1
|
Wang S, Kang Y, Xie H. PKD2: An Important Membrane Protein in Organ Development. Cells 2024; 13:1722. [PMID: 39451240 PMCID: PMC11506562 DOI: 10.3390/cells13201722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
PKD2 was first identified as the pathogenic protein for autosomal dominant polycystic kidney disease (ADPKD) and is widely recognized as an ion channel. Subsequent studies have shown that PKD2 is widely expressed in various animal tissues and plays a crucial role in tissue and organ development. Additionally, PKD2 is conserved from single-celled organisms to vertebrates. Here, we provide an overview of recent advances in the function of PKD2 in key model animals, focusing on the establishment of left-right organ asymmetry, renal homeostasis, cardiovascular development, and signal transduction in reproduction and mating. We specifically focus on the roles of PKD2 in development and highlight future prospects for PKD2 research.
Collapse
Affiliation(s)
- Shuo Wang
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yunsi Kang
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Haibo Xie
- MoE Key Laboratory of Evolution and Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (S.W.); (Y.K.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
2
|
Bannell TAK, Cockburn JJB. The molecular structure and function of fibrocystin, the key gene product implicated in autosomal recessive polycystic kidney disease (ARPKD). Ann Hum Genet 2024; 88:58-75. [PMID: 37905714 DOI: 10.1111/ahg.12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Autosomal recessive polycystic kidney disease is an early onset inherited hepatorenal disorder affecting around 1 in 20,000 births with no approved specific therapies. The disease is almost always caused by variations in the polycystic kidney and hepatic disease 1 gene, which encodes fibrocystin (FC), a very large, single-pass transmembrane glycoprotein found in primary cilia, urine and urinary exosomes. By comparison to proteins involved in autosomal dominant PKD, our structural and molecular understanding of FC has lagged far behind such that there are no published experimentally determined structures of any part of the protein. Bioinformatics analyses predict that the ectodomain contains a long chain of immunoglobulin-like plexin-transcription factor domains, a protective antigen 14 domain, a tandem G8-TMEM2 homology region and a sperm protein, enterokinase and agrin domain. Here we review current knowledge on the molecular function of the protein from a structural perspective.
Collapse
Affiliation(s)
- Travis A K Bannell
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joseph J B Cockburn
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
3
|
Sieben CJ, Harris PC. Experimental Models of Polycystic Kidney Disease: Applications and Therapeutic Testing. KIDNEY360 2023; 4:1155-1173. [PMID: 37418622 PMCID: PMC10476690 DOI: 10.34067/kid.0000000000000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Polycystic kidney diseases (PKDs) are genetic disorders characterized by the formation and expansion of numerous fluid-filled renal cysts, damaging normal parenchyma and often leading to kidney failure. Although PKDs comprise a broad range of different diseases, with substantial genetic and phenotypic heterogeneity, an association with primary cilia represents a common theme. Great strides have been made in the identification of causative genes, furthering our understanding of the genetic complexity and disease mechanisms, but only one therapy so far has shown success in clinical trials and advanced to US Food and Drug Administration approval. A key step in understanding disease pathogenesis and testing potential therapeutics is developing orthologous experimental models that accurately recapitulate the human phenotype. This has been particularly important for PKDs because cellular models have been of limited value; however, the advent of organoid usage has expanded capabilities in this area but does not negate the need for whole-organism models where renal function can be assessed. Animal model generation is further complicated in the most common disease type, autosomal dominant PKD, by homozygous lethality and a very limited cystic phenotype in heterozygotes while for autosomal recessive PKD, mouse models have a delayed and modest kidney disease, in contrast to humans. However, for autosomal dominant PKD, the use of conditional/inducible and dosage models have resulted in some of the best disease models in nephrology. These have been used to help understand pathogenesis, to facilitate genetic interaction studies, and to perform preclinical testing. Whereas for autosomal recessive PKD, using alternative species and digenic models has partially overcome these deficiencies. Here, we review the experimental models that are currently available and most valuable for therapeutic testing in PKD, their applications, success in preclinical trials, advantages and limitations, and where further improvements are needed.
Collapse
Affiliation(s)
- Cynthia J Sieben
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
4
|
Assimakopoulou M, Christopoulou ME, Karamani V, Aletras AJ, Gatzounis G. Polycystin-2 Associates With Malignancy in Meningiomas. Appl Immunohistochem Mol Morphol 2023; 31:239-244. [PMID: 36877184 PMCID: PMC10072210 DOI: 10.1097/pai.0000000000001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/28/2022] [Indexed: 03/07/2023]
Abstract
The involvement of polycystin-2 (PC2) in cell survival pathways raises questions about its role in carcinogenesis. Aberrant expression of PC2 has been associated with malignancy in various tumors. No evidence exists referring to PC2 expression in meningiomas. The aim of this study was to investigate the expression levels of PC2 in meningiomas and compare them with normal brain samples including leptomeninges. PC2 immunohistochemical expression was quantitatively analyzed in archival tissue from 60 patients with benign (WHO grade 1) and 22 patients with high-grade (21: WHO grade 2 and 1: grade 3) meningiomas. Specifically, the labeling index [the percentage of positive (labeled) cells out of the total number of tumor cells counted] was determined. PC2 mRNA levels were evaluated by quantitative real-time polymerase chain reaction. PC2 immunostaining was not detected in the leptomeninges. Gene expression analysis revealed increased levels of PC2 in WHO grade 1 ( P = 0.008) and WHO grade 2 ( P = 0.0007) meningiomas compared with that of normal brains. PC2 expression was significantly associated with an ascending grade of malignancy by both immunohistochemistry and quantitative real-time polymerase chain reaction ( P < 0.05). Recurrent meningiomas displayed higher levels of PC2 compared with primary meningiomas ( P = 0.008). Although no significant association of PC2 with the overall survival of the patients was found ( P > 0.05), it was noticed that the patients with WHO grade 2 meningiomas with low expression of PC2 survived longer compared with the patients with WHO grade 1 meningioma with high expression of PC2 (mean survival 49.5 and 28 months, respectively). The above results indicate a possible association of PC2 with malignancy in meningiomas. However, the mechanisms underlying PC2 implication in meningioma pathogenesis should be further elucidated.
Collapse
Affiliation(s)
| | | | | | - Alexios J. Aletras
- Laboratory of Biochemistry, Department of Chemistry, University of Patras
| | - George Gatzounis
- Department of Neurosurgery, University Hospital of Patras, Patras, Greece
| |
Collapse
|
5
|
Adams DE, Heuer LS, Rojas M, Zhang W, Ridgway WM. Mutated Pkhd1 alone is sufficient to cause autoimmune biliary disease on the nonobese diabetic (NOD) genetic background. Immunogenetics 2023; 75:27-37. [PMID: 36097289 PMCID: PMC9468241 DOI: 10.1007/s00251-022-01276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/27/2022] [Indexed: 01/21/2023]
Abstract
We previously reported that nonobese diabetic (NOD) congenic mice (NOD.c3c4 mice) developed an autoimmune biliary disease (ABD) with similarities to human primary biliary cholangitis (PBC), including anti-mitochondrial antibodies and organ-specific biliary lymphocytic infiltrates. We narrowed the possible contributory regions in a novel NOD.Abd3 congenic mouse to a B10 congenic region on chromosome 1 ("Abd3") and a mutated Pkhd1 gene (Pkhd1del36-67) upstream from Abd3, and we showed via backcrossing studies that the NOD genetic background was necessary for disease. Here, we show that NOD.Abd3 mice develop anti-PDC-E2 autoantibodies at high levels, and that placing the chromosome 1 interval onto a scid background eliminates disease, demonstrating the critical role of the adaptive immune system in pathogenesis. While the NOD genetic background is essential for disease, it was still unclear which of the two regions in the Abd3 locus were necessary and sufficient for disease. Here, using a classic recombinant breeding approach, we prove that the mutated Pkhd1del36-67 alone, on the NOD background, causes ABD. Further characterization of the mutant sequence demonstrated that the Pkhd1 gene is disrupted by an ETnII-beta retrotransposon inserted in intron 35 in an anti-sense orientation. Homozygous Pkhd1 mutations significantly affect viability, with the offspring skewed away from a Mendelian distribution towards NOD Pkhd1 homozygous or heterozygous genotypes. Cell-specific abnormalities, on a susceptible genetic background, can therefore induce an organ-specific autoimmunity directed to the affected cells. Future work will aim to characterize how mutant Pkhd1 can cause such an autoimmune response.
Collapse
Affiliation(s)
- David E Adams
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Department of Internal Medicine, Cincinnati VA Medical Center, Cincinnati, OH, 45267, USA
| | - Luke S Heuer
- Department of Internal Medicine, Sacramento VA Medical Center, VA Northern California Health Care System, Mather, CA, 95655, USA
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Manuel Rojas
- School of Medicine and Health Sciences, Doctoral Program in Biological and Biomedical Sciences, Center for Autoimmune Diseases Research (CREA), Universidad del Rosario, Bogota, Colombia
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Weici Zhang
- Department of Internal Medicine, Sacramento VA Medical Center, VA Northern California Health Care System, Mather, CA, 95655, USA
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - William M Ridgway
- Department of Internal Medicine, Sacramento VA Medical Center, VA Northern California Health Care System, Mather, CA, 95655, USA.
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Nagao S, Yamaguchi T. Review of the Use of Animal Models of Human Polycystic Kidney Disease for the Evaluation of Experimental Therapeutic Modalities. J Clin Med 2023; 12:jcm12020668. [PMID: 36675597 PMCID: PMC9867516 DOI: 10.3390/jcm12020668] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Autosomal dominant polycystic kidney disease, autosomal recessive polycystic kidney disease, and nephronophthisis are hereditary disorders with the occurrence of numerous cysts in both kidneys, often causing chronic and end-stage renal failure. Animal models have played an important role in recent advances in research not only on disease onset and progressive mechanisms but also on the development of therapeutic interventions. For a long time, spontaneous animal models have been used as the primary focus for human diseases; however, after the identification of the nucleotide sequence of the responsible genes, PKD1, PKD2, PKHD1, and NPHPs, various types of genetically modified models were developed by genetic and reproductive engineering techniques and played the leading role in the research field. In this review, we present murine models of hereditary renal cystic diseases, discussing their potential benefits in the development of therapeutic strategies.
Collapse
Affiliation(s)
- Shizuko Nagao
- Advanced Research Center for Animal Models of Human Diseases, Fujita Health University, Toyoake 470-1192, Japan
- Correspondence: ; Tel.: +81-562-93-2434
| | - Tamio Yamaguchi
- Advanced Research Center for Animal Models of Human Diseases, Fujita Health University, Toyoake 470-1192, Japan
- Department of Medical Technology, Faculty of Health Science, Suzuka University of Medical Science, Suzuka 510-0293, Japan
| |
Collapse
|
7
|
Cantero MDR, Cantiello HF. Polycystin-2 (TRPP2): Ion channel properties and regulation. Gene 2022; 827:146313. [PMID: 35314260 DOI: 10.1016/j.gene.2022.146313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/19/2022] [Accepted: 02/08/2022] [Indexed: 12/01/2022]
Abstract
Polycystin-2 (TRPP2, PKD2, PC2) is the product of the PKD2 gene, whose mutations cause Autosomal Dominant Polycystic Kidney Disease (ADPKD). PC2 belongs to the superfamily of TRP (Transient Receptor Potential) proteins that generally function as Ca2+-permeable nonselective cation channels implicated in Ca2+ signaling. PC2 localizes to various cell domains with distinct functions that likely depend on interactions with specific channel partners. Functions include receptor-operated, nonselective cation channel activity in the plasma membrane, intracellular Ca2+ release channel activity in the endoplasmic reticulum (ER), and mechanosensitive channel activity in the primary cilium of renal epithelial cells. Here we summarize our current understanding of the properties of PC2 and how other transmembrane and cytosolic proteins modulate this activity, providing functional diversity and selective regulatory mechanisms to its role in the control of cellular Ca2+ homeostasis.
Collapse
Affiliation(s)
- María Del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina.
| | - Horacio F Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD, CONICET-UNSE), El Zanjón, Santiago del Estero 4206, Argentina
| |
Collapse
|
8
|
Kumar P, Zadjali F, Yao Y, Köttgen M, Hofherr A, Gross KW, Mehta D, Bissler JJ. Single Gene Mutations in Pkd1 or Tsc2 Alter Extracellular Vesicle Production and Trafficking. BIOLOGY 2022; 11:biology11050709. [PMID: 35625437 PMCID: PMC9139108 DOI: 10.3390/biology11050709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/20/2022] [Accepted: 04/30/2022] [Indexed: 12/17/2022]
Abstract
Simple Summary Extracellular vesicles shed from primary cilia may be involved in renal cystogenesis. The disruption of the Pkd1 gene in our cell culture system increased the production of EVs in a similar way that occurs when the Tsc2 gene is disrupted. Disruption of the primary cilia depresses EV production, and this may be the reason that the combined Kif3A/Pkd1 mutant mouse has a less severe phenotype than the Pkd1 mutant alone. We initiated studies aimed at understanding the renal trafficking of renally-derived EVs and found that single gene disruptions can alter the EV kinetics based on dye tracking studies. These results raise the possibility that EV features, such as cargo, dose, tissue half-life, and targeting, may be involved in the disease process, and these features may also be fertile targets for diagnostic, prognostic, and therapeutic investigation. Abstract Patients with autosomal dominant polycystic kidney disease (ADPKD) and tuberous sclerosis complex (TSC) are born with normal or near-normal kidneys that later develop cysts and prematurely lose function. Both renal cystic diseases appear to be mediated, at least in part, by disease-promoting extracellular vesicles (EVs) that induce genetically intact cells to participate in the renal disease process. We used centrifugation and size exclusion chromatography to isolate the EVs for study. We characterized the EVs using tunable resistive pulse sensing, dynamic light scattering, transmission electron microscopy, and Western blot analysis. We performed EV trafficking studies using a dye approach in both tissue culture and in vivo studies. We have previously reported that loss of the Tsc2 gene significantly increased EV production and here demonstrate that the loss of the Pkd1 gene also significantly increases EV production. Using a cell culture system, we also show that loss of either the Tsc2 or Pkd1 gene results in EVs that exhibit an enhanced uptake by renal epithelial cells and a prolonged half-life. Loss of the primary cilia significantly reduces EV production in renal collecting duct cells. Cells that have a disrupted Pkd1 gene produce EVs that have altered kinetics and a prolonged half-life, possibly impacting the duration of the EV cargo effect on the recipient cell. These results demonstrate the interplay between primary cilia and EVs and support a role for EVs in polycystic kidney disease pathogenesis.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Pediatrics, Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (P.K.); (F.Z.); (Y.Y.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- US FDA National Center for Toxicological Research, Jefferson, AR 72079, USA;
| | - Fahad Zadjali
- Department of Pediatrics, Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (P.K.); (F.Z.); (Y.Y.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Department of Clinical Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Ying Yao
- Department of Pediatrics, Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (P.K.); (F.Z.); (Y.Y.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Michael Köttgen
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.K.); (A.H.)
- CIBSS—Centre for Integrative Biological Signaling Studies, 79104 Freiburg, Germany
| | - Alexis Hofherr
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.K.); (A.H.)
| | - Kenneth W. Gross
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Darshan Mehta
- US FDA National Center for Toxicological Research, Jefferson, AR 72079, USA;
| | - John J. Bissler
- Department of Pediatrics, Le Bonheur Children’s Hospital, University of Tennessee Health Science Center, Memphis, TN 38103, USA; (P.K.); (F.Z.); (Y.Y.)
- Children’s Foundation Research Institute (CFRI), Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Pediatric Medicine Department, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Correspondence:
| |
Collapse
|
9
|
Goggolidou P, Richards T. The genetics of Autosomal Recessive Polycystic Kidney Disease (ARPKD). Biochim Biophys Acta Mol Basis Dis 2022; 1868:166348. [PMID: 35032595 DOI: 10.1016/j.bbadis.2022.166348] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/27/2021] [Accepted: 01/06/2022] [Indexed: 12/21/2022]
Abstract
ARPKD is a genetically inherited kidney disease that manifests by bilateral enlargement of cystic kidneys and liver fibrosis. It shows a range of severity, with 30% of individuals dying early on and the majority having good prognosis if they survive the first year of life. The reasons for this variability remain unclear. Two genes have been shown to cause ARPKD when mutated, PKHD1, mutations in which lead to most of ARPKD cases and DZIP1L, which is associated with moderate ARPKD. This mini review will explore the genetics of ARPKD and discuss potential genetic modifiers and phenocopies that could affect diagnosis.
Collapse
Affiliation(s)
- Paraskevi Goggolidou
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK.
| | - Taylor Richards
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| |
Collapse
|
10
|
Sudarikova A, Vasileva V, Sultanova R, Ilatovskaya D. Recent advances in understanding ion transport mechanisms in polycystic kidney disease. Clin Sci (Lond) 2021; 135:2521-2540. [PMID: 34751394 PMCID: PMC8589009 DOI: 10.1042/cs20210370] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022]
Abstract
This review focuses on the most recent advances in the understanding of the electrolyte transport-related mechanisms important for the development of severe inherited renal disorders, autosomal dominant (AD) and recessive (AR) forms of polycystic kidney disease (PKD). We provide here a basic overview of the origins and clinical aspects of ARPKD and ADPKD and discuss the implications of electrolyte transport in cystogenesis. Special attention is devoted to intracellular calcium handling by the cystic cells, with a focus on polycystins and fibrocystin, as well as other calcium level regulators, such as transient receptor potential vanilloid type 4 (TRPV4) channels, ciliary machinery, and purinergic receptor remodeling. Sodium transport is reviewed with a focus on the epithelial sodium channel (ENaC), and the role of chloride-dependent fluid secretion in cystic fluid accumulation is discussed. In addition, we highlight the emerging promising concepts in the field, such as potassium transport, and suggest some new avenues for research related to electrolyte handling.
Collapse
Affiliation(s)
| | | | - Regina F. Sultanova
- Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | | |
Collapse
|
11
|
The cellular pathways and potential therapeutics of Polycystic Kidney Disease. Biochem Soc Trans 2021; 49:1171-1188. [PMID: 34156429 DOI: 10.1042/bst20200757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
Polycystic Kidney Disease (PKD) refers to a group of disorders, driven by the formation of cysts in renal tubular cells and is currently one of the leading causes of end-stage renal disease. The range of symptoms observed in PKD is due to mutations in cilia-localising genes, resulting in changes in cellular signalling. As such, compounds that are currently in preclinical and clinical trials target some of these signalling pathways that are dysregulated in PKD. In this review, we highlight these pathways including cAMP, EGF and AMPK signalling and drugs that target them and may show promise in lessening the disease burden of PKD patients. At present, tolvaptan is the only approved therapy for ADPKD, however, it carries several adverse side effects whilst comparatively, no pharmacological drug is approved for ARPKD treatment. Aside from this, drugs that have been the subject of multiple clinical trials such as metformin, which targets AMPK signalling and somatostatins, which target cAMP signalling have shown great promise in reducing cyst formation and cellular proliferation. This review also discusses other potential and novel targets that can be used for future interventions, such as β-catenin and TAZ, where research has shown that a reduction in the overexpression of these signalling components results in amelioration of disease phenotype. Thus, it becomes apparent that well-designed preclinical investigations and future clinical trials into these pathways and other potential signalling targets are crucial in bettering disease prognosis for PKD patients and could lead to personalised therapy approaches.
Collapse
|
12
|
Haumann S, Müller RU, Liebau MC. Metabolic Changes in Polycystic Kidney Disease as a Potential Target for Systemic Treatment. Int J Mol Sci 2020; 21:ijms21176093. [PMID: 32847032 PMCID: PMC7503958 DOI: 10.3390/ijms21176093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Autosomal recessive and autosomal dominant polycystic kidney disease (ARPKD, ADPKD) are systemic disorders with pronounced hepatorenal phenotypes. While the main underlying genetic causes of both ARPKD and ADPKD have been well-known for years, the exact molecular mechanisms resulting in the observed clinical phenotypes in the different organs, remain incompletely understood. Recent research has identified cellular metabolic changes in PKD. These findings are of major relevance as there may be an immediate translation into clinical trials and potentially clinical practice. Here, we review important results in the field regarding metabolic changes in PKD and their modulation as a potential target of systemic treatment.
Collapse
Affiliation(s)
- Sophie Haumann
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, 50931 Cologne, Germany
| | - Max C. Liebau
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany;
- Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Correspondence: ; Tel.: +49-221-478-4359
| |
Collapse
|
13
|
Abstract
Mutations in the polycystins PC1 or PC2 cause autosomal dominant polycystic kidney disease (ADPKD), which is characterized by the formation of fluid-filled renal cysts that disrupt renal architecture and function, ultimately leading to kidney failure in the majority of patients. Although the genetic basis of ADPKD is now well established, the physiological function of polycystins remains obscure and a matter of intense debate. The structural determination of both the homomeric PC2 and heteromeric PC1-PC2 complexes, as well as the electrophysiological characterization of PC2 in the primary cilium of renal epithelial cells, provided new valuable insights into the mechanisms of ADPKD pathogenesis. Current findings indicate that PC2 can function independently of PC1 in the primary cilium of renal collecting duct epithelial cells to form a channel that is mainly permeant to monovalent cations and is activated by both membrane depolarization and an increase in intraciliary calcium. In addition, PC2 functions as a calcium-activated calcium release channel at the endoplasmic reticulum membrane. Structural studies indicate that the heteromeric PC1-PC2 complex comprises one PC1 and three PC2 channel subunits. Surprisingly, several positively charged residues from PC1 occlude the ionic pore of the PC1-PC2 complex, suggesting that pathogenic polycystin mutations might cause ADPKD independently of an effect on channel permeation. Emerging reports of novel structural and functional findings on polycystins will continue to elucidate the molecular basis of ADPKD.
Collapse
|
14
|
Lea WA, McGreal K, Sharma M, Parnell SC, Zelenchuk L, Charlesworth MC, Madden BJ, Johnson KL, McCormick DJ, Hogan MC, Ward CJ. Analysis of the polycystin complex (PCC) in human urinary exosome-like vesicles (ELVs). Sci Rep 2020; 10:1500. [PMID: 32001768 PMCID: PMC6992733 DOI: 10.1038/s41598-020-58087-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 01/05/2020] [Indexed: 12/21/2022] Open
Abstract
The polycystin-1 (PC1), polycystin-2 (PC2) and fibrocystin proteins, the respective products of the PKD1, PKD2 and PKHD1 genes, are abundant in urinary exosome-like vesicles (ELVs) where they form the polycystin complex (PCC). ELVs are 100 nm diameter membrane vesicles shed into the urine by the cells lining the nephron. Using MS/MS analysis of ELVs from individuals with PKD1 mutations and controls, we show that in addition to the well-described GPS/GAIN cleavage event in PC1 at 3048 aa and the proprotein convertase cleavage (PPC) event in fibrocystin at 3616 aa, there are multiple other cleavage events in these proteins. The C-terminal 11 transmembrane portion of PC1 undergoes three cleavage events in vivo. The absence of peptides from the C-terminal cytoplasmic tail of fibrocystin implies a cleavage event close to its single TM domain prior to loading onto the ELVs. There is also evidence that the C-terminal tail of PC2 is also cleaved in ELVs. Native gel analysis of the PCC shows that the entire complex is > 2 MDa in size and that N-terminal GPS/GAIN cleaved PC1 and PPC cleaved fibrocystin ectodomains can be released under non-reducing conditions and resolve at 300 kDa. This paper shows that the three major human cystogene proteins are detectable in human urinary ELVs and that all three undergo post-translational proteolytic processing. Human urinary ELVs may be a useful source of material in the search for proteins that interact with the PCC.
Collapse
Affiliation(s)
- Wendy A Lea
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Kerri McGreal
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Madhulika Sharma
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Stephen C Parnell
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Lesya Zelenchuk
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - M Cristine Charlesworth
- Mayo Proteomic Core, Medical Sciences Building, Ms 3-121, Mayo Clinic, 200 First Street, SW Rochester, MN, 55905, USA
| | - Benjamin J Madden
- Mayo Proteomic Core, Medical Sciences Building, Ms 3-121, Mayo Clinic, 200 First Street, SW Rochester, MN, 55905, USA
| | - Kenneth L Johnson
- Mayo Proteomic Core, Medical Sciences Building, Ms 3-121, Mayo Clinic, 200 First Street, SW Rochester, MN, 55905, USA
| | - Daniel J McCormick
- Mayo Proteomic Core, Medical Sciences Building, Ms 3-121, Mayo Clinic, 200 First Street, SW Rochester, MN, 55905, USA
| | - Marie C Hogan
- Division of Nephrology, Department of Internal Medicine, Mayo Clinic, Rochester, USA
| | - Christopher J Ward
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
15
|
Lea WA, Parnell SC, Wallace DP, Calvet JP, Zelenchuk LV, Alvarez NS, Ward CJ. Human-Specific Abnormal Alternative Splicing of Wild-Type PKD1 Induces Premature Termination of Polycystin-1. J Am Soc Nephrol 2018; 29:2482-2492. [PMID: 30185468 DOI: 10.1681/asn.2018040442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/06/2018] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The major form of autosomal dominant polycystic kidney disease is caused by heterozygous mutations in PKD1, the gene that encodes polycystin-1 (PC1). Unlike PKD1 genes in the mouse and most other mammals, human PKD1 is unusual in that it contains two long polypyrimidine tracts in introns 21 and 22 (2.5 kbp and 602 bp, respectively; 97% cytosine and thymine). Although these polypyrimidine tracts have been shown to form thermodynamically stable segments of triplex DNA that can cause DNA polymerase stalling and enhance the local mutation rate, the efficiency of transcription and splicing across these cytosine- and thymine-rich introns has been unexplored. METHODS We used RT-PCR and Western blotting (using an mAb to the N terminus) to probe splicing events over exons 20-24 in the mouse and human PKD1 genes as well as Nanopore sequencing to confirm the presence of multiple splice forms. RESULTS Analysis of PC1 indicates that humans, but not mice, have a smaller than expected protein product, which we call Trunc_PC1. The findings show that Trunc_PC1 is the protein product of abnormal differential splicing across introns 21 and 22 and that 28.8%-61.5% of PKD1 transcripts terminate early. CONCLUSIONS The presence of polypyrimidine tracts decreases levels of full-length PKD1 mRNA from normal alleles. In heterozygous individuals, low levels of full-length PC1 may reduce polycystin signaling below a critical "cystogenic" threshold.
Collapse
Affiliation(s)
- Wendy A Lea
- The Jared Grantham Kidney Institute and Departments of.,Internal Medicine
| | - Stephen C Parnell
- The Jared Grantham Kidney Institute and Departments of.,Biochemistry and Molecular Biology
| | - Darren P Wallace
- The Jared Grantham Kidney Institute and Departments of.,Internal Medicine.,Molecular and Integrative Physiology, and
| | - James P Calvet
- The Jared Grantham Kidney Institute and Departments of.,Biochemistry and Molecular Biology
| | - Lesya V Zelenchuk
- The Jared Grantham Kidney Institute and Departments of.,Internal Medicine
| | - Nehemiah S Alvarez
- Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas; and.,De Novo Genomics, Kansas City, Kansas
| | - Christopher J Ward
- The Jared Grantham Kidney Institute and Departments of .,Internal Medicine.,Biochemistry and Molecular Biology
| |
Collapse
|
16
|
Janssens P, Weydert C, De Rechter S, Wissing KM, Liebau MC, Mekahli D. Expanding the role of vasopressin antagonism in polycystic kidney diseases: From adults to children? Pediatr Nephrol 2018; 33:395-408. [PMID: 28455745 DOI: 10.1007/s00467-017-3672-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/21/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023]
Abstract
Polycystic kidney disease (PKD) encompasses a group of genetic disorders that are common causes of renal failure. The two classic forms of PKD are autosomal recessive polycystic kidney disease (ARPKD) and autosomal dominant polycystic kidney disease (ADPKD). Despite their clinical differences, ARPKD and ADPKD share many similarities. Altered intracellular Ca2+ and increased cyclic adenosine monophosphate (cAMP) concentrations have repetitively been described as central anomalies that may alter signaling pathways leading to cyst formation. The vasopressin V2 receptor (V2R) antagonist tolvaptan lowers cAMP in cystic tissues and slows renal cystic progression and kidney function decline when given over 3 years in adult ADPKD patients. Tolvaptan is currently approved for the treatment of rapidly progressive disease in adult ADPKD patients. On the occasion of the recent initiation of a clinical trial with tolvaptan in pediatric ADPKD patients, we aim to describe the most important aspects in the literature regarding the AVP-cAMP axis and the clinical use of tolvaptan in PKD.
Collapse
Affiliation(s)
- Peter Janssens
- Laboratory of Pediatrics, University Hospitals Leuven, Leuven, Belgium. .,Department of Nephrology, University Hospitals Brussel, Brussel, Belgium.
| | - Caroline Weydert
- Laboratory of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Stephanie De Rechter
- Laboratory of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | | | - Max Christoph Liebau
- Pediatric Nephrology, Department of Pediatrics and Center for Molecular Medicine, University Hospital of Cologne, Cologne, Germany.,Department II of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Djalila Mekahli
- Laboratory of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Abstract
INTRODUCTION Polycystic kidney disease (PKD) is clinically and genetically heterogeneous and constitutes the most common heritable kidney disease. Most patients are affected by the autosomal dominant form (ADPKD) which generally is an adult-onset multisystem disorder. By contrast, the rarer recessive form ARPKD usually already manifests perinatally or in childhood. In some patients, however, ADPKD and ARPKD can phenotypically overlap with early manifestation in ADPKD and only late onset in ARPKD. Progressive fibrocystic renal changes are often accompanied by severe hepatobiliary changes or other extrarenal abnormalities. Areas covered: A reduced dosage of disease proteins disturbs cell homeostasis and explains a more severe clinical course in some PKD patients. Cystic kidney disease is also a common feature of other ciliopathies and genetic syndromes. Genetic diagnosis may guide clinical management and helps to avoid invasive measures and to detect renal and extrarenal comorbidities early in the clinical course. Expert Commentary: The broad phenotypic and genetic heterogeneity of cystic and polycystic kidney diseases make NGS a particularly powerful approach. Interpretation of data becomes the challenge and bench and bedside benefit from digitized multidisciplinary interrelationships.
Collapse
Affiliation(s)
- Carsten Bergmann
- a Center for Human Genetics , Bioscientia , Ingelheim , Germany.,b Department of Medicine , University Hospital Freiburg , Freiburg , Germany
| |
Collapse
|
18
|
Outeda P, Menezes L, Hartung EA, Bridges S, Zhou F, Zhu X, Xu H, Huang Q, Yao Q, Qian F, Germino GG, Watnick T. A novel model of autosomal recessive polycystic kidney questions the role of the fibrocystin C-terminus in disease mechanism. Kidney Int 2017; 92:1130-1144. [PMID: 28729032 PMCID: PMC6005173 DOI: 10.1016/j.kint.2017.04.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/09/2017] [Accepted: 04/27/2017] [Indexed: 12/11/2022]
Abstract
Autosomal recessive polycystic kidney disease (OMIM 263200) is a serious condition of the kidney and liver caused by mutations in a single gene, PKHD1. This gene encodes fibrocystin/polyductin (FPC, PD1), a large protein shown by in vitro studies to undergo Notch-like processing. Its cytoplasmic tail, reported to include a ciliary targeting sequence, a nuclear localization signal, and a polycystin-2 binding domain, is thought to traffic to the nucleus after cleavage. We now report a novel mouse line with a triple HA-epitope "knocked-in" to the C-terminus along with lox P sites flanking exon 67, which encodes most of the C-terminus (Pkhd1Flox67HA). The triple HA-epitope has no functional effect as assayed by phenotype and allows in vivo tracking of Fibrocystin. We used the HA tag to identify previously predicted Fibrocystin cleavage products in tissue. In addition, we found that Polycystin-2 fails to co-precipitate with Fibrocystin in kidney samples. Immunofluorescence studies with anti-HA antibodies demonstrate that Fibrocystin is primarily present in a sub-apical location the in kidney, biliary duct, and pancreatic ducts, partially overlapping with the Golgi. In contrast to previous studies, the endogenous protein in the primary cilia was not detectable in mouse tissues. After Cre-mediated deletion, homozygous Pkhd1Δ67 mice are completely normal. Thus, Pkhd1Flox67HA is a valid model to track Pkhd1-derived products containing the C-terminus. Significantly, exon 67 containing the nuclear localization signal and the polycystin-2 binding domain is not essential for Fibrocystin function in our model.
Collapse
Affiliation(s)
- Patricia Outeda
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Luis Menezes
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Erum A Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stacey Bridges
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Fang Zhou
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Study, Sichuan Academy of Sciences and Sichuan Provincial People's Hospital Chengdue, Sichuan, China
| | - Hangxue Xu
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Qiong Huang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Qin Yao
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gregory G Germino
- Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
19
|
Abstract
Electron microscopy (EM) is a rapidly growing area of structural biology that permits us to decode biological assemblies at the nanoscale. To examine biological materials for single particle EM analysis, purified assemblies must be obtained using biochemical separation techniques. Here, we describe effective methodologies for isolating histidine (his)-tagged protein assemblies from the nucleus of disease-relevant cell lines. We further demonstrate how isolated assemblies are visualized using single particle EM techniques and provide representative results for each step in the process.
Collapse
|
20
|
Elchediak DS, Cahill AM, Furth EE, Kaplan BS, Hartung EA. Extracranial Aneurysms in 2 Patients with Autosomal Recessive Polycystic Kidney Disease. Case Rep Nephrol Dial 2017; 7:34-42. [PMID: 28612004 PMCID: PMC5465521 DOI: 10.1159/000475492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/02/2017] [Indexed: 02/01/2023] Open
Abstract
Unlike autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic kidney disease (ARPKD) is not generally known to be associated with vascular abnormalities. Only 4 cases of ARPKD patients with intracranial aneurysms have been reported previously. We present 2 ARPKD patients with extracranial vascular abnormalities: a young man with infrarenal aortic and iliac artery aneurysms complicated by dissection and a teenage girl with multiple splenic and gastric artery aneurysms and arterial vascular malformations. These cases raise the question of whether vascular integrity and development may be impaired in ARPKD, perhaps through molecular mechanisms overlapping with ADPKD. This possibility is supported by studies in mice that show ARPKD gene expression in the walls of large blood vessels.
Collapse
Affiliation(s)
| | - Anne Marie Cahill
- bDepartment of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,ePerelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emma E Furth
- cDepartment of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.,ePerelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bernard S Kaplan
- dDivision of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,ePerelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erum A Hartung
- dDivision of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,ePerelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Markó L, Mannaa M, Haschler TN, Krämer S, Gollasch M. Renoprotection: focus on TRPV1, TRPV4, TRPC6 and TRPM2. Acta Physiol (Oxf) 2017; 219:589-612. [PMID: 28028935 DOI: 10.1111/apha.12828] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/22/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
Members of the transient receptor potential (TRP) cation channel receptor family have unique sites of regulatory function in the kidney which enables them to promote regional vasodilatation and controlled Ca2+ influx into podocytes and tubular cells. Activated TRP vanilloid 1 receptor channels (TRPV1) have been found to elicit renoprotection in rodent models of acute kidney injury following ischaemia/reperfusion. Transient receptor potential cation channel, subfamily C, member 6 (TRPC6) in podocytes is involved in chronic proteinuric kidney disease, particularly in focal segmental glomerulosclerosis (FSGS). TRP vanilloid 4 receptor channels (TRPV4) are highly expressed in the kidney, where they induce Ca2+ influx into endothelial and tubular cells. TRP melastatin (TRPM2) non-selective cation channels are expressed in the cytoplasm and intracellular organelles, where their inhibition ameliorates ischaemic renal pathology. Although some of their basic properties have been recently identified, the renovascular role of TRPV1, TRPV4, TRPC6 and TRPM2 channels in disease states such as obesity, hypertension and diabetes is largely unknown. In this review, we discuss recent evidence for TRPV1, TRPV4, TRPC6 and TRPM2 serving as potential targets for acute and chronic renoprotection in chronic vascular and metabolic disease.
Collapse
Affiliation(s)
- L. Markó
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
| | - M. Mannaa
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- Charité Campus Virchow; Nephrology/Intensive Care; Berlin Germany
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - T. N. Haschler
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - S. Krämer
- German Institute of Human Nutrition; Potsdam-Rehbrücke Germany
| | - M. Gollasch
- Experimental and Clinical Research Center; A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center (MDC) for Molecular Medicine; Berlin Germany
- Charité Campus Virchow; Nephrology/Intensive Care; Berlin Germany
| |
Collapse
|
22
|
Kleene SJ, Kleene NK. The native TRPP2-dependent channel of murine renal primary cilia. Am J Physiol Renal Physiol 2016; 312:F96-F108. [PMID: 27760766 DOI: 10.1152/ajprenal.00272.2016] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/22/2016] [Accepted: 10/13/2016] [Indexed: 12/19/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening monogenic renal disease. ADPKD results from mutations in either of two proteins: polycystin-1 (also known as PC1 or PKD1) or transient receptor potential cation channel, subfamily P, member 2 (TRPP2, also known as polycystin-2, PC2, or PKD2). Each of these proteins is expressed in the primary cilium that extends from many renal epithelial cells. Existing evidence suggests that the cilium can promote renal cystogenesis, while PC1 and TRPP2 counter this cystogenic effect. To better understand the function of TRPP2, we investigated its electrophysiological properties in the native ciliary membrane. We recorded directly from the cilia of mIMCD-3 cells, a murine cell line of renal epithelial origin. In one-third of cilia examined, a large-conductance channel was observed. The channel was not permeable to Cl¯ but conducted cations with permeability ratios PK:PCa:PNa of 1:0.55:0.14. The single-channel conductance ranged from 97 pS in typical physiological solutions to 189 pS in symmetrical 145 mM KCl. Open probability of the channel was very sensitive to membrane depolarization or increasing cytoplasmic free Ca2+ in the low micromolar range, with the open probability increasing in either case. Knocking out TRPP2 by CRISPR/Cas9 genome editing eliminated the channel current, establishing it as TRPP2 dependent. Possible mechanisms for activating the TRPP2-dependent channel in the renal primary cilium are discussed.
Collapse
Affiliation(s)
- Steven J Kleene
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Nancy K Kleene
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
23
|
Edrees BM, Athar M, Al-Allaf FA, Taher MM, Khan W, Bouazzaoui A, Al-Harbi N, Safar R, Al-Edressi H, Alansary K, Anazi A, Altayeb N, Ahmed MA, Abduljaleel Z. Next-generation sequencing for molecular diagnosis of autosomal recessive polycystic kidney disease. Gene 2016; 591:214-226. [DOI: 10.1016/j.gene.2016.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/26/2016] [Accepted: 07/07/2016] [Indexed: 12/18/2022]
|
24
|
Wu M, Yu S. New Insights into the Molecular Mechanisms Targeting Tubular Channels/Transporters in PKD Development. KIDNEY DISEASES 2016; 2:128-135. [PMID: 27921040 DOI: 10.1159/000444839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/18/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (PKD) or autosomal recessive PKD is caused by a mutation in the PKD1, PKD2 or PKHD1 gene, which encodes polycystin-1, polycystin-2 or fibrocystin, respectively. Embryonic and postnatal mutation studies show that transport or channel function is dysregulated before the initiation of cystogenesis, suggesting that the abnormality of transport or channel function plays a critical role in the pathology of PKD. SUMMARY Polycystin-2 by itself is a calcium-permeable cation channel, and its channel function can be regulated by polycystin-1 or fibrocystin. In this paper, we reviewed the current knowledge about calcium transports and cyclic adenosine monophosphate (cAMP)-driven chloride transports in PKD. In addition, the function and the underlining mechanism of glucose transporters, phosphate transporters and water channels in PKD are also discussed. KEY MESSAGES Abnormalities in calcium handling and exuberant cAMP-dependent cystic fibrosis transmembrane conductance regulator-mediated fluid secretion in the collecting duct are the most important issues in the pathogenesis of PKD.
Collapse
Affiliation(s)
- Ming Wu
- Kidney Institute of PLA, Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| | - Shengqiang Yu
- Kidney Institute of PLA, Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, PR China
| |
Collapse
|
25
|
Zheng W, Shen F, Hu R, Roy B, Yang J, Wang Q, Zhang F, King JC, Sergi C, Liu SM, Cordat E, Tang J, Cao Y, Ali D, Chen XZ. Far Upstream Element-Binding Protein 1 Binds the 3' Untranslated Region of PKD2 and Suppresses Its Translation. J Am Soc Nephrol 2016; 27:2645-57. [PMID: 26839368 DOI: 10.1681/asn.2015070836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/24/2015] [Indexed: 01/02/2023] Open
Abstract
Autosomal dominant polycystic kidney disease pathogenesis can be recapitulated in animal models by gene mutations in or dosage alterations of polycystic kidney disease 1 (PKD1) or PKD2, demonstrating that too much and too little PKD1/PKD2 are both pathogenic. Gene dosage manipulation has become an appealing approach by which to compensate for loss or gain of gene function, but the mechanisms controlling PKD2 expression remain incompletely characterized. In this study, using cultured mammalian cells and dual-luciferase assays, we found that the 3' untranslated region (3'UTR) of PKD2 mRNA inhibits luciferase protein expression. We then identified nucleotides 691-1044, which we called 3FI, as the 3'UTR fragment necessary for repressing the expression of luciferase or PKD2 in this system. Using a pull-down assay and mass spectrometry we identified far upstream element-binding protein 1 (FUBP1) as a 3FI-binding protein. In vitro overexpression of FUBP1 inhibited the expression of PKD2 protein but not mRNA. In embryonic zebrafish, FUBP1 knockdown (KD) by morpholino injection increased PKD2 expression and alleviated fish tail curling caused by morpholino-mediated KD of PKD2. Conversely, FUBP1 overexpression by mRNA injection significantly increased pronephric cyst occurrence and tail curling in zebrafish embryos. Furthermore, FUBP1 binds directly to eukaryotic translation initiation factor 4E-binding protein 1, indicating a link to the translation initiation complex. These results show that FUBP1 binds 3FI in the PKD2 3'UTR to inhibit PKD2 translation, regulating zebrafish disease phenotypes associated with PKD2 KD.
Collapse
Affiliation(s)
- Wang Zheng
- Membrane Protein Disease and Cancer Research Centre, Provincial Innovation Center, Hubei University of Technology, Wuhan, China; Membrane Protein Disease Research Group, Department of Physiology
| | - Fan Shen
- Membrane Protein Disease Research Group, Department of Physiology, Medical Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China; and
| | - Ruikun Hu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | | | - JungWoo Yang
- Membrane Protein Disease Research Group, Department of Physiology
| | - Qian Wang
- Membrane Protein Disease Research Group, Department of Physiology
| | - Fan Zhang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jennifer C King
- Membrane Protein Disease Research Group, Department of Physiology
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Song-Mei Liu
- Medical Research Center, Zhongnan Hospital, Wuhan University, Wuhan, China; and
| | | | - Jingfeng Tang
- Membrane Protein Disease and Cancer Research Centre, Provincial Innovation Center, Hubei University of Technology, Wuhan, China
| | - Ying Cao
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | | | - Xing-Zhen Chen
- Membrane Protein Disease and Cancer Research Centre, Provincial Innovation Center, Hubei University of Technology, Wuhan, China; Membrane Protein Disease Research Group, Department of Physiology,
| |
Collapse
|
26
|
Obeidova L, Seeman T, Elisakova V, Reiterova J, Puchmajerova A, Stekrova J. Molecular genetic analysis of PKHD1 by next-generation sequencing in Czech families with autosomal recessive polycystic kidney disease. BMC MEDICAL GENETICS 2015; 16:116. [PMID: 26695994 PMCID: PMC4689053 DOI: 10.1186/s12881-015-0261-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/11/2015] [Indexed: 12/18/2022]
Abstract
Background Autosomal recessive polycystic kidney disease (ARPKD) is an early-onset form of polycystic kidney disease that often leads to devastating outcomes for patients. ARPKD is caused by mutations in the PKHD1 gene, an extensive gene that encodes for the ciliary protein fibrocystin/polyductin. Next-generation sequencing is presently the best option for molecular diagnosis of ARPKD. Our aim was to set up the first study of ARPKD patients from the Czech Republic, to determine the composition of their mutations and genotype-phenotype correlations, along with establishment of next-generation sequencing of the PKHD1 gene that could be used for the diagnosis of ARPKD patients. Methods Mutational analysis of the PKHD1 gene was performed in 24 families using the amplicon-based next-generation sequencing (NGS) technique. In patients without 2 causal mutations identified by NGS, subsequent MLPA analysis of the PKHD1 gene was carried out. Results Two underlying mutations were detected in 54 % of families (n = 13), one mutation in 13 % of families (n = 3), and in 33 % of families (n = 8) no mutation could be detected. Overall, seventeen different mutations (5 novel) were detected, including deletion of one exon. The detection rate in our study reached 60 % in the entire cohort of patients; but 90 % in the group of patients who fulfilled all clinical criteria of ARPKD, and 42 % in the group of patients with unknown kidney pathology. The most frequent mutation was T36M, accounting for nearly 21 % of all identified mutations. Conclusions Next-generation sequencing of the PKHD1 gene is a very useful method of molecular diagnosis in patients with a full clinical picture of ARPKD, and it has a high detection rate. Furthermore, its relatively low costs and rapidity allow the molecular genetic analysis of patients without the full clinical criteria of ARPKD, who might also have mutations in the PKHD1 gene.
Collapse
Affiliation(s)
- Lena Obeidova
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, General University Hospital in Prague, Prague, Czech.
| | - Tomas Seeman
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech.
| | - Veronika Elisakova
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, General University Hospital in Prague, Prague, Czech.
| | - Jana Reiterova
- Department of Nephrology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech.
| | - Alena Puchmajerova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech.
| | - Jitka Stekrova
- Institute of Biology and Medical Genetics of the First Faculty of Medicine, General University Hospital in Prague, Prague, Czech.
| |
Collapse
|
27
|
Cornec-Le Gall E, Audrézet MP, Le Meur Y, Chen JM, Férec C. Genetics and pathogenesis of autosomal dominant polycystic kidney disease: 20 years on. Hum Mutat 2015; 35:1393-406. [PMID: 25263802 DOI: 10.1002/humu.22708] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/22/2014] [Indexed: 12/27/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited kidney disorder, is characterized by the progressive development and expansion of bilateral fluid-filled cysts derived from the renal tubule epithelial cells. Although typically leading to end-stage renal disease in late middle age, ADPKD represents a continuum, from neonates with hugely enlarged cystic kidneys to cases with adequate kidney function into old age. Since the identification of the first causative gene (i.e., PKD1, encoding polycystin 1) 20 years ago, genetic studies have uncovered a large part of the key factors that underlie the phenotype variability. Here, we provide a comprehensive review of these significant advances as well as those related to disease pathogenesis models, including mutation analysis of PKD1 and PKD2 (encoding polycystin 2), current mutation detection rate, allelic heterogeneity, genotype and phenotype relationships (in terms of three different inheritance patterns: classical autosomal dominant inheritance, complex inheritance, and somatic and germline mosaicism), modifier genes, the role of second somatic mutation hit in renal cystogenesis, and findings from mouse models of polycystic kidney disease. Based upon a combined consideration of the current knowledge, we attempted to propose a unifying framework for explaining the phenotype variability in ADPKD.
Collapse
Affiliation(s)
- Emilie Cornec-Le Gall
- Institut National de la Santé et de la Recherche Médicale (INSERM), Brest, France; Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale, Brest, France; Service de Néphrologie, Hémodialyse et Transplantation Rénale, Centre Hospitalier Régional Universitaire, Hôpital de la Cavale Blanche, Brest, France
| | | | | | | | | |
Collapse
|
28
|
Hartung EA, Guay-Woodford LM. Autosomal recessive polycystic kidney disease: a hepatorenal fibrocystic disorder with pleiotropic effects. Pediatrics 2014; 134:e833-45. [PMID: 25113295 PMCID: PMC4143997 DOI: 10.1542/peds.2013-3646] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 12/31/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is an important cause of chronic kidney disease in children. The care of ARPKD patients has traditionally been the realm of pediatric nephrologists; however, the disease has multisystem effects, and a comprehensive care strategy often requires a multidisciplinary team. Most notably, ARPKD patients have congenital hepatic fibrosis, which can lead to portal hypertension, requiring close follow-up by pediatric gastroenterologists. In severely affected infants, the diagnosis is often first suspected by obstetricians detecting enlarged, echogenic kidneys and oligohydramnios on prenatal ultrasounds. Neonatologists are central to the care of these infants, who may have respiratory compromise due to pulmonary hypoplasia and massively enlarged kidneys. Surgical considerations can include the possibility of nephrectomy to relieve mass effect, placement of dialysis access, and kidney and/or liver transplantation. Families of patients with ARPKD also face decisions regarding genetic testing of affected children, testing of asymptomatic siblings, or consideration of preimplantation genetic diagnosis for future pregnancies. They may therefore interface with genetic counselors, geneticists, and reproductive endocrinologists. Children with ARPKD may also be at risk for neurocognitive dysfunction and may require neuropsychological referral. The care of patients and families affected by ARPKD is therefore a multidisciplinary effort, and the general pediatrician can play a central role in this complex web of care. In this review, we outline the spectrum of clinical manifestations of ARPKD and review genetics of the disease, clinical and genetic diagnosis, perinatal management, management of organ-specific complications, and future directions for disease monitoring and potential therapies.
Collapse
Affiliation(s)
- Erum A Hartung
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Lisa M Guay-Woodford
- Center for Translational Science, Children's National Health System, Washington, District of Columbia
| |
Collapse
|
29
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 or PKD2, which encode polycystin-1 and polycystin-2, respectively. Rodent models are available to study the pathogenesis of polycystic kidney disease (PKD) and for preclinical testing of potential therapies-either genetically engineered models carrying mutations in Pkd1 or Pkd2 or models of renal cystic disease that do not have mutations in these genes. The models are characterized by age at onset of disease, rate of disease progression, the affected nephron segment, the number of affected nephrons, synchronized or unsynchronized cyst formation and the extent of fibrosis and inflammation. Mouse models have provided valuable mechanistic insights into the pathogenesis of PKD; for example, mutated Pkd1 or Pkd2 cause renal cysts but additional factors are also required, and the rate of cyst formation is increased in the presence of renal injury. Animal studies have also revealed complex genetic and functional interactions among various genes and proteins associated with PKD. Here, we provide an update on the preclinical models commonly used to study the molecular pathogenesis of ADPKD and test potential therapeutic strategies. Progress made in understanding the pathophysiology of human ADPKD through these animal models is also discussed.
Collapse
Affiliation(s)
- Hester Happé
- Department of Human Genetics, Leiden University Medical Center, S4-P, PO Box 9600, Albinusdreef 2, Leiden, 2333 ZA Leiden, Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, S4-P, PO Box 9600, Albinusdreef 2, Leiden, 2333 ZA Leiden, Netherlands
| |
Collapse
|
30
|
Lian P, Li A, Li Y, Liu H, Liang D, Hu B, Lin D, Jiang T, Moeckel G, Qin D, Wu G. Loss of polycystin-1 inhibits Bicc1 expression during mouse development. PLoS One 2014; 9:e88816. [PMID: 24594709 PMCID: PMC3940423 DOI: 10.1371/journal.pone.0088816] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 01/16/2014] [Indexed: 12/21/2022] Open
Abstract
Bicc1 is a mouse homologue of Drosophila Bicaudal-C (dBic-C), which encodes an RNA-binding protein. Orthologs of dBic-C have been identified in many species, from C. elegans to humans. Bicc1-mutant mice exhibit a cystic phenotype in the kidney that is very similar to human polycystic kidney disease. Even though many studies have explored the gene characteristics and its functions in multiple species, the developmental profile of the Bicc1 gene product (Bicc1) in mammal has not yet been completely characterized. To this end, we generated a polyclonal antibody against Bicc1 and examined its spatial and temporal expression patterns during mouse embryogenesis and organogenesis. Our results demonstrated that Bicc1 starts to be expressed in the neural tube as early as embryonic day (E) 8.5 and is widely expressed in epithelial derivatives including the gut and hepatic cells at E10.5, and the pulmonary bronchi at E11.5. In mouse kidney development, Bicc1 appears in the early ureteric bud and mesonephric tubules at E11.5 and is also expressed in the metanephros at the same stage. During postnatal kidney development, Bicc1 expression gradually expands from the cortical to the medullary and papillary regions, and it is highly expressed in the proximal tubules. In addition, we discovered that loss of the Pkd1 gene product, polycystin-1 (PC1), whose mutation causes human autosomal dominant polycystic kidney disease (ADPKD), downregulates Bicc1 expression in vitro and in vivo. Our findings demonstrate that Bicc1 is developmentally regulated and reveal a new molecular link between Bicc1 and Pkd1.
Collapse
Affiliation(s)
- Peiwen Lian
- Division of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ao Li
- Division of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Yuan Li
- Division of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haichao Liu
- Division of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Liang
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Bo Hu
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
| | - De Lin
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Tang Jiang
- Department of Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gilbert Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Dahui Qin
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Guanqing Wu
- Division of Translational Cancer Research and Therapy, State Key Laboratory of Molecular Oncology, Cancer Hospital and Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
31
|
Torres VE, Harris PC. Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J Am Soc Nephrol 2014; 25:18-32. [PMID: 24335972 PMCID: PMC3871779 DOI: 10.1681/asn.2013040398] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Polycystic kidney disease (PKD) is a leading cause of ESRD worldwide. In PKD, excessive cell proliferation and fluid secretion, pathogenic interactions of mutated epithelial cells with an abnormal extracellular matrix and alternatively activated interstitial macrophages, and the disruption of mechanisms controlling tubular diameter contribute to cyst formation. Studies with animal models suggest that several diverse pathophysiologic mechanisms, including dysregulation of intracellular calcium levels and cAMP signaling, mediate these cystogenic mechanisms. This article reviews the evidence implicating calcium and cAMP as central players in a network of signaling pathways underlying the pathogenesis of PKD and considers the therapeutic relevance of treatment strategies targeting cAMP signaling.
Collapse
Affiliation(s)
- Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
32
|
Looking at the (w)hole: magnet resonance imaging in polycystic kidney disease. Pediatr Nephrol 2013; 28:1771-83. [PMID: 23239392 DOI: 10.1007/s00467-012-2370-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 12/29/2022]
Abstract
Inherited cystic kidney diseases, including autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), are the most common monogenetic causes of end-stage renal disease (ESRD) in children and adults. While ARPKD is a rare and usually severe pediatric disease, the more common ADPKD typically shows a slowly progressive course leading to ESRD in adulthood. At the present time there is no established disease-modifying treatment for either ARPKD or ADPKD. Various therapeutic approaches are currently under investigation, such as V2 receptor antagonists, somatostatins, and mTOR inhibitors. Renal function remains stable for decades in ADPKD, and thus clinically meaningful surrogate markers to assess therapeutic efficacy are needed. Various studies have pointed out that total kidney volume (TKV) is a potential surrogate parameter for disease severity in ADPKD. Recent trials have therefore measured TKV by magnet resonance imaging (MRI) to monitor and to predict disease progression. Here, we discuss novel insights on polycystic kidney disease (PKD), the value of MRI, and the measurement of TKV in the diagnosis and follow-up of PKD, as well as novel emerging therapeutic strategies for ADPKD.
Collapse
|
33
|
Ye J, He J, Li Q, Feng Y, Bai X, Chen X, Zhao Y, Hu X, Yu Z, Li N. Generation of c-Myc transgenic pigs for autosomal dominant polycystic kidney disease. Transgenic Res 2013; 22:1231-9. [PMID: 23543409 DOI: 10.1007/s11248-013-9707-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/22/2013] [Indexed: 01/28/2023]
Abstract
After several decades of research, autosomal dominant polycystic kidney disease (ADPKD) is still incurable and imposes enormous physical, psychological, and economic burdens on patients and their families. Murine models of ADPKD represent invaluable tools for studying this disease. These murine forms of ADPKD can arise spontaneously, or they can be induced via chemical or genetic manipulations. Although these models have improved our understanding of the etiology and pathogenesis of ADPKD, they have not led to effective treatment strategies. The mini-pig represents an effective biomedical model for studying human diseases, as the pig's human-like physiological processes help to understand disease mechanisms and to develop novel therapies. Here, we tried to generate a transgenic model of ADPKD in pigs by overexpressing c-Myc in kidney tissue. Western-blot analysis showed that c-Myc was overexpressed in the kidney, brain, heart, and liver of transgenic pigs. Immunohistochemical staining of kidney tissue showed that exogenous c-Myc predominantly localized to renal tubules. Slightly elevated blood urea nitrogen levels were observed in transgenic pigs 1 month after birth, but no obvious abnormalities were detected after that time. In the future, we plan to subject this model to renal injury in an effort to promote ADPKD progression.
Collapse
Affiliation(s)
- Jianhua Ye
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100193, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zaika O, Mamenko M, Berrout J, Boukelmoune N, O'Neil RG, Pochynyuk O. TRPV4 dysfunction promotes renal cystogenesis in autosomal recessive polycystic kidney disease. J Am Soc Nephrol 2013; 24:604-16. [PMID: 23411787 DOI: 10.1681/asn.2012050442] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The molecular mechanism of cyst formation and expansion in autosomal recessive polycystic kidney disease (ARPKD) is poorly understood, but impaired mechanosensitivity to tubular flow and dysfunctional calcium signaling are important contributors. The activity of the mechanosensitive Ca(2+)-permeable TRPV4 channel underlies flow-dependent Ca(2+) signaling in murine collecting duct (CD) cells, suggesting that this channel may contribute to cystogenesis in ARPKD. Here, we developed a method to isolate CD-derived cysts and studied TRPV4 function in these cysts laid open as monolayers and in nondilated split-open CDs in a rat model of ARPKD. In freshly isolated CD-derived cyst monolayers, we observed markedly impaired TRPV4 activity, abnormal subcellular localization of the channel, disrupted TRPV4 glycosylation, decreased basal [Ca(2+)]i, and loss of flow-mediated [Ca(2+)]i signaling. In contrast, nondilated CDs of these rats exhibited functional TRPV4 with largely preserved mechanosensitive properties. Long-term systemic augmentation of TRPV4 activity with a selective TRPV4 activator significantly attenuated the renal manifestations of ARPKD in a time-dependent manner. At the cellular level, selective activation of TRPV4 restored mechanosensitive Ca(2+) signaling as well as the function and subcellular distribution of TRPV4. In conclusion, the functional status of TRPV4, which underlies mechanosensitive Ca(2+) signaling in CD cells, inversely correlates with renal cystogenesis in ARPKD. Augmenting TRPV4 activity may have therapeutic potential in ARPKD.
Collapse
Affiliation(s)
- Oleg Zaika
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
35
|
Hopp K, Ward CJ, Hommerding CJ, Nasr SH, Tuan HF, Gainullin VG, Rossetti S, Torres VE, Harris PC. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J Clin Invest 2012; 122:4257-73. [PMID: 23064367 DOI: 10.1172/jci64313] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/23/2012] [Indexed: 12/13/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations to PKD1 or PKD2, triggering progressive cystogenesis and typically leading to end-stage renal disease in midlife. The phenotypic spectrum, however, ranges from in utero onset to adequate renal function at old age. Recent patient data suggest that the disease is dosage dependent, where incompletely penetrant alleles influence disease severity. Here, we have developed a knockin mouse model matching a likely disease variant, PKD1 p.R3277C (RC), and have proved that its functionally hypomorphic nature modifies the ADPKD phenotype. While Pkd1+/null mice are normal, Pkd1RC/null mice have rapidly progressive disease, and Pkd1RC/RC animals develop gradual cystogenesis. These models effectively mimic the pathophysiological features of in utero-onset and typical ADPKD, respectively, correlating the level of functional Pkd1 product with disease severity, highlighting the dosage dependence of cystogenesis. Additionally, molecular analyses identified p.R3277C as a temperature-sensitive folding/trafficking mutant, and length defects in collecting duct primary cilia, the organelle central to PKD pathogenesis, were clearly detected for the first time to our knowledge in PKD1. Altogether, this study highlights the role that in trans variants at the disease locus can play in phenotypic modification of dominant diseases and provides a truly orthologous PKD1 model, optimal for therapeutic testing.
Collapse
Affiliation(s)
- Katharina Hopp
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Happé H, de Heer E, Peters DJM. Polycystic kidney disease: the complexity of planar cell polarity and signaling during tissue regeneration and cyst formation. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1249-55. [PMID: 21640821 DOI: 10.1016/j.bbadis.2011.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/13/2011] [Accepted: 05/19/2011] [Indexed: 12/30/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is an inherited systemic disease with intrarenal cystogenesis as its primary characteristic. A variety of mouse models provided information on the requirement of loss of balanced polycystin levels for initiation of cyst formation, the role of proliferation in cystogenesis and the signaling pathways involved in cyst growth and expansion. Here we will review the involvement of different signaling pathways during renal development, renal epithelial regeneration and cyst formation in ADPKD, focusing on planar cell polarity (PCP) and oriented cell division (OCD). This will be discussed in context of the hypothesis that aberrant PCP signaling causes cyst formation. In addition, the role of the Hippo pathway, which was recently found to be involved in cyst growth and tissue regeneration, and well-known for regulating organ size control, will be reviewed. The fact that Hippo signaling is linked to PCP signaling makes the Hippo pathway a novel cascade in cystogenesis. The newly gained understanding of the complex signaling network involved in cystogenesis and disease progression, not only necessitates refining of the current hypothesis regarding initiation of cystogenesis, but also has implications for therapeutic intervention strategies. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Hester Happé
- Department of Human Genetics, Leiden University Medical Center, RC Leiden, The Netherlands
| | | | | |
Collapse
|
37
|
Abdul-Majeed S, Nauli SM. Calcium-mediated mechanisms of cystic expansion. Biochim Biophys Acta Mol Basis Dis 2010; 1812:1281-90. [PMID: 20932898 DOI: 10.1016/j.bbadis.2010.09.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 09/13/2010] [Accepted: 09/30/2010] [Indexed: 01/23/2023]
Abstract
In this review, we will discuss several well-accepted signaling pathways toward calcium-mediated mechanisms of cystic expansion. The second messenger calcium ion has contributed to a vast diversity of signal transduction pathways. We will dissect calcium signaling as a possible mechanism that contributes to renal cyst formation. Because cytosolic calcium also regulates an array of signaling pathways, we will first discuss cilia-induced calcium fluxes, followed by Wnt signaling that has attributed to much-discussed planar cell polarity. We will then look at the relationship between cytosolic calcium and cAMP as one of the most important aspects of cyst progression. The signaling of cAMP on MAPK and mTOR will also be discussed. We infer that while cilia-induced calcium fluxes may be the initial signaling messenger for various cellular pathways, no single signaling mediator or pathway is implicated exclusively in the progression of the cystic expansion. This article is part of a Special Issue entitled: Polycystic Kidney Disease.
Collapse
|
38
|
Regulation of cell proliferation and apoptosis through fibrocystin–prosaposin interaction. Arch Biochem Biophys 2010; 502:130-6. [DOI: 10.1016/j.abb.2010.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/05/2010] [Accepted: 08/07/2010] [Indexed: 12/29/2022]
|
39
|
Hu B, He X, Li A, Qiu Q, Li C, Liang D, Zhao P, Ma J, Coffey RJ, Zhan Q, Wu G. Cystogenesis in ARPKD results from increased apoptosis in collecting duct epithelial cells of Pkhd1 mutant kidneys. Exp Cell Res 2010; 317:173-87. [PMID: 20875407 DOI: 10.1016/j.yexcr.2010.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 09/09/2010] [Accepted: 09/19/2010] [Indexed: 12/14/2022]
Abstract
Mutations in the PKHD1 gene result in autosomal recessive polycystic kidney disease (ARPKD) in humans. To determine the molecular mechanism of the cystogenesis in ARPKD, we recently generated a mouse model for ARPKD that carries a targeted mutation in the mouse orthologue of human PKHD1. The homozygous mutant mice display hepatorenal cysts whose phenotypes are similar to those of human ARPKD patients. By littermates of this mouse, we developed two immortalized renal collecting duct cell lines with Pkhd1 and two without. Under nonpermissive culture conditions, the Pkhd1(-/-) renal cells displayed aberrant cell-cell contacts and tubulomorphogenesis. The Pkhd1(-/-) cells also showed significantly reduced cell proliferation and elevated apoptosis. To validate this finding in vivo, we examined proliferation and apoptosis in the kidneys of Pkhd1(-/-) mice and their wildtype littermates. Using proliferation (PCNA and Histone-3) and apoptosis (TUNEL and caspase-3) markers, similar results were obtained in the Pkhd1(-/-) kidney tissues as in the cells. To identify the molecular basis of these findings, we analyzed the effect of Pkhd1 loss on multiple putative signaling regulators. We demonstrated that the loss of Pkhd1 disrupts multiple major phosphorylations of focal adhesion kinase (FAK), and these disruptions either inhibit the Ras/C-Raf pathways to suppress MEK/ERK activity and ultimately reduce cell proliferation, or suppress PDK1/AKT to upregulate Bax/caspase-9/caspase-3 and promote apoptosis. Our findings indicate that apoptosis may be a major player in the cyst formation in ARPKD, which may lead to new therapeutic strategies for human ARPKD.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Caspase 3/genetics
- Caspase 3/metabolism
- Caspase 9/genetics
- Caspase 9/metabolism
- Cell Line, Transformed
- Cell Proliferation
- Crosses, Genetic
- Cysts/genetics
- Disease Models, Animal
- Epithelial Cells/metabolism
- Genes, cdc
- Genotype
- Humans
- In Vitro Techniques
- Kidney/metabolism
- Kidney Tubules, Collecting/metabolism
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Phenotype
- Polycystic Kidney, Autosomal Recessive/genetics
- Polycystic Kidney, Autosomal Recessive/metabolism
- Polycystic Kidney, Autosomal Recessive/pathology
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Cell Surface/genetics
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Bo Hu
- Cancer Research Institute, University of South China, Hengyang, Hunan, 421001, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tiermodelle mit Zystennieren. MED GENET-BERLIN 2010. [DOI: 10.1007/s11825-010-0230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Zusammenfassung
Polyzystische Nierenerkrankungen (PKD) sind der häufigste genetische Grund für ein terminales Nierenversagen. Flüssigkeitsgefüllte Zysten bilden sich im Nierenparenchym und beeinträchtigen die Nierenfunktion mit zunehmender Anzahl und Größe, bis diese vollkommen zum Erliegen kommt. Seit mehreren Jahrzehnten werden Tiermodelle mit PKD für die Aufklärung der molekularen Mechanismen der Zystogenese verwendet. War man anfangs auf zufällige, durch Spontanmutationen aufgetretene Zystenmodelle angewiesen, eröffneten transgene und Knock-out-Technologien in den letzen 20 Jahren eine völlig neue Dimension, die molekularen Pathomechanismen der Zystogenese durch gezielte genetische Veränderungen im Erbgut aufzuklären. Nur mit der Hilfe von Tiermodellen konnte die Lokalisation von „Zystenproteinen“ in den Zilien und die Beteiligung zilienabhängiger Signalkaskaden in der Zystogenese gezeigt werden. Dieser Artikel gibt einen Überblick über die derzeit vorhandenen murinen Tiermodelle mit PKD.
Collapse
|
41
|
Renken C, Fischer DC, Kundt G, Gretz N, Haffner D. Inhibition of mTOR with sirolimus does not attenuate progression of liver and kidney disease in PCK rats. Nephrol Dial Transplant 2010; 26:92-100. [PMID: 20615907 DOI: 10.1093/ndt/gfq384] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Activation of the mTOR pathway has been implicated in the mediation of the progression of polycystic kidney disease (PKD). Whereas targeted inhibition of mTOR has been proven to be effective in various animal models of autosomal dominant PKD, its efficacy in autosomal recessive PKD (ARPKD) remains to be elucidated. We examined the effects of sirolimus in PCK rats, an orthologous animal model of human ARPKD. METHODS Weaned PCK rats (n = 85) and SD-control rats (n = 72) received drinking water without and with sirolimus (corresponding to a daily intake of 2 mg/kg body weight) for 4, 8 and 12 weeks, respectively. The renal and hepatic functions were monitored throughout the treatment periods. Kidneys and livers were harvested and investigated with respect to progression of fibrosis, and number and size of cysts using the QWin image analysis programme. Expression of Akt, mTOR and its downstream target pS6K were assessed by immunohistochemistry. RESULTS Five out of 43 sirolimus-treated PCK rats, but none of the controls, died during the study. Sirolimus treatment resulted in slightly reduced weight gain. In PCK rats, grossly enlarged kidney and livers as well as hepatic fibrosis together with enlarged bile ducts were readily detectable. Whereas activation of Akt/mTOR signalling was hardly detectable in the kidneys of SD rats, strong signals were seen in the kidneys of PCK rats. Despite a significantly reduced relative kidney weight after 12 weeks of treatment (P < 0.05), neither fibrosis and cyst area nor renal function improved during treatment. Sirolimus-treated PCK rats showed only a minor inhibition of renal mTOR-specific phosphorylation of S6K. Male PCK rats on sirolimus presented with increased concentrations of bile acids and bilirubin compared with controls (each P < 0.05 at 12 weeks). Similar, albeit non-significant, effects were noted in female PCK rats. CONCLUSIONS Sirolimus failed to attenuate progression of kidney and liver disease in PCK rats. The lack of a protective effect might be due to intrinsic or acquired rapamycin resistance in this animal model of ARPKD.
Collapse
Affiliation(s)
- Catharina Renken
- Department of Pediatrics, University Children’s Hospital, Rostock, Rostock, Germany
| | | | | | | | | |
Collapse
|
42
|
Gradilone SA, Masyuk TV, Huang BQ, Banales JM, Lehmann GL, Radtke BN, Stroope A, Masyuk AI, Splinter PL, LaRusso NF. Activation of Trpv4 reduces the hyperproliferative phenotype of cystic cholangiocytes from an animal model of ARPKD. Gastroenterology 2010; 139:304-14.e2. [PMID: 20399209 PMCID: PMC2902576 DOI: 10.1053/j.gastro.2010.04.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 03/17/2010] [Accepted: 04/08/2010] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS In polycystic liver diseases, cyst formation involves cholangiocyte hyperproliferation. In polycystic kidney (PCK) rats, an animal model of autosomal-recessive polycystic kidney disease (ARPKD), decreased intracellular calcium [Ca(2+)](i) in cholangiocytes is associated with hyperproliferation. We recently showed transient receptor potential vanilloid 4 (Trpv4), a calcium-entry channel, is expressed in normal cholangiocytes and its activation leads to [Ca(2+)](i) increase. Thus, we hypothesized that pharmacologic activation of Trpv4 might reverse the hyperproliferative phenotype of PCK cholangiocytes. METHODS Trpv4 expression was examined in liver of normal and PCK rats, normal human beings, and patients with autosomal-dominant polycystic kidney disease or ARPKD. Trpv4 activation effect on cell proliferation and cyst formation was assessed in cholangiocytes derived from normal and PCK rats. The in vivo effects of Trpv4 activation on kidney and liver cysts was analyzed in PCK rats. RESULTS Trpv4 was overexpressed both at messenger RNA (8-fold) and protein (3-fold) levels in PCK cholangiocytes. Confocal and immunogold electron microscopy supported Trpv4 overexpression in the livers of PCK rats and ARPKD or autosomal-dominant polycystic kidney disease patients. Trpv4 activation in PCK cholangiocytes increased [Ca(2+)](i) by 30%, inhibiting cell proliferation by approximately 25%-50% and cyst growth in 3-dimensional culture (3-fold). Trpv4-small interfering RNA silencing blocked effects of Trpv4 activators by 70%. Trpv4 activation was associated with Akt phosphorylation and beta-Raf and Erk1/2 inhibition. In vivo, Trpv4 activation induced a significant decrease in renal cystic area and a nonsignificant decrease in liver cysts. CONCLUSIONS Taken together, our in vitro and in vivo data suggest that increasing intracellular calcium by Trpv4 activation may represent a potential therapeutic approach in PKD.
Collapse
Affiliation(s)
- Sergio A Gradilone
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN USA
| | - Tatyana V Masyuk
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN USA
| | - Bing Q Huang
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN USA
| | - Jesus M Banales
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN USA,C.I.M.A. and Ciberehd, Pamplona, Spain
| | - Guillermo L Lehmann
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN USA, Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Rosario, Santa Fe, Argentina
| | - Brynn N Radtke
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN USA
| | | | - Anatoliy I Masyuk
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN USA
| | - Patrick L Splinter
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN USA
| | - Nicholas F LaRusso
- Miles and Shirley Fiterman Center for Digestive Diseases, Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN USA
| |
Collapse
|
43
|
Vujic M, Heyer CM, Ars E, Hopp K, Markoff A, Orndal C, Rudenhed B, Nasr SH, Torres VE, Torra R, Bogdanova N, Harris PC. Incompletely penetrant PKD1 alleles mimic the renal manifestations of ARPKD. J Am Soc Nephrol 2010; 21:1097-102. [PMID: 20558538 DOI: 10.1681/asn.2009101070] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), caused by mutation in PKD1 or PKD2, is usually an adult-onset disorder but can rarely manifest as a neonatal disease within a family characterized by otherwise typical ADPKD. Coinheritance of a hypomorphic PKD1 allele in trans with an inactivating PKD1 allele is one mechanism that can cause early onset ADPKD. Here, we describe two pedigrees without a history of cystic kidney disease that each contain two patients with onset of massive PKD in utero. The presentations were typical of autosomal recessive PKD (ARPKD) but they were not linked to the known ARPKD gene, PKHD1. Mutation analysis of the ADPKD genes provided strong evidence that both families inherited, in trans, two incompletely penetrant PKD1 alleles. These patients illustrate that PKD1 mutations can manifest as a phenocopy of ARPKD with respect to renal involvement and highlight the perils of linkage-based diagnostics in ARPKD without positive PKHD1 mutation data. Furthermore, the phenotypic overlap between ARPKD and these patients resulting from incomplete penetrant PKD1 alleles support a common pathogenesis for these diseases.
Collapse
Affiliation(s)
- Mihailo Vujic
- Departments of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang J, Wu M, Wang S, Shah JV, Wilson PD, Zhou J. Polycystic kidney disease protein fibrocystin localizes to the mitotic spindle and regulates spindle bipolarity. Hum Mol Genet 2010; 19:3306-19. [PMID: 20554582 DOI: 10.1093/hmg/ddq233] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is a significant hereditary renal disease occurring in infancy and childhood, which presents with greatly enlarged echogenic kidneys, ultimately leading to renal insufficiency and end-stage renal disease. ARPKD is caused by mutations in a single gene PKHD1, which encodes fibrocystin/polyductin (FPC), a large single transmembrane protein generally known to be on the primary cilium, basal body and plasma membrane. Here, using our newly generated antibody raised against the entire C-terminal intracellular cytoplasmic domain (ICD) of FPC, as well as our previously well-characterized antibody against a peptide of ICD, we report for the first time that at least one isoform of FPC is localized to the centrosome and mitotic spindle of dividing cells in multiple cell lines, including MDCK, mIMCD3, LLC-PK1, HEK293, RCTEC and HFCT cells. Using short-hairpin-mediated RNA interference, we show that the inhibition of FPC function in MDCK and mIMCD3 cells leads to centrosome amplification, chromosome lagging and multipolar spindle formation. Consistent with our in vitro findings, we also observed centrosome amplification in the kidneys from human ARPKD patients. These findings demonstrate a novel function of FPC in centrosome duplication and mitotic spindle assembly during cell division. We propose that mitotic defects due to FPC dysfunction contribute to cystogenesis in ARPKD.
Collapse
Affiliation(s)
- Jingjing Zhang
- Renal Division, Department of Medicine, Room 522, Harvard Institute of Medicine, 4 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
45
|
Harris PC. What is the role of somatic mutation in autosomal dominant polycystic kidney disease? J Am Soc Nephrol 2010; 21:1073-6. [PMID: 20488953 DOI: 10.1681/asn.2010030328] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic Rochester, 200 First Street, SW, Rochester, MN 55905, USA.
| |
Collapse
|
46
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common nephropathy caused by mutations in either PKD1 or PKD2. Mutations in PKD1 account for approximately 85% of cases and cause more severe disease than mutations in PKD2. Diagnosis of ADPKD before the onset of symptoms is usually performed using renal imaging by either ultrasonography, CT or MRI. In general, these modalities are reliable for the diagnosis of ADPKD in older individuals. However, molecular testing can be valuable when a definite diagnosis is required in young individuals, in individuals with a negative family history of ADPKD, and to facilitate preimplantation genetic diagnosis. Although linkage-based diagnostic approaches are feasible in large families, direct mutation screening is generally more applicable. As ADPKD displays a high level of allelic heterogeneity, complete screening of both genes is required. Consequently, such screening approaches are expensive. Screening of individuals with ADPKD detects mutations in up to 91% of cases. However, only approximately 65% of patients have definite mutations with approximately 26% having nondefinite changes that require further evaluation. Collation of known variants in the ADPKD mutation database and systematic scoring of nondefinite variants is increasing the diagnostic value of molecular screening. Genic information can be of prognostic value and recent investigation of hypomorphic PKD1 alleles suggests that allelic information may also be valuable in some atypical cases. In the future, when effective therapies are developed for ADPKD, molecular testing may become increasingly widespread. Rapid developments in DNA sequencing may also revolutionize testing.
Collapse
Affiliation(s)
- Peter C Harris
- Division of Nephrology and Hypertension and Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
47
|
NF-kappaB activation is required for apoptosis in fibrocystin/polyductin-depleted kidney epithelial cells. Apoptosis 2010; 15:94-104. [PMID: 19943112 DOI: 10.1007/s10495-009-0426-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in PKHD1, a gene encoding fibrocystin/polyductin (FC1), a membrane-associated receptor-like protein involved in the regulation of tubular cell adhesion, proliferation and apoptosis. Although it is generally accepted that apoptosis is implicated in ARPKD, the question of whether increased apoptosis is a normal response to abnormal cell proliferation or, instead, it is a primary event, is still subject to debate. In support of the latter hypothesis, we hereby provide evidence that apoptosis occurs in the absence of hyper-proliferation of FC1-depleted kidney cells. In fact, a decrease in cell proliferation, with a concomitant increase in apoptotic index and caspase-3 activity was observed in response to FC1-depletion by PKHD1 siRNA silencing in HEK293 and 4/5 tubular cells. FC1-depletion also induced reduction in ERK1/2 kinase activation, upregulation of the pro-apoptotic protein p53 and activation of NF-kappaB, a transcription factor which reduces apoptosis in many organs and tissues. Interestingly, selective inactivation of NF-kappaB using either an NF-kappaB decoy or parthenolide, a blocker of IKK-dependent NF-kappaB activation, reduced, rather then increased, apoptosis and p53 levels in FC1-depleted cells. Therefore, the proapoptotic function of NF-kappaB during cell death by FC1-depletion in kidney cells is evident.
Collapse
|
48
|
Kim I, Ding T, Fu Y, Li C, Cui L, Li A, Lian P, Liang D, Wang DW, Guo C, Ma J, Zhao P, Coffey RJ, Zhan Q, Wu G. Conditional mutation of Pkd2 causes cystogenesis and upregulates beta-catenin. J Am Soc Nephrol 2009; 20:2556-69. [PMID: 19939939 DOI: 10.1681/asn.2009030271] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Loss of polycystin-2 (PC2) in mice (Pkd2(-/-)) results in total body edema, focal hemorrhage, structural cardiac defects, abnormal left-right axis, hepatorenal and pancreatic cysts, and embryonic lethality. The molecular mechanisms by which loss of PC2 leads to these phenotypes remain unknown. We generated a model to allow targeted Pkd2 inactivation using the Cre-loxP system. Global inactivation of Pkd2 produced a phenotype identical to Pkd2(-/-) mice with undetectable PC2 protein and perinatal lethality. Using various Cre mouse lines, we found that kidney, pancreas, or time-specific deletion of Pkd2 led to cyst formation. In addition, we developed an immortalized renal collecting duct cell line with inactive Pkd2; these cells had aberrant cell-cell contact, ciliogenesis, and tubulomorphogenesis. They also significantly upregulated beta-catenin, axin2, and cMyc. Our results suggest that loss of PC2 disrupts normal behavior of renal epithelial cells through dysregulation of beta-catenin-dependent signaling, revealing a potential role for this signaling pathway in PC2-associated ADPKD.
Collapse
Affiliation(s)
- Ingyu Kim
- Division of Genetic Medicine, Department of Medicine and Cell and Developmental Biology, Vanderbilt University, 2215 Garland Avenue, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Genotype-phenotype correlations in fetuses and neonates with autosomal recessive polycystic kidney disease. Kidney Int 2009; 77:350-8. [PMID: 19940839 DOI: 10.1038/ki.2009.440] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prognosis of autosomal recessive polycystic kidney disease is known to correlate with genotype. The presence of two truncating mutations in the PKHD1 gene encoding the fibrocystin protein is associated with neonatal death while patients who survive have at least one missense mutation. To determine relationships between genotype and renal and hepatic abnormalities we correlated the severity of renal and hepatic histological lesions to the type of PKHD1 mutations in 54 fetuses (medical pregnancy termination) and 20 neonates who died shortly after birth. Within this cohort, 55.5% of the mutations truncated fibrocystin. The severity of cortical collecting duct dilatations, cortical tubule and glomerular lesions, and renal cortical and hepatic portal fibrosis increased with gestational age. Severe genotypes, defined by two truncating mutations, were more frequent in patients of less than 30 weeks gestation compared to older fetuses and neonates. When adjusted to gestational age, the extension of collecting duct dilatation into the cortex and cortical tubule lesions, but not portal fibrosis, was more prevalent in patients with severe than in those with a non-severe genotype. Our results show the presence of two truncating mutations of the PKHD1 gene is associated with the most severe renal forms of prenatally detected autosomal recessive polycystic kidney disease. Their absence, however, does not guarantee survival to the neonatal period.
Collapse
|
50
|
Molecular Characteristics and Functions of <I>PKHD1</I>*. PROG BIOCHEM BIOPHYS 2009. [DOI: 10.3724/sp.j.1206.2008.00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|