1
|
Relevance of peroxiredoxins in pathogenic microorganisms. Appl Microbiol Biotechnol 2021; 105:5701-5717. [PMID: 34258640 DOI: 10.1007/s00253-021-11360-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022]
Abstract
The oxidative and nitrosative responses generated by animals and plants are important defenses against infection and establishment of pathogenic microorganisms such as bacteria, fungi, and protozoa. Among distinct oxidant species, hydroperoxides are a group of chemically diverse compounds that comprise small hydrophilic molecules, such as hydrogen peroxide and peroxynitrite, and bulky hydrophobic species, such as organic hydroperoxides. Peroxiredoxins (Prx) are ubiquitous enzymes that use a highly reactive cysteine residue to decompose hydroperoxides and can also perform other functions, like molecular chaperone and phospholipase activities, contributing to microbial protection against the host defenses. Prx are present in distinct cell compartments and, in some cases, they can be secreted to the extracellular environment. Despite their high abundance, Prx expression can be further increased in response to oxidative stress promoted by host defense systems, by treatment with hydroperoxides or by antibiotics. In consequence, some isoforms have been described as virulence factors, highlighting their importance in pathogenesis. Prx are very diverse and are classified into six different classes (Prx1-AhpC, BCP-PrxQ, Tpx, Prx5, Prx6, and AhpE) based on structural and biochemical features. Some groups are absent in hosts, while others present structural peculiarities that differentiate them from the host's isoforms. In this context, the intrinsic characteristics of these enzymes may aid the development of new drugs to combat pathogenic microorganisms. Additionally, since some isoforms are also found in the extracellular environment, Prx emerge as attractive targets for the production of diagnostic tests and vaccines. KEY POINTS: • Peroxiredoxins are front-line defenses against host oxidative and nitrosative stress. • Functional and structural peculiarities differ pathogen and host enzymes. • Peroxiredoxins are potential targets to microbicidal drugs.
Collapse
|
2
|
Gomez-Mejiba SE, Ramirez DC. Trapping of DNA radicals with the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide and genotoxic damage: Recent advances using the immuno-spin trapping technology. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 782:108283. [DOI: 10.1016/j.mrrev.2019.108283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/14/2019] [Accepted: 06/22/2019] [Indexed: 02/07/2023]
|
3
|
Mason RP, Ganini D. Immuno-spin trapping of macromolecules free radicals in vitro and in vivo - One stop shopping for free radical detection. Free Radic Biol Med 2019; 131:318-331. [PMID: 30552998 DOI: 10.1016/j.freeradbiomed.2018.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/03/2018] [Accepted: 11/10/2018] [Indexed: 12/14/2022]
Abstract
The only general technique that allows the unambiguous detection of free radicals is electron spin resonance (ESR). However, ESR spin trapping has severe limitations especially in biological systems. The greatest limitation of ESR is poor sensitivity relative to the low steady-state concentration of free radical adducts, which in cells and in vivo is much lower than the best sensitivity of ESR. Limitations of ESR have led to an almost desperate search for alternatives to investigate free radicals in biological systems. Here we explore the use of the immuno-spin trapping technique, which combine the specificity of the spin trapping to the high sensitivity and universal use of immunological techniques. All of the immunological techniques based on antibody binding have become available for free radical detection in a wide variety of biological systems.
Collapse
Affiliation(s)
- Ronald P Mason
- Inflammation, Immunity and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| | - Douglas Ganini
- Inflammation, Immunity and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
4
|
Toneto Novaes LF, Martins Avila C, Pelizzaro-Rocha KJ, Vendramini-Costa DB, Pereira Dias M, Barbosa Trivella DB, Ernesto de Carvalho J, Ferreira-Halder CV, Pilli RA. (−)-Tarchonanthuslactone: Design of New Analogues, Evaluation of their Antiproliferative Activity on Cancer Cell Lines, and Preliminary Mechanistic Studies. ChemMedChem 2015; 10:1687-99. [DOI: 10.1002/cmdc.201500246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/03/2015] [Indexed: 01/24/2023]
|
5
|
Ragu S, Dardalhon M, Sharma S, Iraqui I, Buhagiar-Labarchède G, Grondin V, Kienda G, Vernis L, Chanet R, Kolodner RD, Huang ME, Faye G. Loss of the thioredoxin reductase Trr1 suppresses the genomic instability of peroxiredoxin tsa1 mutants. PLoS One 2014; 9:e108123. [PMID: 25247923 PMCID: PMC4172583 DOI: 10.1371/journal.pone.0108123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
Abstract
The absence of Tsa1, a key peroxiredoxin that scavenges H2O2 in Saccharomyces cerevisiae, causes the accumulation of a broad spectrum of mutations. Deletion of TSA1 also causes synthetic lethality in combination with mutations in RAD51 or several key genes involved in DNA double-strand break repair. In the present study, we propose that the accumulation of reactive oxygen species (ROS) is the primary cause of genome instability of tsa1Δ cells. In searching for spontaneous suppressors of synthetic lethality of tsa1Δ rad51Δ double mutants, we identified that the loss of thioredoxin reductase Trr1 rescues their viability. The trr1Δ mutant displayed a Can(R) mutation rate 5-fold lower than wild-type cells. Additional deletion of TRR1 in tsa1Δ mutant reduced substantially the Can(R) mutation rate of tsa1Δ strain (33-fold), and to a lesser extent, of rad51Δ strain (4-fold). Loss of Trr1 induced Yap1 nuclear accumulation and over-expression of a set of Yap1-regulated oxido-reductases with antioxidant properties that ultimately re-equilibrate intracellular redox environment, reducing substantially ROS-associated DNA damages. This trr1Δ -induced effect was largely thioredoxin-dependent, probably mediated by oxidized forms of thioredoxins, the primary substrates of Trr1. Thioredoxin Trx1 and Trx2 were constitutively and strongly oxidized in the absence of Trr1. In trx1Δ trx2Δ cells, Yap1 was only moderately activated; consistently, the trx1Δ trx2Δ double deletion failed to efficiently rescue the viability of tsa1Δ rad51Δ. Finally, we showed that modulation of the dNTP pool size also influences the formation of spontaneous mutation in trr1Δ and trx1Δ trx2Δ strains. We present a tentative model that helps to estimate the respective impact of ROS level and dNTP concentration in the generation of spontaneous mutations.
Collapse
Affiliation(s)
- Sandrine Ragu
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Michèle Dardalhon
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umea University, Umea, Sweden
| | - Ismail Iraqui
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Géraldine Buhagiar-Labarchède
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Virginie Grondin
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Guy Kienda
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Laurence Vernis
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Roland Chanet
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine San Diego, La Jolla, California, United States of America
| | - Meng-Er Huang
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Gérard Faye
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| |
Collapse
|
6
|
Metabolic and environmental conditions determine nuclear genomic instability in budding yeast lacking mitochondrial DNA. G3-GENES GENOMES GENETICS 2014; 4:411-23. [PMID: 24374640 PMCID: PMC3962481 DOI: 10.1534/g3.113.010108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondrial dysfunctions are an internal cause of nuclear genome instability. Because mitochondria are key regulators of cellular metabolism, we have investigated a potential link between external growth conditions and nuclear chromosome instability in cells with mitochondrial defects. Using Saccharomyces cerevisiae, we found that cells lacking mitochondrial DNA (rho0 cells) have a unique feature, with nuclear chromosome instability that occurs in nondividing cells and strongly fluctuates depending on the cellular environment. Calorie restriction, lower growth temperatures, growth at alkaline pH, antioxidants (NAC, Tiron), or presence of nearby wild-type cells all efficiently stabilize nuclear genomes of rho0 cells, whereas high glucose and ethanol boost instability. In contrast, other respiratory mutants that still possess mitochondrial DNA (RHO(+)) keep fairly constant instability rates under the same growth conditions, like wild-type or other RHO(+) controls. Our data identify mitochondrial defects as an important driver of nuclear genome instability influenced by environmental factors.
Collapse
|
7
|
Fayyaz S, Farooqi AA. miRNA and TMPRSS2-ERG do not mind their own business in prostate cancer cells. Immunogenetics 2013; 65:315-32. [DOI: 10.1007/s00251-012-0677-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 12/25/2012] [Indexed: 12/19/2022]
|
8
|
Summers FA, Mason RP, Ehrenshaft M. Development of immunoblotting techniques for DNA radical detection. Free Radic Biol Med 2013; 56:64-71. [PMID: 23142572 PMCID: PMC3577963 DOI: 10.1016/j.freeradbiomed.2012.10.550] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 12/23/2022]
Abstract
Radical damage to DNA has been implicated in cell death, cellular dysfunction, and cancer. A recently developed method for detecting DNA radicals uses the nitrone spin trap DMPO (5,5-dimethyl-1-pyrroline N-oxide) to trap radicals. The trapped radicals then decay into stable nitrone adducts detectable with anti-DMPO antibodies and quantifiable by ELISA or dot-blot assay. However, the sequences of DNA that are damaged are likely to be as important as the total level of damage. Therefore, we have developed immunoblotting methods for detection of DNA nitrone adducts on electrophoretically separated DNA, comparable to Western blotting for proteins. These new techniques not only allow the assessment of relative radical adduct levels, but can reveal specific DNA fragments, and ultimately nucleotides, as radical targets. Moreover, we have determined that denaturation of samples into single-stranded DNA enhances the detection of DNA-DMPO adducts in our new blotting methods and also in ELISA.
Collapse
Affiliation(s)
- Fiona A Summers
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
9
|
Tairum CA, de Oliveira MA, Horta BB, Zara FJ, Netto LES. Disulfide biochemistry in 2-cys peroxiredoxin: requirement of Glu50 and Arg146 for the reduction of yeast Tsa1 by thioredoxin. J Mol Biol 2012; 424:28-41. [PMID: 22985967 DOI: 10.1016/j.jmb.2012.09.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 09/01/2012] [Accepted: 09/07/2012] [Indexed: 12/01/2022]
Abstract
2-Cys peroxiredoxin (Prx) enzymes are ubiquitously distributed peroxidases that make use of a peroxidatic cysteine (Cys(P)) to decompose hydroperoxides. A disulfide bond is generated as a consequence of the partial unfolding of the α-helix that contains Cys(P). Therefore, during its catalytic cycle, 2-Cys Prx alternates between two states, locally unfolded and fully folded. Tsa1 (thiol-specific antioxidant protein 1 from yeast) is by far the most abundant Cys-based peroxidase in Saccharomyces cerevisiae. In this work, we present the crystallographic structure at 2.8Å resolution of Tsa1(C47S) in the decameric form [(α(2))(5)] with a DTT molecule bound to the active site, representing one of the few available reports of a 2-Cys Prx (AhpC-Prx1 subfamily) (AhpC, alkyl hydroperoxide reductase subunit C) structure that incorporates a ligand. The analysis of the Tsa1(C47S) structure indicated that Glu50 and Arg146 participate in the stabilization of the Cys(P) α-helix. As a consequence, we raised the hypothesis that Glu50 and Arg146 might be relevant to the Cys(P) reactivity. Therefore, Tsa1(E50A) and Tsa1(R146Q) mutants were generated and were still able to decompose hydrogen peroxide, presenting a second-order rate constant in the range of 10(6)M(-1)s(-1). Remarkably, although Tsa1(E50A) and Tsa1(R146Q) were efficiently reduced by the low-molecular-weight reductant DTT, these mutants displayed only marginal thioredoxin (Trx)-dependent peroxidase activity, indicating that Glu50 and Arg146 are important for the Tsa1-Trx interaction. These results may impact the comprehension of downstream events of signaling pathways that are triggered by the oxidation of critical Cys residues, such as Trx.
Collapse
Affiliation(s)
- Carlos A Tairum
- Departamento de Biologia, Universidade Estadual Paulista Júlio de Mesquita Filho, Campus do Litoral Paulista São Vicente, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
10
|
Cadet J, Douki T, Ravanat JL, Wagner JR. Measurement of oxidatively generated base damage to nucleic acids in cells: facts and artifacts. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s12566-012-0029-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Bhattacharjee S, Chatterjee S, Jiang J, Sinha BK, Mason RP. Detection and imaging of the free radical DNA in cells--site-specific radical formation induced by Fenton chemistry and its repair in cellular DNA as seen by electron spin resonance, immuno-spin trapping and confocal microscopy. Nucleic Acids Res 2012; 40:5477-86. [PMID: 22387463 PMCID: PMC3384307 DOI: 10.1093/nar/gks180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress-related damage to the DNA macromolecule produces lesions that are implicated in various diseases. To understand damage to DNA, it is important to study the free radical reactions causing the damage. Measurement of DNA damage has been a matter of debate as most of the available methods measure the end product of a sequence of events and provide limited information on the initial free radical formation. We report a measurement of free radical damage in DNA induced by a Cu(II)-H2O2 oxidizing system using immuno-spin trapping supplemented with electron paramagnetic resonance. In this investigation, the short-lived radical generated is trapped by the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) immediately upon formation. The DMPO adduct formed is initially electron paramagnetic resonance active, but is subsequently oxidized to the stable nitrone adduct, which can be detected and visualized by immuno-spin trapping and has the potential to be further characterized by other analytical techniques. The radical was found to be located on the 2′-deoxyadenosine (dAdo) moiety of DNA. The nitrone adduct was repaired on a time scale consistent with DNA repair. In vivo experiments for the purpose of detecting DMPO–DNA nitrone adducts should be conducted over a range of time in order to avoid missing adducts due to the repair processes.
Collapse
Affiliation(s)
- Suchandra Bhattacharjee
- Laboratory of Toxicology and Chemistry, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| | | | | | | | | |
Collapse
|
12
|
Bhattacharjee S, Deterding LJ, Chatterjee S, Jiang J, Ehrenshaft M, Lardinois O, Ramirez DC, Tomer KB, Mason RP. Site-specific radical formation in DNA induced by Cu(II)-H₂O₂ oxidizing system, using ESR, immuno-spin trapping, LC-MS, and MS/MS. Free Radic Biol Med 2011; 50:1536-45. [PMID: 21382477 PMCID: PMC3100166 DOI: 10.1016/j.freeradbiomed.2011.02.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 02/23/2011] [Accepted: 02/25/2011] [Indexed: 11/29/2022]
Abstract
Oxidative stress-related damage to the DNA macromolecule produces a multitude of lesions that are implicated in mutagenesis, carcinogenesis, reproductive cell death, and aging. Many of these lesions have been studied and characterized by various techniques. Of the techniques that are available, the comet assay, HPLC-EC, GC-MS, HPLC-MS, and especially HPLC-MS/MS remain the most widely used and have provided invaluable information on these lesions. However, accurate measurement of DNA damage has been a matter of debate. In particular, there have been reports of artifactual oxidation leading to erroneously high damage estimates. Further, most of these techniques measure the end product of a sequence of events and thus provide only limited information on the initial radical mechanism. We report here a qualitative measurement of DNA damage induced by a Cu(II)-H₂O₂ oxidizing system using immuno-spin trapping (IST) with electron paramagnetic resonance (EPR), MS, and MS/MS. The radical generated is trapped by DMPO immediately upon formation. The DMPO adduct formed is initially EPR active but subsequently is oxidized to the stable nitrone, which can then be detected by IST and further characterized by MS and MS/MS.
Collapse
Affiliation(s)
- Suchandra Bhattacharjee
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu C, Zhang Y. Nucleic acid-mediated protein aggregation and assembly. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 84:1-40. [DOI: 10.1016/b978-0-12-386483-3.00005-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Yin J, Hu S, Jiang W, Liu L, Lan S, Song X, Liu C. DNA-triggered aggregation of copper, zinc superoxide dismutase in the presence of ascorbate. PLoS One 2010; 5:e12328. [PMID: 20808835 PMCID: PMC2924893 DOI: 10.1371/journal.pone.0012328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 08/02/2010] [Indexed: 11/18/2022] Open
Abstract
The oxidative damage hypothesis proposed for the function gain of copper, zinc superoxide dismutase (SOD1) maintains that both mutant and wild-type (WT) SOD1 catalyze reactions with abnormal substrates that damage cellular components critical for viability of the affected cells. However, whether the oxidative damage of SOD1 is involved in the formation of aggregates rich in SOD1 or not remains elusive. Here, we sought to explore the oxidative aggregation of WT SOD1 exposed to environments containing both ascorbate (Asc) and DNA under neutral conditions. The results showed that the WT SOD1 protein was oxidized in the presence of Asc. The oxidation results in the higher affinity of the modified protein for DNA than that of the unmodified protein. The oxidized SOD1 was observed to be more prone to aggregation than the WT SOD1, and the addition of DNA can significantly accelerate the oxidative aggregation. Moreover, a reasonable relationship can be found between the oxidation, increased hydrophobicity, and aggregation of SOD1 in the presence of DNA. The crucial step in aggregation is neutralization of the positive charges on some SOD1 surfaces by DNA binding. This study might be crucial for understanding molecular forces driving the protein aggregation.
Collapse
Affiliation(s)
- Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, and School of Chemistry, Central China Normal University, Wuhan, China
| | - Si Hu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, and School of Chemistry, Central China Normal University, Wuhan, China
| | - Wei Jiang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, and School of Chemistry, Central China Normal University, Wuhan, China
| | - Liang Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, and School of Chemistry, Central China Normal University, Wuhan, China
| | - Shemin Lan
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, and School of Chemistry, Central China Normal University, Wuhan, China
| | - Xuegang Song
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, and School of Chemistry, Central China Normal University, Wuhan, China
| | - Changlin Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, and School of Chemistry, Central China Normal University, Wuhan, China
- * E-mail:
| |
Collapse
|
15
|
Loss of yeast peroxiredoxin Tsa1p induces genome instability through activation of the DNA damage checkpoint and elevation of dNTP levels. PLoS Genet 2009; 5:e1000697. [PMID: 19851444 PMCID: PMC2758587 DOI: 10.1371/journal.pgen.1000697] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 09/23/2009] [Indexed: 01/23/2023] Open
Abstract
Peroxiredoxins are a family of antioxidant enzymes critically involved in cellular defense and signaling. Particularly, yeast peroxiredoxin Tsa1p is thought to play a role in the maintenance of genome integrity, but the underlying mechanism is not understood. In this study, we took a genetic approach to investigate the cause of genome instability in tsa1Δ cells. Strong genetic interactions of TSA1 with DNA damage checkpoint components DUN1, SML1, and CRT1 were found when mutant cells were analyzed for either sensitivity to DNA damage or rate of spontaneous base substitutions. An elevation in intracellular dNTP production was observed in tsa1Δ cells. This was associated with constitutive activation of the DNA damage checkpoint as indicated by phosphorylation of Rad9/Rad53p, reduced steady-state amount of Sml1p, and induction of RNR and HUG1 genes. In addition, defects in the DNA damage checkpoint did not modulate intracellular level of reactive oxygen species, but suppressed the mutator phenotype of tsa1Δ cells. On the contrary, overexpression of RNR1 exacerbated this phenotype by increasing dNTP levels. Taken together, our findings uncover a new role of TSA1 in preventing the overproduction of dNTPs, which is a root cause of genome instability. Peroxiredoxins are a family of antioxidant enzymes highly conserved from yeast to human. Loss of peroxiredoxin in mice can lead to severe anemia and malignant tumors, but the underlying cause is not understood. One way to derive new knowledge of peroxiredoxins is through genetic analysis in yeast. We have shown that loss of peroxiredoxins in yeast is associated with an increase in mutation rates. Here, we demonstrate that this elevation of mutation rates in yeast cells lacking a peroxiredoxin is due to increased production of deoxyribonucleoside triphosphates (dNTPs), the building blocks of DNA. Our findings suggest a new model in which compromised antioxidant defense causes accumulation of damaged DNA and activation of the DNA damage checkpoint. For yeast cells to survive DNA damage, dNTP production is increased to facilitate DNA replication, but at the price of high mutation rates. This new model could lead to a better understanding of human diseases including cancer.
Collapse
|
16
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|