior and plasticity and how these stromal cells can control the onset and severity of muscle loss in disease. We finally explore the rationale of improving muscle regeneration by understanding and modulating fibro-adipogenic progenitors' fate and behavior.
Collapse
Affiliation(s)
- Marine Theret
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Fabio M. V. Rossi
- Biomedical Research Centre, Department of Medical Genetics, School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Osvaldo Contreras
- Departamento de Biología Celular y Molecular, Center for Aging and Regeneration (CARE-ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, Australia
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| |
Collapse
|
33
|
Farini A, Sitzia C, Villa C, Cassani B, Tripodi L, Legato M, Belicchi M, Bella P, Lonati C, Gatti S, Cerletti M, Torrente Y. Defective dystrophic thymus determines degenerative changes in skeletal muscle. Nat Commun 2021; 12:2099. [PMID: 33833239 PMCID: PMC8032677 DOI: 10.1038/s41467-021-22305-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/24/2021] [Indexed: 02/02/2023] Open
Abstract
In Duchenne muscular dystrophy (DMD), sarcolemma fragility and myofiber necrosis produce cellular debris that attract inflammatory cells. Macrophages and T-lymphocytes infiltrate muscles in response to damage-associated molecular pattern signalling and the release of TNF-α, TGF-β and interleukins prevent skeletal muscle improvement from the inflammation. This immunological scenario was extended by the discovery of a specific response to muscle antigens and a role for regulatory T cells (Tregs) in muscle regeneration. Normally, autoimmunity is avoided by autoreactive T-lymphocyte deletion within thymus, while in the periphery Tregs monitor effector T-cells escaping from central regulatory control. Here, we report impairment of thymus architecture of mdx mice together with decreased expression of ghrelin, autophagy dysfunction and AIRE down-regulation. Transplantation of dystrophic thymus in recipient nude mice determine the up-regulation of inflammatory/fibrotic markers, marked metabolic breakdown that leads to muscle atrophy and loss of force. These results indicate that involution of dystrophic thymus exacerbates muscular dystrophy by altering central immune tolerance.
Collapse
Affiliation(s)
- Andrea Farini
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Clementina Sitzia
- Residency Program in Clinical Pathology and Clinical Biochemistry, Università degli Studi di Milano, Milan, Italy
| | - Chiara Villa
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Barbara Cassani
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, Milan, Italy
- IRCCS Humanitas clinical and research center, Rozzano, 20089, Milan, Italy
| | - Luana Tripodi
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Mariella Legato
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Marzia Belicchi
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Pamela Bella
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Caterina Lonati
- Center for Surgical Research, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Gatti
- Center for Surgical Research, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimiliano Cerletti
- UCL Research Department for Surgical Biotechnology, University College London, London, UK
- UCL Institute for Immunity and Transplantation, University College London, London, UK
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy.
| |
Collapse
|
34
|
Parker E, Hamrick MW. Role of fibro-adipogenic progenitor cells in muscle atrophy and musculoskeletal diseases. Curr Opin Pharmacol 2021; 58:1-7. [PMID: 33839480 DOI: 10.1016/j.coph.2021.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/16/2021] [Accepted: 03/06/2021] [Indexed: 01/01/2023]
Abstract
Maintaining muscle mass is clinically important as muscle helps to regulate metabolic systems of the body as well as support activities of daily living that require mobility, strength, and power. Losing muscle mass decreases an individual's independence and quality of life, and at the same time increases the risk of disease burden. Fibro-adipogenic progenitor (FAP) cells are a group of muscle progenitor cells that play an important role in muscle regeneration and maintenance of skeletal muscle fiber size. These important functions of FAPs are mediated by a complex secretome that interacts in a paracrine manner to stimulate muscle satellite cells to divide and differentiate. Dysregulation of FAP differentiation leads to fibrosis, fatty infiltration, muscle atrophy, and impaired muscle regeneration. Functional deficits in skeletal muscle resulting from atrophy, fibrosis, or fatty infiltration will reduce biomechanical stresses on the skeleton, and both FAP-derived adipocytes and FAPs themselves are likely to secrete factors that can induce bone loss. These findings suggest that FAPs represent a cell population to be targeted therapeutically to improve both muscle and bone health in settings of aging, injury, and disease.
Collapse
Affiliation(s)
- Emily Parker
- Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Mark W Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
35
|
Li Y, Fan G, Liu Y, Yao W, Albrecht E, Zhao R, Yang X. Heat stress during late pregnancy of sows influences offspring longissimus dorsi muscle growth at weaning. Res Vet Sci 2021; 136:336-342. [PMID: 33765607 DOI: 10.1016/j.rvsc.2021.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/26/2020] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
In pregnant sows, heat stress (HS) not only affects sows, but also has long-term effects on offspring growth. However, it is still unclear how HS in pregnant sows influences offspring skeletal muscle development. In this study, 12 sows with similar body conditions were assigned into either a control (CON) or an HS group. The CON sows were housed at 18-22 ℃, and the sows in the HS group were housed at 28-32 ℃ from day 85 to 114 of pregnancy. The results showed that maternal HS decreased the total protein content (P < 0.05) and prolactin level (P < 0.05), yet increased the triglyceride content (P < 0.05) of milk. The piglets of both groups had similar body weight and longissimus dorsi (LD) muscle weight at birth, but body weight (P < 0.05) and LD weight (P < 0.05) was significantly lower at weaning age in the HS group. Increased expression of myostatin (MSTN) (P < 0.05) and its receptor (P < 0.05) in the LD of HS piglets was observed at weaning. The following decreased in HS piglets: expression of serine/threonine-specific protein kinase (P < 0.05), the mammalian target of rapamycin (P < 0.05), and glycogen synthase kinase-3β (P < 0.05) signal pathway-involved proteins. The results indicated that maternal HS during late pregnancy influenced offspring LD muscle growth via the activated MSTN pathway. This effect may be related to sow's milk composition.
Collapse
Affiliation(s)
- Yanfei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Guoqiang Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yang Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Elke Albrecht
- Leibniz Institute for Farm Animal Biology, Institute for Muscle Biology and Growth, Dummerstorf, Germany
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojing Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
36
|
Pucci G, Ministrini S, Nulli Migliola E, Nunziangeli L, Battista F, D'Abbondanza M, Anastasio F, Crapa ME, Sanesi L, Carbone F, Lupattelli G, Vaudo G. Relationship between serum myostatin levels and carotid-femoral pulse wave velocity in healthy young male adolescents: the MACISTE study. J Appl Physiol (1985) 2021; 130:987-992. [PMID: 33630678 DOI: 10.1152/japplphysiol.00782.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Serum myostatin (sMSTN) is a proteic compound that regulates skeletal muscle growth, adipogenesis, and production of extracellular matrix. Its relationship with functional and structural properties of the arterial wall is still understudied. We aimed at evaluating the association between sMSTN and carotid-femoral pulse wave velocity (cf-PWV), a measure of aortic stiffness, in a cohort of healthy male adolescents. Fifteen healthy male adolescents were recruited among the participants of the Metabolic And Cardiovascular Investigation at School, TErni (MACISTE) study, a cross-sectional survey conducted at the "Renato Donatelli" High School in Terni, Italy. sMSTN was measured through enzyme-linked immunosorbent assay. cf-PWV was measured through high-fidelity applanation tonometry. Muscle strength and body composition were measured through handgrip and bioimpedentiometry, respectively. sMSTN levels showed a skewed distribution (median: 6.0 ng/mL, interquartile range: 2.2-69.2 ng/mL). Subjects with sMSTN above median value showed higher values of brachial diastolic blood pressure and increased cf-PWV (6.1 ± 1.1 m/s vs. 4.6 ± 0.7 m/s, P < 0.01) values, compared with their counterparts. Such difference remained significant after controlling for age, mean BP, heart rate, body mass index z-score, waist-to-height ratio, body mass/lean mass ratio, and amount of physical activity (P = 0.02). The association between log-transformed sMSTN and cf-PWV was direct and linear, and independent from the effect of confounders at the multivariate analysis (P = 0.02). In this preliminary report, sMSTN was independently associated with cf-PWV, a measure of aortic stiffness, in healthy male adolescents. Our results shed lights on the potential role of myokines in the pathogenesis of systemic hypertension and atherosclerosis.NEW & NOTEWORTHY Serum myostatin, a proteic compound known to regulate skeletal muscle growth and production of extracellular matrix, is independently associated with increased aortic stiffness in healthy male adolescents. This result sheds lights on the potential novel role of myokines in the early development of systemic hypertension and early vascular aging, as well as on their inhibition as a hypothetical therapeutic strategy to counteract vascular aging at an early stage of physical development.
Collapse
Affiliation(s)
- Giacomo Pucci
- Department of Medicine, University of Perugia, Perugia, Italy.,Unit of Internal Medicine, "Santa Maria" Terni University Hospital, Terni, Italy
| | - Stefano Ministrini
- Department of Medicine, University of Perugia, Perugia, Italy.,First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Elisa Nulli Migliola
- Department of Medicine, University of Perugia, Perugia, Italy.,Unit of Internal Medicine, "Santa Maria della Misericordia" Perugia University Hospital, Perugia, Italy
| | | | - Francesca Battista
- Sports and Exercise Medicine Division, Department of Medicine, University of Padua, Padua, Italy
| | - Marco D'Abbondanza
- Department of Medicine, University of Perugia, Perugia, Italy.,Unit of Internal Medicine, "Santa Maria della Misericordia" Perugia University Hospital, Perugia, Italy
| | - Fabio Anastasio
- Unit of Cardiology, ASST-VAL Hospital of Sondrio, Sondrio, Italy
| | - Mariano Edoardo Crapa
- Unit of Medicina Interna, ASL Taranto, Presidio Ospedaliero Occidentale, Castellaneta, Italy
| | - Leandro Sanesi
- Department of Medicine, University of Perugia, Perugia, Italy.,Unit of Internal Medicine, "Santa Maria" Terni University Hospital, Terni, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Graziana Lupattelli
- Department of Medicine, University of Perugia, Perugia, Italy.,Unit of Internal Medicine, "Santa Maria della Misericordia" Perugia University Hospital, Perugia, Italy
| | - Gaetano Vaudo
- Department of Medicine, University of Perugia, Perugia, Italy.,Unit of Internal Medicine, "Santa Maria" Terni University Hospital, Terni, Italy
| |
Collapse
|
37
|
Mehta N, Li R, Zhang D, Soomro A, He J, Zhang I, MacDonald M, Gao B, Krepinsky JC. miR299a-5p promotes renal fibrosis by suppressing the antifibrotic actions of follistatin. Sci Rep 2021; 11:88. [PMID: 33420269 PMCID: PMC7794215 DOI: 10.1038/s41598-020-80199-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
Caveolin-1 (cav-1), an integral protein of the membrane microdomains caveolae, is required for synthesis of matrix proteins by glomerular mesangial cells (MC). Previously, we demonstrated that the antifibrotic protein follistatin (FST) is transcriptionally upregulated in cav-1 knockout MC and that its administration is protective against renal fibrosis. Here, we screened cav-1 wild-type and knockout MC for FST-targeting microRNAs in order to identity novel antifibrotic therapeutic targets. We identified that miR299a-5p was significantly suppressed in cav-1 knockout MC, and this was associated with stabilization of the FST 3'UTR. Overexpression and inhibition studies confirmed the role of miR299a-5p in regulating FST expression. Furthermore, the profibrotic cytokine TGFβ1 was found to stimulate the expression of miR299a-5p and, in turn, downregulate FST. Through inhibition of FST, miR299a-5p overexpression augmented, while miR299a-5p inhibition diminished TGFβ1 profibrotic responses, whereas miR299a-5p overexpression re-enabled cav-1 knockout MC to respond to TGFβ1. In vivo, miR299a-5p was upregulated in the kidneys of mice with chronic kidney disease (CKD). miR299a-5p inhibition protected these mice against renal fibrosis and CKD severity. Our data demonstrate that miR299a-5p is an important post-transcriptional regulator of FST, with its upregulation an important pathogenic contributor to renal fibrosis. Thus, miR299a-5p inhibition offers a potential novel therapeutic approach for CKD.
Collapse
Affiliation(s)
- Neel Mehta
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Renzhong Li
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Dan Zhang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Asfia Soomro
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Juehua He
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Ivan Zhang
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Melissa MacDonald
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Bo Gao
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, Canada.
- St. Joseph's Hospital, 50 Charlton Ave East, Rm T3311, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
38
|
Gupta L, Anuja A, Bhadu D, Naveen R, Singh M, Rai M, Agarwal V. High serum myostatin level suggests accelerated muscle senescence in active idiopathic inflammatory myositis. INDIAN JOURNAL OF RHEUMATOLOGY 2021. [DOI: 10.4103/injr.injr_309_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
39
|
Rybalka E, Timpani CA, Debruin DA, Bagaric RM, Campelj DG, Hayes A. The Failed Clinical Story of Myostatin Inhibitors against Duchenne Muscular Dystrophy: Exploring the Biology behind the Battle. Cells 2020; 9:E2657. [PMID: 33322031 PMCID: PMC7764137 DOI: 10.3390/cells9122657] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Myostatin inhibition therapy has held much promise for the treatment of muscle wasting disorders. This is particularly true for the fatal myopathy, Duchenne Muscular Dystrophy (DMD). Following on from promising pre-clinical data in dystrophin-deficient mice and dogs, several clinical trials were initiated in DMD patients using different modality myostatin inhibition therapies. All failed to show modification of disease course as dictated by the primary and secondary outcome measures selected: the myostatin inhibition story, thus far, is a failed clinical story. These trials have recently been extensively reviewed and reasons why pre-clinical data collected in animal models have failed to translate into clinical benefit to patients have been purported. However, the biological mechanisms underlying translational failure need to be examined to ensure future myostatin inhibitor development endeavors do not meet with the same fate. Here, we explore the biology which could explain the failed translation of myostatin inhibitors in the treatment of DMD.
Collapse
Affiliation(s)
- Emma Rybalka
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Cara A. Timpani
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Danielle A. Debruin
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Ryan M. Bagaric
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Dean G. Campelj
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
| | - Alan Hayes
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria 8001, Australia; (D.A.D.); (R.M.B.); (D.G.C.); (A.H.)
- Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, St Albans, Victoria 3021, Australia
- Department of Medicine—Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, 3021 Victoria, Australia
| |
Collapse
|
40
|
Frohlich J, Vinciguerra M. Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe? GeroScience 2020; 42:1475-1498. [PMID: 33025411 PMCID: PMC7732895 DOI: 10.1007/s11357-020-00279-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Growth differentiation factor 11 (GDF11 or bone morphogenetic protein 11, BMP11) belongs to the transforming growth factor-β superfamily and is closely related to other family member-myostatin (also known as GDF8). GDF11 was firstly identified in 2004 due to its ability to rejuvenate the function of multiple organs in old mice. However, in the past few years, the heralded rejuvenating effects of GDF11 have been seriously questioned by many studies that do not support the idea that restoring levels of GDF11 in aging improves overall organ structure and function. Moreover, with increasing controversies, several other studies described the involvement of GDF11 in fibrotic processes in various organ setups. This review paper focuses on the GDF11 and its pro- or anti-fibrotic actions in major organs and tissues, with the goal to summarize our knowledge on its emerging role in regulating the progression of fibrosis in different pathological conditions, and to guide upcoming research efforts.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
- Institute for Liver and Digestive Health, Division of Medicine, University College London (UCL), London, UK.
| |
Collapse
|
41
|
Yosef B, Zhou Y, Mouschouris K, Poteracki J, Soker S, Criswell T. N-Acetyl-L-Cysteine Reduces Fibrosis and Improves Muscle Function After Acute Compartment Syndrome Injury. Mil Med 2020; 185:25-34. [PMID: 32074330 DOI: 10.1093/milmed/usz232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Upon injury, skeletal muscle undergoes a multiphase process beginning with degeneration of the damaged tissue, which is accompanied by inflammation and finally regeneration. One consequence of an injured microenvironment is excessive production of reactive oxygen species, which results in attenuated regeneration and recovery of function ultimately leading to fibrosis and disability. The objective of this research was to test the potential of the antioxidant, N-Acetyl-L-Cysteine (NAC), as a mediator of reactive oxygen species damage that results from traumatic muscle injury in order to support repair and regeneration of wounded muscle tissue and improve function recovery. MATERIALS AND METHODS Adult female Lewis rats were subjected to compartment syndrome injury as previously published by our group. Rats received intramuscular injections of NAC or vehicle at 24, 48, and 72 hours postinjury. Muscle function, tissue fibrosis, and the expression of myogenic and angiogenic markers were measured. RESULTS Muscle function was significantly improved, and tissue fibrosis was significantly decreased in NAC-treated muscles. CONCLUSIONS These results suggest that NAC treatment of skeletal muscle after injury may be a viable option for the prevention of long-term fibrosis and scar formation, facilitating recovery of muscle function.
Collapse
Affiliation(s)
- Benyam Yosef
- Department of Cardiac Surgery, Brigham and Young Women's Hospital, 75 Francis St., Boston, MA 02115
| | - Yu Zhou
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Medical Center Blvd, Winston-Salem, NC 27157
| | - Kathryn Mouschouris
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Medical Center Blvd, Winston-Salem, NC 27157
| | - James Poteracki
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Medical Center Blvd, Winston-Salem, NC 27157
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Medical Center Blvd, Winston-Salem, NC 27157
| | - Tracy Criswell
- Department of Cardiac Surgery, Brigham and Young Women's Hospital, 75 Francis St., Boston, MA 02115.,Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Medical Center Blvd, Winston-Salem, NC 27157
| |
Collapse
|
42
|
Korostyshevskiy V. Possible Improvements of Acupuncture for Knee-Pain Treatment Outcomes Through Local Point Palpation. Med Acupunct 2020; 32:320-324. [PMID: 33101577 DOI: 10.1089/acu.2020.1429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Much of the world's population suffers from knee pain. Treatment options are too extreme (surgery), have side-effects (drugs), or take too long (physical therapy). Research has shown that acupuncture can provide modest relief of knee pain. This article presents ways to improve the effectiveness of acupuncture for treating knee pain. Using 3 composite "cases," the author offers specific modifications to acupuncture treatments-particularly palpatory techniques-that produce more-successful relief of patients' knee pain. Cases: Analyzing 3 composites of multiple similar typical cases, the author compares what made the treatments more successful than would be statistically anticipated. Composite case 1: Women, older than, 50 had knee osteoarthritis (OA), periodic pain, more at night and during weather changes. Composite case 2: Men and women, in their 40s and early 50s, had mild knee arthritis, and were given injections to relieve pain that was mild-to-moderate and worse at night. Composite case 3: Men between their late 20s and early 40s, experienced knee pain 1-4 times per week, with some patients reporting knee buckling after some activities. Results: Palpation of these patients' knees revealed the causes of their knee pain-spasms, adhesions, and/or fibrosis-and the patients were treated with individually selected points based on results of the Four Examinations. Most obtained relief lasting from 4 months to 2 years. Conclusions: Mainstream acupuncture treatments rarely involve using the Four Examinations of Traditional Chinese Medicine. Instead, these treatments involve common point selections for addressing knee pain or more-advanced approaches, such as Five Elements or Zang-Fu pattern diagnosis, often disregarding such basic but essential diagnostic techniques as visual inspection and particularly palpation. According to the Four Examinations, OA is not often the cause of knee pain; instead, adhesions and fibrosis of the soft tissues around the knee joint cause nerve entrapments, and knee pain is referred from those sources. While muscle fibrosis is well-known to cause pain, it is rarely addressed in detail in acupuncture literature. If palpation of the soft tissues around the knee joint evokes a patient's pain-thus, locating the nerve entrapment in each specific case precisely-this allows the clinician to insert acupuncture needles into the soft-tissue fibrosis. This needling could improve the clinical outcomes of acupuncture treatment of knee pain significantly, providing shorter- as well as longer-term relief.
Collapse
|
43
|
Kramerova I, Marinov M, Owens J, Lee SJ, Becerra D, Spencer MJ. Myostatin inhibition promotes fast fibre hypertrophy but causes loss of AMP-activated protein kinase signalling and poor exercise tolerance in a model of limb-girdle muscular dystrophy R1/2A. J Physiol 2020; 598:3927-3939. [PMID: 33460149 DOI: 10.1113/jp279943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/08/2020] [Indexed: 05/31/2024] Open
Abstract
KEY POINTS Limb-girdle muscular dystrophy R1 (LGMD R1) is caused by mutations in the CAPN3 gene and is characterized by progressive muscle loss, impaired mitochondrial function and reductions in the slow oxidative gene expression programme. Myostatin is a negative regulator of muscle growth, and its inhibition improves the phenotype in several muscle wasting disorders. The effect of genetic and pharmacological inhibition of myostatin signalling on the disease phenotype in a mouse model of LGMD R1 (CAPN3 knockout mouse-C3KO) was studied. Inhibition of myostatin signalling in C3KO muscles resulted in significant muscle hypertrophy; however, there were no improvements in muscle strength and exacerbation of exercise intolerance concomitant with further reduction of muscle oxidative capacity was observed. Inhibition of myostatin signalling is unlikely to be a valid therapeutic strategy for LGMD R1. ABSTRACT Limb-girdle muscular dystrophy R1 (LGMD R1) is caused by mutations in the CAPN3 gene and is characterized by progressive muscle loss, impaired mitochondrial function and reductions in the slow oxidative gene expression programme. There are currently no therapies available to patients. We sought to determine if induction of muscle growth, through myostatin inhibition, represents a viable therapeutic strategy for this disease. Myostatin is a negative regulator of muscle growth, and its inhibition improves the phenotype in several muscle wasting disorders. However, the effect of myostatin depends on the genetic and pathophysiological context and may not be efficacious in all contexts. We found that genetic inhibition of myostatin through overexpression of follistatin (an endogenous inhibitor of myostatin) in our LGMD R1 model (C3KO) resulted in 1.5- to 2-fold increase of muscle mass for the majority of limb muscles. However, muscle strength was not improved and exercise intolerance was exacerbated. Pharmacological inhibition of myostatin, using an anti-myostatin antibody, resulted in statistically significant increases in muscle mass; however, functional testing did not reveal changes in muscle strength nor endurance in treated C3KO mice. Histochemical and biochemical evaluation of follistatin overexpressing mice revealed a reduction in the percentage of oxidative fibres and decreased activation of AMP-activated protein kinase signalling in transgenics compared to C3KO muscles. Our data suggest that muscle hypertrophy, induced by myostatin inhibition, leads to loss of oxidative capacity, which further compromises metabolically impaired C3KO muscles and thus is unlikely to be a valid strategy for treatment of LGMD R1.
Collapse
Affiliation(s)
- Irina Kramerova
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Masha Marinov
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Se-Jin Lee
- The Jackson Laboratory and University of Connecticut School of Medicine, Farmington, CT, USA
| | - Diana Becerra
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Melissa J Spencer
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
44
|
Dantas WS, Roschel H, Murai IH, Gil S, Davuluri G, Axelrod CL, Ghosh S, Newman SS, Zhang H, Shinjo SK, das Neves W, Merege-Filho C, Teodoro WR, Capelozzi VL, Pereira RM, Benatti FB, de Sá-Pinto AL, de Cleva R, Santo MA, Kirwan JP, Gualano B. Exercise-Induced Increases in Insulin Sensitivity After Bariatric Surgery Are Mediated By Muscle Extracellular Matrix Remodeling. Diabetes 2020; 69:1675-1691. [PMID: 32409493 PMCID: PMC7372074 DOI: 10.2337/db19-1180] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Exercise seems to enhance the beneficial effect of bariatric (Roux-en-Y gastric bypass [RYGB]) surgery on insulin resistance. We hypothesized that skeletal muscle extracellular matrix (ECM) remodeling may underlie these benefits. Women were randomized to either a combined aerobic and resistance exercise training program following RYGB (RYGB + ET) or standard of care (RYGB). Insulin sensitivity was assessed by oral glucose tolerance test. Muscle biopsy specimens were obtained at baseline and 3 and 9 months after surgery and subjected to comprehensive phenotyping, transcriptome profiling, molecular pathway identification, and validation in vitro. Exercise training improved insulin sensitivity beyond surgery alone (e.g., Matsuda index: RYGB 123% vs. RYGB + ET 325%; P ≤ 0.0001). ECM remodeling was reduced by surgery alone, with an additive benefit of surgery and exercise training (e.g., collagen I: RYGB -41% vs. RYGB + ET -76%; P ≤ 0.0001). Exercise and RYGB had an additive effect on enhancing insulin sensitivity, but surgery alone did not resolve insulin resistance and ECM remodeling. We identified candidates modulated by exercise training that may become therapeutic targets for treating insulin resistance, in particular, the transforming growth factor-β1/SMAD 2/3 pathway and its antagonist follistatin. Exercise-induced increases in insulin sensitivity after bariatric surgery are at least partially mediated by muscle ECM remodeling.
Collapse
Affiliation(s)
- Wagner S Dantas
- Integrated Physiology and Molecular Metabolism Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Laboratory of Assessment and Conditioning in Rheumatology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Laboratory of Assessment and Conditioning in Rheumatology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Rheumatology Division, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Igor H Murai
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Laboratory of Assessment and Conditioning in Rheumatology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Saulo Gil
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Laboratory of Assessment and Conditioning in Rheumatology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Gangarao Davuluri
- Integrated Physiology and Molecular Metabolism Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - Christopher L Axelrod
- Integrated Physiology and Molecular Metabolism Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
- Department of Translational Services, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - Sujoy Ghosh
- Genomics Core, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
- Cardiovascular and Metabolic Disorders Program and Center for Computational Biology, Duke-National University of Singapore Medical School, Singapore
| | - Susan S Newman
- Genomics Core, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - Hui Zhang
- Integrated Physiology and Molecular Metabolism Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - Samuel K Shinjo
- Rheumatology Division, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Willian das Neves
- Clinical Oncology Service, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Carlos Merege-Filho
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Laboratory of Assessment and Conditioning in Rheumatology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Walcy R Teodoro
- Rheumatology Division, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Vera L Capelozzi
- Department of Pathology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Rosa Maria Pereira
- Rheumatology Division, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Fabiana B Benatti
- School of Applied Sciences, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Ana L de Sá-Pinto
- Rheumatology Division, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto de Cleva
- Department of Digestive Division, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Marco A Santo
- Department of Digestive Division, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - John P Kirwan
- Integrated Physiology and Molecular Metabolism Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA
| | - Bruno Gualano
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Laboratory of Assessment and Conditioning in Rheumatology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Rheumatology Division, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Vaughan D, Kretz O, Alqallaf A, Mitchell R, Von der Heide JL, Vaiyapuri S, Matsakas A, Pasternack A, Collins-Hooper H, Ritvos O, Ballesteros R, Huber TB, Amthor H, Mukherjee A, Patel K. Diminution in sperm quantity and quality in mouse models of Duchenne Muscular Dystrophy induced by a myostatin-based muscle growth-promoting intervention. Eur J Transl Myol 2020. [DOI: 10.4081/ejtm.2020.8904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Duchenne Muscular Dystrophy is a devastating disease caused by the absence of a functional rod-shaped cytoplasmic protein called dystrophin. Several avenues are being developed aimed to restore dystrophin expression in boys affected by this X-linked disease. However, its complete cure is likely to need combinational approaches which may include regimes aimed at restoring muscle mass. Augmenting muscle growth through the manipulation of the Myostatin/Activin signalling axis has received much attention. However, we have recently shown that while manipulation of this axis in wild type mice using the sActRIIB ligand trap indeed results in muscle growth, it also had a detrimental impact on the testis. Here we examined the impact of administering a powerful Myostatin/Activin antagonist in two mouse models of Duchenne Muscular Dystrophy. We report that whilst the impact on muscle growth was not always positive, both models showed attenuated testis development. Sperm number, motility and ultrastructure were significantly affected by the sActRIIB treatment. Our report suggests that interventions based on Myostatin/Activin should investigate off-target effects on tissues as well as muscle.
Collapse
|
46
|
Vaughan D, Kretz O, Alqallaf A, Mitchell R, von der Heide JL, Vaiyapuri S, Matsakas A, Pasternack A, Collins-Hooper H, Ritvos O, Ballesteros R, Huber TB, Amthor H, Mukherjee A, Patel K. Diminution in sperm quantity and quality in mouse models of Duchenne Muscular Dystrophy induced by a myostatin-based muscle growth-promoting intervention. Eur J Transl Myol 2020; 30:8904. [PMID: 32782759 PMCID: PMC7385695 DOI: 10.4081/ejtm.2019.8904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023] Open
Abstract
Duchenne Muscular Dystrophy is a devastating disease caused by the absence of a functional rod-shaped cytoplasmic protein called dystrophin. Several avenues are being developed aimed to restore dystrophin expression in boys affected by this X-linked disease. However, its complete cure is likely to need combinational approaches which may include regimes aimed at restoring muscle mass. Augmenting muscle growth through the manipulation of the Myostatin/Activin signalling axis has received much attention. However, we have recently shown that while manipulation of this axis in wild type mice using the sActRIIB ligand trap indeed results in muscle growth, it also had a detrimental impact on the testis. Here we examined the impact of administering a powerful Myostatin/Activin antagonist in two mouse models of Duchenne Muscular Dystrophy. We report that whilst the impact on muscle growth was not always positive, both models showed attenuated testis development. Sperm number, motility and ultrastructure were significantly affected by the sActRIIB treatment. Our report suggests that interventions based on Myostatin/Activin should investigate off-target effects on tissues as well as muscle.
Collapse
Affiliation(s)
| | - Oliver Kretz
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ali Alqallaf
- School of Biological Sciences, University of Reading, UK
| | | | - Jennie L von der Heide
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombosis & Metabolic Disease, Hull York Medical School, Hull, UK
| | - Arja Pasternack
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | | | - Olli Ritvos
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | | | - Tobias B Huber
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helge Amthor
- Versailles Saint-Quentin-en-Yvelines University, INSERM U1179, LIA BAHN CSM, Montigny-le-Bretonneux, France
| | | | - Ketan Patel
- School of Biological Sciences, University of Reading, UK
| |
Collapse
|
47
|
Soglia F, Petracci M, Puolanne E. Sarcomere lengths in wooden breast broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1761271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Francesca Soglia
- Dipartemento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Cesena, Italy
| | - Massimiliano Petracci
- Dipartemento di Scienze e Tecnologie Agro-alimentari, Università di Bologna, Cesena, Italy
| | - Eero Puolanne
- Elintarvike- ja ympäristötieteiden osasto, Helsingin yliopisto, Helsinki, Suomi
| |
Collapse
|
48
|
Brightwell CR, Hanson ME, El Ayadi A, Prasai A, Wang Y, Finnerty CC, Fry CS. Thermal injury initiates pervasive fibrogenesis in skeletal muscle. Am J Physiol Cell Physiol 2020; 319:C277-C287. [PMID: 32432932 DOI: 10.1152/ajpcell.00337.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Severe burn injury induces a myriad of deleterious effects to skeletal muscle, resulting in impaired function and delayed recovery. Following burn, catabolic signaling and myofiber atrophy are key fiber-intrinsic determinants of weakness; less well understood are alterations in the interstitial environment surrounding myofibers. Muscle quality, specifically alterations in the extracellular matrix (ECM), modulates force transmission and strength. We sought to determine the impact of severe thermal injury on adaptation to the muscle ECM and quantify muscle fibrotic burden. After a 30% total body surface area dorsal burn, spinotrapezius muscle was harvested from mice at 7 (7d, n = 5), 14 (14d, n = 4), and 21 days (21d, n = 4), and a sham control group was also examined (Sham, n = 4). Expression of transforming growth factor-β (TGFβ), myostatin, and downstream effectors and proteases involved in fibrosis and collagen remodeling were measured by immunoblotting, and immunohistochemical and biochemical analyses assessed fibrogenic cell abundance and collagen deposition. Myostatin signaling increased progressively through 21 days postburn alongside fibrogenic/adipogenic progenitor cell expansion, with abundance peaking at 14 days postburn. Postburn, elevated expression of tissue inhibitor of matrix metalloproteinase 1 supported collagen remodeling resulting in a net accumulation of muscle collagen content. Collagen accumulation peaked at 14 days postburn but remained elevated through 21 days postburn, demonstrating minimal resolution of burn-induced fibrosis. These findings highlight a progressive upregulation of fibrogenic processes following burn injury, eliciting a fibrotic muscle phenotype that hinders regenerative capacity and is not resolved with 21 days of recovery.
Collapse
Affiliation(s)
- Camille R Brightwell
- Cell Biology Graduate Program, University of Texas Medical Branch, Galveston, Texas.,Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Madeline E Hanson
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas.,Shriners Hospitals for Children, Galveston, Texas
| | - Anesh Prasai
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas.,Shriners Hospitals for Children, Galveston, Texas
| | - Ye Wang
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas.,Shriners Hospitals for Children, Galveston, Texas
| | - Celeste C Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas.,Shriners Hospitals for Children, Galveston, Texas
| | - Christopher S Fry
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Shriners Hospitals for Children, Galveston, Texas
| |
Collapse
|
49
|
Randomized phase 2 trial and open-label extension of domagrozumab in Duchenne muscular dystrophy. Neuromuscul Disord 2020; 30:492-502. [PMID: 32522498 DOI: 10.1016/j.nmd.2020.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023]
Abstract
We report results from a phase 2, randomized, double-blind, 2-period trial (48 weeks each) of domagrozumab and its open-label extension in patients with Duchenne muscular dystrophy (DMD). Of 120 ambulatory boys (aged 6 to <16 years) with DMD, 80 were treated with multiple ascending doses (5, 20, and 40 mg/kg) of domagrozumab and 40 treated with placebo. The primary endpoints were safety and mean change in 4-stair climb (4SC) time at week 49. Secondary endpoints included other functional tests, pharmacokinetics, and pharmacodynamics. Mean (SD) age was 8.4 (1.7) and 9.3 (2.3) years in domagrozumab- and placebo-treated patients, respectively. Difference in mean (95% CI) change from baseline in 4SC at week 49 for domagrozumab vs placebo was 0.27 (-7.4 to 7.9) seconds (p = 0.94). There were no significant between-group differences in any secondary clinical endpoints. Most patients had ≥1 adverse event in the first 48 weeks; most were mild and not treatment-related. Median serum concentrations of domagrozumab increased with administered dose within each dose level. Non-significant increases in muscle volume were observed in domagrozumab- vs placebo-treated patients. Domagrozumab was generally safe and well tolerated in patients with DMD. Efficacy measures did not support a significant treatment effect. Clinicaltrials.gov identifiers: NCT02310763 and NCT02907619.
Collapse
|
50
|
Harish P, Forrest L, Herath S, Dickson G, Malerba A, Popplewell L. Inhibition of Myostatin Reduces Collagen Deposition in a Mouse Model of Oculopharyngeal Muscular Dystrophy (OPMD) With Established Disease. Front Physiol 2020; 11:184. [PMID: 32194441 PMCID: PMC7066371 DOI: 10.3389/fphys.2020.00184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background Oculopharyngeal muscular dystrophy (OPMD) is a late-onset muscle disease presented by ptosis, dysphagia, and limb weakness. Affected muscles display increased fibrosis and atrophy, with characteristic inclusion bodies in the nucleus. Myostatin is a negative regulator of muscle mass, and inhibition of myostatin has been demonstrated to improve symptoms in models of muscular dystrophy. Methods We systemically administered a monoclonal antibody to block myostatin in the A17 mouse model of OPMD at 42 weeks of age. The mice were administered a weekly dose of 10 mg/kg RK35 intraperitonially for 10 weeks, following which serum and histological analyses were performed on muscle samples. Results The administration of the antibody resulted in a significant decrease in serum myostatin and collagen deposition in muscles. However, minimal effects on body mass, muscle mass and myofiber diameter, or the density of intranuclear inclusions (INIs) (a hallmark of disease progression of OPMD) were observed. Conclusion This study demonstrates that inhibition of myostatin does not revert muscle atrophy in a mouse model with established OPMD disease, but is effective at reducing observed histological markers of fibrosis in the treated muscles.
Collapse
Affiliation(s)
- Pradeep Harish
- Department of Biological Sciences, Centre of Gene and Cell Therapy and Biomedical Sciences, Royal Holloway, University of London, Egham, United Kingdom
| | - Leysa Forrest
- Department of Biological Sciences, Centre of Gene and Cell Therapy and Biomedical Sciences, Royal Holloway, University of London, Egham, United Kingdom
| | - Shanti Herath
- Department of Biological Sciences, Centre of Gene and Cell Therapy and Biomedical Sciences, Royal Holloway, University of London, Egham, United Kingdom
| | - George Dickson
- Department of Biological Sciences, Centre of Gene and Cell Therapy and Biomedical Sciences, Royal Holloway, University of London, Egham, United Kingdom
| | - Alberto Malerba
- Department of Biological Sciences, Centre of Gene and Cell Therapy and Biomedical Sciences, Royal Holloway, University of London, Egham, United Kingdom
| | - Linda Popplewell
- Department of Biological Sciences, Centre of Gene and Cell Therapy and Biomedical Sciences, Royal Holloway, University of London, Egham, United Kingdom
| |
Collapse
|