1
|
Hanson BS, Hailemariam A, Yang Y, Mohamed F, Donati GL, Baker D, Sacchettini J, Cai JJ, Subashchandrabose S. Identification of a copper-responsive small molecule inhibitor of uropathogenic Escherichia coli. J Bacteriol 2024; 206:e0011224. [PMID: 38856220 PMCID: PMC11270900 DOI: 10.1128/jb.00112-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
Urinary tract infections (UTIs) are a major global health problem and are caused predominantly by uropathogenic Escherichia coli (UPEC). UTIs are a leading cause of prescription antimicrobial use. Incessant increase in antimicrobial resistance in UPEC and other uropathogens poses a serious threat to the current treatment practices. Copper is an effector of nutritional immunity that impedes the growth of pathogens during infection. We hypothesized that copper would augment the toxicity of select small molecules against bacterial pathogens. We conducted a small molecule screening campaign with a library of 51,098 molecules to detect hits that inhibit a UPEC ΔtolC mutant in a copper-dependent manner. A molecule, denoted as E. coli inhibitor or ECIN, was identified as a copper-responsive inhibitor of wild-type UPEC strains. Our gene expression and metal content analysis results demonstrate that ECIN works in concert with copper to exacerbate Cu toxicity in UPEC. ECIN has a broad spectrum of activity against pathogens of medical and veterinary significance including Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. Subinhibitory levels of ECIN eliminate UPEC biofilm formation. Transcriptome analysis of UPEC treated with ECIN reveals induction of multiple stress response systems. Furthermore, we demonstrate that L-cysteine rescues the growth of UPEC exposed to ECIN. In summary, we report the identification and characterization of a novel copper-responsive small molecule inhibitor of UPEC.IMPORTANCEUrinary tract infection (UTI) is a ubiquitous infectious condition affecting millions of people annually. Uropathogenic Escherichia coli (UPEC) is the predominant etiological agent of UTI. However, UTIs are becoming increasingly difficult to resolve with antimicrobials due to increased antimicrobial resistance in UPEC and other uropathogens. Here, we report the identification and characterization of a novel copper-responsive small molecule inhibitor of UPEC. In addition to E. coli, this small molecule also inhibits pathogens of medical and veterinary significance including Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Braden S Hanson
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Amanuel Hailemariam
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - Yongjian Yang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Faras Mohamed
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - George L Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Dwight Baker
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - James Sacchettini
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - James J Cai
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Magalon A. History of Maturation of Prokaryotic Molybdoenzymes-A Personal View. Molecules 2023; 28:7195. [PMID: 37894674 PMCID: PMC10609526 DOI: 10.3390/molecules28207195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In prokaryotes, the role of Mo/W enzymes in physiology and bioenergetics is widely recognized. It is worth noting that the most diverse family of Mo/W enzymes is exclusive to prokaryotes, with the probable existence of several of them from the earliest forms of life on Earth. The structural organization of these enzymes, which often include additional redox centers, is as diverse as ever, as is their cellular localization. The most notable observation is the involvement of dedicated chaperones assisting with the assembly and acquisition of the metal centers, including Mo/W-bisPGD, one of the largest organic cofactors in nature. This review seeks to provide a new understanding and a unified model of Mo/W enzyme maturation.
Collapse
Affiliation(s)
- Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402 Marseille, France
| |
Collapse
|
3
|
Rivero M, Boneta S, Novo N, Velázquez-Campoy A, Polo V, Medina M. Riboflavin kinase and pyridoxine 5′-phosphate oxidase complex formation envisages transient interactions for FMN cofactor delivery. Front Mol Biosci 2023; 10:1167348. [PMID: 37056721 PMCID: PMC10086132 DOI: 10.3389/fmolb.2023.1167348] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Enzymes catalysing sequential reactions have developed different mechanisms to control the transport and flux of reactants and intermediates along metabolic pathways, which usually involve direct transfer of metabolites from an enzyme to the next one in a cascade reaction. Despite the fact that metabolite or substrate channelling has been widely studied for reactant molecules, such information is seldom available for cofactors in general, and for flavins in particular. Flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) act as cofactors in flavoproteins and flavoenzymes involved in a wide range of physiologically relevant processes in all type of organisms. Homo sapiens riboflavin kinase (RFK) catalyses the biosynthesis of the flavin mononucleotide cofactor, and might directly interplay with its flavin client apo-proteins prior to the cofactor transfer. Non-etheless, none of such complexes has been characterized at molecular or atomic level so far. Here, we particularly evaluate the interaction of riboflavin kinase with one of its potential FMN clients, pyridoxine-5′-phosphate oxidase (PNPOx). The interaction capacity of both proteins is assessed by using isothermal titration calorimetry, a methodology that allows to determine dissociation constants for interaction in the micromolar range (in agreement with the expected transient nature of the interaction). Moreover, we show that; i) both proteins become thermally stabilized upon mutual interaction, ii) the tightly bound FMN product can be transferred from RFK to the apo-form of PNPOx producing an efficient enzyme, and iii) the presence of the apo-form of PNPOx slightly enhances RFK catalytic efficiency. Finally, we also show a computational study to predict likely RFK-PNPOx binding modes that can envisage coupling between the FMN binding cavities of both proteins for the potential transfer of FMN.
Collapse
Affiliation(s)
- Maribel Rivero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Sergio Boneta
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Nerea Novo
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Group of Biochemistry, Biophysics and Computational Biology “GBsC” (BIFI, Unizar) Joint Unit to CSIC, Zaragoza, Spain
| | - Victor Polo
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Química Física, Universidad de Zaragoza, Zaragoza, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology “GBsC” (BIFI, Unizar) Joint Unit to CSIC, Zaragoza, Spain
- *Correspondence: Milagros Medina,
| |
Collapse
|
4
|
Tiedemann K, Iobbi-Nivol C, Leimkühler S. The Role of the Nucleotides in the Insertion of the bis-Molybdopterin Guanine Dinucleotide Cofactor into apo-Molybdoenzymes. Molecules 2022; 27:molecules27092993. [PMID: 35566344 PMCID: PMC9103625 DOI: 10.3390/molecules27092993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/15/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
The role of the GMP nucleotides of the bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor of the DMSO reductase family has long been a subject of discussion. The recent characterization of the bis-molybdopterin (bis-Mo-MPT) cofactor present in the E. coli YdhV protein, which differs from bis-MGD solely by the absence of the nucleotides, now enables studying the role of the nucleotides of bis-MGD and bis-MPT cofactors in Moco insertion and the activity of molybdoenzymes in direct comparison. Using the well-known E. coli TMAO reductase TorA as a model enzyme for cofactor insertion, we were able to show that the GMP nucleotides of bis-MGD are crucial for the insertion of the bis-MGD cofactor into apo-TorA.
Collapse
Affiliation(s)
- Kim Tiedemann
- Institute of Biochemistry and Biology, Molecular Enzymology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany;
| | - Chantal Iobbi-Nivol
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université, CEDEX 09, 13402 Marseille, France;
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Molecular Enzymology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany;
- Correspondence:
| |
Collapse
|
5
|
Bageshwar UK, DattaGupta A, Musser SM. Influence of the TorD signal peptide chaperone on Tat-dependent protein translocation. PLoS One 2021; 16:e0256715. [PMID: 34499687 PMCID: PMC8428690 DOI: 10.1371/journal.pone.0256715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway transports folded proteins across energetic membranes. Numerous Tat substrates contain co-factors that are inserted before transport with the assistance of redox enzyme maturation proteins (REMPs), which bind to the signal peptide of precursor proteins. How signal peptides are transferred from a REMP to a binding site on the Tat receptor complex remains unknown. Since the signal peptide mediates both interactions, possibilities include: i) a coordinated hand-off mechanism; or ii) a diffusional search after REMP dissociation. We investigated the binding interaction between substrates containing the TorA signal peptide (spTorA) and its cognate REMP, TorD, and the effect of TorD on the in vitro transport of such substrates. We found that Escherichia coli TorD is predominantly a monomer at low micromolar concentrations (dimerization KD > 50 μM), and this monomer binds reversibly to spTorA (KD ≈ 1 μM). While TorD binds to membranes (KD ≈ 100 nM), it has no apparent affinity for Tat translocons and it inhibits binding of a precursor substrate to the membrane. TorD has a minimal effect on substrate transport by the Tat system, being mildly inhibitory at high concentrations. These data are consistent with a model in which the REMP-bound signal peptide is shielded from recognition by the Tat translocon, and spontaneous dissociation of the REMP allows the substrate to engage the Tat machinery. Thus, the REMP does not assist with targeting to the Tat translocon, but rather temporarily shields the signal peptide.
Collapse
Affiliation(s)
- Umesh K. Bageshwar
- Department of Molecular and Cellular Medicine, Texas A&M University, College of Medicine, The Texas A&M Health Science Center, TX, United States of America
| | - Antara DattaGupta
- Department of Molecular and Cellular Medicine, Texas A&M University, College of Medicine, The Texas A&M Health Science Center, TX, United States of America
| | - Siegfried M. Musser
- Department of Molecular and Cellular Medicine, Texas A&M University, College of Medicine, The Texas A&M Health Science Center, TX, United States of America
- * E-mail:
| |
Collapse
|
6
|
Functional mononuclear molybdenum enzymes: challenges and triumphs in molecular cloning, expression, and isolation. J Biol Inorg Chem 2020; 25:547-569. [PMID: 32279136 DOI: 10.1007/s00775-020-01787-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
Abstract
Mononuclear molybdenum enzymes catalyze a variety of reactions that are essential in the cycling of nitrogen, carbon, arsenic, and sulfur. For decades, the structure and function of these crucial enzymes have been investigated to develop a fundamental knowledge for this vast family of enzymes and the chemistries they carry out. Therefore, obtaining abundant quantities of active enzyme is necessary for exploring this family's biochemical capability. This mini-review summarizes the methods for overexpressing mononuclear molybdenum enzymes in the context of the challenges encountered in the process. Effective methods for molybdenum cofactor synthesis and incorporation, optimization of expression conditions, improving isolation of active vs. inactive enzyme, incorporation of additional prosthetic groups, and inclusion of redox enzyme maturation protein chaperones are discussed in relation to the current molybdenum enzyme literature. This article summarizes the heterologous and homologous expression studies providing underlying patterns and potential future directions.
Collapse
|
7
|
Leimkühler S. The biosynthesis of the molybdenum cofactors in Escherichia coli. Environ Microbiol 2020; 22:2007-2026. [PMID: 32239579 DOI: 10.1111/1462-2920.15003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/29/2022]
Abstract
The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes containing Moco, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into four steps in in bacteria: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5'-GTP, (ii) in the second step the two sulfur atoms are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into MPT to form Moco and (iv) in the fourth step bis-Mo-MPT is formed and an additional modification of Moco is possible with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review presents an update on the well-characterized Moco biosynthesis in the model organism Escherichia coli including novel discoveries from the recent years.
Collapse
Affiliation(s)
- Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
8
|
Kaufmann P, Iobbi-Nivol C, Leimkühler S. Reconstitution of Molybdoenzymes with Bis-Molybdopterin Guanine Dinucleotide Cofactors. Methods Mol Biol 2019; 1876:141-152. [PMID: 30317479 DOI: 10.1007/978-1-4939-8864-8_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Molybdoenzymes are ubiquitous and play important roles in all kingdoms of life. The cofactors of these enzymes comprise the metal, molybdenum (Mo), which is bound to a special organic ligand system called molybdopterin (MPT). Additional small ligands are present at the Mo atom, including water, hydroxide, oxo-, sulfido-, or selenido-functionalities, and in some enzymes, amino acid ligand, such as serine, aspartate, cysteine, or selenocysteine that coordinate the cofactor to the peptide chain of the enzyme. The so-called molybdenum cofactor (Moco) is deeply buried within the protein at the end of a narrow funnel, giving access only to the substrate. In 1974, an assay was developed by Nason and coworkers using the pleiotropic Neurospora crassa mutant, nit-1, for the reconstitution of molybdoenzyme activities from crude extracts. These studies have led to the understanding that Moco is the common element in all molybdoenzymes from different organisms. The assay has been further developed since then by using specific molybdenum enzymes as the source of Moco for the reconstitution of diverse purified apo-molybdoenzymes. Alternatively, the molybdenum cofactor can be synthesized in vitro from stable intermediates and subsequently inserted into apo-molybdoenzymes with the assistance of specific Moco-binding chaperones. A general working protocol is described here for the insertion of the bis-molybdopterin guanine dinucleotide cofactor (bis-MGD) into its target molybdoenzyme using the example of Escherichia coli trimethylamine N-oxide (TMAO) reductase.
Collapse
Affiliation(s)
- Paul Kaufmann
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
9
|
Schwanhold N, Iobbi-Nivol C, Lehmann A, Leimkühler S. Same but different: Comparison of two system-specific molecular chaperones for the maturation of formate dehydrogenases. PLoS One 2018; 13:e0201935. [PMID: 30444874 PMCID: PMC6239281 DOI: 10.1371/journal.pone.0201935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/21/2018] [Indexed: 11/19/2022] Open
Abstract
The maturation of bacterial molybdoenzymes is a complex process leading to the insertion of the bulky bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor into the apo-enzyme. Most molybdoenzymes were shown to contain a specific chaperone for the insertion of the bis-MGD cofactor. Formate dehydrogenases (FDH) together with their molecular chaperone partner seem to display an exception to this specificity rule, since the chaperone FdhD has been proven to be involved in the maturation of all three FDH enzymes present in Escherichia coli. Multiple roles have been suggested for FdhD-like chaperones in the past, including the involvement in a sulfur transfer reaction from the l-cysteine desulfurase IscS to bis-MGD by the action of two cysteine residues present in a conserved CXXC motif of the chaperones. However, in this study we show by phylogenetic analyses that the CXXC motif is not conserved among FdhD-like chaperones. We compared in detail the FdhD-like homologues from Rhodobacter capsulatus and E. coli and show that their roles in the maturation of FDH enzymes from different subgroups can be exchanged. We reveal that bis-MGD-binding is a common characteristic of FdhD-like proteins and that the cofactor is bound with a sulfido-ligand at the molybdenum atom to the chaperone. Generally, we reveal that the cysteine residues in the motif CXXC of the chaperone are not essential for the production of active FDH enzymes.
Collapse
Affiliation(s)
- Nadine Schwanhold
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
| | | | - Angelika Lehmann
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, Potsdam, Germany
- * E-mail:
| |
Collapse
|
10
|
Lemaire ON, Infossi P, Ali Chaouche A, Espinosa L, Leimkühler S, Giudici-Orticoni MT, Méjean V, Iobbi-Nivol C. Small membranous proteins of the TorE/NapE family, crutches for cognate respiratory systems in Proteobacteria. Sci Rep 2018; 8:13576. [PMID: 30206249 PMCID: PMC6134056 DOI: 10.1038/s41598-018-31851-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/23/2018] [Indexed: 01/18/2023] Open
Abstract
In this report, we investigate small proteins involved in bacterial alternative respiratory systems that improve the enzymatic efficiency through better anchorage and multimerization of membrane components. Using the small protein TorE of the respiratory TMAO reductase system as a model, we discovered that TorE is part of a subfamily of small proteins that are present in proteobacteria in which they play a similar role for bacterial respiratory systems. We reveal by microscopy that, in Shewanella oneidensis MR1, alternative respiratory systems are evenly distributed in the membrane contrary to what has been described for Escherichia coli. Thus, the better efficiency of the respiratory systems observed in the presence of the small proteins is not due to a specific localization in the membrane, but rather to the formation of membranous complexes formed by TorE homologs with their c-type cytochrome partner protein. By an in vivo approach combining Clear Native electrophoresis and fluorescent translational fusions, we determined the 4:4 stoichiometry of the complexes. In addition, mild solubilization of the cytochrome indicates that the presence of the small protein reinforces its anchoring to the membrane. Therefore, assembly of the complex induced by this small protein improves the efficiency of the respiratory system.
Collapse
Affiliation(s)
- Olivier N Lemaire
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France
| | - Pascale Infossi
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France
| | - Amine Ali Chaouche
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France
| | - Leon Espinosa
- Aix-Marseille Université, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, 14476, Potsdam, Germany
| | - Marie-Thérèse Giudici-Orticoni
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France
| | - Vincent Méjean
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France
| | - Chantal Iobbi-Nivol
- Aix-Marseille Université, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, 13402, Marseille, France.
| |
Collapse
|
11
|
Kaufmann P, Duffus BR, Mitrova B, Iobbi-Nivol C, Teutloff C, Nimtz M, Jänsch L, Wollenberger U, Leimkühler S. Modulating the Molybdenum Coordination Sphere of Escherichia coli Trimethylamine N-Oxide Reductase. Biochemistry 2018; 57:1130-1143. [PMID: 29334455 DOI: 10.1021/acs.biochem.7b01108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The well-studied enterobacterium Escherichia coli present in the human gut can reduce trimethylamine N-oxide (TMAO) to trimethylamine during anaerobic respiration. The TMAO reductase TorA is a monomeric, bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor-containing enzyme that belongs to the dimethyl sulfoxide reductase family of molybdoenzymes. We report on a system for the in vitro reconstitution of TorA with molybdenum cofactors (Moco) from different sources. Higher TMAO reductase activities for TorA were obtained when using Moco sources containing a sulfido ligand at the molybdenum atom. For the first time, we were able to isolate functional bis-MGD from Rhodobacter capsulatus formate dehydrogenase (FDH), which remained intact in its isolated state and after insertion into apo-TorA yielded a highly active enzyme. Combined characterizations of the reconstituted TorA enzymes by electron paramagnetic resonance spectroscopy and direct electrochemistry emphasize that TorA activity can be modified by changes in the Mo coordination sphere. The combination of these results together with studies of amino acid exchanges at the active site led us to propose a novel model for binding of the substrate to the molybdenum atom of TorA.
Collapse
Affiliation(s)
- Paul Kaufmann
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam , 14476 Potsdam, Germany
| | - Benjamin R Duffus
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam , 14476 Potsdam, Germany
| | - Biljana Mitrova
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam , 14476 Potsdam, Germany
| | | | - Christian Teutloff
- Institute for Experimental Physics, Free University of Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - Manfred Nimtz
- Helmholtz Center for Infection Research , Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Lothar Jänsch
- Helmholtz Center for Infection Research , Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Ulla Wollenberger
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam , 14476 Potsdam, Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam , 14476 Potsdam, Germany
| |
Collapse
|
12
|
Cherak SJ, Turner RJ. Assembly pathway of a bacterial complex iron sulfur molybdoenzyme. Biomol Concepts 2018; 8:155-167. [PMID: 28688222 DOI: 10.1515/bmc-2017-0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/10/2017] [Indexed: 11/15/2022] Open
Abstract
Protein folding and assembly into macromolecule complexes within the living cell are complex processes requiring intimate coordination. The biogenesis of complex iron sulfur molybdoenzymes (CISM) requires use of a system specific chaperone - a redox enzyme maturation protein (REMP) - to help mediate final folding and assembly. The CISM dimethyl sulfoxide (DMSO) reductase is a bacterial oxidoreductase that utilizes DMSO as a final electron acceptor for anaerobic respiration. The REMP DmsD strongly interacts with DMSO reductase to facilitate folding, cofactor-insertion, subunit assembly and targeting of the multi-subunit enzyme prior to membrane translocation and final assembly and maturation into a bioenergetic catalytic unit. In this article, we discuss the biogenesis of DMSO reductase as an example of the participant network for bacterial CISM maturation pathways.
Collapse
|
13
|
Arias-Cartin R, Ceccaldi P, Schoepp-Cothenet B, Frick K, Blanc JM, Guigliarelli B, Walburger A, Grimaldi S, Friedrich T, Receveur-Brechot V, Magalon A. Redox cofactors insertion in prokaryotic molybdoenzymes occurs via a conserved folding mechanism. Sci Rep 2016; 6:37743. [PMID: 27886223 PMCID: PMC5123574 DOI: 10.1038/srep37743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/01/2016] [Indexed: 01/28/2023] Open
Abstract
A major gap of knowledge in metalloproteins is the identity of the prefolded state of the protein before cofactor insertion. This holds for molybdoenzymes serving multiple purposes for life, especially in energy harvesting. This large group of prokaryotic enzymes allows for coordination of molybdenum or tungsten cofactors (Mo/W-bisPGD) and Fe/S clusters. Here we report the structural data on a cofactor-less enzyme, the nitrate reductase respiratory complex and characterize the conformational changes accompanying Mo/W-bisPGD and Fe/S cofactors insertion. Identified conformational changes are shown to be essential for recognition of the dedicated chaperone involved in cofactors insertion. A solvent-exposed salt bridge is shown to play a key role in enzyme folding after cofactors insertion. Furthermore, this salt bridge is shown to be strictly conserved within this prokaryotic molybdoenzyme family as deduced from a phylogenetic analysis issued from 3D structure-guided multiple sequence alignment. A biochemical analysis with a distantly-related member of the family, respiratory complex I, confirmed the critical importance of the salt bridge for folding. Overall, our results point to a conserved cofactors insertion mechanism within the Mo/W-bisPGD family.
Collapse
Affiliation(s)
| | - Pierre Ceccaldi
- Aix-Marseille Univ, CNRS, IMM, LCB UMR7283, Marseille, France.,Aix-Marseille Univ, CNRS, IMM, BIP UMR7281, Marseille, France
| | | | - Klaudia Frick
- Institut für Biochemie, Albert-Ludwigs-Universität, Freiburg, Germany
| | | | | | - Anne Walburger
- Aix-Marseille Univ, CNRS, IMM, LCB UMR7283, Marseille, France
| | | | | | | | - Axel Magalon
- Aix-Marseille Univ, CNRS, IMM, LCB UMR7283, Marseille, France
| |
Collapse
|
14
|
Abstract
Bacterial toxin–antitoxin (TA) systems, in which a labile antitoxin binds and inhibits the toxin, can promote adaptation and persistence by modulating bacterial growth in response to stress. Some atypical TA systems, known as tripartite toxin–antitoxin–chaperone (TAC) modules, include a molecular chaperone that facilitates folding and protects the antitoxin from degradation. Here we use a TAC module from Mycobacterium tuberculosis as a model to investigate the molecular mechanisms by which classical TAs can become ‘chaperone-addicted'. The chaperone specifically binds the antitoxin at a short carboxy-terminal sequence (chaperone addiction sequence, ChAD) that is not present in chaperone-independent antitoxins. In the absence of chaperone, the ChAD sequence destabilizes the antitoxin, thus preventing toxin inhibition. Chaperone–ChAD pairs can be transferred to classical TA systems or to unrelated proteins and render them chaperone-dependent. This mechanism might be used to optimize the expression and folding of heterologous proteins in bacterial hosts for biotechnological or medical purposes. Some bacterial toxin-antitoxin systems consist of a labile antitoxin that inhibits a toxin, and a chaperone that stabilizes the antitoxin. Here, Bordes et al. identify a sequence within the antitoxin to which the chaperone binds and which can be transferred to other proteins to make them chaperone-dependent.
Collapse
|
15
|
Lemaire ON, Honoré FA, Jourlin-Castelli C, Méjean V, Fons M, Iobbi-Nivol C. Efficient respiration on TMAO requires TorD and TorE auxiliary proteins in Shewanella oneidensis. Res Microbiol 2016; 167:630-637. [DOI: 10.1016/j.resmic.2016.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 01/29/2023]
|
16
|
Stolle P, Hou B, Brüser T. The Tat Substrate CueO Is Transported in an Incomplete Folding State. J Biol Chem 2016; 291:13520-8. [PMID: 27129241 DOI: 10.1074/jbc.m116.729103] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, cytoplasmic copper ions are toxic to cells even at the lowest concentrations. As a defense strategy, the cuprous oxidase CueO is secreted into the periplasm to oxidize the more membrane-permeable and toxic Cu(I) before it can enter the cytoplasm. CueO itself is a multicopper oxidase that requires copper for activity. Because it is transported by the twin-arginine translocation (Tat) pathway, which transports folded proteins, a requirement for cofactor assembly before translocation has been discussed. Here we show that CueO is transported as an apo-protein. Periplasmic CueO was readily activated by the addition of copper ions in vitro or under copper stress conditions in vivo Cytoplasmic CueO did not contain copper, even under copper stress conditions. In vitro Tat transport proved that the cofactor assembly was not required for functional Tat transport of CueO. Due to the post-translocational activation of CueO, this enzyme contributes to copper resistance not only by its cuprous oxidase activity but also by chelation of copper ions before they can enter the cytoplasm. Apo-CueO was indistinguishable from holo-CueO in terms of secondary structural elements. Importantly, the binding of copper to apo-CueO greatly stabilized the protein, indicating a transformation from an open or flexible domain arrangement with accessible copper sites to a closed structure with deeply buried copper ions. CueO is thus the first example for a natural Tat substrate of such incomplete folding state. The Tat system may need to transport flexibly folded proteins in any case when cofactor assembly or quaternary structure formation occurs after transport.
Collapse
Affiliation(s)
- Patrick Stolle
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Bo Hou
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Thomas Brüser
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| |
Collapse
|
17
|
Chan CS, Turner RJ. Biogenesis of Escherichia coli DMSO Reductase: A Network of Participants for Protein Folding and Complex Enzyme Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:215-34. [PMID: 26621470 DOI: 10.1007/978-3-319-23603-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Protein folding and structure have been of interest since the dawn of protein chemistry. Following translation from the ribosome, a protein must go through various steps to become a functional member of the cellular society. Every protein has a unique function in the cell and is classified on this basis. Proteins that are involved in cellular respiration are the bioenergetic workhorses of the cell. Bacteria are resilient organisms that can survive in diverse environments by fine tuning these workhorses. One class of proteins that allow survival under anoxic conditions are anaerobic respiratory oxidoreductases, which utilize many different compounds other than oxygen as its final electron acceptor. Dimethyl sulfoxide (DMSO) is one such compound. Respiration using DMSO as a final electron acceptor is performed by DMSO reductase, converting it to dimethyl sulfide in the process. Microbial respiration using DMSO is reviewed in detail by McCrindle et al. (Adv Microb Physiol 50:147-198, 2005). In this chapter, we discuss the biogenesis of DMSO reductase as an example of the participant network for complex iron-sulfur molybdoenzyme maturation pathways.
Collapse
Affiliation(s)
- Catherine S Chan
- Department of Biological Sciences, University of Calgary, BI156 Biological Sciences Bldg, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, BI156 Biological Sciences Bldg, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
18
|
Leimkühler S, Iobbi-Nivol C. Bacterial molybdoenzymes: old enzymes for new purposes. FEMS Microbiol Rev 2015; 40:1-18. [PMID: 26468212 DOI: 10.1093/femsre/fuv043] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2015] [Indexed: 02/06/2023] Open
Abstract
Molybdoenzymes are widespread in eukaryotic and prokaryotic organisms where they play crucial functions in detoxification reactions in the metabolism of humans and bacteria, in nitrate assimilation in plants and in anaerobic respiration in bacteria. To be fully active, these enzymes require complex molybdenum-containing cofactors, which are inserted into the apoenzymes after folding. For almost all the bacterial molybdoenzymes, molybdenum cofactor insertion requires the involvement of specific chaperones. In this review, an overview on the molybdenum cofactor biosynthetic pathway is given together with the role of specific chaperones dedicated for molybdenum cofactor insertion and maturation. Many bacteria are involved in geochemical cycles on earth and therefore have an environmental impact. The roles of molybdoenzymes in bioremediation and for environmental applications are presented.
Collapse
Affiliation(s)
- Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, 14476 Potsdam, Germany
| | - Chantal Iobbi-Nivol
- The Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, CNRS, Aix Marseille Université, 13402 Marseille cedex 20, France
| |
Collapse
|
19
|
Identification of the Gene Cluster for the Anaerobic Degradation of 3,5-Dihydroxybenzoate (α-Resorcylate) in Thauera aromatica Strain AR-1. Appl Environ Microbiol 2015; 81:7201-14. [PMID: 26253674 DOI: 10.1128/aem.01698-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/30/2015] [Indexed: 11/20/2022] Open
Abstract
Thauera aromatica strain AR-1 degrades 3,5-dihydroxybenzoate (3,5-DHB) with nitrate as an electron acceptor. Previous biochemical studies have shown that this strain converts 3,5-DHB to hydroxyhydroquinone (1,2,4-trihydroxybenzene) through water-dependent hydroxylation of the aromatic ring and subsequent decarboxylation, and they suggest a pathway homologous to that described for the anaerobic degradation of 1,3-dihydroxybenzene (resorcinol) by Azoarcus anaerobius. Southern hybridization of a T. aromatica strain AR-1 gene library identified a 25-kb chromosome region based on its homology with A. anaerobius main pathway genes. Sequence analysis defined 20 open reading frames. Knockout mutations of the most relevant genes in the pathway were generated by reverse genetics. Physiological and biochemical analyses identified the genes for the three main steps in the pathway which were homologous to those described in A. anaerobius and suggested the function of several auxiliary genes possibly involved in enzyme maturation and intermediate stabilization. However, T. aromatica strain AR-1 had an additional enzyme to metabolize hydroxyhydroquinone, a putative cytoplasmic quinone oxidoreductase. In addition, a specific tripartite ATP-independent periplasmic (TRAP) transport system was required for efficient growth on 3,5-DHB. Reverse transcription-PCR (RT-PCR) analysis showed that the pathway genes were organized in five 3,5-DHB-inducible operons, three of which have been shown to be under the control of a single LysR-type transcriptional regulator, DbdR. Despite sequence homology, the genetic organizations of the clusters in T. aromatica strain AR-1 and A. anaerobius differed substantially.
Collapse
|
20
|
Oxygen-Dependent Cell-to-Cell Variability in the Output of the Escherichia coli Tor Phosphorelay. J Bacteriol 2015; 197:1976-87. [PMID: 25825431 DOI: 10.1128/jb.00074-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 03/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Escherichia coli senses and responds to trimethylamine-N-oxide (TMAO) in the environment through the TorT-TorS-TorR signal transduction system. The periplasmic protein TorT binds TMAO and stimulates the hybrid kinase TorS to phosphorylate the response regulator TorR through a phosphorelay. Phosphorylated TorR, in turn, activates transcription of the torCAD operon, which encodes the proteins required for anaerobic respiration via reduction of TMAO to trimethylamine. Interestingly, E. coli respires TMAO in both the presence and absence of oxygen, a behavior that is markedly different from the utilization of other alternative electron acceptors by this bacterium. Here we describe an unusual form of regulation by oxygen for this system. While the average level of torCAD transcription is the same for aerobic and anaerobic cultures containing TMAO, the behavior across the population of cells is strikingly different under the two growth conditions. Cellular levels of torCAD transcription in aerobic cultures are highly heterogeneous, in contrast to the relatively homogeneous distribution in anaerobic cultures. Thus, oxygen regulates the variance of the output but not the mean for the Tor system. We further show that this oxygen-dependent variability stems from the phosphorelay. IMPORTANCE Trimethylamine-N-oxide (TMAO) is utilized by numerous bacteria as an electron acceptor for anaerobic respiration. In E. coli, expression of the proteins required for TMAO respiration is tightly regulated by a signal transduction system that is activated by TMAO. Curiously, although oxygen is the energetically preferred electron acceptor, TMAO is respired even in the presence of oxygen. Here we describe an interesting and unexpected form of regulation for this system in which oxygen produces highly variable expression of the TMAO utilization proteins across a population of cells without affecting the mean expression of these proteins. To our knowledge, this is the first reported example of a stimulus regulating the variance but not the mean output of a signaling system.
Collapse
|
21
|
Abstract
The transition element molybdenum (Mo) is of primordial importance for biological systems, because it is required by enzymes catalyzing key reactions in the global carbon, sulfur, and nitrogen metabolism. To gain biological activity, Mo has to be complexed by a special cofactor. With the exception of bacterial nitrogenase, all Mo-dependent enzymes contain a unique pyranopterin-based cofactor coordinating a Mo atom at their catalytic site. Various types of reactions are catalyzed by Mo-enzymes in prokaryotes including oxygen atom transfer, sulfur or proton transfer, hydroxylation, or even nonredox reactions. Mo-enzymes are widespread in prokaryotes and many of them were likely present in the Last Universal Common Ancestor. To date, more than 50--mostly bacterial--Mo-enzymes are described in nature. In a few eubacteria and in many archaea, Mo is replaced by tungsten bound to the same unique pyranopterin. How Mo-cofactor is synthesized in bacteria is reviewed as well as the way until its insertion into apo-Mo-enzymes.
Collapse
|
22
|
‘Come into the fold’: A comparative analysis of bacterial redox enzyme maturation protein members of the NarJ subfamily. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2971-2984. [DOI: 10.1016/j.bbamem.2014.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/24/2014] [Accepted: 08/15/2014] [Indexed: 11/19/2022]
|
23
|
The Biosynthesis of the Molybdenum Cofactor in Escherichia coli and Its Connection to FeS Cluster Assembly and the Thiolation of tRNA. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/808569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The thiolation of biomolecules is a complex process that involves the activation of sulfur. The L-cysteine desulfurase IscS is the main sulfur mobilizing protein in Escherichia coli that provides the sulfur from L-cysteine to several important biomolecules in the cell such as iron sulfur (FeS) clusters, molybdopterin (MPT), thiamine, and thionucleosides of tRNA. Various proteins mediate the transfer of sulfur from IscS to various biomolecules using different interaction partners. A direct connection between the sulfur-containing molecules FeS clusters, thiolated tRNA, and the molybdenum cofactor (Moco) has been identified. The first step of Moco biosynthesis involves the conversion of 5′GTP to cyclic pyranopterin monophosphate (cPMP), a reaction catalyzed by a FeS cluster containing protein. Formed cPMP is further converted to MPT by insertion of two sulfur atoms. The sulfur for this reaction is provided by the L-cysteine desulfurase IscS in addition to the involvement of the TusA protein. TusA is also involved in the sulfur transfer for the thiolation of tRNA. This review will describe the biosynthesis of Moco in E. coli in detail and dissects the sulfur transfer pathways for Moco and tRNA and their connection to FeS cluster biosynthesis.
Collapse
|
24
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
25
|
Böhmer N, Hartmann T, Leimkühler S. The chaperone FdsC for Rhodobacter capsulatus formate dehydrogenase binds the bis-molybdopterin guanine dinucleotide cofactor. FEBS Lett 2014; 588:531-7. [PMID: 24444607 DOI: 10.1016/j.febslet.2013.12.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/04/2013] [Accepted: 12/18/2013] [Indexed: 11/25/2022]
Abstract
Molybdoenzymes are complex enzymes in which the molybdenum cofactor (Moco) is deeply buried in the enzyme. Most molybdoenzymes contain a specific chaperone for the insertion of Moco. For the formate dehydrogenase FdsGBA from Rhodobacter capsulatus the two chaperones FdsC and FdsD were identified to be essential for enzyme activity, but are not a subunit of the mature enzyme. Here, we purified and characterized the FdsC protein after heterologous expression in Escherichia coli. We were able to copurify FdsC with the bound Moco derivate bis-molybdopterin guanine dinucleotide. This cofactor successfully was used as a source to reconstitute the activity of molybdoenzymes.
Collapse
Affiliation(s)
- Nadine Böhmer
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, D-14476 Potsdam, Germany
| | - Tobias Hartmann
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, D-14476 Potsdam, Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, D-14476 Potsdam, Germany.
| |
Collapse
|
26
|
Redelberger D, Genest O, Arabet D, Méjean V, Ilbert M, Iobbi-Nivol C. Quality control of a molybdoenzyme by the Lon protease. FEBS Lett 2013; 587:3935-42. [PMID: 24211448 DOI: 10.1016/j.febslet.2013.10.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 01/20/2023]
|
27
|
Detrimental effect of the 6 His C-terminal tag on YedY enzymatic activity and influence of the TAT signal sequence on YedY synthesis. BMC BIOCHEMISTRY 2013; 14:28. [PMID: 24180491 PMCID: PMC4228395 DOI: 10.1186/1471-2091-14-28] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/25/2013] [Indexed: 11/21/2022]
Abstract
Background YedY, a molybdoenzyme belonging to the sulfite oxidase family, is found in most Gram-negative bacteria. It contains a twin-arginine signal sequence that is cleaved after its translocation into the periplasm. Despite a weak reductase activity with substrates such as dimethyl sulfoxide or trimethylamine N-oxide, its natural substrate and its role in the cell remain unknown. Although sequence conservation of the YedY family displays a strictly conserved hydrophobic C-terminal residue, all known studies on Escherichia coli YedY have been performed with an enzyme containing a 6 histidine-tag at the C-terminus which could hamper enzyme activity. Results In this study, we demonstrate that the tag fused to the C-terminus of Rhodobacter sphaeroides YedY is detrimental to the enzyme’s reductase activity and results in an eight-fold decrease in catalytic efficiency. Nonetheless this C-terminal tag does not influence the properties of the molybdenum active site, as assayed by EPR spectroscopy. When a cleavable His-tag was fused to the N-terminus of the mature enzyme in the absence of the signal sequence, YedY was expressed and folded with its cofactor. However, when the signal sequence was added upstream of the N-ter tag, the amount of enzyme produced was approximately ten-fold higher. Conclusion Our study thus underscores the risk of using a C-terminus tagged enzyme while studying YedY, and presents an alternative strategy to express signal sequence-containing enzymes with an N-terminal tag. It brings new insights into molybdoenzyme maturation in R. sphaeroides showing that for some enzymes, maturation can occur in the absence of the signal sequence but that its presence is required for high expression of active enzyme.
Collapse
|
28
|
Reschke S, Sigfridsson KGV, Kaufmann P, Leidel N, Horn S, Gast K, Schulzke C, Haumann M, Leimkühler S. Identification of a bis-molybdopterin intermediate in molybdenum cofactor biosynthesis in Escherichia coli. J Biol Chem 2013; 288:29736-45. [PMID: 24003231 DOI: 10.1074/jbc.m113.497453] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molybdenum cofactor is an important cofactor, and its biosynthesis is essential for many organisms, including humans. Its basic form comprises a single molybdopterin (MPT) unit, which binds a molybdenum ion bearing three oxygen ligands via a dithiolene function, thus forming Mo-MPT. In bacteria, this form is modified to form the bis-MPT guanine dinucleotide cofactor with two MPT units coordinated at one molybdenum atom, which additionally contains GMPs bound to the terminal phosphate group of the MPTs (bis-MGD). The MobA protein catalyzes the nucleotide addition to MPT, but the mechanism of the biosynthesis of the bis-MGD cofactor has remained enigmatic. We have established an in vitro system for studying bis-MGD assembly using purified compounds. Quantification of the MPT/molybdenum and molybdenum/phosphorus ratios, time-dependent assays for MPT and MGD detection, and determination of the numbers and lengths of Mo-S and Mo-O bonds by X-ray absorption spectroscopy enabled identification of a novel bis-Mo-MPT intermediate on MobA prior to nucleotide attachment. The addition of Mg-GTP to MobA loaded with bis-Mo-MPT resulted in formation and release of the final bis-MGD product. This cofactor was fully functional and reconstituted the catalytic activity of apo-TMAO reductase (TorA). We propose a reaction sequence for bis-MGD formation, which involves 1) the formation of bis-Mo-MPT, 2) the addition of two GMP units to form bis-MGD on MobA, and 3) the release and transfer of the mature cofactor to the target protein TorA, in a reaction that is supported by the specific chaperone TorD, resulting in an active molybdoenzyme.
Collapse
Affiliation(s)
- Stefan Reschke
- From the Institute for Biochemistry and Biology, Department of Molecular Enzymology, and
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The Tat (twin-arginine translocation) system is a protein targeting pathway utilized by prokaryotes and chloroplasts. Tat substrates are produced with distinctive N-terminal signal peptides and are translocated as fully folded proteins. In Escherichia coli, Tat-dependent proteins often contain redox cofactors that must be loaded before translocation. Trimethylamine N-oxide reductase (TorA) is a model bacterial Tat substrate and is a molybdenum cofactor-dependent enzyme. Co-ordination of cofactor loading and translocation of TorA is directed by the TorD protein, which is a cytoplasmic chaperone known to interact physically with the TorA signal peptide. In the present study, a pre-export TorAD complex has been characterized using biochemical and biophysical techniques, including SAXS (small-angle X-ray scattering). A stable, cofactor-free TorAD complex was isolated, which revealed a 1:1 binding stoichiometry. Surprisingly, a TorAD complex with similar architecture can be isolated in the complete absence of the 39-residue TorA signal peptide. The present study demonstrates that two high-affinity binding sites for TorD are present on TorA, and that a single TorD protein binds both of those simultaneously. Further characterization suggested that the C-terminal ‘Domain IV’ of TorA remained solvent-exposed in the cofactor-free pre-export TorAD complex. It is possible that correct folding of Domain IV upon cofactor loading is the trigger for TorD release and subsequent export of TorA.
Collapse
|
30
|
Iobbi-Nivol C, Leimkühler S. Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012. [PMID: 23201473 DOI: 10.1016/j.bbabio.2012.11.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Molybdenum cofactor (Moco) biosynthesis is an ancient, ubiquitous, and highly conserved pathway leading to the biochemical activation of molybdenum. Moco is the essential component of a group of redox enzymes, which are diverse in terms of their phylogenetic distribution and their architectures, both at the overall level and in their catalytic geometry. A wide variety of transformations are catalyzed by these enzymes at carbon, sulfur and nitrogen atoms, which include the transfer of an oxo group or two electrons to or from the substrate. More than 50 molybdoenzymes were identified in bacteria to date. In molybdoenzymes Mo is coordinated to a dithiolene group on the 6-alkyl side chain of a pterin called molybdopterin (MPT). The biosynthesis of Moco can be divided into four general steps in bacteria: 1) formation of the cyclic pyranopterin monophosphate, 2) formation of MPT, 3) insertion of molybdenum into molybdopterin to form Moco, and 4) additional modification of Moco with the attachment of GMP or CMP to the phosphate group of MPT, forming the dinucleotide variant of Moco. This review will focus on molybdoenzymes, the biosynthesis of Moco, and its incorporation into specific target proteins focusing on Escherichia coli. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
Affiliation(s)
- Chantal Iobbi-Nivol
- Institut de Microbiologie de la Méditerranée, Aix Marseille Université, Marseille, France
| | | |
Collapse
|
31
|
Lorenzi M, Sylvi L, Gerbaud G, Mileo E, Halgand F, Walburger A, Vezin H, Belle V, Guigliarelli B, Magalon A. Conformational selection underlies recognition of a molybdoenzyme by its dedicated chaperone. PLoS One 2012. [PMID: 23185350 PMCID: PMC3501500 DOI: 10.1371/journal.pone.0049523] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Molecular recognition is central to all biological processes. Understanding the key role played by dedicated chaperones in metalloprotein folding and assembly requires the knowledge of their conformational ensembles. In this study, the NarJ chaperone dedicated to the assembly of the membrane-bound respiratory nitrate reductase complex NarGHI, a molybdenum-iron containing metalloprotein, was taken as a model of dedicated chaperone. The combination of two techniques ie site-directed spin labeling followed by EPR spectroscopy and ion mobility mass spectrometry, was used to get information about the structure and conformational dynamics of the NarJ chaperone upon binding the N-terminus of the NarG metalloprotein partner. By the study of singly spin-labeled proteins, the E119 residue present in a conserved elongated hydrophobic groove of NarJ was shown to be part of the interaction site. Moreover, doubly spin-labeled proteins studied by pulsed double electron-electron resonance (DEER) spectroscopy revealed a large and composite distribution of inter-label distances that evolves into a single preexisting one upon complex formation. Additionally, ion mobility mass spectrometry experiments fully support these findings by revealing the existence of several conformers in equilibrium through the distinction of different drift time curves and the selection of one of them upon complex formation. Taken together our work provides a detailed view of the structural flexibility of a dedicated chaperone and suggests that the exquisite recognition and binding of the N-terminus of the metalloprotein is governed by a conformational selection mechanism.
Collapse
Affiliation(s)
- Magali Lorenzi
- Unité de Bioénergétique et Ingénierie des Protéines (UMR7281), Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
| | - Léa Sylvi
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
| | - Guillaume Gerbaud
- Unité de Bioénergétique et Ingénierie des Protéines (UMR7281), Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
| | - Elisabetta Mileo
- Unité de Bioénergétique et Ingénierie des Protéines (UMR7281), Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
| | - Frédéric Halgand
- Unité de Bioénergétique et Ingénierie des Protéines (UMR7281), Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
| | - Anne Walburger
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
| | - Hervé Vezin
- Laboratoire de Spectrochimie Infrarouge et Raman (UMR8516), Villeneuve d'Ascq, France
| | - Valérie Belle
- Unité de Bioénergétique et Ingénierie des Protéines (UMR7281), Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
- * E-mail: (VB); (AM)
| | - Bruno Guigliarelli
- Unité de Bioénergétique et Ingénierie des Protéines (UMR7281), Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
| | - Axel Magalon
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
- * E-mail: (VB); (AM)
| |
Collapse
|
32
|
Purification of a Tat leader peptide by co-expression with its chaperone. Protein Expr Purif 2012; 84:167-72. [DOI: 10.1016/j.pep.2012.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/03/2012] [Accepted: 05/06/2012] [Indexed: 11/22/2022]
|
33
|
Hou B, Brüser T. The Tat-dependent protein translocation pathway. Biomol Concepts 2011; 2:507-23. [DOI: 10.1515/bmc.2011.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/05/2011] [Indexed: 11/15/2022] Open
Abstract
AbstractThe twin-arginine translocation (Tat) pathway is found in bacteria, archaea, and plant chloroplasts, where it is dedicated to the transmembrane transport of fully folded proteins. These proteins contain N-terminal signal peptides with a specific Tat-system binding motif that is recognized by the transport machinery. In contrast to other protein transport systems, the Tat system consists of multiple copies of only two or three usually small (∼8–30 kDa) membrane proteins that oligomerize to two large complexes that transiently interact during translocation. Only one of these complexes includes a polytopic membrane protein, TatC. The other complex consists of TatA. Tat systems of plants, proteobacteria, and several other phyla contain a third component, TatB. TatB is evolutionarily and structurally related to TatA and usually forms tight complexes with TatC. Minimal two-component Tat systems lacking TatB are found in many bacterial and archaeal phyla. They consist of a ‘bifunctional’ TatA that also covers TatB functionalities, and a TatC. Recent insights into the structure and interactions of the Tat proteins have various important implications.
Collapse
Affiliation(s)
- Bo Hou
- Institute of Microbiology, Leibniz University Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz University Hannover, Schneiderberg 50, D-30167 Hannover, Germany
| |
Collapse
|
34
|
YcdY protein of Escherichia coli, an atypical member of the TorD chaperone family. J Bacteriol 2011; 193:6512-6. [PMID: 21965574 DOI: 10.1128/jb.05927-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TorD family of specific chaperones is divided into four subfamilies dedicated to molybdoenzyme biogenesis and a fifth one, exemplified by YcdY of Escherichia coli, for which no defined partner has been identified so far. We propose that YcdY is the chaperone of YcdX, a zinc protein involved in the swarming motility process of E. coli, since YcdY interacts with YcdX and increases its activity in vitro.
Collapse
|
35
|
Magalon A, Fedor JG, Walburger A, Weiner JH. Molybdenum enzymes in bacteria and their maturation. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2010.12.031] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
36
|
Leimkühler S, Wuebbens MM, Rajagopalan K. The History of the Discovery of the Molybdenum Cofactor and Novel Aspects of its Biosynthesis in Bacteria. Coord Chem Rev 2011; 255:1129-1144. [PMID: 21528011 PMCID: PMC3081585 DOI: 10.1016/j.ccr.2010.12.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biosynthesis of the molybdenum cofactor in bacteria is described with a detailed analysis of each individual reaction leading to the formation of stable intermediates during the synthesis of molybdopterin from GTP. As a starting point, the discovery of molybdopterin and the elucidation of its structure through the study of stable degradation products are described. Subsequent to molybdopterin synthesis, the molybdenum atom is added to the molybdopterin dithiolene group to form the molybdenum cofactor. This cofactor is either inserted directly into specific molybdoenzymes or is further modified by the addition of nucleotides to the molybdopterin phosphate group or the replacement of ligands at the molybdenum center.
Collapse
Affiliation(s)
- Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, 14476 Potsdam, Germany
| | - Margot M. Wuebbens
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - K.V. Rajagopalan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
37
|
Exploring the active site of the tungsten, iron-sulfur enzyme acetylene hydratase. J Bacteriol 2010; 193:1229-36. [PMID: 21193613 DOI: 10.1128/jb.01057-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soluble tungsten, iron-sulfur enzyme acetylene hydratase (AH) from mesophilic Pelobacter acetylenicus is a member of the dimethyl sulfoxide (DMSO) reductase family. It stands out from its class as it catalyzes a nonredox reaction, the addition of H₂O to acetylene (H-C≡C-H) to form acetaldehyde (CH₃CHO). Caught in its active W(IV) state, the high-resolution three-dimensional structure of AH offers an excellent starting point to tackle its unique chemistry and to identify catalytic amino acid residues within the active site cavity: Asp13 close to W(IV) coordinated to two molybdopterin-guanosine-dinucleotide ligands, Lys48 which couples the [4Fe-4S] cluster to the W site, and Ile142 as part of a hydrophobic ring at the end of the substrate access channel designed to accommodate the substrate acetylene. A protocol was developed to express AH in Escherichia coli and to produce active-site variants which were characterized with regard to activity and occupancy of the tungsten and iron-sulfur centers. By this means, fusion of the N-terminal chaperone binding site of the E. coli nitrate reductase NarG to the AH gene improved the yield and activity of AH and its variants significantly. Results from site-directed mutagenesis of three key residues, Asp13, Lys48, and Ile142, document their important role in catalysis of this unusual tungsten enzyme.
Collapse
|
38
|
Robinson C, Matos CFRO, Beck D, Ren C, Lawrence J, Vasisht N, Mendel S. Transport and proofreading of proteins by the twin-arginine translocation (Tat) system in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:876-84. [PMID: 21126506 DOI: 10.1016/j.bbamem.2010.11.023] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 11/12/2010] [Accepted: 11/14/2010] [Indexed: 12/01/2022]
Abstract
The twin-arginine translocation (Tat) system operates in plant thylakoid membranes and the plasma membranes of most free-living bacteria. In bacteria, it is responsible for the export of a number of proteins to the periplasm, outer membrane or growth medium, selecting substrates by virtue of cleavable N-terminal signal peptides that contain a key twin-arginine motif together with other determinants. Its most notable attribute is its ability to transport large folded proteins (even oligomeric proteins) across the tightly sealed plasma membrane. In Gram-negative bacteria, TatABC subunits appear to carry out all of the essential translocation functions in the form of two distinct complexes at steady state: a TatABC substrate-binding complex and separate TatA complex. Several studies favour a model in which these complexes transiently coalesce to generate the full translocase. Most Gram-positive organisms possess an even simpler "minimalist" Tat system which lacks a TatB component and contains, instead, a bifunctional TatA component. These Tat systems may involve the operation of a TatAC complex together with a separate TatA complex, although a radically different model for TatAC-type systems has also been proposed. While bacterial Tat systems appear to require the presence of only a few proteins for the actual translocation event, there is increasing evidence for the operation of ancillary components that carry out sophisticated "proofreading" activities. These activities ensure that redox proteins are only exported after full assembly of the cofactor, thereby avoiding the futile export of apo-forms. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.
Collapse
Affiliation(s)
- Colin Robinson
- School of Life Sciences, University of Warwick, Coventry CV47AL, UK.
| | | | | | | | | | | | | |
Collapse
|
39
|
Neumann M, Seduk F, Iobbi-Nivol C, Leimkühler S. Molybdopterin dinucleotide biosynthesis in Escherichia coli: identification of amino acid residues of molybdopterin dinucleotide transferases that determine specificity for binding of guanine or cytosine nucleotides. J Biol Chem 2010; 286:1400-8. [PMID: 21081498 DOI: 10.1074/jbc.m110.155671] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molybdenum cofactor is modified by the addition of GMP or CMP to the C4' phosphate of molybdopterin forming the molybdopterin guanine dinucleotide or molybdopterin cytosine dinucleotide cofactor, respectively. The two reactions are catalyzed by specific enzymes as follows: the GTP:molybdopterin guanylyltransferase MobA and the CTP:molybdopterin cytidylyltransferase MocA. Both enzymes show 22% amino acid sequence identity and are specific for their respective nucleotides. Crystal structure analysis of MobA revealed two conserved motifs in the N-terminal domain of the protein involved in binding of the guanine base. Based on these motifs, we performed site-directed mutagenesis studies to exchange the amino acids to the sequence found in the paralogue MocA. Using a fully defined in vitro system, we showed that the exchange of five amino acids was enough to obtain activity with both GTP and CTP in either MocA or MobA. Exchange of the complete N-terminal domain of each protein resulted in the total inversion of nucleotide specificity activity, showing that the N-terminal domain determines nucleotide recognition and binding. Analysis of protein-protein interactions showed that the C-terminal domain of either MocA or MobA determines the specific binding to the respective acceptor protein.
Collapse
Affiliation(s)
- Meina Neumann
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany
| | | | | | | |
Collapse
|
40
|
Abstract
Proteins that reside partially or completely outside the bacterial cytoplasm require specialized pathways to facilitate their localization. Globular proteins that function in the periplasm must be translocated across the hydrophobic barrier of the inner membrane. While the Sec pathway transports proteins in a predominantly unfolded conformation, the Tat pathway exports folded protein substrates. Protein transport by the Tat machinery is powered solely by the transmembrane proton gradient, and there is no requirement for nucleotide triphosphate hydrolysis. Proteins are targeted to the Tat machinery by N-terminal signal peptides that contain a consensus twin arginine motif. In Escherichia coli and Salmonella there are approximately thirty proteins with twin arginine signal peptides that are transported by the Tat pathway. The majority of these bind complex redox cofactors such as iron sulfur clusters or the molybdopterin cofactor. Here we describe what is known about Tat substrates in E. coli and Salmonella, the function and mechanism of Tat protein export, and how the cofactor insertion step is coordinated to ensure that only correctly assembled substrates are targeted to the Tat machinery.
Collapse
|
41
|
Hitchcock A, Hall SJ, Myers JD, Mulholland F, Jones MA, Kelly DJ. Roles of the twin-arginine translocase and associated chaperones in the biogenesis of the electron transport chains of the human pathogen Campylobacter jejuni. MICROBIOLOGY-SGM 2010; 156:2994-3010. [PMID: 20688826 DOI: 10.1099/mic.0.042788-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The zoonotic pathogen Campylobacter jejuni NCTC 11168 uses a complex set of electron transport chains to ensure growth with a variety of electron donors and alternative electron acceptors, some of which are known to be important for host colonization. Many of the key redox proteins essential for electron transfer in this bacterium have N-terminal twin-arginine translocase (TAT) signal sequences that ensure their transport across the cytoplasmic membrane in a folded state. By comparisons of 2D gels of periplasmic extracts, gene fusions and specific enzyme assays in wild-type, tatC mutant and complemented strains, we experimentally verified the TAT dependence of 10 proteins with an N-terminal twin-arginine motif. NrfH, which has a TAT-like motif (LRRKILK), was functional in nitrite reduction in a tatC mutant, and was correctly rejected as a TAT substrate by the tatfind and TatP prediction programs. However, the hydrogenase subunit HydA is also rejected by tatfind, but was shown to be TAT-dependent experimentally. The YedY homologue Cj0379 is the only TAT translocated molybdoenzyme of unknown function in C. jejuni; we show that a cj0379c mutant is deficient in chicken colonization and has a nitrosative stress phenotype, suggestive of a possible role for Cj0379 in the reduction of reactive nitrogen species in the periplasm. Only two potential TAT chaperones, NapD and Cj1514, are encoded in the genome. Surprisingly, despite homology to TorD, Cj1514 was shown to be specifically required for the activity of formate dehydrogenase, not trimethylamine N-oxide reductase, and was designated FdhM.
Collapse
Affiliation(s)
- Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Stephen J Hall
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Jonathan D Myers
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Francis Mulholland
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich NR4 7UA, UK
| | - Michael A Jones
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonnington, Loughborough LE12 2RD, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
42
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
43
|
Li H, Chang L, Howell JM, Turner RJ. DmsD, a Tat system specific chaperone, interacts with other general chaperones and proteins involved in the molybdenum cofactor biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1301-9. [PMID: 20153451 DOI: 10.1016/j.bbapap.2010.01.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 12/23/2009] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
Abstract
Many bacterial oxidoreductases depend on the Tat translocase for correct cell localization. Substrates for the Tat translocase possess twin-arginine leaders. System specific chaperones or redox enzyme maturation proteins (REMPs) are a group of proteins implicated in oxidoreductase maturation. DmsD is a REMP discovered in Escherichia coli, which interacts with the twin-arginine leader sequence of DmsA, the catalytic subunit of DMSO reductase. In this study, we identified several potential interacting partners of DmsD by using several in vitro protein-protein interaction screening approaches, including affinity chromatography, co-precipitation, and cross-linking. Candidate hits from these in vitro findings were analyzed by in vivo methods of bacterial two-hybrid (BACTH) and bimolecular fluorescence complementation (BiFC). From these data, DmsD was confirmed to interact with the general molecular chaperones DnaK, DnaJ, GrpE, GroEL, Tig and Ef-Tu. In addition, DmsD was also found to interact with proteins involved in the molybdenum cofactor biosynthesis pathway. Our data suggests that DmsD may play a role as a "node" in escorting its substrate through a cascade of chaperone assisted protein-folding maturation events.
Collapse
Affiliation(s)
- Haiming Li
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | | | | | |
Collapse
|
44
|
Price CE, Driessen AJM. Biogenesis of membrane bound respiratory complexes in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:748-66. [PMID: 20138092 DOI: 10.1016/j.bbamcr.2010.01.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/21/2010] [Accepted: 01/27/2010] [Indexed: 11/19/2022]
Abstract
Escherichia coli is one of the preferred bacteria for studies on the energetics and regulation of respiration. Respiratory chains consist of primary dehydrogenases and terminal reductases or oxidases linked by quinones. In order to assemble this complex arrangement of protein complexes, synthesis of the subunits occurs in the cytoplasm followed by assembly in the cytoplasm and/or membrane, the incorporation of metal or organic cofactors and the anchoring of the complex to the membrane. In the case of exported metalloproteins, synthesis, assembly and incorporation of metal cofactors must be completed before translocation across the cytoplasmic membrane. Coordination data on these processes is, however, scarce. In this review, we discuss the various processes that respiratory proteins must undergo for correct assembly and functional coupling to the electron transport chain in E. coli. Targeting to and translocation across the membrane together with cofactor synthesis and insertion are discussed in a general manner followed by a review of the coordinated biogenesis of individual respiratory enzyme complexes. Lastly, we address the supramolecular organization of respiratory enzymes into supercomplexes and their localization to specialized domains in the membrane.
Collapse
Affiliation(s)
- Claire E Price
- Department of Molecular Microbiology, University of Groningen, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
45
|
Guymer D, Maillard J, Agacan MF, Brearley CA, Sargent F. Intrinsic GTPase activity of a bacterial twin-arginine translocation proofreading chaperone induced by domain swapping. FEBS J 2010; 277:511-25. [PMID: 20064164 DOI: 10.1111/j.1742-4658.2009.07507.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacterial twin-arginine translocation (Tat) system is a protein targeting pathway dedicated to the transport of folded proteins across the cytoplasmic membrane. Proteins transported on the Tat pathway are synthesised as precursors with N-terminal signal peptides containing a conserved amino acid motif. In Escherichia coli, many Tat substrates contain prosthetic groups and undergo cytoplasmic assembly processes prior to the translocation event. A pre-export 'Tat proofreading' process, mediated by signal peptide-binding chaperones, is considered to prevent premature export of some Tat-targeted proteins until all other assembly processes are complete. TorD is a paradigm Tat proofreading chaperone and co-ordinates the maturation and export of the periplasmic respiratory enzyme trimethylamine N-oxide reductase (TorA). Although it is well established that TorD binds directly to the TorA signal peptide, the mechanism of regulation or control of binding is not understood. Previous structural analyses of TorD homologues showed that these proteins can exist as monomeric and domain-swapped dimeric forms. In the present study, we demonstrate that isolated recombinant TorD exhibits a magnesium-dependent GTP hydrolytic activity, despite the absence of classical nucleotide-binding motifs in the protein. TorD GTPase activity is shown to be present only in the domain-swapped homodimeric form of the protein, thus defining a biochemical role for the oligomerisation. Site-directed mutagenesis identified one TorD side-chain (D68) that was important in substrate selectivity. A D68W variant TorD protein was found to exhibit an ATPase activity not observed for native TorD, and an in vivo assay established that this variant was defective in the Tat proofreading process.
Collapse
Affiliation(s)
- David Guymer
- College of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | | |
Collapse
|
46
|
Neumann M, Mittelstädt G, Seduk F, Iobbi-Nivol C, Leimkühler S. MocA is a specific cytidylyltransferase involved in molybdopterin cytosine dinucleotide biosynthesis in Escherichia coli. J Biol Chem 2009; 284:21891-21898. [PMID: 19542235 PMCID: PMC2755913 DOI: 10.1074/jbc.m109.008565] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/12/2009] [Indexed: 11/06/2022] Open
Abstract
We have purified and characterized a specific CTP:molybdopterin cytidylyltransferase for the biosynthesis of the molybdopterin (MPT) cytosine dinucleotide (MCD) cofactor in Escherichia coli. The protein, named MocA, shows 22% amino acid sequence identity to E. coli MobA, the specific GTP:molybdopterin guanylyltransferase for molybdopterin guanine dinucleotide biosynthesis. MocA is essential for the activity of the MCD-containing enzymes aldehyde oxidoreductase YagTSR and the xanthine dehydrogenases XdhABC and XdhD. Using a fully defined in vitro assay, we showed that MocA, Mo-MPT, CTP, and MgCl2 are required and sufficient for MCD biosynthesis in vitro. The activity of MocA is specific for CTP; other nucleotides such as ATP and GTP were not utilized. In the defined in vitro system a turnover number of 0.37+/-0.01 min(-1) was obtained. A 1:1 binding ratio of MocA to Mo-MPT and CTP was determined to monomeric MocA with dissociation constants of 0.23+/-0.02 microm for CTP and 1.17+/-0.18 microm for Mo-MPT. We showed that MocA was also able to convert MPT to MCD in the absence of molybdate, however, with only one catalytic turnover. The addition of molybdate after one turnover gave rise to a higher MCD production, revealing that MCD remains bound to MocA in the absence of molybdate. This work presents the first characterization of a specific enzyme involved in MCD biosynthesis in bacteria.
Collapse
Affiliation(s)
- Meina Neumann
- From the Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany and
| | - Gerd Mittelstädt
- From the Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany and
| | - Farida Seduk
- Laboratoire de Chimie Bactérienne, IFR88, CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Chantal Iobbi-Nivol
- Laboratoire de Chimie Bactérienne, IFR88, CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Silke Leimkühler
- From the Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany and
| |
Collapse
|
47
|
Differential Interactions between Tat-specific redox enzyme peptides and their chaperones. J Bacteriol 2009; 191:2091-101. [PMID: 19151138 DOI: 10.1128/jb.00949-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twin-arginine translocase (Tat) system is used by many bacteria to move proteins across the cytoplasmic membrane. Tat substrates are prefolded and contain a conserved SRRxFLK twin-arginine (RR) motif at their N termini. Many Tat substrates in Escherichia coli are cofactor-containing redox enzymes that have specific chaperones called redox enzyme maturation proteins (REMPs). Here we characterized the interactions between 10 REMPs and 15 RR peptides of known and predicted Tat-specific redox enzyme subunits. A combination of in vitro and in vivo experiments demonstrated that some REMPs were specific to a redox enzyme(s) of similar function, whereas others were less specific and bound peptides of unrelated enzymes. Results from Biacore surface plasmon resonance (SPR) and bacterial two-hybrid experiments identified interactions in addition to those found in far-Western experiments, suggesting that conformational freedom and/or other cellular factors may be required. Furthermore, we show that the interaction of the two prevents both from being proteolytically degraded in vivo, and kinetic data from SPR show up to 10-fold-tighter binding to the expected RR substrate when multiple binding partners existed. Investigations using full-length sequences of the RR proteins showed that the mature portion for some redox enzyme subunits is required for detection of the interactions. Sequence alignments among the REMPs and RR peptides indicated that homology between the REMPs and the hydrophobic regions following the RR motifs in the peptides correlates to cross-recognition.
Collapse
|
48
|
Buchanan G, Maillard J, Nabuurs SB, Richardson DJ, Palmer T, Sargent F. Features of a twin-arginine signal peptide required for recognition by a Tat proofreading chaperone. FEBS Lett 2008; 582:3979-84. [DOI: 10.1016/j.febslet.2008.10.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 10/17/2008] [Accepted: 10/20/2008] [Indexed: 10/21/2022]
|