1
|
Scheller J, Ettich J, Wittich C, Pudewell S, Floss DM, Rafii P. Exploring the landscape of synthetic IL-6-type cytokines. FEBS J 2024; 291:2030-2050. [PMID: 37467060 DOI: 10.1111/febs.16909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Interleukin-6 (IL-6)-type cytokines not only have key immunomodulatory functions that affect the pathogenesis of diseases such as autoimmune diseases, chronic inflammatory conditions, and cancer, but also fulfill important homeostatic tasks. Even though the pro-inflammatory arm has hindered the development of therapeutics based on natural-like IL-6-type cytokines to date, current synthetic trends might pave the way to overcome these limitations and eventually lead to immune-inert designer cytokines to aid type 2 diabetes and brain injuries. Those synthetic biology approaches include mutations, fusion proteins, and inter-cytokine swapping, and resulted in IL-6-type cytokines with altered receptor affinities, extended target cell profiles, and targeting of non-natural cytokine receptor complexes. Here, we survey synthetic cytokine developments within the IL-6-type cytokine family and discuss potential clinical applications.
Collapse
Affiliation(s)
- Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Silke Pudewell
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Puyan Rafii
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
2
|
Chen YF, Li SC, Huang EY. Role of microbiota in radiation-induced small-bowel damage. JOURNAL OF RADIATION RESEARCH 2024; 65:55-62. [PMID: 37996087 PMCID: PMC10803162 DOI: 10.1093/jrr/rrad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 10/10/2023] [Indexed: 11/25/2023]
Abstract
Radiation-induced gastrointestinal damage is a common acute radiation syndrome. Previous studies have highlighted that Galectin-1 and Interleukin-6 (IL-6) are associated with flaking of small intestinal villi and intestinal radioresistance. Therefore, our goal is to study whether gut bacteria regulated by galectin-1 or IL-6 can mitigate radiation-induced small intestine damage. In this study, differences between galectin-1, sgp130-regulated and wild-type (WT) mice were analyzed by microbiome array. The effects of the Firmicutes/Bacteroidetes (F/B) ratio and the proportion of bacterial distribution at the phylum level were observed after 18 Gy whole abdomen radiation. Fecal microbiota transplantation was used to implant radioresistant gut flora into WT mice, and the number of viable small intestinal crypt foci was observed by immunohistochemistry. Fecal transplantation from galectin-1 knockout and sgp130 transgenic mice, with higher radiation resistance, into WT mice significantly increased the number of surviving small intestinal crypts. This radiation resistance, generated through gene regulation, was not affected by the F/B ratio. We initially found that the small intestinal villi of WT mice receiving radioresistant mouse fecal bacteria demonstrated better repair outcomes after radiation exposure. These results indicate the need for a focus on the identification and application of superior radioresistant bacterial strains. In our laboratory, we will further investigate specific radioresistant bacterial strains to alleviate acute side effects of radiation therapy to improve the patients' immune ability and postoperative quality of life.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 129, Da-Pi Road, Niao-Sung District, Kaohsiung 833401, Taiwan
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, 142, Haizhuan Road, Nanzi District, Kaohsiung 811213, Taiwan
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, 129, Da-Pi Road, Niao-Sung District, Kaohsiung 833401, Taiwan
| | - Eng-Yen Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 129, Da-Pi Road, Niao-Sung District, Kaohsiung 833401, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, 70, Lienhai Road, Gushan District, Kaohsiung 80424, Taiwan
| |
Collapse
|
3
|
Zhang S, Chen B, Wang B, Chen H, Li Y, Cao Q, Zhong J, Shieh MJ, Ran Z, Tang T, Yang M, Xu B, Wang Q, Liu Y, Ma L, Wang X, Zhang N, Zhang S, Guo W, Huang L, Schreiber S, Chen M. Effect of Induction Therapy With Olamkicept vs Placebo on Clinical Response in Patients With Active Ulcerative Colitis: A Randomized Clinical Trial. JAMA 2023; 329:725-734. [PMID: 36881032 PMCID: PMC9993185 DOI: 10.1001/jama.2023.1084] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/25/2023] [Indexed: 03/08/2023]
Abstract
Importance Olamkicept, a soluble gp130-Fc-fusion-protein, selectively inhibits interleukin 6 (IL-6) trans-signaling by binding the soluble IL-6 receptor/IL-6 complex. It has anti-inflammatory activities in inflammatory murine models without immune suppression. Objective To assess the effect of olamkicept as induction therapy in patients with active ulcerative colitis. Design, Setting, and Participants Randomized, double-blind, placebo-controlled phase 2 trial of olamkicept in 91 adults with active ulcerative colitis (full Mayo score ≥5, rectal bleeding score ≥1, endoscopy score ≥2) and an inadequate response to conventional therapy. The study was conducted at 22 clinical study sites in East Asia. Patients were recruited beginning in February 2018. Final follow-up occurred in December 2020. Interventions Eligible patients were randomized 1:1:1 to receive a biweekly intravenous infusion of olamkicept 600 mg (n = 30) or 300 mg (n = 31) or placebo (n = 30) for 12 weeks. Main Outcomes and Measures The primary end point was clinical response at week 12 (defined as ≥3 and ≥30% decrease from baseline total Mayo score; range, 0-12 [worst] with ≥1 decrease and ≤1 in rectal bleeding [range, 0-3 {worst}]). There were 25 secondary efficacy outcomes, including clinical remission and mucosal healing at week 12. Results Ninety-one patients (mean age, 41 years; 25 women [27.5%]) were randomized; 79 (86.8%) completed the trial. At week 12, more patients receiving olamkicept 600 mg (17/29 [58.6%]) or 300 mg (13/30 [43.3%]) achieved clinical response than placebo (10/29 [34.5%]), with adjusted difference vs placebo of 26.6% (90% CI, 6.2% to 47.1%; P = .03) for 600 mg and 8.3% (90% CI, -12.6% to 29.1%; P = .52) for 300 mg. Among patients randomized to receive 600 mg olamkicept, 16 of 25 secondary outcomes were statistically significant compared with placebo. Among patients randomized to receive 300 mg, 6 of 25 secondary outcomes were statistically significant compared with placebo. Treatment-related adverse events occurred in 53.3% (16/30) of patients receiving 600 mg olamkicept, 58.1% (18/31) receiving 300 mg olamkicept, and 50% (15/30) receiving placebo. The most common drug-related adverse events were bilirubin presence in the urine, hyperuricemia, and increased aspartate aminotransferase levels, and all were more common in the olamkicept groups compared with placebo. Conclusions and Relevance Among patients with active ulcerative colitis, biweekly infusion of olamkicept 600 mg, but not 300 mg, resulted in a greater likelihood of clinical response at 12 weeks compared with placebo. Further research is needed for replication and to assess longer-term efficacy and safety. Trial Registration ClinicalTrials.gov Identifier: NCT03235752.
Collapse
Affiliation(s)
- Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baili Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hong Chen
- Department of Gastroenterology, Affiliated ZhongDa Hospital, School of Medicine Southeast University, Nanjing, China
| | - Yan Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qian Cao
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jie Zhong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming-Jium Shieh
- Department of Oncology, National Taiwan University Hospital & College of Medicine, Taipei, China
| | - Zhihua Ran
- Division of Gastroenterology and Hepatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tongyu Tang
- Department of Gastroenterology, Bethune First Affiliated Hospital of Jilin University, Changchun, China
| | - Ming Yang
- I-Mab Biopharma (Shanghai), Shanghai, China
| | - Beibei Xu
- I-Mab Biopharma (Shanghai), Shanghai, China
| | - Qiang Wang
- I-Mab Biopharma (Shanghai), Shanghai, China
| | - Yunjie Liu
- I-Mab Biopharma (Shanghai), Shanghai, China
| | - Lijia Ma
- I-Mab Biopharma (Shanghai), Shanghai, China
| | | | - Nan Zhang
- I-Mab Biopharma (Hangzhou), Hangzhou, China
| | - Su Zhang
- I-Mab Biopharma (Hangzhou), Hangzhou, China
| | - Wenyu Guo
- I-Mab Biopharma (Hangzhou), Hangzhou, China
| | | | - Stefan Schreiber
- Department of Medicine I, University Hospital Schleswig Holstein, Kiel University, Kiel, Germany
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Mosly D, MacLeod K, Moir N, Turnbull A, Sims AH, Langdon SP. Variation in IL6ST cytokine family function and the potential of IL6 trans-signalling in ERα positive breast cancer cells. Cell Signal 2023; 103:110563. [PMID: 36565897 DOI: 10.1016/j.cellsig.2022.110563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
High expression of the transmembrane receptor IL6ST (gp130) has been identified as a predictive biomarker of endocrine treatment response in ERα-positive breast cancers. To investigate its function further in this disease, this study evaluated the expression, function and signalling of IL6ST in ERα-positive breast cancer cell lines and investigated crosstalk between ERα and IL6ST. IL6ST was differentially expressed in ERα-positive breast cancer cell lines (low in MCF-7, high in ZR751 and T47D), while multiple soluble isoforms of IL6ST were identified. IL6ST is the common signal transducing receptor component for the IL6ST family of cytokines and the effects of seven IL6ST cytokines on these cell lines were studied. These cytokines caused differential growth and migration effects in these cell lines e.g. MCF-7 cells were growth-stimulated, while ZR751 cells were inhibited by IL6 and OSM.. Activation of the STAT and ERK pathways is associated with these responses. Evidence to support trans-signalling involved in cell growth and migration was obtained in both MCF-7 and ZR751 models. Interaction between cytokines and estrogen on ERα-positive cell lines growth were analysed. High expression of IL6ST (in ZR751) may lead to growth inhibition by interacting cytokines while lower expression (in MCF-7) appears associated with proliferation. High IL6ST expression is consistent with a more beneficial clinical outcome if cytokine action contributes to anti-estrogen action.
Collapse
Affiliation(s)
- Duniya Mosly
- Edinburgh Cancer Research and Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom; Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, Edinburgh, EH4 2XR, United Kingdom
| | - Kenneth MacLeod
- Edinburgh Cancer Research and Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom
| | - Nicholas Moir
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, Edinburgh, EH4 2XR, United Kingdom
| | - Arran Turnbull
- Edinburgh Cancer Research and Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom
| | - Andrew H Sims
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, Edinburgh, EH4 2XR, United Kingdom
| | - Simon P Langdon
- Edinburgh Cancer Research and Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom.
| |
Collapse
|
5
|
Paldor M, Levkovitch-Siany O, Eidelshtein D, Adar R, Enk CD, Marmary Y, Elgavish S, Nevo Y, Benyamini H, Plaschkes I, Klein S, Mali A, Rose-John S, Peled A, Galun E, Axelrod JH. Single-cell transcriptomics reveals a senescence-associated IL-6/CCR6 axis driving radiodermatitis. EMBO Mol Med 2022; 14:e15653. [PMID: 35785521 PMCID: PMC9358397 DOI: 10.15252/emmm.202115653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/22/2022] Open
Abstract
Irradiation‐induced alopecia and dermatitis (IRIAD) are two of the most visually recognized complications of radiotherapy, of which the molecular and cellular basis remains largely unclear. By combining scRNA‐seq analysis of whole skin‐derived irradiated cells with genetic ablation and molecular inhibition studies, we show that senescence‐associated IL‐6 and IL‐1 signaling, together with IL‐17 upregulation and CCR6+‐mediated immune cell migration, are crucial drivers of IRIAD. Bioinformatics analysis colocalized irradiation‐induced IL‐6 signaling with senescence pathway upregulation largely within epidermal hair follicles, basal keratinocytes, and dermal fibroblasts. Loss of cytokine signaling by genetic ablation in IL‐6−/− or IL‐1R−/− mice, or by molecular blockade, strongly ameliorated IRIAD, as did deficiency of CCL20/CCR6‐mediated immune cell migration in CCR6−/− mice. Moreover, IL‐6 deficiency strongly reduced IL‐17, IL‐22, CCL20, and CCR6 upregulation, whereas CCR6 deficiency reciprocally diminished IL‐6, IL‐17, CCL3, and MHC upregulation, suggesting that proximity‐dependent cellular cross talk promotes IRIAD. Therapeutically, topical application of Janus kinase blockers or inhibition of T‐cell activation by cyclosporine effectively reduced IRIAD, suggesting the potential of targeted approaches for the treatment of dermal side effects in radiotherapy patients.
Collapse
Affiliation(s)
- Mor Paldor
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Orr Levkovitch-Siany
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Dana Eidelshtein
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Revital Adar
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Claes D Enk
- Department of Dermatology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Yitzhak Marmary
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadar Benyamini
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shiri Klein
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Alex Mali
- Department of Pathology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Stefan Rose-John
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Amnon Peled
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Eithan Galun
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Jonathan H Axelrod
- The Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
6
|
Berg AF, Ettich J, Weitz HT, Krusche M, Floss DM, Scheller J, Moll JM. Exclusive inhibition of IL-6 trans-signaling by soluble gp130 FlyRFc. Cytokine X 2021; 3:100058. [PMID: 34927050 PMCID: PMC8649222 DOI: 10.1016/j.cytox.2021.100058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/15/2021] [Accepted: 11/23/2021] [Indexed: 01/09/2023] Open
Abstract
A variety of sgp130Fc muteins was generated. Introduction of a gp130 SNP (R281Q) into sgp130Fc increases IL-6 specificity. The sgp130Fc variant sgp130FlyR exclusively affects IL-6 trans-signaling.
gp130 is the signal-transducing receptor for the Interleukin (IL)-6 type cytokines IL-6 and IL-11. To induce signaling, IL-6 forms a complex with IL-6 receptor (IL-6R) and IL-11 with IL-11 receptor (IL-11R). Membrane-bound IL-6R and IL-11R in complex with gp130 and the cytokine mediate classic-signaling, whereas trans-signaling needs soluble IL-6R and IL-11R variants. Interleukin (IL)-6 trans-signaling is of particular importance because it drives the development of autoimmune diseases, including rheumatoid arthritis and chronic inflammatory bowel diseases, whereas a role for IL-11 trans-signaling remains elusive. Soluble gp130 selectively inhibits trans-signaling of IL-6 whereas both, classic- and trans-signaling are abrogated by IL-6- and IL-6R-antibodies. Recently, we described an optimized sgp130 variant, which carries three amino acid substitutions T102Y/Q113F/N114L (sgp130FlyFc) resulting in reduced inhibition of IL-11 trans-signaling by increasing the affinity of sgp130 for the site I of IL-6. Moreover, we described that the patient mutation R281Q in gp130 results in reduced IL-11 signaling. Here, we show that the combination of T102Y/Q113F/N114L and R281Q in the new variant sgp130FlyRFc results in complete preservation of IL-11 mediated trans-signaling, whereas inhibition of IL-6 trans-signaling is maintained. Since sgp130Fc (olamkicept) has successfully completed a phase IIa trial in Crohn’s disease (CD) and ulcerative colitis, sgp130FlyRFc might serve as second-generation therapeutic to diminish IL-11 trans-signaling cross-reactivity.
Collapse
Affiliation(s)
- Anna F Berg
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Hendrik T Weitz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Matthias Krusche
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Lokau J, Garbers Y, Grötzinger J, Garbers C. A single aromatic residue in sgp130Fc/olamkicept allows the discrimination between interleukin-6 and interleukin-11 trans-signaling. iScience 2021; 24:103309. [PMID: 34765926 PMCID: PMC8571719 DOI: 10.1016/j.isci.2021.103309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/16/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
Blocking the activity of cytokines is an efficient strategy to combat inflammatory diseases. Interleukin-6 (IL-6) fulfills its pro-inflammatory properties via its soluble receptor (IL-6 trans-signaling). The selective trans-signaling inhibitor olamkicept (sgp130Fc) is currently in clinical development. We have previously shown that sgp130Fc can also efficiently block trans-signaling of the closely related cytokine IL-11, which elicits the question how selectivity for one of the two cytokines can be achieved. Using structural information, we show that the interfaces between IL-6R-gp130 and IL-11R-gp130, respectively, within the so-called site III are different between the two cytokines. Modification of an aromatic cluster around Q113 of gp130 within these interfaces allows the discrimination between IL-6 and IL-11 trans-signaling. Using recombinant sgp130Fc variants, we demonstrate that these differences can indeed be exploited to generate a truly selective IL-6 trans-signaling inhibitor. Our data highlight how the selectivity of a clinically relevant designer protein can be further improved.
Collapse
Affiliation(s)
- Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Yvonne Garbers
- Institute of Psychology, Kiel University, 24118 Kiel, Germany
| | | | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| |
Collapse
|
8
|
Selective Inhibition of IL-6 Trans-Signaling Has No Beneficial Effect on the Posttraumatic Cytokine Release after Multiple Trauma in Mice. Life (Basel) 2021; 11:life11111252. [PMID: 34833127 PMCID: PMC8617644 DOI: 10.3390/life11111252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 12/26/2022] Open
Abstract
While improvements in pre-hospital and in-hospital care allow more multiple trauma patients to advance to intensive care, the incidence of posttraumatic multiple organ dysfunction syndrome (MODS) is on the rise. Herein, the influence of a selective IL-6 trans-signaling inhibition on posttraumatic cytokine levels was investigated as an approach to prevent MODS caused by a dysbalanced posttraumatic immune reaction. Therefore, the artificial IL-6 trans-signaling inhibitor sgp130Fc was deployed in a murine multiple trauma model (femoral fracture plus bilateral chest trauma). The traumatized mice were treated with sgp130Fc (FP) and compared to untreated mice (WT) and IL-6 receptor knockout mice (RKO), which received the same traumas. The overall trauma mortality was 4.4%. Microscopic pulmonary changes were apparent after multiple trauma and after isolated bilateral chest trauma. Elevated IL-6, MCP-3 and RANTES plasma levels were measured after trauma, indicating a successful induction of a systemic inflammatory reaction. Significantly reduced IL-6 and RANTES plasma levels were visible in RKO compared to WT. Only a little effect was visible in FP compared to WT. Comparable cytokine levels in WT and FP indicate neither a protective nor an adverse effect of sgp130Fc on the cytokine release after femoral fracture and bilateral chest trauma.
Collapse
|
9
|
Shekhawat J, Gauba K, Gupta S, Purohit P, Mitra P, Garg M, Misra S, Sharma P, Banerjee M. Interleukin-6 Perpetrator of the COVID-19 Cytokine Storm. Indian J Clin Biochem 2021; 36:440-450. [PMID: 34177139 PMCID: PMC8216093 DOI: 10.1007/s12291-021-00989-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022]
Abstract
COVID-19 has emerged as a global pandemic. It is mainly manifested as pneumonia which may deteriorate into severe respiratory failure. The major hallmark of the disease is the systemic inflammatory immune response characterized by Cytokine Storm (CS). CS is marked by elevated levels of inflammatory cytokines, mainly interleukin-6 (IL-6), IL-8, IL-10, tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). Of these, IL-6 is found to be significantly associated with higher mortality. IL-6 is also a robust marker for predicting disease prognosis and deterioration of clinical profile. In this review, the pivotal role played by IL-6 in the immuno-pathology of COVID-19 has been illustrated. The role of IL-6 as a pleiotropic cytokine executing both pro and anti-inflammatory activities has been reviewed. ADAM 10, a metalloproteinase switches the anti-inflammatory pathway of IL-6 to pro inflammatory hence blocking the action of ADAM 10 could be a new therapeutic strategy to mitigate the proinflammatory action of IL-6. Furthermore, we explore the role of anti-IL6 agents, IL-6 receptor antibodies which were being used for autoimmune diseases but now are being repurposed for the therapy of COVID-19.
Collapse
Affiliation(s)
- Jyoti Shekhawat
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Kavya Gauba
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Shruti Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Mahendra Garg
- Department of Endocrinology, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Sanjeev Misra
- Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| |
Collapse
|
10
|
Shriki A, Lanton T, Sonnenblick A, Levkovitch-Siany O, Eidelshtein D, Abramovitch R, Rosenberg N, Pappo O, Elgavish S, Nevo Y, Safadi R, Peled A, Rose-John S, Galun E, Axelrod JH. Multiple Roles of IL6 in Hepatic Injury, Steatosis, and Senescence Aggregate to Suppress Tumorigenesis. Cancer Res 2021; 81:4766-4777. [PMID: 34117031 DOI: 10.1158/0008-5472.can-21-0321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/05/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) typically develops on a background of chronic hepatitis for which the proinflammatory cytokine IL6 is conventionally considered a crucial driving factor. Paradoxically, IL6 also acts as a hepatoprotective factor in chronic liver injury. Here we used the multidrug-resistant gene 2 knockout (Mdr2-/-) mouse model to elucidate potential roles of IL6 in chronic hepatitis-associated liver cancer. Long-term analysis of three separate IL6/Stat3 signaling-deficient Mdr2-/- strains revealed aggravated liver injury with increased dysplastic nodule formation and significantly accelerated tumorigenesis in all strains. Tumorigenesis in the IL6/Stat3-perturbed models was strongly associated with enhanced macrophage accumulation and hepatosteatosis, phenotypes of nonalcoholic steatohepatitis (NASH), as well as with significant reductions in senescence and the senescence-associated secretory phenotype (SASP) accompanied by increased hepatocyte proliferation. These findings reveal a crucial suppressive role for IL6/Stat3 signaling in chronic hepatitis-associated hepatocarcinogenesis by impeding protumorigenic NASH-associated phenotypes and by reinforcing the antitumorigenic effects of the SASP. SIGNIFICANCE: These findings describe a context-dependent role of IL6 signaling in hepatocarcinogenesis and predict that increased IL6-neutralizing sgp130 levels in some patients with NASH may herald early HCC development.See related commentary by Huynh and Ernst, p. 4671.
Collapse
Affiliation(s)
- Anat Shriki
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Tali Lanton
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Amir Sonnenblick
- Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orr Levkovitch-Siany
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Dana Eidelshtein
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Rinat Abramovitch
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Human Biology Research Center, Hadassah University Medical Center, Jerusalem, Israel
| | - Nofar Rosenberg
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Orit Pappo
- Department of Pathology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Sharona Elgavish
- Bioinformatics Unit, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School, Ein Karem, Jerusalem, Israel
| | - Yuval Nevo
- Bioinformatics Unit, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School, Ein Karem, Jerusalem, Israel
| | - Rifaat Safadi
- Liver Unit, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Amnon Peled
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Stefan Rose-John
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel.
| | - Jonathan H Axelrod
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel.
| |
Collapse
|
11
|
Heise D, Derrac Soria A, Hansen S, Dambietz C, Akbarzadeh M, Berg AF, Waetzig GH, Jones SA, Dvorsky R, Ahmadian MR, Scheller J, Moll JM. Selective inhibition of IL-6 trans-signaling by a miniaturized, optimized chimeric soluble gp130 inhibits T H17 cell expansion. Sci Signal 2021; 14:eabc3480. [PMID: 34404751 DOI: 10.1126/scisignal.abc3480] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The cytokine interleukin-6 (IL-6) signals through three mechanisms called classic signaling, trans-signaling, and trans-presentation. IL-6 trans-signaling is distinctly mediated through a soluble form of its transmembrane receptor IL-6R (sIL-6R) and the coreceptor gp130 and is implicated in multiple autoimmune diseases. Although a soluble form of gp130 (sgp130) inhibits only IL-6 trans-signaling, it also blocks an analogous trans-signaling mechanism of IL-11 and its soluble receptor sIL-11R. Here, we report miniaturized chimeric soluble gp130 variants that efficiently trap IL-6:sIL-6R but not IL-11:sIL-11R complexes. We designed a novel IL-6 trans-signaling trap by fusing a miniaturized sgp130 variant to an IL-6:sIL-6R complex-binding nanobody and the Fc portion of immunoglobulin G (IgG). This trap, called cs-130Fc, exhibited improved inhibition of as well as increased selectivity for IL-6 trans-signaling compared to the conventional fusion protein sgp130Fc. We introduced affinity-enhancing mutations in cs-130Fc and sgp130Fc that further improved selectivity toward IL-6 trans-signaling. Moreover, cs-130Fc efficiently inhibited the expansion of T helper 17 (TH17) cells in cultures of mouse CD4+ T cells treated with IL-6:sIL-6R. Thus, these variants may provide or lead to the development of more precisely targeted therapeutics for inflammatory disorders associated with IL-6 trans-signaling.
Collapse
Affiliation(s)
- Denise Heise
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Alicia Derrac Soria
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - Selina Hansen
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Christine Dambietz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Mohammad Akbarzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Anna F Berg
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Georg H Waetzig
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel 24105, Germany
- CONARIS Research Institute AG, Kiel 24118, Germany
| | - Simon A Jones
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XN, UK
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany.
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany.
| |
Collapse
|
12
|
Jenner AL, Aogo RA, Alfonso S, Crowe V, Deng X, Smith AP, Morel PA, Davis CL, Smith AM, Craig M. COVID-19 virtual patient cohort suggests immune mechanisms driving disease outcomes. PLoS Pathog 2021; 17:e1009753. [PMID: 34260666 PMCID: PMC8312984 DOI: 10.1371/journal.ppat.1009753] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/26/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
To understand the diversity of immune responses to SARS-CoV-2 and distinguish features that predispose individuals to severe COVID-19, we developed a mechanistic, within-host mathematical model and virtual patient cohort. Our results suggest that virtual patients with low production rates of infected cell derived IFN subsequently experienced highly inflammatory disease phenotypes, compared to those with early and robust IFN responses. In these in silico patients, the maximum concentration of IL-6 was also a major predictor of CD8+ T cell depletion. Our analyses predicted that individuals with severe COVID-19 also have accelerated monocyte-to-macrophage differentiation mediated by increased IL-6 and reduced type I IFN signalling. Together, these findings suggest biomarkers driving the development of severe COVID-19 and support early interventions aimed at reducing inflammation.
Collapse
Affiliation(s)
- Adrianne L. Jenner
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
| | - Rosemary A. Aogo
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Sofia Alfonso
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Vivienne Crowe
- Department of Mathematics and Statistics, Concordia University, Montréal, Québec, Canada
| | - Xiaoyan Deng
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
| | - Amanda P. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Penelope A. Morel
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Courtney L. Davis
- Natural Science Division, Pepperdine University, Malibu, California, United States of America
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Morgan Craig
- Sainte-Justine University Hospital Research Centre, Montréal, Québec, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Québec, Canada
- Department of Physiology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
13
|
Rose-John S. Therapeutic targeting of IL-6 trans-signaling. Cytokine 2021; 144:155577. [PMID: 34022535 DOI: 10.1016/j.cyto.2021.155577] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-6 (IL-6) is a cytokine, which is involved in innate and acquired immunity, in neural cell maintenance and in metabolism. IL-6 can be synthesized by many different cells including myeloid cells, fibroblasts, endothelial cells and lymphocytes. The synthesis of IL-6 is strongly stimulated by Toll like receptors and by IL-1. Therefore, IL-6 levels in the body are high during infection and inflammatory processes. Moreover, IL-6 is a prominent growth factor of tumor cells and plays a major role in inflammation associated cancer. On target cells, IL-6 binds to an IL-6 receptor, which is not signaling competent. The complex of IL-6 and IL-6 receptor associate with a second receptor subunit, glycoprotein gp130, which dimerizes and initiates intracellular signaling. Cells, which do not express the IL-6 receptor are not responsive to IL-6. They can, however, be stimulated by the complex of IL-6 and a soluble form of the IL-6 receptor, which is generated by limited proteolysis and to a lesser extent by translation from an alternatively spliced mRNA. This process has been named IL-6 trans-signaling. This review article will explain the biology of IL-6 trans-signaling and the specific inhibition of this mode of signaling, which has been recognized to be fundamental in inflammation and cancer.
Collapse
|
14
|
Sharma S. Interleukin-6 Trans-signaling: A Pathway With Therapeutic Potential for Diabetic Retinopathy. Front Physiol 2021; 12:689429. [PMID: 34093244 PMCID: PMC8170152 DOI: 10.3389/fphys.2021.689429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Affiliation(s)
- Shruti Sharma
- Center for Biotechnology & Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
15
|
Montgomery A, Tam F, Gursche C, Cheneval C, Besler K, Enns W, Manku S, Rey K, Hanson PJ, Rose-John S, McManus BM, Choy JC. Overlapping and distinct biological effects of IL-6 classic and trans-signaling in vascular endothelial cells. Am J Physiol Cell Physiol 2021; 320:C554-C565. [PMID: 33471622 DOI: 10.1152/ajpcell.00323.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023]
Abstract
IL-6 affects tissue protective/reparative and inflammatory properties of vascular endothelial cells (ECs). This cytokine can signal to cells through classic and trans-signaling mechanisms, which are differentiated based on the expression of IL-6 receptor (IL-6R) on the surface of target cells. The biological effects of these IL-6-signaling mechanisms are distinct and have implications for vascular pathologies. We have directly compared IL-6 classic and trans-signaling in ECs. Human ECs expressed IL-6R in culture and in situ in coronary arteries from heart transplants. Stimulation of human ECs with IL-6, to model classic signaling, triggered the activation of phosphatidylinositol 3-kinase (PI3K)-Akt and ERK1/2 signaling pathways, whereas stimulation with IL-6 + sIL-6R, to model trans-signaling, triggered activation of STAT3, PI3K-Akt, and ERK1/2 pathways. IL-6 classic signaling reduced persistent injury of ECs in an allograft model of vascular rejection and inhibited cell death induced by growth factor withdrawal. When inflammatory effects were examined, IL-6 classic signaling did not induce ICAM or CCL2 expression but was sufficient to induce secretion of CXCL8 and support transmigration of neutrophil-like cells. IL-6 trans-signaling induced all inflammatory effects studied. Our findings show that IL-6 classic and trans-signaling have overlapping but distinct properties in controlling EC survival and inflammatory activation. This has implications for understanding the effects of IL-6 receptor-blocking therapies as well as for vascular responses in inflammatory and immune conditions.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/transplantation
- Cells, Cultured
- Cytokine Receptor gp130/agonists
- Cytokine Receptor gp130/metabolism
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelial Cells/transplantation
- Female
- Graft Rejection/metabolism
- Graft Rejection/pathology
- Graft Rejection/prevention & control
- Humans
- Inflammation Mediators/metabolism
- Interleukin-6/pharmacology
- Male
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Middle Aged
- Receptors, Interleukin-6/agonists
- Receptors, Interleukin-6/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Ashani Montgomery
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Franklin Tam
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Chris Gursche
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Catherine Cheneval
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Katrina Besler
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Winnie Enns
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sukhkbir Manku
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kevin Rey
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Paul J Hanson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts University Kiel, Kiel, Germany
| | - Bruce M McManus
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart and Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Jonathan C Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
16
|
Yousif AS, Ronsard L, Shah P, Omatsu T, Sangesland M, Bracamonte Moreno T, Lam EC, Vrbanac VD, Balazs AB, Reinecker HC, Lingwood D. The persistence of interleukin-6 is regulated by a blood buffer system derived from dendritic cells. Immunity 2020; 54:235-246.e5. [PMID: 33357409 PMCID: PMC7836640 DOI: 10.1016/j.immuni.2020.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/17/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
The interleukin-6 (IL-6) membrane receptor and its circulating soluble form, sIL-6R, can be targeted by antibody therapy to reduce deleterious immune signaling caused by chronic overexpression of the pro-inflammatory cytokine IL-6. This strategy may also hold promise for treating acute hyperinflammation, such as observed in coronavirus disease 2019 (COVID-19), highlighting a need to define regulators of IL-6 homeostasis. We found that conventional dendritic cells (cDCs), defined in mice via expression of the transcription factor Zbtb46, were a major source of circulating sIL-6R and, thus, systemically regulated IL-6 signaling. This was uncovered through identification of a cDC-dependent but T cell-independent modality that naturally adjuvants plasma cell differentiation and antibody responses to protein antigens. This pathway was then revealed as part of a broader biological buffer system in which cDC-derived sIL-6R set the in-solution persistence of IL-6. This control axis may further inform the development of therapeutic agents to modulate pro-inflammatory immune reactions.
Collapse
Affiliation(s)
- Ashraf S Yousif
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Pankaj Shah
- The Center for the Study of Inflammatory Bowel Disease, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Tatsushi Omatsu
- The Center for the Study of Inflammatory Bowel Disease, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Maya Sangesland
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Thalia Bracamonte Moreno
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Evan C Lam
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Vladimir D Vrbanac
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Alejandro B Balazs
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Hans-Christian Reinecker
- The Center for the Study of Inflammatory Bowel Disease, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; The Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
17
|
Chen X, Tian J, Su GH, Lin J. Blocking IL-6/GP130 Signaling Inhibits Cell Viability/Proliferation, Glycolysis, and Colony Forming Activity in Human Pancreatic Cancer Cells. Curr Cancer Drug Targets 2020; 19:417-427. [PMID: 29714141 DOI: 10.2174/1568009618666180430123939] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Elevated production of the pro-inflammatory cytokine interleukin-6 (IL-6) and dysfunction of IL-6 signaling promotes tumorigenesis and are associated with poor survival outcomes in multiple cancer types. Recent studies showed that the IL-6/GP130/STAT3 signaling pathway plays a pivotal role in pancreatic cancer development and maintenance. OBJECTIVE We aim to develop effective treatments through inhibition of IL-6/GP130 signaling in pancreatic cancer. METHODS The effects on cell viability and cell proliferation were measured by MTT and BrdU assays, respectively. The effects on glycolysis was determined by cell-based assays to measure lactate levels. Protein expression changes were evaluated by western blotting and immunoprecipitation. siRNA transfection was used to knock down estrogen receptor α gene expression. Colony forming ability was determined by colony forming cell assay. RESULTS We demonstrated that IL-6 can induce pancreatic cancer cell viability/proliferation and glycolysis. We also showed that a repurposing FDA-approved drug bazedoxifene could inhibit the IL-6/IL-6R/GP130 complexes. Bazedoxifene also inhibited JAK1 binding to IL-6/IL-6R/GP130 complexes and STAT3 phosphorylation. In addition, bazedoxifene impeded IL-6 mediated cell viability/ proliferation and glycolysis in pancreatic cancer cells. Consistently, other IL-6/GP130 inhibitors SC144 and evista showed similar inhibition of IL-6 stimulated cell viability, cell proliferation and glycolysis. Furthermore, all three IL-6/GP130 inhibitors reduced the colony forming ability in pancreatic cancer cells. CONCLUSION Our findings demonstrated that IL-6 stimulates pancreatic cancer cell proliferation, survival and glycolysis, and supported persistent IL-6 signaling is a viable therapeutic target for pancreatic cancer using IL-6/GP130 inhibitors.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - Jilai Tian
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, United States.,State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.,Collaborative Innovation Center of Suzhou Nano-Science and Technology, Suzhou Key Laboratory of Biomaterials and Technologies, Suzhou, Jiangsu 215123, China
| | - Gloria H Su
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, United States
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
| |
Collapse
|
18
|
Wilkinson AN, Chang K, Kuns RD, Henden AS, Minnie SA, Ensbey KS, Clouston AD, Zhang P, Koyama M, Hidalgo J, Rose-John S, Varelias A, Vuckovic S, Gartlan KH, Hill GR. IL-6 dysregulation originates in dendritic cells and mediates graft-versus-host disease via classical signaling. Blood 2019; 134:2092-2106. [PMID: 31578204 DOI: 10.1182/blood.2019000396] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/22/2019] [Indexed: 12/13/2022] Open
Abstract
Graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (alloSCT) is characterized by interleukin-6 (IL-6) dysregulation. IL-6 can mediate effects via various pathways, including classical, trans, and cluster signaling. Given the recent availability of agents that differentially inhibit these discrete signaling cascades, understanding the source and signaling and cellular targets of this cytokine is paramount to inform the design of clinical studies. Here we demonstrate that IL-6 secretion from recipient dendritic cells (DCs) initiates the systemic dysregulation of this cytokine. Inhibition of DC-driven classical signaling after targeted IL-6 receptor (IL-6R) deletion in T cells eliminated pathogenic donor Th17/Th22 cell differentiation and resulted in long-term survival. After engraftment, donor DCs assume the same role, maintaining classical IL-6 signaling-dependent GVHD responses. Surprisingly, cluster signaling was not active after transplantation, whereas inhibition of trans signaling with soluble gp130Fc promoted severe, chronic cutaneous GVHD. The latter was a result of exaggerated polyfunctional Th22-cell expansion that was reversed by IL-22 deletion or IL-6R inhibition. Importantly, inhibition of IL-6 classical signaling did not impair the graft-versus-leukemia effect. Together, these data highlight IL-6 classical signaling and downstream Th17/Th22 differentiation as important therapeutic targets after alloSCT.
Collapse
Affiliation(s)
- Andrew N Wilkinson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Karshing Chang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andrea S Henden
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Simone A Minnie
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | | | - Ping Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Motoko Koyama
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Juan Hidalgo
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, and
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, Kiel, Germany; and
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Slavica Vuckovic
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Kate H Gartlan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Division of Medical Oncology, University of Washington, Seattle, WA
| |
Collapse
|
19
|
Development and Validation of a Reporter-Cell-Line-Based Bioassay for Therapeutic Soluble gp130-Fc. Molecules 2019; 24:molecules24213845. [PMID: 31731431 PMCID: PMC6864625 DOI: 10.3390/molecules24213845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 02/08/2023] Open
Abstract
Soluble glycoprotein 130 kDa (sgp130)-Fc fusion protein, an innovative therapeutic bio-macromolecular drug specifically targeting IL-6 trans-signaling, proved to have good potential for application in the treatment of chronic inflammatory diseases. A simple and quick bioassay for sgp130-Fc was developed in this study. First, a stable reporter cell line was obtained by transfecting CHO-K1 cells with a sis-inducible element (SIE)-driving luciferase reporter gene (CHO/SIE-Luc). Sgp130-Fc could inhibit the expression of luciferase induced by IL-6/sIL-6Rα complex, and the dose–response curve fitted the four-parameter logistic model, with 50% inhibitive concentration (IC50) being about 500 ng/mL and detection range between 40 and 5000 ng/mL. Both the intra-assay and inter-assay coefficient of variation (CV) were below 10.0%, and the accuracy estimates ranged from 94.1% to 106.2%. The assay indicated a good linearity (R² = 0.99) in the range of 50% to 150% of optimized initial concentration. No significant difference was found between the test results of new assay and BAF3/gp130 proliferation assay (unpaired t test, p = 0.4960, n = 6). The dose-response effect and copy number of the luciferase gene was basically unchanged after long-term culture (up to passage 60), demonstrating the stability of CHO/SIE-Luc cells. These results suggested that the new reporter assay was suited to routine potency determination of therapeutic sgp130-Fc.
Collapse
|
20
|
Kleinegger F, Hofer E, Wodlej C, Golob-Schwarzl N, Birkl-Toeglhofer AM, Stallinger A, Petzold J, Orlova A, Krassnig S, Reihs R, Niedrist T, Mangge H, Park YN, Thalhammer M, Aigelsreiter A, Lax S, Garbers C, Fickert P, Rose-John S, Moriggl R, Rinner B, Haybaeck J. Pharmacologic IL-6Rα inhibition in cholangiocarcinoma promotes cancer cell growth and survival. Biochim Biophys Acta Mol Basis Dis 2019; 1865:308-321. [DOI: 10.1016/j.bbadis.2018.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 02/08/2023]
|
21
|
Valle ML, Dworshak J, Sharma A, Ibrahim AS, Al-Shabrawey M, Sharma S. Inhibition of interleukin-6 trans-signaling prevents inflammation and endothelial barrier disruption in retinal endothelial cells. Exp Eye Res 2018; 178:27-36. [PMID: 30240585 DOI: 10.1016/j.exer.2018.09.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/20/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022]
Abstract
Vascular inflammation plays a critical role in the pathogenesis of diabetic retinopathy. Recently, Interleukin-6 (IL-6) trans-signaling via soluble IL-6 receptor (sIL-6R) has emerged as a prominent regulator of inflammation in endothelial cells. This study was designed to test the hypothesis that selective inhibition of the IL-6 trans-signaling pathway will attenuate inflammation and subsequent barrier disruption in retinal endothelial cells. Human retinal endothelial cells (HRECs) were exposed to IL-6 and sIL-6R to induce IL-6 trans-signaling and the commercially available compound sgp130Fc (soluble gp-130 fused chimera) was used to selectively inhibit IL-6 trans-signaling. IL-6 trans-signaling activation caused a significant increase in STAT3 phosphorylation, expression of adhesion molecules, ROS production and apoptosis in HRECs whereas a significant decrease in mitochondrial membrane potential and NO production was observed in IL-6 trans-signaling activated cells. These changes were not observed in cells pre-treated with sgp130Fc. IL-6 trans-signaling activation was sufficient to cause barrier disruption in endothelial monolayers and pre-treatment of HRECs with sgp130Fc, maintained endothelial barrier function similar to that of untreated cells. Thus, in conclusion, these results indicate that IL-6 trans-signaling is an important mediator of inflammation, apoptosis and barrier disruptive effects in the retinal endothelial cells and inhibition of the IL-6 trans-signaling pathway using sgp130-Fc attenuates vascular inflammation and endothelial barrier disruption.
Collapse
Affiliation(s)
- Maria L Valle
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Janine Dworshak
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Ahmed S Ibrahim
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA, USA; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed Al-Shabrawey
- James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Oral Biology and Anatomy, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA; James & Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
22
|
Lam C, Ferguson ID, Mariano MC, Lin YHT, Murnane M, Liu H, Smith GA, Wong SW, Taunton J, Liu JO, Mitsiades CS, Hann BC, Aftab BT, Wiita AP. Repurposing tofacitinib as an anti-myeloma therapeutic to reverse growth-promoting effects of the bone marrow microenvironment. Haematologica 2018; 103:1218-1228. [PMID: 29622655 PMCID: PMC6029548 DOI: 10.3324/haematol.2017.174482] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 03/15/2018] [Indexed: 12/20/2022] Open
Abstract
The myeloma bone marrow microenvironment promotes proliferation of malignant plasma cells and resistance to therapy. Activation of JAK/STAT signaling is thought to be a central component of these microenvironment-induced phenotypes. In a prior drug repurposing screen, we identified tofacitinib, a pan-JAK inhibitor Food and Drug Administration (FDA) approved for rheumatoid arthritis, as an agent that may reverse the tumor-stimulating effects of bone marrow mesenchymal stromal cells. Herein, we validated in vitro, in stromal-responsive human myeloma cell lines, and in vivo, in orthotopic disseminated xenograft models of myeloma, that tofacitinib showed efficacy in myeloma models. Furthermore, tofacitinib strongly synergized with venetoclax in coculture with bone marrow stromal cells but not in monoculture. Surprisingly, we found that ruxolitinib, an FDA approved agent targeting JAK1 and JAK2, did not lead to the same anti-myeloma effects. Combination with a novel irreversible JAK3-selective inhibitor also did not enhance ruxolitinib effects. Transcriptome analysis and unbiased phosphoproteomics revealed that bone marrow stromal cells stimulate a JAK/STAT-mediated proliferative program in myeloma cells, and tofacitinib reversed the large majority of these pro-growth signals. Taken together, our results suggest that tofacitinib reverses the growth-promoting effects of the tumor microenvironment. As tofacitinib is already FDA approved, these results can be rapidly translated into potential clinical benefits for myeloma patients.
Collapse
Affiliation(s)
- Christine Lam
- Department of Laboratory Medicine, University of California, San Francisco, CA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Ian D Ferguson
- Department of Laboratory Medicine, University of California, San Francisco, CA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Margarette C Mariano
- Department of Laboratory Medicine, University of California, San Francisco, CA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Yu-Hsiu T Lin
- Department of Laboratory Medicine, University of California, San Francisco, CA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Megan Murnane
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA.,Department of Medicine, University of California, San Francisco, CA
| | - Hui Liu
- Department of Laboratory Medicine, University of California, San Francisco, CA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Geoffrey A Smith
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA
| | - Sandy W Wong
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA.,Department of Medicine, University of California, San Francisco, CA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | | | - Byron C Hann
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Blake T Aftab
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA.,Department of Medicine, University of California, San Francisco, CA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, CA .,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| |
Collapse
|
23
|
Baran P, Hansen S, Waetzig GH, Akbarzadeh M, Lamertz L, Huber HJ, Ahmadian MR, Moll JM, Scheller J. The balance of interleukin (IL)-6, IL-6·soluble IL-6 receptor (sIL-6R), and IL-6·sIL-6R·sgp130 complexes allows simultaneous classic and trans-signaling. J Biol Chem 2018; 293:6762-6775. [PMID: 29559558 DOI: 10.1074/jbc.ra117.001163] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/12/2018] [Indexed: 01/24/2023] Open
Abstract
Interleukin (IL-)6 is the major pro-inflammatory cytokine within the IL-6 family. IL-6 signals via glycoprotein 130 (gp130) and the membrane-bound or soluble IL-6 receptor (IL-6R), referred to as classic or trans-signaling, respectively. Whereas inflammation triggers IL-6 expression, eventually rising to nanogram/ml serum levels, soluble IL-6R (sIL-6R) and soluble gp130 (sgp130) are constitutively present in the upper nanogram/ml range. Calculations based on intermolecular affinities have suggested that systemic IL-6 is immediately trapped in IL-6·sIL-6R and IL-6·sIL-6R·sgp130 complexes, indicating that sIL-6R and sgp130 constitute a buffer system that increases the serum half-life of IL-6 or restricts systemic IL-6 signaling. However, this scenario has not been experimentally validated. Here, we quantified IL-6·sIL-6R and IL-6·sIL-6R·sgp130 complexes over a wide concentration range. The amounts of IL-6 used in this study reflect concentrations found during active inflammatory events. Our results indicated that most IL-6 is free and not complexed with sIL-6R or sgp130, indicating that the level of endogenous sgp130 in the bloodstream is not sufficient to block IL-6 trans-signaling via sIL-6R. Importantly, addition of the single-domain antibody VHH6, which specifically stabilizes IL-6·sIL-6R complexes but did not bind to IL-6 or sIL-6R alone, drove free IL-6 into IL-6·sIL-6R complexes and boosted trans-signaling but not classic signaling, demonstrating that endogenous sIL-6R has at least the potential to form complexes with IL-6. Our findings indicate that even though high concentrations of sIL-6R and sgp130 are present in human serum, the relative ratio of free IL-6 to IL-6·sIL-6R allows for simultaneous classic and trans-signaling.
Collapse
Affiliation(s)
- Paul Baran
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Selina Hansen
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | | | - Mohammad Akbarzadeh
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Larissa Lamertz
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Heinrich J Huber
- the Institute for Automation Engineering, Otto-von-Guericke University, Magdeburg 39106, Germany
| | - M Reza Ahmadian
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Jens M Moll
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Jürgen Scheller
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany,
| |
Collapse
|
24
|
Liu Q, Yu S, Li A, Xu H, Han X, Wu K. Targeting interlukin-6 to relieve immunosuppression in tumor microenvironment. Tumour Biol 2017. [PMID: 28639898 DOI: 10.1177/1010428317712445] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immunotolerance is one of the hallmarks of malignant tumors. Tumor cells escape from host immune surveillance through various mechanisms resulting in tumor progression and therapeutic resistance. Interlukin-6 is a proinflammatory cytokine involved in many physiological and pathological processes by integrating with multiple intracellular signaling pathways. Aberrant expression of interlukin-6 is associated with the growth, metastasis, and chemotherapeutic resistance in a wide range of cancers. Interlukin-6 exerts immunosuppressive capacity mostly by stimulating the infiltrations of myeloid-derived suppressor cells, tumor-associated neutrophils, and cancer stem-like cells via Janus-activated kinase/signal transducer and activator of transcription 3 pathway in tumor microenvironment. On this foundation, blockage of interlukin-6 signal may provide potential approaches to novel therapies. In this review, we introduced interlukin-6 pathways and summarized molecular mechanisms related to interlukin-6-induced immunosuppression of tumor cell. We also concluded recent clinical studies targeting interlukin-6 as an immune-based therapeutic intervention in patients with cancer.
Collapse
Affiliation(s)
- Qian Liu
- 1 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengnan Yu
- 1 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anping Li
- 2 Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hanxiao Xu
- 1 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinwei Han
- 2 Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kongming Wu
- 1 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Burger R, Günther A, Klausz K, Staudinger M, Peipp M, Penas EMM, Rose-John S, Wijdenes J, Gramatzki M. Due to interleukin-6 type cytokine redundancy only glycoprotein 130 receptor blockade efficiently inhibits myeloma growth. Haematologica 2016; 102:381-390. [PMID: 27658435 DOI: 10.3324/haematol.2016.145060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 09/14/2016] [Indexed: 12/25/2022] Open
Abstract
Interleukin-6 has an important role in the pathophysiology of multiple myeloma where it supports the growth and survival of the malignant plasma cells in the bone marrow. It belongs to a family of cytokines which use the glycoprotein 130 chain for signal transduction, such as oncostatin M or leukemia inhibitory factor. Targeting interleukin-6 in plasma cell diseases is currently evaluated in clinical trials with monoclonal antibodies. Here, efforts were made to elucidate the contribution of interleukin-6 and glycoprotein 130 signaling in malignant plasma cell growth in vivo In the xenograft severe combined immune deficiency model employing our interleukin-6-dependent plasma cell line INA-6, the lack of human interleukin-6 induced autocrine interleukin-6 production and a proliferative response to other cytokines of the glycoprotein 130 family. Herein, mice were treated with monoclonal antibodies against human interleukin-6 (elsilimomab/B-E8), the interleukin-6 receptor (B-R6), and with an antibody blocking glycoprotein 130 (B-R3). While treatment of mice with interleukin-6 and interleukin-6 receptor antibodies resulted in a modest delay in tumor growth, the development of plasmacytomas was completely prevented with the anti-glycoprotein 130 antibody. Importantly, complete inhibition was also achieved using F(ab')2-fragments of monoclonal antibody B-R3. Tumors harbor activated signal transducer and activator of transcription 3, and in vitro, the antibody inhibited leukemia inhibitory factor stimulated signal transducer and activator of transcription 3 phosphorylation and cell growth, while being less effective against interleukin-6. In conclusion, the growth of INA-6 plasmacytomas in vivo under interleukin-6 withdrawal remains strictly dependent on glycoprotein 130, and other glycoprotein 130 cytokines may substitute for interleukin-6. Antibodies against glycoprotein 130 are able to overcome this redundancy and should be explored for a possible therapeutic window.
Collapse
Affiliation(s)
- Renate Burger
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andreas Günther
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Matthias Staudinger
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Eva Maria Murga Penas
- Institute of Human Genetics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Stefan Rose-John
- Department of Biochemistry, Christian-Albrechts-University of Kiel, Medical Faculty, Germany
| | | | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
26
|
Marmary Y, Adar R, Gaska S, Wygoda A, Maly A, Cohen J, Eliashar R, Mizrachi L, Orfaig-Geva C, Baum BJ, Rose-John S, Galun E, Axelrod JH. Radiation-Induced Loss of Salivary Gland Function Is Driven by Cellular Senescence and Prevented by IL6 Modulation. Cancer Res 2016; 76:1170-80. [PMID: 26759233 DOI: 10.1158/0008-5472.can-15-1671] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/19/2015] [Indexed: 11/16/2022]
Abstract
Head and neck cancer patients treated by radiation commonly suffer from a devastating side effect known as dry-mouth syndrome, which results from the irreversible loss of salivary gland function via mechanisms that are not completely understood. In this study, we used a mouse model of radiation-induced salivary hypofunction to investigate the outcomes of DNA damage in the head and neck region. We demonstrate that the loss of salivary function was closely accompanied by cellular senescence, as evidenced by a persistent DNA damage response (γH2AX and 53BP1) and the expression of senescence-associated markers (SA-βgal, p19ARF, and DcR2) and secretory phenotype (SASP) factors (PAI-1 and IL6). Notably, profound apoptosis or necrosis was not observed in irradiated regions. Signs of cellular senescence were also apparent in irradiated salivary glands surgically resected from human patients who underwent radiotherapy. Importantly, using IL6 knockout mice, we found that sustained expression of IL6 in the salivary gland long after initiation of radiation-induced DNA damage was required for both senescence and hypofunction. Additionally, we demonstrate that IL6 pretreatment prevented both senescence and salivary gland hypofunction via a mechanism involving enhanced DNA damage repair. Collectively, these results indicate that cellular senescence is a fundamental mechanism driving radiation-induced damage in the salivary gland and suggest that IL6 pretreatment may represent a promising therapeutic strategy to preserve salivary gland function in head and neck cancer patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Yitzhak Marmary
- Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Revital Adar
- Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Svetlana Gaska
- Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Annette Wygoda
- Department of Oncology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Alexander Maly
- Department of Pathology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Jonathan Cohen
- Department of Otolaryngology/Head and Neck Surgery, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Ron Eliashar
- Department of Otolaryngology/Head and Neck Surgery, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Lina Mizrachi
- Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Carmit Orfaig-Geva
- Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Bruce J Baum
- Molecular Physiology and Therapeutics Branch National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Stefan Rose-John
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Eithan Galun
- Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Jonathan H Axelrod
- Goldyne-Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem, Israel.
| |
Collapse
|
27
|
Goumas FA, Holmer R, Egberts JH, Gontarewicz A, Heneweer C, Geisen U, Hauser C, Mende MM, Legler K, Röcken C, Becker T, Waetzig GH, Rose-John S, Kalthoff H. Inhibition of IL-6 signaling significantly reduces primary tumor growth and recurrencies in orthotopic xenograft models of pancreatic cancer. Int J Cancer 2015; 137:1035-46. [PMID: 25604508 DOI: 10.1002/ijc.29445] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 12/17/2014] [Indexed: 12/23/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal human tumors, with radical surgical resection as the only curative treatment option. However, resection is only possible in a small fraction of patients, and about 80% of the patients develop recurrencies. PDAC development is facilitated by the cytokine interleukin-6 (IL-6), which acts via classic and trans-signaling. Both pathways are inhibited by the anti-IL-6-receptor antibody tocilizumab, whereas the fusion protein sgp130Fc specifically blocks trans-signaling. Here, we show that conservative or adjuvant therapy with both inhibitors reduces tumor growth in an orthotopic model of human Colo357 cells in SCID/bg mice. In the conservative setting, median primary tumor weight was reduced 2.4-fold for tocilizumab and 4.4-fold for sgp130Fc. sgp130Fc additionally led to a decrease in microvessel density, which was not observed with tocilizumab. In the adjuvant therapeutic setting after surgical resection of the primary tumor, treatment with tocilizumab or sgp130Fc decreased the local recurrence rate from 87.5% in the control group to 62.5 or 50%, respectively. Furthermore, the median weight of the local recurrent tumors was clearly diminished, and both inhibitors reduced the number of distant metastases. A significant reduction of tumor weight and metastases-comparable to gemcitabine treatment-was also observed with both inhibitors in another model using the poorly differentiated PancTuI cells. Our findings demonstrate the inhibition of IL-6 as a new treatment option in PDAC.
Collapse
Affiliation(s)
- Freya A Goumas
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Reinhild Holmer
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jan-Hendrik Egberts
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Artur Gontarewicz
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Carola Heneweer
- Clinic for Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ulf Geisen
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Charlotte Hauser
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Maria-Margarete Mende
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Karen Legler
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christoph Röcken
- Institute of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Becker
- Clinic for General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, Kiel, Germany
| | - Holger Kalthoff
- Division of Molecular Oncology, Institute for Experimental Cancer Research, CCC-North, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
28
|
Fonseka TM, McIntyre RS, Soczynska JK, Kennedy SH. Novel investigational drugs targeting IL-6 signaling for the treatment of depression. Expert Opin Investig Drugs 2015; 24:459-75. [PMID: 25585966 DOI: 10.1517/13543784.2014.998334] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Elevated levels of IL-6 have been implicated in the pathophysiology and treatment of major depressive disorder (MDD). Convergent evidence suggests that IL-6 primarily mediates proinflammatory functions via the soluble IL-6 receptor/trans-signaling, and anti-inflammatory functions via a transmembrane receptor (IL-6R). A targeted approach to selectively inhibit IL-6 trans-signaling may offer putative antidepressant effects. AREAS COVERED This review addresses three primary domains. The first focuses on the biological role of IL-6 within inflammation and its signal transduction pathways. The second addresses the potential contributions of IL-6 to the pathophysiology of MDD, and the mechanisms that may mediate these effects. Finally, the article outlines the therapeutic benefits of incorporating anti-inflammatory properties into the pharmacological treatment of MDD, and proposes inhibition of IL-6 signaling as a viable treatment strategy. EXPERT OPINION To improve drug development for the treatment of MDD, there is a critical need to identify promising targets. Target identification will require guidance from a strategic framework such as The Research Domain Criteria, and convincing evidence relating known targets to brain function under both physiological and pathological conditions. Although current evidence provides rationale for administering anti-IL-6 treatments in MDD, further studies confirming safety, target affinity and therapeutic benefits are warranted.
Collapse
Affiliation(s)
- Trehani M Fonseka
- University of Toronto, University Health Network, Department of Psychiatry , 200 Elizabeth Street, 8-EN-238, Toronto, M5G 2C4, ON , Canada +1 416 340 3888 ; +1 416 340 4198 ;
| | | | | | | |
Collapse
|
29
|
Wolf J, Rose-John S, Garbers C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine 2014; 70:11-20. [PMID: 24986424 DOI: 10.1016/j.cyto.2014.05.024] [Citation(s) in RCA: 400] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 01/13/2023]
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine with well-defined pro- and anti-inflammatory properties. Although only small amounts in the picogram range can be detected in healthy humans, IL-6 expression is highly and transiently up-regulated in nearly all pathophysiological states. IL-6 induces intracellular signaling pathways after binding to its membrane-bound receptor (IL-6R), which is only expressed on hepatocytes and certain subpopulations of leukocytes (classic signaling). Transduction of the signal is mediated by the membrane-bound β-receptor glycoprotein 130 (gp130). In a second pathway, named trans-signaling, IL-6 binds to soluble forms of the IL-6R (sIL-6R), and this agonistic IL-6/sIL-6R complexes can in principle activate all cells due to the uniform expression of gp130. Importantly, several soluble forms of gp130 (sgp130) are found in the human blood, which are considered to be the natural inhibitors of IL-6 trans-signaling. Most pro-inflammatory roles of IL-6 have been attributed to the trans-signaling pathway, whereas anti-inflammatory and regenerative signaling, including the anti-bacterial acute phase response of the liver, is mediated by IL-6 classic signaling. In this simplistic view, only a minority of cell types expresses the IL-6R and is therefore responsive for IL-6 classic signaling, whereas gp130 is ubiquitously expressed throughout the human body. However, several reports point towards a much more complex situation. A plethora of factors, including proteases, cytokines, chemical drugs, and intracellular signaling pathways, are able to modulate the cellular expression of the membrane-bound and soluble forms of IL-6R and gp130. In this review, we summarize current knowledge of regulatory mechanisms that control and regulate the dynamic expression of IL-6 and its two receptors.
Collapse
Affiliation(s)
- Janina Wolf
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel, Germany.
| | - Christoph Garbers
- Institute of Biochemistry, Kiel University, Olshausenstrasse 40, Kiel, Germany.
| |
Collapse
|
30
|
Sommer J, Garbers C, Wolf J, Trad A, Moll JM, Sack M, Fischer R, Grötzinger J, Waetzig GH, Floss DM, Scheller J. Alternative intronic polyadenylation generates the interleukin-6 trans-signaling inhibitor sgp130-E10. J Biol Chem 2014; 289:22140-50. [PMID: 24973212 DOI: 10.1074/jbc.m114.560938] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Interleukin (IL)-6 signals via a receptor complex composed of the signal-transducing β-receptor gp130 and the non-signaling membrane-bound or soluble IL-6 receptor α (IL-6R, sIL-6R), which is referred to as classic and trans-signaling, respectively. IL-6 trans-signaling is functionally associated with the development of chronic inflammatory diseases and cancer. Soluble gp130 (sgp130) variants are natural inhibitors of trans-signaling. Differential splicing yields sgp130 isoforms. Here, we describe that alternative intronic polyadenylation in intron 10 of the gp130 transcript results in a novel mRNA coding for an sgp130 protein isoform (sgp130-E10) of 70-80 kDa. The sgp130-E10 protein was expressed in vivo in human peripheral blood mononuclear cells. To assess the biological activity of sgp130-E10, we expressed this variant as Fc-tagged fusion protein (sgp130-E10Fc). Recombinant sgp130-E10Fc binds to a complex of IL-6 and sIL-6R, but not to IL-6 alone, and specifically inhibits IL-6 trans-signaling. Thus, it might play an important role in the regulation of trans-signaling in vivo.
Collapse
Affiliation(s)
- Jan Sommer
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf
| | - Christoph Garbers
- the Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University, 24118 Kiel
| | - Janina Wolf
- the Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University, 24118 Kiel
| | - Ahmad Trad
- the Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University, 24118 Kiel
| | - Jens M Moll
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf
| | - Markus Sack
- the Institute of Molecular Biotechnology, RWTH Aachen University, 52062 Aachen, and
| | - Rainer Fischer
- the Institute of Molecular Biotechnology, RWTH Aachen University, 52062 Aachen, and
| | - Joachim Grötzinger
- the Institute of Biochemistry, Medical Faculty, Christian-Albrechts-University, 24118 Kiel
| | | | - Doreen M Floss
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf
| | - Jürgen Scheller
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf,
| |
Collapse
|
31
|
Maes M, Anderson G, Kubera M, Berk M. Targeting classical IL-6 signalling or IL-6 trans-signalling in depression? Expert Opin Ther Targets 2014; 18:495-512. [PMID: 24548241 DOI: 10.1517/14728222.2014.888417] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Increased IL-6 and soluble IL-6 receptor (sIL-6R) levels in depressed patients was first shown over 20 years ago. The pro-inflammatory effects of IL-6 are predominantly mediated by IL-6 trans-signalling via the sIL-6R, whereas IL-6R membrane signalling has anti-inflammatory effects. AREAS COVERED We review data on IL-6 and sIL-6R in inflammation, depression, animal models of depression and the effects of different classes of antidepressants. The biological context for IL-6 trans-signalling as a pathogenic factor in depression involves its role in the acute phase response, disorders in zinc and the erythron, hypothalamic-pituitary-adrenal axis activation, induction of the tryptophan catabolite pathway, oxidative stress, bacterial translocation, transition towards sensitisation, autoimmune processes and neuroprogression and the multicausal aetiology of depression, considering that psychosocial stressors and comorbid immune-inflammatory diseases are associated with the onset of depression. EXPERT OPINION The homeostatic functions of IL-6 imply that ubiquitous IL-6 inhibitors, for example, tocilizumab, may not be the optimal treatment target in depression. A more promising target may be to increase soluble glycoprotein 130 (sgp130) inhibition of IL-6 trans-signalling, while allowing the maintenance of IL-6R membrane signalling. Future research should delineate the effects of treatments with sgp130Fc in combination with antidepressants in various animal models of chronic depression.
Collapse
Affiliation(s)
- Michael Maes
- Deakin University, Department of Psychiatry , Geelong , Australia
| | | | | | | |
Collapse
|
32
|
Samavedam UKS, Kalies K, Scheller J, Sadeghi H, Gupta Y, Jonkman MF, Schmidt E, Westermann J, Zillikens D, Rose-John S, Ludwig RJ. Recombinant IL-6 treatment protects mice from organ specific autoimmune disease by IL-6 classical signalling-dependent IL-1ra induction. J Autoimmun 2013; 40:74-85. [DOI: 10.1016/j.jaut.2012.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 11/17/2022]
|
33
|
Hoge J, Yan I, Jänner N, Schumacher V, Chalaris A, Steinmetz OM, Engel DR, Scheller J, Rose-John S, Mittrücker HW. IL-6 Controls the Innate Immune Response againstListeria monocytogenesvia Classical IL-6 Signaling. THE JOURNAL OF IMMUNOLOGY 2012; 190:703-11. [DOI: 10.4049/jimmunol.1201044] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Garbers C, Spudy B, Aparicio-Siegmund S, Waetzig GH, Sommer J, Hölscher C, Rose-John S, Grötzinger J, Lorenzen I, Scheller J. An interleukin-6 receptor-dependent molecular switch mediates signal transduction of the IL-27 cytokine subunit p28 (IL-30) via a gp130 protein receptor homodimer. J Biol Chem 2012; 288:4346-54. [PMID: 23209286 DOI: 10.1074/jbc.m112.432955] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IL-27 consists of the cytokine subunit p28 and the non-signaling α-receptor EBI3. p28 was shown to additionally act via the non-signaling membrane-bound IL-6 α-receptor (IL-6R) as an agonistic cytokine but also as a gp130 β-receptor antagonist, leading to inhibition of IL-6 signaling. Here, we developed a strategy for bacterial expression, purification, and refolding of murine p28. We show that p28 did not interfere with IL-6- or IL-27-induced signaling, indicating that p28 has no antagonistic properties. Moreover, we demonstrate that murine p28 acts as an agonistic cytokine via the murine and human IL-6R, indicating that p28 exhibits no species specificity. p28 was able to induce p28-trans-signaling via the soluble IL-6R (sIL-6R), a characteristic property that was initially described for trans-signaling of IL-6 via the sIL-6R. Of notice, p28/sIL-6R trans-signaling was inhibited by the IL-6 trans-signaling antagonist, soluble gp130. At higher concentrations, p28 but not IL-6 was able to induce signaling even in the absence of IL-6R or EBI3. Although IL-27 signals via a heterodimer of the β-receptor chains gp130 and Wsx-1, p28/IL-6R specifically recruits two gp130 β-receptor chains for signal transduction. The binding of p28 to a gp130/Wsx-1 heterodimer or a gp130 homodimer is highly selective and controlled by a novel molecular switch induced by EBI3 or IL-6R, respectively.
Collapse
Affiliation(s)
- Christoph Garbers
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 2012; 8:1254-66. [PMID: 23136554 PMCID: PMC3491449 DOI: 10.7150/ijbs.4679] [Citation(s) in RCA: 751] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/19/2012] [Indexed: 12/21/2022] Open
Abstract
Interleukin-6 (IL-6) is a cytokine originally identified almost 30 years ago as a B-cell differentiation factor, capable of inducing the maturation of B cells into antibody-producing cells. As with many other cytokines, it was soon realized that IL-6 was not a factor only involved in the immune response, but with many critical roles in major physiological systems including the nervous system. IL-6 is now known to participate in neurogenesis (influencing both neurons and glial cells), and in the response of mature neurons and glial cells in normal conditions and following a wide arrange of injury models. In many respects, IL-6 behaves in a neurotrophin-like fashion, and seemingly makes understandable why the cytokine family that it belongs to is known as neuropoietins. Its expression is affected in several of the main brain diseases, and animal models strongly suggest that IL-6 could have a role in the observed neuropathology and that therefore it is a clear target of strategic therapies.
Collapse
Affiliation(s)
- María Erta
- Instituto de Neurociencias y Departamento de Biología Celular, Fisiología e Inmunología, Facultad de Biociencias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
36
|
Sodenkamp J, Waetzig GH, Scheller J, Seegert D, Grötzinger J, Rose-John S, Ehlers S, Hölscher C. Therapeutic targeting of interleukin-6 trans-signaling does not affect the outcome of experimental tuberculosis. Immunobiology 2012; 217:996-1004. [DOI: 10.1016/j.imbio.2012.01.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/11/2012] [Accepted: 01/15/2012] [Indexed: 12/12/2022]
|
37
|
Waetzig GH, Rose-John S. Hitting a complex target: an update on interleukin-6 trans-signalling. Expert Opin Ther Targets 2012; 16:225-36. [PMID: 22324903 DOI: 10.1517/14728222.2012.660307] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Interleukin-6 (IL-6) is a key target in inflammation and cancer. Selective inhibition of IL-6 trans-signalling could provide the same or even higher therapeutic efficacy with a better side effect profile than complete IL-6 inhibition. Animal studies with IL-6 inhibitors show that the classic IL-6 signalling pathway via the membrane-bound IL-6 receptor (IL-6R) has important physiological functions, whereas blocking the trans-signalling pathway via the soluble IL-6R (sIL-6R) is sufficient to prevent or treat IL-6-driven diseases. Due to the success of the anti-IL-6R antibody tocilizumab and difficulties of constructing selective trans-signalling inhibitors, most drug candidates in clinical development target IL-6 or IL-6R and, thus, both IL-6 pathways. By contrast, the fusion protein sgp130Fc selectively targets IL-6/sIL-6R trans-signalling by utilising the soluble gp130 receptor as the natural inhibitor of trans-signalling. AREAS COVERED The authors summarise recent developments in the field with a focus on animal studies highlighting the mechanistic differences between classic and trans-signalling and their therapeutic implications. EXPERT OPINION Characterising disease mechanisms in terms of the employed IL-6 pathways will help to select the right therapeutic IL-6 inhibitor in the future. The trans-signalling inhibitor sgp130Fc is about to enter the clinic and holds promise for a clinically different profile in comparison with complete IL-6 inhibitors.
Collapse
Affiliation(s)
- Georg H Waetzig
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
| | | |
Collapse
|
38
|
Schuett H, Oestreich R, Waetzig GH, Annema W, Luchtefeld M, Hillmer A, Bavendiek U, von Felden J, Divchev D, Kempf T, Wollert KC, Seegert D, Rose-John S, Tietge UJF, Schieffer B, Grote K. Transsignaling of interleukin-6 crucially contributes to atherosclerosis in mice. Arterioscler Thromb Vasc Biol 2011; 32:281-90. [PMID: 22075248 DOI: 10.1161/atvbaha.111.229435] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Transsignaling of interleukin (IL)-6 is a central pathway in the pathogenesis of disorders associated with chronic inflammation, such as Crohn disease, rheumatoid arthritis, and inflammatory colon cancer. Notably, IL-6 also represents an independent risk factor for coronary artery disease (CAD) in humans and is crucially involved in vascular inflammatory processes. METHODS AND RESULTS In the present study, we showed that treatment with a fusion protein of the natural IL-6 transsignaling inhibitor soluble glycoprotein 130 (sgp130) and IgG1-Fc (sgp130Fc) dramatically reduced atherosclerosis in hypercholesterolemic Ldlr(-/-) mice without affecting weight gain and serum lipid levels. Moreover, sgp130Fc treatment even led to a significant regression of advanced atherosclerosis. Mechanistically, endothelial activation and intimal smooth muscle cell infiltration were decreased in sgp130Fc-treated mice, resulting in a marked reduction of monocyte recruitment and subsequent atherosclerotic plaque progression. Of note, patients with CAD exhibited significantly lower plasma levels of endogenous sgp130, suggesting that a compromised counterbalancing of IL-6 transsignaling may contribute to atherogenesis in humans. CONCLUSIONS These data clarify, for the first time, the critical involvement of, in particular, the transsignaling of IL-6 in CAD and warrant further investigation of sgp130Fc as a novel therapeutic for the treatment of CAD and related diseases.
Collapse
Affiliation(s)
- Harald Schuett
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Garbers C, Thaiss W, Jones GW, Waetzig GH, Lorenzen I, Guilhot F, Lissilaa R, Ferlin WG, Grötzinger J, Jones SA, Rose-John S, Scheller J. Inhibition of classic signaling is a novel function of soluble glycoprotein 130 (sgp130), which is controlled by the ratio of interleukin 6 and soluble interleukin 6 receptor. J Biol Chem 2011; 286:42959-70. [PMID: 21990364 DOI: 10.1074/jbc.m111.295758] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
IL-6 trans-signaling via the soluble IL-6 receptor (sIL-6R) plays a critical role in chronic inflammation and cancer. Soluble gp130 (sgp130) specifically inhibits IL-6 trans-signaling but was described to not interfere with classic signaling via the membrane-bound IL-6R. Physiological and most pathophysiological conditions are characterized by a molar excess of serum sIL-6R over IL-6 characterized by free IL-6 and IL-6 found in IL-6·sIL-6R complexes allowing both classic and trans-signaling. Surprisingly, under these conditions, sgp130 was able to trap all free IL-6 molecules in IL-6·sIL-6R·sgp130 complexes, resulting in inhibition of classic signaling. Because a significant fraction of IL-6 molecules did not form complexes with sIL-6R, our results demonstrate that compared with the anti-IL-6R antibody tocilizumab or the anti-trans-signaling monoclonal antibody 25F10, much lower concentrations of the dimeric sgp130Fc were sufficient to block trans-signaling. In vivo, sgp130Fc blocked IL-6 signaling in the colon but not in liver and lung, indicating that the colon is a prominent target of IL-6 trans-signaling. Our results point to a so far unanticipated role of sgp130 in the blockade of classic signaling and indicate that in vivo only low therapeutic concentrations of sgp130Fc guarantee blockade of IL-6 trans-signaling without affecting IL-6 classic signaling.
Collapse
Affiliation(s)
- Christoph Garbers
- Institute of Biochemistry and Molecular Biology II, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Viral Interleukin-6: Structure, pathophysiology and strategies of neutralization. Eur J Cell Biol 2011; 90:495-504. [DOI: 10.1016/j.ejcb.2010.10.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 11/23/2022] Open
|
41
|
The structure of the unliganded extracellular domain of the interleukin-6 signal transducer gp130 in solution. Eur J Cell Biol 2011; 90:515-20. [DOI: 10.1016/j.ejcb.2010.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 09/27/2010] [Accepted: 09/27/2010] [Indexed: 02/01/2023] Open
|
42
|
Selective blockade of interleukin-6 trans-signaling improves survival in a murine polymicrobial sepsis model*. Crit Care Med 2011; 39:1407-13. [DOI: 10.1097/ccm.0b013e318211ff56] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Nechemia-Arbely Y, Shriki A, Denz U, Drucker C, Scheller J, Raub J, Pappo O, Rose-John S, Galun E, Axelrod JH. Early hepatocyte DNA synthetic response posthepatectomy is modulated by IL-6 trans-signaling and PI3K/AKT activation. J Hepatol 2011; 54:922-9. [PMID: 21145830 DOI: 10.1016/j.jhep.2010.08.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 07/05/2010] [Accepted: 08/03/2010] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS Interleukin-6 (IL-6) is a crucial factor in liver regeneration following partial hepatectomy (PH); however, the role of IL-6 and IL-6 trans-signaling in particular, in hepatocyte mitosis remains controversial. IL-6 trans-signaling relies upon the release of the soluble IL-6R (sIL-6R), which binds IL-6 to form an agonistic IL-6/sIL-6R complex. Herein we have examined the hypothesis that IL-6 trans-signaling plays a crucial and distinct role in liver regeneration following PH. METHODS The specific IL-6/sIL-6R antagonist, sgp130Fc, was expressed in mice and analyzed for its effect on hepatocyte mitosis following PH. Alternatively, we examined the effect of the IL-6/sIL-6R super-agonist, Hyper-IL-6, or IL-6 expressed either alone or in combination with hepatocyte growth factor (HGF) on hepatocyte mitosis in the absence of PH. RESULTS Following PH, the dramatic rise of circulating IL-6 levels is accompanied by a concurrent ∼2-fold increase in circulating sIL-6R levels. Ectopic expression of sgp130Fc reduced hepatocyte mitosis by about 40% at early times following PH, while substantially reducing AKT, but not STAT3, activation. But, ectopic Hyper-IL-6 expression in mice without PH was not mitogenic to hepatocytes in vivo. Rather, Hyper-IL-6, but not IL-6, markedly increased HGF-induced hepatocyte mitosis. This cooperative effect correlated with greater resistance of HIL-6 than IL-6 to HGF-mediated reduction of AKT activation, rather than changes in STAT3 or MAPK signaling, and was completely blocked by PI3K inhibition. CONCLUSIONS Following PH, IL-6/sIL-6R cooperates with growth factors, through a PI3K/AKT-dependent mechanism to promote entry of hepatocytes into the cell cycle.
Collapse
Affiliation(s)
- Yael Nechemia-Arbely
- The Goldyne Savad Institute of Gene Therapy, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lee SY, Buhimschi IA, Dulay AT, Ali UA, Zhao G, Abdel-Razeq SS, Bahtiyar MO, Thung SF, Funai EF, Buhimschi CS. IL-6 trans-signaling system in intra-amniotic inflammation, preterm birth, and preterm premature rupture of the membranes. THE JOURNAL OF IMMUNOLOGY 2011; 186:3226-36. [PMID: 21282511 DOI: 10.4049/jimmunol.1003587] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Classic IL-6 signaling is conditioned by the transmembrane receptor (IL-6R) and homodimerization of gp130. During trans-signaling, IL-6 binds to soluble IL-6R (sIL-6R), enabling activation of cells expressing solely gp130. Soluble gp130 (sgp130) selectively inhibits IL-6 trans-signaling. To characterize amniotic fluid (AF) IL-6 trans-signaling molecules (IL-6, sIL-6R, sgp130) in normal gestations and pregnancies complicated by intra-amniotic inflammation (IAI), we studied 301 women during second trimester (n = 39), third trimester (n = 40), and preterm labor with intact (n = 131, 85 negative IAI and 46 positive IAI) or preterm premature rupture of membranes (PPROM; n = 91, 61 negative IAI and 30 positive IAI). ELISA, Western blotting, and real-time RT-PCR were used to investigate AF, placenta, and amniochorion for protein and mRNA expression of sIL-6R, sgp130, IL-6R, and gp130. Tissues were immunostained for IL-6R, gp130, CD15(+) (polymorphonuclear), and CD3(+) (T cell) inflammatory cells. The ability of sIL-6R and sgp130 to modulate basal and LPS-stimulated release of amniochorion matrix metalloprotease-9 was tested ex vivo. We showed that in physiologic gestations, AF sgp130 decreases toward term. AF IL-6 and sIL-6R were increased in IAI, whereas sgp130 was decreased in PPROM. Our results suggested that fetal membranes are the probable source of AF sIL-6R and sgp130. Immunohistochemistry and RT-PCR revealed increased IL-6R and decreased gp130 expression in amniochorion of women with IAI. Ex vivo, sIL-6R and LPS augmented amniochorion matrix metalloprotease-9 release, whereas sgp130 opposed this effect. We conclude that IL-6 trans-signaling molecules are physiologic constituents of the AF regulated by gestational age and inflammation. PPROM likely involves functional loss of sgp130.
Collapse
Affiliation(s)
- Sarah Y Lee
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lo CW, Chen MW, Hsiao M, Wang S, Chen CA, Hsiao SM, Chang JS, Lai TC, Rose-John S, Kuo ML, Wei LH. IL-6 Trans-Signaling in Formation and Progression of Malignant Ascites in Ovarian Cancer. Cancer Res 2010; 71:424-34. [DOI: 10.1158/0008-5472.can-10-1496] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Jazayeri JA, Upadhyay A, Vernallis AB, Carroll GJ. Targeting the Glycoprotein 130 Receptor Subunit to Control Pain and Inflammation. J Interferon Cytokine Res 2010; 30:865-73. [DOI: 10.1089/jir.2010.0035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jalal A. Jazayeri
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Australia
| | - Aradhana Upadhyay
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), Melbourne, Australia
| | - Ann B. Vernallis
- School of Life and Health Sciences, Aston University Birmingham, Birmingham, United Kingdom
| | - Graeme J. Carroll
- Department of Rheumatology, Fremantle Hospital, University of Notre Dame, Australia (Fremantle) and University of Western Australia, Fremantle Hospital, Perth, Western Australia
| |
Collapse
|
47
|
Zhang Z, Meng T, Yang N, Wang W, Xiong B, Chen Y, Ma L, Shen J, Miao ZH, Ding J. MT119, a new planar-structured compound, targets the colchicine site of tubulin arresting mitosis and inhibiting tumor cell proliferation. Int J Cancer 2010; 129:214-24. [PMID: 20830720 DOI: 10.1002/ijc.25661] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Accepted: 08/23/2010] [Indexed: 01/30/2023]
Abstract
Microtubule-targeted drugs are now indispensable for the therapy of various cancer types worldwide. In this article, we report MT119 [6-[2-(4-methoxyphenyl) -ethyl]-9-[(pyridine-3-ylmethyl)amino]pyrido[2',1':2,3]imida-zo[4,5-c]isoquinolin-5(6H)-one] as a new microtubule-targeted agent. MT119 inhibited tubulin polymerization significantly both in tumor cells and in cell-free systems, which was followed by the disruption of mitotic spindle assembly. Surface plasmon resonance-based analyses showed that MT119 bound to purified tubulin directly, with the K(D) value of 10.6 μM. The binding of MT119 in turn caused tubulin conformational changes as evidenced by the quenched tryptophan fluorescence, the reduction of the bis-ANS reactivity and the decreased DTNB-sulfhydryl reaction rate. Competitive binding assays further revealed that MT119 bound to tubulin at its colchicine site. Consequently, by inhibiting tubulin polymerization, MT119 arrested different tumor cells at mitotic phase, which contributed to its potent antitumor activity in vitro. MT119 was also similarly cytotoxic to vincristine-, adriamycin- or mitoxantrone-resistant cancer cells and to their corresponding parental cells. Together, these data indicate that MT119 represents a new class of colchicine-site-targeted inhibitors against tubulin polymerization, which might be a promising starting point for future cancer therapeutics.
Collapse
Affiliation(s)
- Zhixiang Zhang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Expression of the interleukin 6 system in cortical lesions from patients with tuberous sclerosis complex and focal cortical dysplasia type IIb. J Neuropathol Exp Neurol 2010; 69:838-49. [PMID: 20613633 DOI: 10.1097/nen.0b013e3181eaeae5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tuberous sclerosis complex (TSC) and focal cortical dysplasia type IIb (FCDIIb) are characterized by epilepsy-associated cerebral cortical malformations. To understand the potential role of the inflammatory cytokine interleukin 6 (IL-6) in the pathogenesis of these lesions, we analyzed the IL-6 system in TSC and FCDIIb cortical lesions and in control cortex (CTX). Greater messenger RNA and protein levels of IL-6 and of its receptors (i.e. IL-6 receptor [IL-6R] and glycoprotein 130 [gp130]) were observed in TSC and FCDIIb lesions versus CTX. Immunohistochemical analyses indicated that IL-6 and IL-6R were strongly expressed in misshapen cells, namely, dysmorphic neurons, giant neurons, and balloon cells. Glycoprotein 130 was diffusely expressed in nearly all cell types. Most IL-6/IL-6R+ misshapen cells colabeled with neuronal rather than astrocytic markers, suggesting a neuronal lineage; most IL-6/IL-6R+ balloon cells in FCDIIb expressed glial fibrillary acidic protein. Protein levels of Janus kinase 2 and phosphorylated signal transducer and activator of transcription 3 were greater than in CTX, suggesting involvement of the gp130-Janus kinase 2-signal transducer and activator of transcription 3 pathway in IL-6 signal transduction. Soluble IL-6R, but not soluble gp130, was greater in TSC and FCDIIb lesions than in CTX, indicating activation of this trans-signaling pathway. These results suggest that overexpression in the IL-6 system and activation of IL-6 signal transduction pathways may contribute to the pathogenesis of cortical lesions in TSC and FCDIIb.
Collapse
|
49
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
50
|
Lohse AW, Weiler-Normann C, Tiegs G. Immune-mediated liver injury. J Hepatol 2010; 52:136-44. [PMID: 19913936 DOI: 10.1016/j.jhep.2009.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 09/14/2009] [Accepted: 09/16/2009] [Indexed: 02/06/2023]
Affiliation(s)
- Ansgar W Lohse
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | | | | |
Collapse
|