1
|
Pasqualetto G, Zuanon M, Brancale A, Young MT. Identification of the molecular determinants of antagonist potency in the allosteric binding pocket of human P2X4. Front Pharmacol 2023; 14:1101023. [PMID: 36843952 PMCID: PMC9947563 DOI: 10.3389/fphar.2023.1101023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
P2X receptors are a family of ATP-gated cation channels comprising seven subtypes in mammals, which play key roles in nerve transmission, pain sensation and inflammation. The P2X4 receptor in particular has attracted significant interest from pharmaceutical companies due to its physiological roles in neuropathic pain and modulation of vascular tone. A number of potent small-molecule P2X4 receptor antagonists have been developed, including the allosteric P2X4 receptor antagonist BX430, which is approximately 30-fold more potent at human P2X4 compared with the rat isoform. A single amino-acid difference between human and rat P2X4 (I312T), located in an allosteric pocket, has previously been identified as critical for BX430 sensitivity, implying that BX430 binds in this pocket. Using a combination of mutagenesis, functional assay in mammalian cells and in silico docking we confirmed these findings. Induced-fit docking, permitting the sidechains of the amino-acids of P2X4 to move, showed that BX430 could access a deeper portion of the allosteric pocket, and that the sidechain of Lys-298 was important for shaping the cavity. We then performed blind docking of 12 additional P2X4 antagonists into the receptor extracellular domain, finding that many of these compounds favored the same pocket as BX430 from their calculated binding energies. Induced-fit docking of these compounds in the allosteric pocket enabled us to show that antagonists with high potency (IC50 ≤ 100 nM) bind deep in the allosteric pocket, disrupting a network of interacting amino acids including Asp-85, Ala-87, Asp-88, and Ala-297, which are vital for transmitting the conformational change following ATP binding to channel gating. Our work confirms the importance of Ile-312 for BX430 sensitivity, demonstrates that the allosteric pocket where BX430 binds is a plausible binding pocket for a series of P2X4 antagonists, and suggests a mode of action for these allosteric antagonists involving disruption of a key structural motif required for the conformational change induced in P2X4 when ATP binds.
Collapse
Affiliation(s)
- Gaia Pasqualetto
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Marika Zuanon
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom,Department of Organic Chemistry, Vysoká škola chemicko-technologická v Praze, Prague, Czechia
| | - Mark T. Young
- School of Biosciences, Cardiff University, Cardiff, United Kingdom,*Correspondence: Mark T. Young,
| |
Collapse
|
2
|
Pasqualetto G, Zuanon M, Brancale A, Young MT. Identification of a novel P2X7 antagonist using structure-based virtual screening. Front Pharmacol 2023; 13:1094607. [PMID: 36712671 PMCID: PMC9877316 DOI: 10.3389/fphar.2022.1094607] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023] Open
Abstract
P2X4 and P2X7 receptors are ATP-gated ion channels, which play important roles in neuropathic and inflammatory pain, and as such they are important drug targets in diseases of inflammatory origin. While several compounds targeting P2X4 and P2X7 receptors have been developed using traditional high-throughput screening approaches, relatively few compounds have been developed using structure-based design. We initially set out to develop compounds targeting human P2X4, by performing virtual screening on the orthosteric (ATP-binding) pocket of a molecular model of human P2X4 based on the crystal structure of the Danio rerio receptor. The screening of a library of approximately 300,000 commercially available drug-like compounds led to the initial selection of 17 compounds; however, none of these compounds displayed a significant antagonist effect at P2X4 in a Fluo-4 ATP-induced calcium influx assay. When the same set of compounds was tested against human P2X7 in an ATP-stimulated Yo-Pro1 dye uptake assay, one compound (an indeno(1,2-b)pyridine derivative; GP-25) reduced the response by greater than 50% when applied at a concentration of 30 µM. GP-25 displayed an IC50 value of 8.7 μM at human P2X7 and 24.4 μM at rat P2X7, and was confirmed to be active using whole-cell patch clamp electrophysiology and not cytotoxic. Schild analysis suggested that mode of action of GP-25 was orthosteric. Screening of a further 16 commercially available analogues of GP-25 led to the discovery of five additional compounds with antagonist activity at human P2X7, enabling us to investigate the structure-activity relationship. Finally, docking of the R- and S-enantiomers of GP-25 into the orthosteric pocket of molecular models of human P2X4 and human P2X7 revealed that, while both enantiomers were able to make multiple interactions between their carboxyl moieties and conserved positively charged amino-acids in human P2X7, only the S-enantiomer of GP-25 was able to do this in human P2X4, potentially explaining the lack of activity of GP-25 at this receptor.
Collapse
Affiliation(s)
- Gaia Pasqualetto
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Marika Zuanon
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom,Department of Organic Chemistry, University of Chemistry and Technology, Prague, Czechia
| | - Mark T. Young
- School of Biosciences, Cardiff University, Cardiff, United Kingdom,*Correspondence: Mark T. Young,
| |
Collapse
|
3
|
Alnafisah R, Lundh A, Asah SM, Hoeflinger J, Wolfinger A, Hamoud AR, McCullumsmith RE, O'Donovan SM. Altered purinergic receptor expression in the frontal cortex in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:96. [PMID: 36376358 PMCID: PMC9663420 DOI: 10.1038/s41537-022-00312-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/03/2022] [Indexed: 04/27/2023]
Abstract
ATP functions as a neurotransmitter, acting on the ubiquitously expressed family of purinergic P2 receptors. In schizophrenia (SCZ), the pathways that modulate extracellular ATP and its catabolism to adenosine are dysregulated. However, the effects of altered ATP availability on P2 receptor expression in the brain in SCZ have not been assessed. We assayed P2 receptor mRNA and protein expression in the DLPFC and ACC in subjects diagnosed with SCZ and matched, non-psychiatrically ill controls (n = 20-22/group). P2RX7, P2RX4 and male P2RX5 mRNA expression were significantly increased (p < 0.05) in the DLPFC in SCZ. Expression of P2RX7 protein isoform was also significantly increased (p < 0.05) in the DLPFC in SCZ. Significant increases in P2RX4 and male P2RX5 mRNA expression may be associated with antipsychotic medication effects. We found that P2RX4 and P2RX7 mRNA are significantly correlated with the inflammatory marker SERPINA3, and may suggest an association between upregulated P2XR and neuroinflammation in SCZ. These findings lend support for brain-region dependent dysregulation of the purinergic system in SCZ.
Collapse
Affiliation(s)
- Rawan Alnafisah
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Anna Lundh
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Sophie M Asah
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Julie Hoeflinger
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | - Alyssa Wolfinger
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
| | | | - Robert E McCullumsmith
- Department of Neurosciences, University of Toledo, Toledo, OH, USA
- Neurosciences Institute, Promedica, Toledo, OH, USA
| | | |
Collapse
|
4
|
Bergler F, Fuentes C, Kadir MF, Navarrete C, Supple J, Barrera NP, Edwardson JM. Activation of P2X4 receptors induces an increase in the area of the extracellular region and a decrease in receptor mobility. FEBS Lett 2020; 594:4381-4389. [PMID: 32979222 DOI: 10.1002/1873-3468.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022]
Abstract
The P2X4 receptor (P2X4R) is an ATP-gated cation channel. Here, we used fast-scan atomic force microscopy (AFM) to visualize changes in the structure and mobility of individual P2X4Rs in response to activation. P2X4Rs were purified from detergent extracts of transfected cells and integrated into lipid bilayers. Activation resulted in a rapid (2 s) and substantial (10-20 nm2 ) increase in the cross-sectional area of the extracellular region of the receptor and a corresponding decrease in receptor mobility. Both effects were blocked by the P2X4R antagonist 5-BDBD. Addition of cholesterol to the bilayer reduced receptor mobility, although the ATP-induced reduction in mobility was still observed. We suggest that the observed responses to activation may have functional consequences for purinergic signalling.
Collapse
Affiliation(s)
- Frederik Bergler
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Christian Fuentes
- Department of Pharmacology, University of Cambridge, Cambridge, UK.,Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Md Fahim Kadir
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Camilo Navarrete
- Department of Pharmacology, University of Cambridge, Cambridge, UK.,Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jack Supple
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Nelson P Barrera
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | |
Collapse
|
5
|
Residues in Transmembrane Segments of the P2X4 Receptor Contribute to Channel Function and Ethanol Sensitivity. Int J Mol Sci 2020; 21:ijms21072471. [PMID: 32252459 PMCID: PMC7178174 DOI: 10.3390/ijms21072471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023] Open
Abstract
Mouse models of alcohol use disorder (AUD) revealed purinergic P2X4 receptors (P2X4Rs) as a promising target for AUD drug development. We have previously demonstrated that residues at the transmembrane (TM)–ectodomain interface and within the TM1 segment contribute to the formation of an ethanol action pocket in P2X4Rs. In the present study, we tested the hypothesis that there are more residues in TM1 and TM2 segments that are important for the ethanol sensitivity of P2X4Rs. Using site-directed mutagenesis and two electrode voltage-clamp electrophysiology in Xenopus oocytes, we found that arginine at position 33 (R33) in the TM1 segment plays a role in the ethanol sensitivity of P2X4Rs. Molecular models in both closed and open states provided evidence for interactions between R33 and aspartic acid at position 354 (D354) of the neighboring TM2 segment. The loss of ethanol sensitivity in mixtures of wild-type (WT) and reciprocal single mutants, R33D:WT and D354R:WT, versus the WT-like response in R33D-D354R:WT double mutant provided further support for this interaction. Additional findings indicated that valine at TM1 position 49 plays a role in P2X4R function by providing flexibility/stability during channel opening. Collectively, these findings identified new activity sites and suggest the importance of TM1-TM2 interaction for the function and ethanol sensitivity of P2X4Rs.
Collapse
|
6
|
Multimeric Purinoceptor Detection by Bioluminescence Resonance Energy Transfer. Methods Mol Biol 2019. [PMID: 31646487 DOI: 10.1007/978-1-4939-9717-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Assays based on bioluminescence resonance energy transfer (BRET) provide a sensitive and simple method to study protein-protein interactions in live cells. Here we describe a protocol using BRET technique to investigate potential interactions between P2X subunits. This approach combined with bimolecular fluorescence complementation (BiFC) can also be employed to determine the stoichiometry of heteromeric P2X receptors.
Collapse
|
7
|
Schneider M, Prudic K, Pippel A, Klapperstück M, Braam U, Müller CE, Schmalzing G, Markwardt F. Interaction of Purinergic P2X4 and P2X7 Receptor Subunits. Front Pharmacol 2017; 8:860. [PMID: 29213241 PMCID: PMC5702805 DOI: 10.3389/fphar.2017.00860] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/09/2017] [Indexed: 11/13/2022] Open
Abstract
P2X4 and P2X7 are members of the P2X receptor family, comprising seven isoforms (P2X1–P2X7) that form homo- and heterotrimeric non-specific cation channels gated by extracellular ATP. P2X4 and P2X7 are widely coexpressed, particularly in secretory epithelial cells and immune and inflammatory cells, and regulate inflammation and nociception. Although functional heteromerization has been established for P2X2 and P2X3 subunits expressed in sensory neurons, there are contradictory reports regarding a functional interaction between P2X4 and P2X7 subunits. To resolve this issue, we coexpressed P2X4 and P2X7 receptor subunits labeled with green (EGFP) and red (TagRFP) fluorescent proteins in Xenopus laevis oocytes and investigated a putative physical interaction between the fusion proteins by Förster resonance energy transfer (FRET). Coexpression of P2X4 and P2X7 subunits with EGFP and TagRFP located in the extracellular receptor domains led to significant FRET signals. Significant FRET signals were also measured between C-terminally fluorophore-labeled full-length P2X41-384 and C-terminally truncated fluorescent P2X71-408 subunits. We furthermore used the two-electrode voltage clamp technique to investigate whether human P2X4 and P2X7 receptors (hP2X4, hP2X7) functionally interact at the level of ATP-induced whole-cell currents. Concentration–response curves and effects of ivermectin (P2X4-potentiating drug) or BzATP (P2X7-specific agonist) were consistent with a model in which coexpressed hP2X4 and hP2X7 do not interact. Similarly, the effect of adding specific inhibitors of P2X4 (PSB-15417) or P2X7 (oATP, A438079) could be explained by a model in which only homomers exist, and that these are blocked by the respective antagonist. In conclusion, we show that P2X4 and P2X7 subunits can form heterotrimeric P2X4/P2X7 receptors. However, unlike observations for P2X2 and P2X3, coexpression of P2X4 and P2X7 subunits does not result in a novel electrophysiologically discriminable P2X receptor phenotype.
Collapse
Affiliation(s)
- Markus Schneider
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University, Halle, Germany
| | - Kirsten Prudic
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University, Halle, Germany
| | - Anja Pippel
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University, Halle, Germany
| | - Manuela Klapperstück
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University, Halle, Germany
| | - Ursula Braam
- Molecular Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | | | - Fritz Markwardt
- Julius-Bernstein-Institute for Physiology, Martin-Luther-University, Halle, Germany
| |
Collapse
|
8
|
Aprile-Garcia F, Metzger MW, Paez-Pereda M, Stadler H, Acuña M, Liberman AC, Senin SA, Gerez J, Hoijman E, Refojo D, Mitkovski M, Panhuysen M, Stühmer W, Holsboer F, Deussing JM, Arzt E. Co-Expression of Wild-Type P2X7R with Gln460Arg Variant Alters Receptor Function. PLoS One 2016; 11:e0151862. [PMID: 26986975 PMCID: PMC4795689 DOI: 10.1371/journal.pone.0151862] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/04/2016] [Indexed: 01/04/2023] Open
Abstract
The P2X7 receptor is a member of the P2X family of ligand-gated ion channels. A single-nucleotide polymorphism leading to a glutamine (Gln) by arginine (Arg) substitution at codon 460 of the purinergic P2X7 receptor (P2X7R) has been associated with mood disorders. No change in function (loss or gain) has been described for this SNP so far. Here we show that although the P2X7R-Gln460Arg variant per se is not compromised in its function, co-expression of wild-type P2X7R with P2X7R-Gln460Arg impairs receptor function with respect to calcium influx, channel currents and intracellular signaling in vitro. Moreover, co-immunoprecipitation and FRET studies show that the P2X7R-Gln460Arg variant physically interacts with P2X7R-WT. Specific silencing of either the normal or polymorphic variant rescues the heterozygous loss of function phenotype and restores normal function. The described loss of function due to co-expression, unique for mutations in the P2RX7 gene so far, explains the mechanism by which the P2X7R-Gln460Arg variant affects the normal function of the channel and may represent a mechanism of action for other mutations.
Collapse
Affiliation(s)
- Fernando Aprile-Garcia
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | - Matías Acuña
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Ana C. Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Sergio A. Senin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Juan Gerez
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Esteban Hoijman
- Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Damian Refojo
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Mišo Mitkovski
- Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | | | - Walter Stühmer
- Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Florian Holsboer
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
- HMNC Brain Health, Munich, Germany
| | | | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
- * E-mail:
| |
Collapse
|
9
|
Hausmann R, Kless A, Schmalzing G. Key sites for P2X receptor function and multimerization: overview of mutagenesis studies on a structural basis. Curr Med Chem 2015; 22:799-818. [PMID: 25439586 PMCID: PMC4460280 DOI: 10.2174/0929867322666141128163215] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/20/2014] [Accepted: 11/27/2014] [Indexed: 02/07/2023]
Abstract
P2X receptors constitute a seven-member family (P2X1-7) of extracellular ATP-gated cation
channels of widespread expression. Because P2X receptors have been implicated in neurological, inflammatory
and cardiovascular diseases, they constitute promising drug targets. Since the first P2X cDNA sequences
became available in 1994, numerous site-directed mutagenesis studies have been conducted to disclose
key sites of P2X receptor function and oligomerization. The publication of the 3-Å crystal structures of the zebrafish
P2X4 (zfP2X4) receptor in the homotrimeric apo-closed and ATP-bound open states in 2009 and 2012, respectively, has
ushered a new era by allowing for the interpretation of the wealth of molecular data in terms of specific three-dimensional
models and by paving the way for designing more-decisive experiments. Thanks to these structures, the last five years
have provided invaluable insight into our understanding of the structure and function of the P2X receptor class of ligandgated
ion channels. In this review, we provide an overview of mutagenesis studies of the pre- and post-crystal structure
eras that identified amino acid residues of key importance for ligand binding, channel gating, ion flow, formation of the
pore and the channel gate, and desensitization. In addition, the sites that are involved in the trimerization of P2X receptors
are reviewed based on mutagenesis studies and interface contacts that were predicted by the zfP2X4 crystal structures.
Collapse
Affiliation(s)
| | | | - Gunther Schmalzing
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, D-52074 Aachen, Germany.
| |
Collapse
|
10
|
Ase AR, Honson NS, Zaghdane H, Pfeifer TA, Séguéla P. Identification and characterization of a selective allosteric antagonist of human P2X4 receptor channels. Mol Pharmacol 2015; 87:606-16. [PMID: 25597706 DOI: 10.1124/mol.114.096222] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
P2X4 is an ATP-gated nonselective cation channel highly permeable to calcium. There is increasing evidence that this homomeric purinoceptor, which is expressed in several neuronal and immune cell types, is involved in chronic pain and inflammation. The current paucity of unambiguous pharmacological tools available to interrogate or modulate P2X4 function led us to pursue the search for selective antagonists. In the high-throughput screen of a compound library, we identified the phenylurea BX430 (1-(2,6-dibromo-4-isopropyl-phenyl)-3-(3-pyridyl)urea, molecular weight = 413), with antagonist properties on human P2X4-mediated calcium uptake. Patch-clamp electrophysiology confirmed direct inhibition of P2X4 currents by extracellular BX430, with submicromolar potency (IC50 = 0.54 µM). BX430 is highly selective, having virtually no functional impact on all other P2X subtypes, namely, P2X1-P2X3, P2X5, and P2X7, at 10-100 times its IC50. Unexpected species differences were noticed, as BX430 is a potent antagonist of zebrafish P2X4 but has no effect on rat and mouse P2X4 orthologs. The concentration-response curve for ATP on human P2X4 in the presence of BX430 shows an insurmountable blockade, indicating a noncompetitive allosteric mechanism of action. Using a fluorescent dye uptake assay, we observed that BX430 also effectively suppresses ATP-evoked and ivermectin-potentiated membrane permeabilization induced by P2X4 pore dilation. Finally, in single-cell calcium imaging, we validated its selective inhibitory effects on native P2X4 channels at the surface of human THP-1 cells that were differentiated into macrophages. In summary, this ligand provides a novel molecular probe to assess the specific role of P2X4 in inflammatory and neuropathic conditions, where ATP signaling has been shown to be dysfunctional.
Collapse
Affiliation(s)
- Ariel R Ase
- Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada (A.R.A., P.S.); Screening Division, The Centre for Drug Research and Discovery, Vancouver, Canada (N.S.H., T.A.P.); and Zamboni Chemical Solutions, Department of Chemistry, McGill University, Montreal, Canada (H.Z.)
| | - Nicolette S Honson
- Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada (A.R.A., P.S.); Screening Division, The Centre for Drug Research and Discovery, Vancouver, Canada (N.S.H., T.A.P.); and Zamboni Chemical Solutions, Department of Chemistry, McGill University, Montreal, Canada (H.Z.)
| | - Helmi Zaghdane
- Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada (A.R.A., P.S.); Screening Division, The Centre for Drug Research and Discovery, Vancouver, Canada (N.S.H., T.A.P.); and Zamboni Chemical Solutions, Department of Chemistry, McGill University, Montreal, Canada (H.Z.)
| | - Tom A Pfeifer
- Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada (A.R.A., P.S.); Screening Division, The Centre for Drug Research and Discovery, Vancouver, Canada (N.S.H., T.A.P.); and Zamboni Chemical Solutions, Department of Chemistry, McGill University, Montreal, Canada (H.Z.)
| | - Philippe Séguéla
- Montreal Neurological Institute, Alan Edwards Centre for Research on Pain, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada (A.R.A., P.S.); Screening Division, The Centre for Drug Research and Discovery, Vancouver, Canada (N.S.H., T.A.P.); and Zamboni Chemical Solutions, Department of Chemistry, McGill University, Montreal, Canada (H.Z.)
| |
Collapse
|
11
|
Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina. Neuroscience 2014; 277:55-71. [DOI: 10.1016/j.neuroscience.2014.06.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 02/07/2023]
|
12
|
Stojilkovic SS, Leiva-Salcedo E, Rokic MB, Coddou C. Regulation of ATP-gated P2X channels: from redox signaling to interactions with other proteins. Antioxid Redox Signal 2014; 21:953-70. [PMID: 23944253 PMCID: PMC4116155 DOI: 10.1089/ars.2013.5549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The family of purinergic P2X receptors (P2XRs) is a part of ligand-gated superfamily of channels activated by extracellular adenosine-5'-triphosphate. P2XRs are present in virtually all mammalian tissues as well as in tissues of other vertebrate and nonvertebrate species and mediate a large variety of functions, including fast transmission at central synapses, contraction of smooth muscle cells, platelet aggregation, and macrophage activation to proliferation and cell death. RECENT ADVANCES The recent solving of crystal structure of the zebrafish P2X4.1R is a major advance in the understanding of structural correlates of channel activation and regulation. Combined with growing information obtained in the post-structure era and the reinterpretation of previous work within the context of the tridimensional structure, these data provide a better understanding of how the channel operates at the molecular levels. CRITICAL ISSUES This review focuses on the relationship between redox signaling and P2XR function. We also discuss other allosteric modulation of P2XR gating in the physiological/pathophysiological context. This includes the summary of extracellular actions of trace metals, which can be released to the synaptic cleft, pH decrease that happens during ischemia and inflammation, and calcium, an extracellular and intracellular messenger. FUTURE DIRECTIONS Our evolving understanding of activation and regulation of P2XRs is helpful in clarifying the mechanism by which these channels trigger and modulate cellular functions. Further research is required to identify the signaling pathways contributing to the regulation of the receptor activity and to develop novel and receptor-specific allosteric modulators, which could be used in vivo with therapeutic potential.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- 1 Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland
| | | | | | | |
Collapse
|
13
|
Xu J, Chai H, Ehinger K, Egan TM, Srinivasan R, Frick M, Khakh BS. Imaging P2X4 receptor subcellular distribution, trafficking, and regulation using P2X4-pHluorin. ACTA ACUST UNITED AC 2014; 144:81-104. [PMID: 24935743 PMCID: PMC4076521 DOI: 10.1085/jgp.201411169] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A P2X4 receptor labeled with the pH-sensitive GFP superecliptic pHluorin represents a useful probe to investigate P2X4 receptor distribution, trafficking, and up-regulation. P2X4 receptors are adenosine triphosphate (ATP)-gated cation channels present on the plasma membrane (PM) and also within intracellular compartments such as vesicles, vacuoles, lamellar bodies (LBs), and lysosomes. P2X4 receptors in microglia are up-regulated in epilepsy and in neuropathic pain; that is to say, their total and/or PM expression levels increase. However, the mechanisms underlying up-regulation of microglial P2X4 receptors remain unclear, in part because it has not been possible to image P2X4 receptor distribution within, or trafficking between, cellular compartments. Here, we report the generation of pH-sensitive fluorescently tagged P2X4 receptors that permit evaluations of cell surface and total receptor pools. Capitalizing on information gained from zebrafish P2X4.1 crystal structures, we designed a series of mouse P2X4 constructs in which a pH-sensitive green fluorescent protein, superecliptic pHluorin (pHluorin), was inserted into nonconserved regions located within flexible loops of the P2X4 receptor extracellular domain. One of these constructs, in which pHluorin was inserted after lysine 122 (P2X4-pHluorin123), functioned like wild-type P2X4 in terms of its peak ATP-evoked responses, macroscopic kinetics, calcium flux, current–voltage relationship, and sensitivity to ATP. P2X4-pHluorin123 also showed pH-dependent fluorescence changes, and was robustly expressed on the membrane and within intracellular compartments. P2X4-pHluorin123 identified cell surface and intracellular fractions of receptors in HEK-293 cells, hippocampal neurons, C8-B4 microglia, and alveolar type II (ATII) cells. Furthermore, it showed that the subcellular fractions of P2X4-pHluorin123 receptors were cell and compartment specific, for example, being larger in hippocampal neuron somata than in C8-B4 cell somata, and larger in C8-B4 microglial processes than in their somata. In ATII cells, P2X4-pHluorin123 showed that P2X4 receptors were secreted onto the PM when LBs undergo exocytosis. Finally, the use of P2X4-pHluorin123 showed that the modulator ivermectin did not increase the PM fraction of P2X4 receptors and acted allosterically to potentiate P2X4 receptor responses. Collectively, our data suggest that P2X4-pHluorin123 represents a useful optical probe to quantitatively explore P2X4 receptor distribution, trafficking, and up-regulation.
Collapse
Affiliation(s)
- Ji Xu
- Department of Physiology and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Hua Chai
- Department of Physiology and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | | | - Terrance M Egan
- Department of Pharmacological and Physiological Science and The Center for Excellence in Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63130 Department of Pharmacological and Physiological Science and The Center for Excellence in Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63130
| | - Rahul Srinivasan
- Department of Physiology and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Manfred Frick
- Institute of General Physiology, University of Ulm, 89081 Ulm, Germany
| | - Baljit S Khakh
- Department of Physiology and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095Department of Physiology and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
14
|
Saul A, Hausmann R, Kless A, Nicke A. Heteromeric assembly of P2X subunits. Front Cell Neurosci 2013; 7:250. [PMID: 24391538 PMCID: PMC3866589 DOI: 10.3389/fncel.2013.00250] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/21/2013] [Indexed: 12/01/2022] Open
Abstract
Transcripts and/or proteins of P2X receptor (P2XR) subunits have been found in virtually all mammalian tissues. Generally more than one of the seven known P2X subunits have been identified in a given cell type. Six of the seven cloned P2X subunits can efficiently form functional homotrimeric ion channels in recombinant expression systems. This is in contrast to other ligand-gated ion channel families, such as the Cys-loop or glutamate receptors, where homomeric assemblies seem to represent the exception rather than the rule. P2XR mediated responses recorded from native tissues rarely match exactly the biophysical and pharmacological properties of heterologously expressed homomeric P2XRs. Heterotrimerization of P2X subunits is likely to account for this observed diversity. While the existence of heterotrimeric P2X2/3Rs and their role in physiological processes is well established, the composition of most other P2XR heteromers and/or the interplay between distinct trimeric receptor complexes in native tissues is not clear. After a description of P2XR assembly and the structure of the intersubunit ATP-binding site, this review summarizes the distribution of P2XR subunits in selected mammalian cell types and the biochemically and/or functionally characterized heteromeric P2XRs that have been observed upon heterologous co-expression of P2XR subunits. We further provide examples where the postulated heteromeric P2XRs have been suggested to occur in native tissues and an overview of the currently available pharmacological tools that have been used to discriminate between homo- and heteromeric P2XRs.
Collapse
Affiliation(s)
- Anika Saul
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine Göttingen, Germany
| | - Ralf Hausmann
- Molecular Pharmacology, RWTH Aachen University Aachen, Germany
| | - Achim Kless
- Department of Discovery Informatics, Grünenthal GmbH, Global Drug Discovery Aachen, Germany
| | - Annette Nicke
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine Göttingen, Germany
| |
Collapse
|
15
|
Fountain SJ. Primitive ATP-activated P2X receptors: discovery, function and pharmacology. Front Cell Neurosci 2013; 7:247. [PMID: 24367292 PMCID: PMC3853471 DOI: 10.3389/fncel.2013.00247] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/19/2013] [Indexed: 12/02/2022] Open
Abstract
Adenosine 5-triphosphate (ATP) is omnipresent in biology. It is therefore no surprise that organisms have evolved multifaceted roles for ATP, exploiting its abundance and restriction of passive diffusion across biological membranes. A striking role is the emergence of ATP as a bona fide transmitter molecule, whereby the movement of ATP across membranes serves as a chemical message through a direct ligand-receptor interaction. P2X receptors are ligand-gated ion channels that mediate fast responses to the transmitter ATP in mammalian cells including central and sensory neurons, vascular smooth muscle, endothelium, and leukocytes. Molecular cloning of P2X receptors and our understanding of structure-function relationships has provided sequence information with which to query an exponentially expanding wealth of genome sequence information including protist, early animal and human pathogen genomes. P2X receptors have now been cloned and characterized from a number of simple organisms. Such work has led to surprising new cellular roles for the P2X receptors family and an unusual phylogeny, with organisms such as Drosophila and C. elegans notably lacking P2X receptors despite retaining ionotropic receptors for other common transmitters that are present in mammals. This review will summarize current work on the evolutionary biology of P2X receptors and ATP as a signaling molecule, discuss what can be drawn from such studies when considering the action of ATP in higher animals and plants, and outline how simple organisms may be exploited experimentally to inform P2X receptor function in a wider context.
Collapse
Affiliation(s)
- Samuel J Fountain
- School of Biological Sciences, University of East Anglia Norwich, UK
| |
Collapse
|
16
|
Salas E, Carrasquero LMG, Olivos-Oré LA, Bustillo D, Artalejo AR, Miras-Portugal MT, Delicado EG. Purinergic P2X7 receptors mediate cell death in mouse cerebellar astrocytes in culture. J Pharmacol Exp Ther 2013; 347:802-15. [PMID: 24101734 DOI: 10.1124/jpet.113.209452] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The brain distribution and functional role of glial P2X7 receptors are broader and more complex than initially anticipated. We characterized P2X7 receptors from cerebellar astrocytes at the molecular, immunocytochemical, biophysical, and cell physiologic levels. Mouse cerebellar astrocytes in culture express mRNA coding for P2X7 receptors, which is translated into P2X7 receptor protein as proven by Western blot analysis and immunocytochemistry. Fura-2 imaging showed cytosolic calcium responses to ATP and the synthetic analog 3'-O-(4-benzoyl)benzoyl-ATP (BzATP) exhibited two components, namely an initial transient and metabotropic component followed by a sustained one that depended on extracellular calcium. This latter component, which was absent in astrocytes from P2X7 receptor knockout mice (P2X7 KO), was modulated by extracellular Mg(2+), and was sensitive to Brilliant Blue G (BBG) and 3-(5-(2,3-dichlorophenyl)-1H-tetrazol-1-yl)methyl pyridine (A438079) antagonism. BzATP also elicited inwardly directed nondesensitizing whole-cell ionic currents that were reduced by extracellular Mg(2+) and P2X7 antagonists (BBG and calmidazolium). In contrast to that previously reported in rat cerebellar astrocytes, sustained BzATP application induced a gradual increase in membrane permeability to large cations, such as N-methyl-d-glucamine and 4-[3-methyl-2(3H)-benzoxazolylidene)-methyl]-1-[3-(triethylammonio)propyl]diiodide, which ultimately led to the death of mouse astrocytes. Cerebellar astrocyte cell death was prevented by BBG but not by calmidazolium, removal of extracellular calcium, or treatment with the caspase-3 inhibitor, benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethylketone, thus suggesting a necrotic-type mechanism of cell death. Since this cellular response was not observed in astrocytes from P2X7 KO mice, this study suggests that stimulation of P2X7 receptor may convey a cell death signal to cerebellar astrocytes in a species-specific manner.
Collapse
Affiliation(s)
- Elvira Salas
- Department of Biochemistry, Faculty of Medicine, University of Costa Rica, San José, Costa Rica (E.S.); Departments of Biochemistry (L.M.G.C., M.T.M.-P., E.G.D.) and Toxicology and Pharmacology (L.A.O., D.B., A.R.A.), Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain; and Neurochemistry Research Institute, Complutense University of Madrid, Madrid, Spain (L.A.O., D.B., A.R.A., M.T.M.P., E.G.D.)
| | | | | | | | | | | | | |
Collapse
|
17
|
Allsopp RC, Farmer LK, Fryatt AG, Evans RJ. P2X receptor chimeras highlight roles of the amino terminus to partial agonist efficacy, the carboxyl terminus to recovery from desensitization, and independent regulation of channel transitions. J Biol Chem 2013; 288:21412-21421. [PMID: 23740251 PMCID: PMC3774408 DOI: 10.1074/jbc.m113.464651] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
P2X receptor subtypes can be distinguished by their sensitivity to ATP analogues and selective antagonists. We have used chimeras between human P2X1 and P2X2 receptors to address the contribution of the extracellular ligand binding loop, transmembrane segments (TM1 and TM2), and intracellular amino and carboxyl termini to the action of partial agonists (higher potency and efficacy of BzATP and Ap5A at P2X1 receptors) and antagonists. Sensitivity to the antagonists NF449, suramin, and PPADS was conferred by the nature of the extracellular loop (e.g. nanomolar for NF449 at P2X1 and P2X2-1EXT and micromolar at P2X2 and P2X1-2EXT). In contrast, the effectiveness of partial agonists was similar to P2X1 levels for both of the loop transfers, suggesting that interactions with the rest of the receptor played an important role. Swapping TM2 had reciprocal effects on partial agonist efficacy. However, TM1 swaps increased partial agonist efficacy at both chimeras, and this was similar for swaps of both TM1 and 2. Changing the amino terminus had no effect on agonist potency but increased partial agonist efficacy at P2X2-1N and decreased it at P2X1-2N chimeras, demonstrating that potency and efficacy can be independently regulated. Chimeras and point mutations also identified residues in the carboxyl terminus that regulated recovery from channel desensitization. These results show that interactions among the intracellular, transmembrane, and extracellular portions of the receptor regulate channel properties and suggest that transitions to channel opening, the behavior of the open channel, and recovery from the desensitized state can be controlled independently.
Collapse
Affiliation(s)
- Rebecca C Allsopp
- From the Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Louise K Farmer
- From the Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Alistair G Fryatt
- From the Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Richard J Evans
- From the Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom.
| |
Collapse
|
18
|
Kaczmarek-Hájek K, Lörinczi E, Hausmann R, Nicke A. Molecular and functional properties of P2X receptors--recent progress and persisting challenges. Purinergic Signal 2012; 8:375-417. [PMID: 22547202 PMCID: PMC3360091 DOI: 10.1007/s11302-012-9314-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/18/2011] [Indexed: 12/16/2022] Open
Abstract
ATP-gated P2X receptors are trimeric ion channels that assemble as homo- or heteromers from seven cloned subunits. Transcripts and/or proteins of P2X subunits have been found in most, if not all, mammalian tissues and are being discovered in an increasing number of non-vertebrates. Both the first crystal structure of a P2X receptor and the generation of knockout (KO) mice for five of the seven cloned subtypes greatly advanced our understanding of their molecular and physiological function and their validation as drug targets. This review summarizes the current understanding of the structure and function of P2X receptors and gives an update on recent developments in the search for P2X subtype-selective ligands. It also provides an overview about the current knowledge of the regulation and modulation of P2X receptors on the cellular level and finally on their physiological roles as inferred from studies on KO mice.
Collapse
Affiliation(s)
- Karina Kaczmarek-Hájek
- Max Planck Institute for Experimental Medicine, Hermann Rein Str. 3, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|
19
|
Riedel T, Wiese S, Leichsenring A, Illes P. Effects of nucleotide analogs at the P2X3 receptor and its mutants identify the agonist binding pouch. Mol Pharmacol 2012; 82:80-9. [PMID: 22498660 DOI: 10.1124/mol.112.077818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we investigated the effects of single alanine substitutions of amino acid residues in the supposed ATP binding site of the human P2X3 receptor on the agonistic effect of nucleotide analogs. The wild-type and mutant receptors were expressed in HEK293 cells, and the nucleotide effects were measured by means of the whole-cell patch-clamp method. Modifications in the receptor binding site changed the concentration-response relationship, the current kinetics, and the recovery from desensitization during fast, pulsed, local agonist applications. On the basis of this fact, we were able to distinguish binding from other effects, such as gating/desensitization, by using a hidden Markov model that describes the complete channel behavior with a matrix of rate constants. The binding energies of the nucleotide analogs were calculated and compared with the binding energies of ATP at both the wild-type receptor and its alanine mutants. Changes in the binding energies caused by alterations in the receptor and/or agonist structures were concluded to be attributable to the preferential binding of certain structural constituents of ATP to certain amino acid moieties of the receptor. The results were also checked for consistency with a P2X3 homology model that we developed from the known zebrafish P2X4 crystal structure in the closed state. The functional data correlated well with the predictions of the agonist dockings to the structural model.
Collapse
Affiliation(s)
- Thomas Riedel
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany.
| | | | | | | |
Collapse
|
20
|
Agonist binding evokes extensive conformational changes in the extracellular domain of the ATP-gated human P2X1 receptor ion channel. Proc Natl Acad Sci U S A 2012; 109:4663-7. [PMID: 22393010 DOI: 10.1073/pnas.1201872109] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
P2X receptors for ATP have a wide range of physiological roles and comprise a structurally distinct family of ligand-gated trimeric ion channels. The crystal structure of a P2X4 receptor, in combination with mutagenesis studies, has provided a model of the intersubunit ATP-binding sites and identified an extracellular lateral portal, adjacent to the membrane, that funnels ions to the channel pore. However, little is known about the extent of ATP-induced conformational changes in the extracellular domain of the receptor. To address this issue, we have used MTSEA-biotinylation (N-Biotinoylaminoethyl methanethiosulfonate) to show ATP-sensitive accessibility of cysteine mutants at the human P2X1 receptor. Mapping these data to a P2X1 receptor homology model identifies significant conformational rearrangement. Electron microscopy of purified P2X1 receptors showed marked changes in structure on ATP binding, and introducing disulphide bonds between adjacent subunits to restrict intersubunit movements inhibited channel function. These results are consistent with agonist-induced rotation of the propeller-head domain of the receptor, sliding of adjacent subunits leading to restricted access to the upper vestibule, movement in the ion conducting lateral portals, and gating of the channel pore.
Collapse
|
21
|
Toulme E, Khakh BS. Imaging P2X4 receptor lateral mobility in microglia: regulation by calcium and p38 MAPK. J Biol Chem 2012; 287:14734-48. [PMID: 22393055 DOI: 10.1074/jbc.m111.329334] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
ATP-gated ionotropic P2X4 receptors are up-regulated in activated microglia and are critical for the development of neuropathic pain, a microglia-associated disorder. However, the nature of how plasma membrane P2X4 receptors are regulated in microglia is not fully understood. We used single-molecule imaging to track quantum dot-labeled P2X4 receptors to explore P2X4 receptor mobility in the processes of resting and activated microglia. We find that plasma membrane P2X4 receptor lateral mobility in resting microglial processes is largely random, consisting of mobile and slowly mobile receptors. Moreover, lateral mobility is P2X subunit- and cell-specific, increased in an ATP activation and calcium-dependent manner, and enhanced in activated microglia by the p38 MAPK pathway that selectively regulates slowly mobile receptors. Thus, our data indicate that P2X4 receptors are dynamically regulated mobile ATP sensors, sampling more of the plasma membrane in response to ATP and during the activated state of microglia that is associated with nervous system dysfunction.
Collapse
Affiliation(s)
- Estelle Toulme
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| | | |
Collapse
|
22
|
Neuronal P2X2 receptors are mobile ATP sensors that explore the plasma membrane when activated. J Neurosci 2012; 31:16716-30. [PMID: 22090499 DOI: 10.1523/jneurosci.3362-11.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ATP-gated ionotropic P2X2 receptors are widely expressed in neurons. Although the electrophysiological properties of P2X2 receptors have been extensively studied, little is known about the plasma membrane lateral mobility of P2X2 receptors or whether receptor mobility is regulated by ATP. Here we used single-molecule imaging with simultaneous whole-cell voltage-clamp recordings to track quantum dot-labeled P2X2 receptors in the dendrites of rat hippocampal neurons to explore P2X2 receptor mobility and its regulation. We find that plasma membrane P2X2 receptor lateral mobility in dendrites is heterogeneous but mostly Brownian in nature, consisting of mobile and slowly mobile receptor pools. Moreover, lateral mobility is P2X2 subunit and cell specific, is increased in an activation-dependent manner, and is regulated by cytosolic VILIP1, a calcium binding protein. Our data provide the first direct measures of P2X receptor mobility and show that P2X2 receptors are mobile ATP sensors, sampling more of the dendritic plasma membrane in response to ATP.
Collapse
|
23
|
Antonio LS, Stewart AP, Xu XJ, Varanda WA, Murrell-Lagnado RD, Edwardson JM. P2X4 receptors interact with both P2X2 and P2X7 receptors in the form of homotrimers. Br J Pharmacol 2011; 163:1069-77. [PMID: 21385174 DOI: 10.1111/j.1476-5381.2011.01303.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE The P2X receptor family consists of seven subunit types - P2X1-P2X7. All but P2X6 are able to assemble as homotrimers. In addition, various subunit permutations have been reported to form heterotrimers. Evidence for heterotrimer formation includes co-localization, co-immunoprecipitation and the generation of receptors with novel functional properties; however, direct structural evidence for heteromer formation, such as chemical cross-linking and single-molecule imaging, is available in only a few cases. Here we examined the nature of the interaction between two pairs of subunits - P2X2 and P2X4, and P2X4 and P2X7. EXPERIMENTAL APPROACH We used several experimental approaches, including in situ proximity ligation, co-immunoprecipitation, co-isolation on affinity beads, chemical cross-linking and atomic force microscopy (AFM) imaging. KEY RESULTS Both pairs of subunits co-localize upon co-transfection, interact intimately within cells, and can be co-immunoprecipitated and co-isolated from cell extracts. Despite this, chemical cross-linking failed to show evidence for heteromer formation. AFM imaging of isolated receptors showed that all three subunits had the propensity to form receptor dimers. This self-association is likely to account for the observed close interaction between the subunit pairs, in the absence of true heteromer formation. CONCLUSIONS AND IMPLICATIONS We conclude that both pairs of receptors interact in the form of distinct homomers. We urge caution in the interpretation of biochemical evidence indicating heteromer formation in other cases.
Collapse
Affiliation(s)
- L S Antonio
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Expression, purification, electron microscopy, N-glycosylation mutagenesis and molecular modeling of human P2X4 and Dictyostelium discoideum P2XA. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2859-66. [PMID: 21889489 PMCID: PMC3199733 DOI: 10.1016/j.bbamem.2011.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/08/2011] [Accepted: 08/19/2011] [Indexed: 11/24/2022]
Abstract
The recent publication of the apo-, closed-state 3D crystal structure of zebrafish (zf) P2X4.1 has not only revolutionized the P2X research field, but also highlighted the need for further crystal structures, of receptors in different activation states, so that we can gain a complete molecular understanding of ion channel function. zfP2X4.1 was selected as a 3D-crystallization candidate because of its ability to form stable trimers in detergent solution, and purified from over-expression in baculovirus-infected Spodoptera frugiperda (Sf9) insect cells. In this work, we have used a similar approach to express both human P2X4 (hP2X4) and Dictyostelium discoideum P2XA (DdP2XA) in Sf9 cells. Although hP2X4 did not form stable trimers in detergent solution, both receptors bound to ATP-coupled resins, indicating that their extracellular domains were folded correctly. DdP2XA formed strong trimers in detergent solution, and we were able to selectively purify trimers using preparative electrophoresis, and build a 21Å-resolution 3D structure using transmission electron microscopy and single particle analysis. Although the structure of DdP2XA possessed similar dimensions to those of the previously determined low-resolution hP2X4 structure and the zfP2X4.1 crystal structure, N-glycosylation mutagenesis and molecular modeling indicated differences between N-glycan usage and predicted accessibility in models of DdP2XA based on the zfP2X4.1 crystal structure. Our data demonstrate that DdP2XA expressed in insect cells retains ATP-binding capacity after detergent solubilization, is an ideal candidate for structural study, and possesses a significantly different 3D structure to that of both hP2X4 and zfP2X4.1.
Collapse
|
26
|
Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 2011; 63:641-83. [PMID: 21737531 DOI: 10.1124/pr.110.003129] [Citation(s) in RCA: 394] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions.
Collapse
Affiliation(s)
- Claudio Coddou
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Developmant, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
P2X receptors for ATP are ligand gated cation channels that form from the trimeric assembly of subunits with two transmembrane segments, a large extracellular ligand binding loop, and intracellular amino and carboxy termini. The receptors are expressed throughout the body, involved in functions ranging from blood clotting to inflammation, and may provide important targets for novel therapeutics. Mutagenesis based studies have been used to develop an understanding of the molecular basis of their pharmacology with the aim of developing models of the ligand binding site. A crystal structure for the zebra fish P2X4 receptor in the closed agonist unbound state has been published recently, which provides a major advance in our understanding of the receptors. This review gives an overview of mutagenesis studies that have led to the development of a model of the ATP binding site, as well as identifying residues contributing to allosteric regulation and antagonism. These studies are discussed with reference to the crystal to provide a structural interpretation of the molecular basis of drug action.
Collapse
Affiliation(s)
- Richard J Evans
- Cell Physiology & Pharmacology, University of Leicester, Leicester, UK.
| |
Collapse
|
28
|
Burnstock G, Kennedy C. P2X receptors in health and disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:333-372. [PMID: 21586364 DOI: 10.1016/b978-0-12-385526-8.00011-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Seven P2X receptor subunits have been cloned which form functional homo- and heterotrimers. These are cation-selective channels, equally permeable to Na(+) and K(+) and with significant Ca(2+) permeability. The three-dimensional structure of the P2X receptor is described. The channel pore is formed by the α-helical transmembrane spanning region 2 of each subunit. When ATP binds to a P2X receptor, the pore opens within milliseconds, allowing the cations to flow. P2X receptors are expressed on both central and peripheral neurons, where they are involved in neuromuscular and synaptic neurotransmission and neuromodulation. They are also expressed in most types of nonneuronal cells and mediate a wide range of actions, such as contraction of smooth muscle, secretion, and immunomodulation. Changes in the expression of P2X receptors have been characterized in many pathological conditions of the cardiovascular, gastrointestinal, respiratory, and urinogenital systems and in the brain and special senses. The therapeutic potential of P2X receptor agonists and antagonists is currently being investigated in a range of disorders, including chronic neuropathic and inflammatory pain, depression, cystic fibrosis, dry eye, irritable bowel syndrome, interstitial cystitis, dysfunctional urinary bladder, and cancer.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, University College Medical School, London, United Kingdom
| | | |
Collapse
|
29
|
Mio K, Maruyama Y, Ogura T, Kawata M, Moriya T, Mio M, Sato C. Single particle reconstruction of membrane proteins: A tool for understanding the 3D structure of disease-related macromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 103:122-30. [DOI: 10.1016/j.pbiomolbio.2010.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 02/06/2010] [Accepted: 03/07/2010] [Indexed: 11/28/2022]
|
30
|
Browne LE, Jiang LH, North RA. New structure enlivens interest in P2X receptors. Trends Pharmacol Sci 2010; 31:229-37. [PMID: 20227116 PMCID: PMC2954318 DOI: 10.1016/j.tips.2010.02.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/07/2010] [Accepted: 02/12/2010] [Indexed: 01/26/2023]
Abstract
P2X receptors are ATP-gated membrane ion channels with multifarious roles, including afferent sensation, autocrine feedback loops, and inflammation. Their molecular operation has been less well elucidated compared with other ligand-gated channels (nicotinic acetylcholine receptors, ionotropic glutamate receptors). This will change with the recent publication of the crystal structure of a closed P2X receptor. Here we re-interpret results from 15 years of experiments using site-directed mutagenesis with a model based on the new structure. Previous predictions of receptor stoichiometry, the extracellular ATP binding site, inter-subunit contacts, and many details of the permeation pathway fall into place in three dimensions. We can therefore quickly understand how the channel operates at the molecular level. This is important not only for ion- channel aficionados, but also those engaged in developing effective antagonists at P2X receptors for potential therapeutic use.
Collapse
Affiliation(s)
- Liam E Browne
- Faculty of Medical and Human Sciences, University of Manchester, UK
| | | | | |
Collapse
|
31
|
Masi A, Cicchi R, Carloni A, Pavone FS, Arcangeli A. Optical methods in the study of protein-protein interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 674:33-42. [PMID: 20549938 DOI: 10.1007/978-1-4419-6066-5_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Förster (or Fluorescence) resonance energy transfer (FRET) is a physical process in which energy is transferred nonradiatively from an excited fluorophore, serving as a donor, to another chromophore (acceptor). Among the techniques related to fluorescence microscopy, FRET is unique in providing signals sensitive to intra- and intermolecular distances in the 1-10 nm range. Because of its potency, FRET is increasingly used to visualize and quantify the dynamics of protein-protein interaction in living cells, with high spatio-temporal resolution. Here we describe the physical bases of FRET, detailing the principal methods applied: (1) measurement of signal intensity and (2) analysis of fluorescence lifetime (FLIM). Although several technical complications must be carefully considered, both methods can be applied fruitfully to specific fields. For example, FRET based on intensity detection is more suitable to follow biological phenomena at a finely tuned spatial and temporal scale. Furthermore, a specific fluorescence signal occurring close to the plasma membrane (< or = 100 nm) can be obtained using a total internal reflection fluorescence (TIRF) microscopy system. When performing FRET experiments, care must be also taken to the method chosen for labeling interacting proteins. Two principal tools can be applied: (1) fluorophore tagged antibodies; (2) recombinant fluorescent fusion proteins. The latter method essentially takes advantage of the discovery and use of spontaneously fluorescent proteins, like the green fluorescent protein (GFP). Until now, FRET has been widely used to analyze the structural characteristics of several proteins, including integrins and ion channels. More recently, this method has been applied to clarify the interaction dynamics of these classes of membrane proteins with cytosolic signaling proteins. We report two examples in which the interaction dynamics between integrins and ion channels have been studied with FRET methods. Using fluorescent antibodies and applying FRET-FLIM, the direct interaction of beta1 integrin with the receptor for Epidermal Growth Factor (EGF-R) has been proved in living endothelial cells. A different approach, based on TIRFM measurement of the FRET intensity of fluorescently labeled recombinant proteins, suggests that a direct interaction also occurs between integrins and the ether-a-go-go-related-gene 1 (hERG1) K+ channel.
Collapse
Affiliation(s)
- Alessio Masi
- Department of Experimental Pathology and Oncology, University of Florence, Italy
| | | | | | | | | |
Collapse
|
32
|
Ackerson CJ, Powell RD, Hainfeld JF. Site-specific biomolecule labeling with gold clusters. Methods Enzymol 2010; 481:195-230. [PMID: 20887859 DOI: 10.1016/s0076-6879(10)81009-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Site-specific labeling of biomolecules in vitro with gold clusters can enhance the information content of electron cryomicroscopy experiments. This chapter provides a practical overview of well-established techniques for forming biomolecule/gold cluster conjugates. Three bioconjugation chemistries are covered: linker-mediated bioconjugation, direct gold-biomolecule bonding, and coordination-mediated bonding of nickel(II) nitrilotriacetic acid (NTA)-derivatized gold clusters to polyhistidine (His)-tagged proteins.
Collapse
|
33
|
P2X receptors: dawn of the post-structure era. Trends Biochem Sci 2009; 35:83-90. [PMID: 19836961 PMCID: PMC2824114 DOI: 10.1016/j.tibs.2009.09.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/10/2009] [Accepted: 09/14/2009] [Indexed: 12/04/2022]
Abstract
P2X receptors are non-selective cation channels gated by extracellular ATP. They play key roles in various physiological processes such as nerve transmission, pain sensation and the response to inflammation, making them attractive drug targets for the treatment of inflammatory pain. The recent report of the three-dimensional (3D) crystal structure of zebrafish P2X4.1 represents a step change in our understanding of these membrane ion channels, where previously only low-resolution structural data and inferences from indirect structure–function studies were available. The purpose of this review is to place previous work within the context of the new 3D structure, and to summarize the key questions and challenges which await P2X researchers as we move into the post-structure era.
Collapse
|
34
|
Singh H, Warburton S, Vondriska TM, Khakh BS. Proteomics to identify proteins interacting with P2X2 ligand-gated cation channels. J Vis Exp 2009:1178. [PMID: 19455095 PMCID: PMC2794295 DOI: 10.3791/1178] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Ligand-gated ion channels underlie synaptic communication in the nervous system(1). In mammals there are three families of ligand-gated channels: the cys loop, the glutamate-gated and the P2X receptor channel family(2). In each case binding of transmitter leads to the opening of a pore through which ions flow down their electrochemical gradients. Many ligand-gated channels are also permeable to calcium ions(3, 4), which have downstream signaling roles(5) (e.g. gene regulation) that may exceed the duration of channel opening. Thus ligand-gated channels can signal over broad time scales ranging from a few milliseconds to days. Given these important roles it is necessary to understand how ligand-gated ion channels themselves are regulated by proteins, and how these proteins may tune signaling. Recent studies suggest that many, if not all, channels may be part of protein signaling complexes(6). In this article we explain how to identify the proteins that bind to the C-terminal aspects of the P2X2 receptor cytosolic domain. P2X receptors are ATP-gated cation channels and consist of seven subunits (P2X1-P2X7). P2X receptors are widely expressed in the brain, where they mediate excitatory synaptic transmission and presynaptic facilitation of neurotransmitter release(7). P2X receptors are found in excitable and non-excitable cells and mediate key roles in neuronal signaling, inflammation and cardiovascular function(8). P2X2 receptors are abundant in the nervous system(9) and are the focus of this study. Each P2X subunit is thought to possess two membrane spanning segments (TM1 & TM2) separated by an extracellular region(7) and intracellular N and C termini (Fig 1a)(7). P2X subunits(10) (P2X1-P2X7) show 30 50% sequence homology at the amino acid level(11). P2X receptors contain only three subunits, which is the simplest stoichiometry among ionotropic receptors. The P2X2 C-terminus consists of 120 amino acids (Fig 1b) and contains several protein docking consensus sites, supporting the hypothesis that P2X2 receptor may be part of signaling complexes. However, although several functions have been attributed to the C-terminus of P2X2 receptors(9) no study has described the molecular partners that couple to the intracellular side of this protein via the full length C-terminus. In this methods paper we describe a proteomic approach to identify the proteins which interact with the full length C terminus of P2X2 receptors.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Physiology, University of California, Los Angeles, USA
| | | | | | | |
Collapse
|
35
|
Shinozaki Y, Sumitomo K, Tsuda M, Koizumi S, Inoue K, Torimitsu K. Direct observation of ATP-induced conformational changes in single P2X(4) receptors. PLoS Biol 2009; 7:e1000103. [PMID: 19419241 PMCID: PMC2675908 DOI: 10.1371/journal.pbio.1000103] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 03/19/2009] [Indexed: 12/04/2022] Open
Abstract
The ATP-gated P2X4 receptor is a cation channel, which is important in various pathophysiological events. The architecture of the P2X4 receptor in the activated state and how to change its structure in response to ATP binding are not fully understood. Here, we analyze the architecture and ATP-induced structural changes in P2X4 receptors using fast-scanning atomic force microscopy (AFM). AFM images of the membrane-dissociated and membrane-inserted forms of P2X4 receptors and a functional analysis revealed that P2X4 receptors have an upward orientation on mica but lean to one side. Time-lapse imaging of the ATP-induced structural changes in P2X4 receptors revealed two different forms of activated structures under 0 Ca2+ conditions, namely a trimer structure and a pore dilation-like tripartite structure. A dye uptake measurement demonstrated that ATP-activated P2X4 receptors display pore dilation in the absence of Ca2+. With Ca2+, the P2X4 receptors exhibited only a disengaged trimer and no dye uptake was observed. Thus our data provide a new insight into ATP-induced structural changes in P2X4 receptors that correlate with pore dynamics. ATP is not only a source of intracellular energy but can act as an intercellular signal by binding membrane receptors. Purinergic receptors, which bind with nucleotides including ATP are known as P2 receptors and are divided into two types: ion channel-type P2X receptors and metabotropic-type P2Y receptors. P2X receptors are thought to undergo conformational changes in response to ATP binding, leading to the opening of transmembrane channels, through which cations enter the cells. A growing body of evidence shows that P2X receptors control various physiological and pathophysiological cellular responses. However, the receptor structure and the conformational changes it experiences upon stimulation remained to be clarified. Here, we employed an atomic force microscope (AFM) to observe P2X receptor behavior at the single channel level. We chose to analyze the P2X4 receptor, because it is known to increase the transmembrane pore size (i.e., pore dilation) in the absence of extracellular calcium. Activated P2X4 receptor exhibited a trimeric topology with a pore-like structure in the center. When calcium was present the receptor exhibited a trimer without a pore structure at its center. These structural changes corresponded well with the changes of ion permeability of P2X4 receptor. Fast-scanning atomic force microscopy reveals the topology, ATP-induced conformational changes, and Ca2+ regulation of the pore-opening in P2X4 receptors.
Collapse
|
36
|
Barrera NP, Edwardson JM. The subunit arrangement and assembly of ionotropic receptors. Trends Neurosci 2008; 31:569-76. [PMID: 18774187 DOI: 10.1016/j.tins.2008.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 08/05/2008] [Accepted: 08/05/2008] [Indexed: 11/17/2022]
Abstract
Ionotropic receptors mediate rapid communication between neurons. These receptors are oligomers and are usually assembled from multiple subunit types. Receptors built from different subunit combinations have distinct functional properties, such as single-channel conductances, rates of desensitization and sensitivities to activators and inactivators; they can also have different intracellular locations. Methods are now available for determining not only the subunit stoichiometry but also the subunit arrangement within ionotropic receptors. This information will inform experiments designed to understand the molecular basis of receptor assembly and function. It will also permit the modelling of potential ligand-binding sites at the interfaces between the subunits and should lead to a more rational approach to drug development.
Collapse
Affiliation(s)
- Nelson P Barrera
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | | |
Collapse
|
37
|
Jarvis MF, Khakh BS. ATP-gated P2X cation-channels. Neuropharmacology 2008; 56:208-15. [PMID: 18657557 DOI: 10.1016/j.neuropharm.2008.06.067] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/24/2008] [Accepted: 06/30/2008] [Indexed: 12/20/2022]
Abstract
P2X receptors are ATP-gated cation channels with important roles in diverse pathophysiological processes. Substantial progress has been made in the last few years with the discovery of both subunit selective antagonists and modulators. The purpose of this brief review is to summarize the advances in the pharmacology of P2X receptors, with key properties presented in an easy to access format. Ligand-gated ion channels consist of three families in mammals; the ionotropic glutamate receptors, the Cys-loop receptors (for GABA, ACh, glycine and serotonin) and the P2X receptors for ATP. The first two of these are considered in articles accompanying this Special Issue. Here we consider the pharmacological properties of P2X receptors. We do not present a detailed discussion of P2X receptor physiological roles or structure-function studies. Moreover, the pharmacological basis for discriminating between the main subtypes of P2X receptor and their nomenclature has been published by the Nomenclature Committee of the International Union of Pharmacology (NC-IUPHAR) P2X Receptor Subcommittee, and so these aspects are not revisited here. Instead in this brief article we seek to present a summary of the pharmacology of recombinant homomeric and heteromeric P2X receptors, with particular emphasis on new antagonists. In this article we have tried to present as much information as possible in two tables in the hope this will be useful as a day-to-day resource, and also because an excellent and detailed review has recently been published.
Collapse
Affiliation(s)
- Michael F Jarvis
- Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | |
Collapse
|