1
|
Zhang Q, Rosa RSL, Ray A, Durlet K, Dorrazehi GM, Bernardi RC, Alsteens D. Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy. Nat Commun 2025; 16:6. [PMID: 39747000 PMCID: PMC11696146 DOI: 10.1038/s41467-024-55358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
The SARS-CoV-2 spike protein's membrane-binding domain bridges the viral and host cell membrane, a critical step in triggering membrane fusion. Here, we investigate how the SARS-CoV-2 spike protein interacts with host cell membranes, focusing on a membrane-binding peptide (MBP) located near the TMPRSS2 cleavage site. Through in vitro and computational studies, we examine both primed (TMPRSS2-cleaved) and unprimed versions of the MBP, as well as the influence of its conserved disulfide bridge on membrane binding. Our results show that the MBP preferentially associates with cholesterol-rich membranes, and we find that cholesterol depletion significantly reduces viral infectivity. Furthermore, we observe that the disulfide bridge stabilizes the MBP's interaction with the membrane, suggesting a structural role in viral entry. Together, these findings highlight the importance of membrane composition and peptide structure in SARS-CoV-2 infectivity and suggest that targeting the disulfide bridge could provide a therapeutic strategy against infection.
Collapse
Affiliation(s)
- Qingrong Zhang
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Raissa S L Rosa
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA
| | - Ankita Ray
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Kimberley Durlet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Gol Mohammad Dorrazehi
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium
| | - Rafael C Bernardi
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, USA.
- Department of Physics, Auburn University, Auburn, AL, USA.
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du sud 4-5, L7.07.07, Louvain-la-Neuve, Belgium.
- WELBIO department, WEL Research Institute, Avenue Pasteur, 6, Wavre, Belgium.
| |
Collapse
|
2
|
Schachter I. Lipid demixing reduces energy barriers for high-curvature vesicle budding. Biophys J 2024:S0006-3495(24)04073-6. [PMID: 39673133 DOI: 10.1016/j.bpj.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/30/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024] Open
Abstract
Under standard physiological conditions, budding relies on asymmetries, including differences in leaflet composition, area, and osmotic conditions, and involves large curvature changes in nanoscale lipid vesicles. So far, the combined impact of asymmetry and high curvatures on budding has remained unknown. Here, using the continuum elastic theory, the budding pathway is detailed under realistic conditions. The model enables a quantitative description of the budding process and the budded state of both ideally and nonideally mixed lipid nanoscale vesicles. It shows that budding is less favored in smaller vesicles but that lipid demixing can significantly reduce its energy barrier, and yet high compositional deviations of more than 7% between the bud and vesicle only occur with phase separation on the bud.
Collapse
Affiliation(s)
- Itay Schachter
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Chemistry, The Fritz Haber Research Center, The Harvey M. Kruger Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
3
|
McDonough J, Paratore TA, Ketelhohn HM, DeCilio BC, Ross AH, Gericke A. Engineering Phosphatidylserine Containing Asymmetric Giant Unilamellar Vesicles. MEMBRANES 2024; 14:181. [PMID: 39330522 PMCID: PMC11433827 DOI: 10.3390/membranes14090181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/28/2024]
Abstract
The plasma membrane lipid distribution is asymmetric, with several anionic lipid species located in its inner leaflet. Among these, phosphatidylserine (PS) plays a crucial role in various important physiological functions. Over the last decade several methods have been developed that allow for the fabrication of large or giant unilamellar vesicles (GUVs) with an asymmetric lipid composition. Investigating the physicochemical properties of PS in such asymmetric lipid bilayers and studying its interactions with proteins necessitates the reliable fabrication of asymmetric GUVs (aGUVs) with a high degree of asymmetry that exhibit PS in the outer leaflet so that the interaction with peptides and proteins can be studied. Despite progress, achieving aGUVs with well-defined PS asymmetry remains challenging. Recently, a Ca2+-initiated hemifusion method has been introduced, utilizing the fusion of symmetric GUVs (sGUVs) with a supported lipid bilayer (SLB) for the fabrication of aGUVs. We extend this approach to create aGUVs with PS in the outer bilayer leaflet. Comparing the degree of asymmetry between aGUVs obtained via Ca2+ or Mg2+ initiated hemifusion of a phosphatidylcholine (PC) sGUVwith a PC/PS-supported lipid bilayer, we observe for both bivalent cations a significant number of aGUVs with near-complete asymmetry. The degree of asymmetry distribution is narrower for physiological salt conditions than at lower ionic strengths. While Ca2+ clusters PS in the SLB, macroscopic domain formation is absent in the presence of Mg2+. However, the clustering of PS upon the addition of Ca2+ is apparently too slow to have a negative effect on the quality of the obtained aGUVs. We introduce a data filtering method to select aGUVs that are best suited for further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, USA (T.A.P.); (H.M.K.); (B.C.D.); (A.H.R.)
| |
Collapse
|
4
|
Yang GS, Wagenknecht-Wiesner A, Yin B, Suresh P, London E, Baird BA, Bag N. Lipid-driven interleaflet coupling of plasma membrane order regulates FcεRI signaling in mast cells. Biophys J 2024; 123:2256-2270. [PMID: 37533258 PMCID: PMC11331041 DOI: 10.1016/j.bpj.2023.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Interleaflet coupling-the influence of one leaflet on the properties of the opposing leaflet-is a fundamental plasma membrane organizational principle. This coupling is proposed to participate in maintaining steady-state biophysical properties of the plasma membrane, which in turn regulates some transmembrane signaling processes. A prominent example is antigen (Ag) stimulation of signaling by clustering transmembrane receptors for immunoglobulin E (IgE), FcεRI. This transmembrane signaling depends on the stabilization of ordered regions in the inner leaflet for sorting of intracellular signaling components. The resting inner leaflet has a lipid composition that is generally less ordered than the outer leaflet and that does not spontaneously phase separate in model membranes. We propose that interleaflet coupling can mediate ordering and disordering of the inner leaflet, which is poised in resting cells to reorganize upon stimulation. To test this in live cells, we first established a straightforward approach to evaluate induced changes in membrane order by measuring inner leaflet diffusion of lipid probes by imaging fluorescence correlation spectroscopy, by imaging fluorescence correlation spectroscopy (ImFCS), before and after methyl-α-cyclodexrin (mαCD)-catalyzed exchange of outer leaflet lipids (LEX) with exogenous order- or disorder-promoting phospholipids. We examined the functional impact of LEX by monitoring two Ag-stimulated responses: recruitment of cytoplasmic Syk kinase to the inner leaflet and exocytosis of secretory granules (degranulation). Based on the ImFCS data in resting cells, we observed global increase or decrease of inner leaflet order when outer leaflet is exchanged with order- or disorder-promoting lipids, respectively. We find that the degree of both stimulated Syk recruitment and degranulation correlates positively with LEX-mediated changes of inner leaflet order in resting cells. Overall, our results show that resting-state lipid ordering of the outer leaflet influences the ordering of the inner leaflet, likely via interleaflet coupling. This imposed lipid reorganization modulates transmembrane signaling stimulated by Ag clustering of IgE-FcεRI.
Collapse
Affiliation(s)
- Gil-Suk Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | | | - Boyu Yin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Pavana Suresh
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York; Department of Chemistry, Indian Institute of Technology, Kharagpur, India.
| |
Collapse
|
5
|
Suresh P, London E. MαCD-based plasma membrane outer leaflet lipid exchange in mammalian cells to study insulin receptor activity. Methods Enzymol 2024; 700:485-507. [PMID: 38971611 PMCID: PMC11748235 DOI: 10.1016/bs.mie.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Signaling receptors on the plasma membrane, such as insulin receptor, can have their activity modulated to some extent by their surrounding lipids. Studying the contribution of membrane lipid properties such as presence of ordered lipid domains or bilayer thickness on the activity of receptors has been a challenging objective in living cells. Using methyl-alpha cyclodextrin-mediated lipid exchange, we are able to alter the lipids of the outer leaflet plasma membrane of mammalian cells to investigate the effect of the properties of the exchanged lipid upon receptor function in live cells. In this article, we describe the technique of lipid exchange in detail and how it can be applied to better understand lipid-mediated regulation of insulin receptor activity in cells.
Collapse
Affiliation(s)
- Pavana Suresh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
6
|
Reinhard J, Starke L, Klose C, Haberkant P, Hammarén H, Stein F, Klein O, Berhorst C, Stumpf H, Sáenz JP, Hub J, Schuldiner M, Ernst R. MemPrep, a new technology for isolating organellar membranes provides fingerprints of lipid bilayer stress. EMBO J 2024; 43:1653-1685. [PMID: 38491296 PMCID: PMC11021466 DOI: 10.1038/s44318-024-00063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Biological membranes have a stunning ability to adapt their composition in response to physiological stress and metabolic challenges. Little is known how such perturbations affect individual organelles in eukaryotic cells. Pioneering work has provided insights into the subcellular distribution of lipids in the yeast Saccharomyces cerevisiae, but the composition of the endoplasmic reticulum (ER) membrane, which also crucially regulates lipid metabolism and the unfolded protein response, remains insufficiently characterized. Here, we describe a method for purifying organelle membranes from yeast, MemPrep. We demonstrate the purity of our ER membrane preparations by proteomics, and document the general utility of MemPrep by isolating vacuolar membranes. Quantitative lipidomics establishes the lipid composition of the ER and the vacuolar membrane. Our findings provide a baseline for studying membrane protein biogenesis and have important implications for understanding the role of lipids in regulating the unfolded protein response (UPR). The combined preparative and analytical MemPrep approach uncovers dynamic remodeling of ER membranes in stressed cells and establishes distinct molecular fingerprints of lipid bilayer stress.
Collapse
Affiliation(s)
- John Reinhard
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Leonhard Starke
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | | | - Per Haberkant
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | | | - Frank Stein
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | - Ofir Klein
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Charlotte Berhorst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Heike Stumpf
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - James P Sáenz
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | - Jochen Hub
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | - Maya Schuldiner
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Robert Ernst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany.
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany.
| |
Collapse
|
7
|
Ma YH, Zhu Y, Wu H, He Y, Zhang Q, Huang Q, Wang Z, Xing H, Qiu L, Tan W. Domain-Targeted Membrane Partitioning of Specific Proteins with DNA Nanodevices. J Am Chem Soc 2024; 146:7640-7648. [PMID: 38466380 DOI: 10.1021/jacs.3c13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The cell membrane exhibits a remarkable complexity of lipids and proteins that dynamically segregate into distinct domains to coordinate various cellular functions. The ability to manipulate the partitioning of specific membrane proteins without involving genetic modification is essential for decoding various cellular processes but highly challenging. In this work, by conjugating cholesterols or tocopherols at the three bottom vertices of the DNA tetrahedron, we develop two sets of nanodevices for the selective targeting of lipid-order (Lo) and lipid-disorder (Ld) domains on the live cell membrane. By incorporation of protein-recognition ligands, such as aptamers or antibodies, through toehold-mediated strand displacement, these DNA nanodevices enable dynamic translocation of target proteins between these two domains. We first used PTK7 as a protein model and demonstrated, for the first time, that the accumulation of PTK7 to the Lo domains could promote tumor cell migration, while sequestering it in the Ld domains would inhibit the movement of the cells. Next, based on their modular nature, these DNA nanodevices were extended to regulate the process of T cell activation through manipulating the translocation of CD45 between the Lo and the Ld domains. Thus, our work is expected to provide deep insight into the study of membrane structure and molecular interactions within diverse cell signaling processes.
Collapse
Affiliation(s)
- Yong-Hao Ma
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yan Zhu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hui Wu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yao He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Qiang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Qiuling Huang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hang Xing
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Dziura D, Dziura M, Marquardt D. Studying lipid flip-flop in asymmetric liposomes using 1H NMR and TR-SANS. Methods Enzymol 2024; 700:295-328. [PMID: 38971604 DOI: 10.1016/bs.mie.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The specific spatial and temporal distribution of lipids in membranes play a crucial role in determining the biochemical and biophysical properties of the system. In nature, the asymmetric distribution of lipids is a dynamic process with ATP-dependent lipid transporters maintaining asymmetry, and passive transbilayer diffusion, that is, flip-flop, counteracting it. In this chapter, two probe-free techniques, 1H NMR and time-resolved small angle neutron scattering, are described in detail as methods of investigating lipid flip-flop rates in synthetic liposomes that have been generated with an asymmetric bilayer composition.
Collapse
Affiliation(s)
- Dominik Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Maksymilian Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada; Department of Physics, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
9
|
Leomil FC, Stephan M, Pramanik S, Riske KA, Dimova R. Bilayer Charge Asymmetry and Oil Residues Destabilize Membranes upon Poration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4719-4731. [PMID: 38373285 PMCID: PMC10919074 DOI: 10.1021/acs.langmuir.3c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/21/2024]
Abstract
Transmembrane asymmetry is ubiquitous in cells, particularly with respect to lipids, where charged lipids are mainly restricted to one monolayer. We investigate the influence of anionic lipid asymmetry on the stability of giant unilamellar vesicles (GUVs), minimal plasma membrane models. To quantify asymmetry, we apply the fluorescence quenching assay, which is often difficult to reproduce, and caution in handling the quencher is generally underestimated. We first optimize this assay and then apply it to GUVs prepared with the inverted emulsion transfer protocol by using increasing fractions of anionic lipids restricted to one leaflet. This protocol is found to produce highly asymmetric bilayers but with ∼20% interleaflet mixing. To probe the stability of asymmetric versus symmetric membranes, we expose the GUVs to porating electric pulses and monitor the fraction of destabilized vesicles. The pulses open macropores, and the GUVs either completely recover or exhibit leakage or bursting/collapse. Residual oil destabilizes porated membranes, and destabilization is even more pronounced in asymmetrically charged membranes. This is corroborated by the measured pore edge tension, which is also found to decrease with increasing charge asymmetry. Using GUVs with imposed transmembrane pH asymmetry, we confirm that poration-triggered destabilization does not depend on the approach used to generate membrane asymmetry.
Collapse
Affiliation(s)
- Fernanda
S. C. Leomil
- Max
Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
- Departamento
de Biofísica, Universidade Federal
de São Paulo, São
Paulo 04039-032, Brazil
| | - Mareike Stephan
- Max
Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| | - Shreya Pramanik
- Max
Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| | - Karin A. Riske
- Departamento
de Biofísica, Universidade Federal
de São Paulo, São
Paulo 04039-032, Brazil
| | - Rumiana Dimova
- Max
Planck Institute of Colloids and Interfaces, 14776 Potsdam, Germany
| |
Collapse
|
10
|
Pašalić L, Maleš P, Čikoš A, Pem B, Bakarić D. The rise of FTIR spectroscopy in the characterization of asymmetric lipid membranes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123488. [PMID: 37813090 DOI: 10.1016/j.saa.2023.123488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/11/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023]
Abstract
In contrast to symmetric unilamellar liposomes (sLUVs) prepared from a mixture of different lipids, asymmetric ones (aLUVs) with different lipid composition in the inner and outer membrane leaflets are more suitable model systems of eukaryotic plasma membranes. However, apart from the challenging preparation of asymmetric liposomes and small amounts of obtained asymmetric unilamellar liposomes (aLUVs), a major drawback is the qualitative characterization of asymmetry, as each of the techniques used so far has certain limitations. In this regard, we prepared aLUVs composed dominantly of DPPC(out)/DPPS(in) lipids and, along with 1H NMR and DSC characterization, we showed for the first time how FTIR spectroscopy can be used in the presence of (a)symmetry between DPPC/DPPS lipid bilayers. Using second derivative FTIR spectra we demonstrated not only that the hydration of lipids glycerol backbone and choline moiety of DPPC differs in s/aLUVs, but in addition that the lateral interactions between hydrocarbon chains during the phase change display different trend in s/aLUVs. Molecular dynamics simulations confirmed different chain ordering and packing between s/a bilayers, with a significant influence of temperature, i.e. membrane phase.
Collapse
Affiliation(s)
- Lea Pašalić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Petra Maleš
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Ana Čikoš
- The Centre for Nuclear Magnetic Resonance (NMR), Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Barbara Pem
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| |
Collapse
|
11
|
Shimokawa N, Takagi M. Biomimetic Lipid Raft: Domain Stability and Interaction with Physiologically Active Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:15-32. [PMID: 39289271 DOI: 10.1007/978-981-97-4584-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The cell membrane, also called the plasma membrane, is the membrane on the cytoplasmic surface that separates the extracellular from the intracellular. It is thin, about 10 nm thick when viewed with an electron microscope, and is composed of two monolayers of phospholipid membranes (lipid bilayers) containing many types of proteins. It is now known that this cell membrane not only separates the extracellular from the intracellular, but is also involved in sensory stimuli such as pain, itching, sedation, and excitement. Since the "Fluid mosaic model" was proposed for cell membranes, molecules have been thought to be homogeneously distributed on the membrane surface. Later, at the end of the twentieth century, the existence of "Phase-separated microdomain structures" consisting of ordered phases rich in saturated lipids and cholesterol was suggested, and these were termed "Lipid rafts." A model in which lipid rafts regulate cell signaling has been proposed and is the subject of active research.This chapter first outlines the physicochemical properties and thermodynamic models of membrane phase separation (lipid rafts), which play an important role in cell signaling. Next, how physiologically active molecules such as local anesthetics, cooling agents (menthol), and warming agents (capsaicin) interact with artificial cell membranes will be presented.It is undeniable that the plasma membrane contains many channels and receptors that are involved in the propagation of sensory stimuli. At the same time, however, it is important to understand that the membrane exerts a significant influence on the intensity and propagation of these stimuli.
Collapse
Affiliation(s)
- Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan.
| |
Collapse
|
12
|
Bogdanov M. Exploring Uniform, Dual, and Dynamic Topologies of Membrane Proteins by Substituted Cysteine Accessibility Method (SCAM™). Methods Mol Biol 2024; 2715:121-157. [PMID: 37930526 PMCID: PMC10755806 DOI: 10.1007/978-1-0716-3445-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
A described simple and advanced protocol for Substituted Cysteine Accessibility Method as applied to transmembrane (TM) orientation (SCAM™) permits a topology analysis of proteins in their native state and can be universally adapted to any membrane system to either systematically map an uniform or identify and quantify the degree of mixed topology or establish transmembrane assembly dynamics from relatively static experimental data such as endpoint topologies of membrane proteins. In this approach, noncritical individual amino acids that are thought to reside in the putative extracellular or intracellular loops of a membrane protein are replaced one at the time by cysteine residue, and the orientation with respect to the membrane is evaluated by using a pair of membrane-impermeable non-detectable and detectable thiol-reactive labeling reagents. For the most water-exposed cysteine residues in proteins, the thiol pKa lies in the range of 8-9, and formation of cysteinyl thiolate ions is optimum in aqueous rather in a nonpolar environment. These features and the ease of specific chemical modification with thiol reagents are central to SCAM™. Membrane side-specific sulfhydryl labeling allows to discriminate "exposed, protected or dynamic" cysteines strategically "implanted" at desired positions throughout cysteine less target protein template. The strategy described is widely used to map the topology of membrane protein and establish its transmembrane dynamics in intact cells of both diderm (two-membraned) Gram-negative and monoderm (one-membraned) Gram-positive bacteria, cell-derived oriented membrane vesicles, and proteoliposomes.
Collapse
Affiliation(s)
- Mikhail Bogdanov
- Department of Biochemistry & Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
13
|
Machin JM, Kalli AC, Ranson NA, Radford SE. Protein-lipid charge interactions control the folding of outer membrane proteins into asymmetric membranes. Nat Chem 2023; 15:1754-1764. [PMID: 37710048 PMCID: PMC10695831 DOI: 10.1038/s41557-023-01319-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Biological membranes consist of two leaflets of phospholipid molecules that form a bilayer, each leaflet comprising a distinct lipid composition. This asymmetry is created and maintained in vivo by dedicated biochemical pathways, but difficulties in creating stable asymmetric membranes in vitro have restricted our understanding of how bilayer asymmetry modulates the folding, stability and function of membrane proteins. In this study, we used cyclodextrin-mediated lipid exchange to generate liposomes with asymmetric bilayers and characterize the stability and folding kinetics of two bacterial outer membrane proteins (OMPs), OmpA and BamA. We found that excess negative charge in the outer leaflet of a liposome impedes their insertion and folding, while excess negative charge in the inner leaflet accelerates their folding relative to symmetric liposomes with the same membrane composition. Using molecular dynamics, mutational analysis and bioinformatics, we identified a positively charged patch critical for folding and stability. These results rationalize the well-known 'positive-outside' rule of OMPs and suggest insights into the mechanisms that drive OMP folding and assembly in vitro and in vivo.
Collapse
Affiliation(s)
- Jonathan M Machin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Antreas C Kalli
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
14
|
Doktorova M, Levental I, Heberle FA. Seeing the Membrane from Both Sides Now: Lipid Asymmetry and Its Strange Consequences. Cold Spring Harb Perspect Biol 2023; 15:a041393. [PMID: 37604588 PMCID: PMC10691478 DOI: 10.1101/cshperspect.a041393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Almost all biomembranes are constructed as lipid bilayers and, in almost all of these, the two opposing monolayers (leaflets) have distinct lipid compositions. This lipid asymmetry arises through the concerted action of a suite of energy-dependent enzymes that maintain living bilayers in a far-from-equilibrium steady-state. Recent discoveries reveal that lipid compositional asymmetry imparts biophysical asymmetries and that this dualistic organization may have major consequences for cellular physiology. Importantly, while transbilayer asymmetry appears to be an essential, near-ubiquitous characteristic of biological membranes, it has been challenging to reproduce in reconstituted or synthetic systems. Although recent methodological developments have overcome some critical challenges, it remains difficult to extrapolate results from available models to biological systems. Concurrently, there are few experimental approaches for targeted, controlled manipulation of lipid asymmetry in living cells. Thus, the biophysical and functional consequences of membrane asymmetry remain almost wholly unexplored. This perspective summarizes the current state of knowledge and highlights emerging themes that are beginning to make inroads into the fundamental question of why life tends toward asymmetry in its bilayers.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Pharmacology, University of Virginia, Center for Membrane and Cell Physiology, Charlottesville, Virginia 22908, USA
| | - Ilya Levental
- Department of Molecular Physiology and Pharmacology, University of Virginia, Center for Membrane and Cell Physiology, Charlottesville, Virginia 22908, USA
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, Tennessee 37996, USA
| |
Collapse
|
15
|
Li B, London E. Inner leaflet cationic lipid increases nucleic acid loading independently of outer leaflet lipid charge in asymmetric liposomes. Methods 2023; 219:16-21. [PMID: 37683900 PMCID: PMC10680395 DOI: 10.1016/j.ymeth.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/17/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Use of cationic lipid vesicles (liposomes) can yield large amounts of nucleic acid entrapped inside the vesicles and/or bound to the external surface of the vesicles. To show a method to prepare asymmetric lipid vesicles (liposomes) with high amounts of entrapped nucleic acid is possible, symmetric and asymmetric lipid vesicles composed of mixtures of neutral (zwitterionic), anionic, and/or cationic phospholipids were formed in the presence of oligo DNA. For symmetric large unilamellar vesicles nucleic acid association with vesicles was roughly 100 times greater for vesicles with a net cationic charge than for vesicles having a net neutral or anionic net charge. A high degree of association between nucleic acid and lipid was also achieved using asymmetric large unilamellar vesicles with a net cationic charge in their inner leaflet, even when they had an anionic charge in their outer leaflet. In contrast, asymmetric vesicles in which only the outer leaflet had a net cationic charge had only low amounts of vesicle-associated nucleic acid, similar in amount to the amount of nucleic acid associated with asymmetric vesicles with an outer leaflet having a net anionic charge. These results indicate that in asymmetric vesicles with cationic lipid enriched inner leaflets nucleic acid is largely entrapped inside the vesicle lumen rather than bound to their external surface, and that asymmetric vesicles can be used to trap high amounts of nucleic acid even when using a lipid composition in the outer leaflet of a lipid vesicle that does not associate with nucleic acids. Such asymmetrically charged vesicles should have applications in studies of membrane protein-nucleic acid interactions as well as in studies of how membrane charge asymmetry can influence membrane protein structure, orientation, and function.
Collapse
Affiliation(s)
- Bingchen Li
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Erwin London
- Dept. of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| |
Collapse
|
16
|
Chaisson EH, Heberle FA, Doktorova M. Building Asymmetric Lipid Bilayers for Molecular Dynamics Simulations: What Methods Exist and How to Choose One? MEMBRANES 2023; 13:629. [PMID: 37504995 PMCID: PMC10384462 DOI: 10.3390/membranes13070629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
The compositional asymmetry of biological membranes has attracted significant attention over the last decade. Harboring more differences from symmetric membranes than previously appreciated, asymmetric bilayers have proven quite challenging to study with familiar concepts and techniques, leaving many unanswered questions about the reach of the asymmetry effects. One particular area of active research is the computational investigation of composition- and number-asymmetric lipid bilayers with molecular dynamics (MD) simulations. Offering a high level of detail into the organization and properties of the simulated systems, MD has emerged as an indispensable tool in the study of membrane asymmetry. However, the realization that results depend heavily on the protocol used for constructing the asymmetric bilayer models has sparked an ongoing debate about how to choose the most appropriate approach. Here we discuss the underlying source of the discrepant results and review the existing methods for creating asymmetric bilayers for MD simulations. Considering the available data, we argue that each method is well suited for specific applications and hence there is no single best approach. Instead, the choice of a construction protocol-and consequently, its perceived accuracy-must be based primarily on the scientific question that the simulations are designed to address.
Collapse
Affiliation(s)
- Emily H. Chaisson
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37916, USA
| | - Frederick A. Heberle
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37916, USA
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
17
|
Povilaitis SC, Webb LJ. Leaflet-Dependent Effect of Anionic Lipids on Membrane Insertion by Cationic Cell-Penetrating Peptides. J Phys Chem Lett 2023; 14:5841-5849. [PMID: 37339513 PMCID: PMC10478718 DOI: 10.1021/acs.jpclett.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Cationic membrane-permeating peptides can cross membranes unassisted by transmembrane protein machinery, and there is consensus that anionic lipids facilitate this process. Although membranes are asymmetric in lipid composition, investigations of the impact of anionic lipids on peptide-membrane insertion in model vesicles primarily use symmetric anionic lipid distributions between bilayer leaflets. Here, we investigate the leaflet-specific influence of three anionic lipid headgroups [phosphatidic acid (PA), phosphatidylserine (PS), and phosphatidylglycerol (PG)] on insertion into model membranes by three cationic membrane-permeating peptides (NAF-144-67, R6W3, and WWWK). We report that outer leaflet anionic lipids enhanced peptide-membrane insertion for all peptides while inner leaflet anionic lipids did not have a significant effect except in the case of NAF-144-67 incubated with PA-containing vesicles. The insertion enhancement was headgroup-dependent for arginine-containing peptides but not WWWK. These results provide significant new insight into the potential role of membrane asymmetry in insertion of peptides into model membranes.
Collapse
Affiliation(s)
- Sydney C Povilaitis
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lauren J Webb
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
18
|
Panda A, Giska F, Duncan AL, Welch AJ, Brown C, McAllister R, Hariharan P, Goder JND, Coleman J, Ramakrishnan S, Pincet F, Guan L, Krishnakumar S, Rothman JE, Gupta K. Direct determination of oligomeric organization of integral membrane proteins and lipids from intact customizable bilayer. Nat Methods 2023; 20:891-897. [PMID: 37106230 PMCID: PMC10932606 DOI: 10.1038/s41592-023-01864-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 03/23/2023] [Indexed: 04/29/2023]
Abstract
Hierarchical organization of integral membrane proteins (IMP) and lipids at the membrane is essential for regulating myriad downstream signaling. A quantitative understanding of these processes requires both detections of oligomeric organization of IMPs and lipids directly from intact membranes and determination of key membrane components and properties that regulate them. Addressing this, we have developed a platform that enables native mass spectrometry (nMS) analysis of IMP-lipid complexes directly from intact and customizable lipid membranes. Both the lipid composition and membrane properties (such as curvature, tension, and fluidity) of these bilayers can be precisely customized to a target membrane. Subsequent direct nMS analysis of these intact proteolipid vesicles can yield the oligomeric states of the embedded IMPs, identify bound lipids, and determine the membrane properties that can regulate the observed IMP-lipid organization. Applying this method, we show how lipid binding regulates neurotransmitter release and how membrane composition regulates the functional oligomeric state of a transporter.
Collapse
Affiliation(s)
- Aniruddha Panda
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Fabian Giska
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | | | - Caroline Brown
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Rachel McAllister
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jean N D Goder
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Frédéric Pincet
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, CNRS, Université PSL, Sorbonne Université, Université Paris-Cité, Paris, France
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Shyam Krishnakumar
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - James E Rothman
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Kallol Gupta
- Nanobiology Institute, Yale University, West Haven, CT, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
19
|
Filipe HAL, Loura LMS, Moreno MJ. Permeation of a Homologous Series of NBD-Labeled Fatty Amines through Lipid Bilayers: A Molecular Dynamics Study. MEMBRANES 2023; 13:551. [PMID: 37367755 DOI: 10.3390/membranes13060551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
Abstract
Permeation through biomembranes is ubiquitous for drugs to reach their active sites. Asymmetry of the cell plasma membrane (PM) has been described as having an important role in this process. Here we describe the interaction of a homologous series of 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-labeled amphiphiles (NBD-Cn, n = 4 to 16) with lipid bilayers of different compositions (1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC):cholesterol (1:1) and palmitoylated sphingomyelin (SpM):cholesterol (6:4)), including an asymmetric bilayer. Both unrestrained and umbrella sampling (US) simulations (at varying distances to the bilayer center) were carried out. The free energy profile of NBD-Cn at different depths in the membrane was obtained from the US simulations. The behavior of the amphiphiles during the permeation process was described regarding their orientation, chain elongation, and H-bonding to lipid and water molecules. Permeability coefficients were also calculated for the different amphiphiles of the series, using the inhomogeneous solubility-diffusion model (ISDM). Quantitative agreement with values obtained from kinetic modeling of the permeation process could not be obtained. However, for the longer, and more hydrophobic amphiphiles, the variation trend along the homologous series was qualitatively better matched by the ISDM when the equilibrium location of each amphiphile was taken as reference (ΔG = 0), compared to the usual choice of bulk water.
Collapse
Affiliation(s)
- Hugo A L Filipe
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Luís M S Loura
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
20
|
Gardea-Gutiérrez D, Núñez-García E, Oseguera-Guerra BE, Román-Aguirre M, Montes-Fonseca SL. Asymmetric Lipid Vesicles: Techniques, Applications, and Future Perspectives as an Innovative Drug Delivery System. Pharmaceuticals (Basel) 2023; 16:777. [PMID: 37375725 DOI: 10.3390/ph16060777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/12/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Novel lipid-based nanosystems have been of interest in improving conventional drug release methods. Liposomes are the most studied nanostructures, consisting of lipid bilayers ideal for drug delivery, thanks to their resemblance to the cell plasma membrane. Asymmetric liposomes are vesicles with different lipids in their inner and outer layers; because of this, they can be configured to be compatible with the therapeutic drug while achieving biocompatibility and stability. Throughout this review, topics such as the applications, advantages, and synthesis techniques of asymmetric liposomes will be discussed. Further, an in silico analysis by computational tools will be examined as a helpful tool for designing and understanding asymmetric liposome mechanisms in pharmaceutical applications. The dual-engineered design of asymmetric liposomes makes them an ideal alternative for transdermal drug delivery because of the improved protection of pharmaceuticals without lowering adsorption rates and system biocompatibility.
Collapse
Affiliation(s)
- Denisse Gardea-Gutiérrez
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. H. Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chih, Mexico
| | - Eduardo Núñez-García
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. H. Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chih, Mexico
| | - Berenice E Oseguera-Guerra
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. H. Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chih, Mexico
| | - Manuel Román-Aguirre
- Centro de Investigación en Materiales Avanzados CIMAV, Av. Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih, Mexico
| | - Silvia L Montes-Fonseca
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Av. H. Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chih, Mexico
| |
Collapse
|
21
|
Cyanobacterial membrane dynamics in the light of eukaryotic principles. Biosci Rep 2023; 43:232406. [PMID: 36602300 PMCID: PMC9950537 DOI: 10.1042/bsr20221269] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Intracellular compartmentalization is a hallmark of eukaryotic cells. Dynamic membrane remodeling, involving membrane fission/fusion events, clearly is crucial for cell viability and function, as well as membrane stabilization and/or repair, e.g., during or after injury. In recent decades, several proteins involved in membrane stabilization and/or dynamic membrane remodeling have been identified and described in eukaryotes. Yet, while typically not having a cellular organization as complex as eukaryotes, also bacteria can contain extra internal membrane systems besides the cytoplasmic membranes (CMs). Thus, also in bacteria mechanisms must have evolved to stabilize membranes and/or trigger dynamic membrane remodeling processes. In fact, in recent years proteins, which were initially defined being eukaryotic inventions, have been recognized also in bacteria, and likely these proteins shape membranes also in these organisms. One example of a complex prokaryotic inner membrane system is the thylakoid membrane (TM) of cyanobacteria, which contains the complexes of the photosynthesis light reaction. Cyanobacteria are evolutionary closely related to chloroplasts, and extensive remodeling of the internal membrane systems has been observed in chloroplasts and cyanobacteria during membrane biogenesis and/or at changing light conditions. We here discuss common principles guiding eukaryotic and prokaryotic membrane dynamics and the proteins involved, with a special focus on the dynamics of the cyanobacterial TMs and CMs.
Collapse
|
22
|
Krompers M, Heerklotz H. A Guide to Your Desired Lipid-Asymmetric Vesicles. MEMBRANES 2023; 13:267. [PMID: 36984654 PMCID: PMC10054703 DOI: 10.3390/membranes13030267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Liposomes are prevalent model systems for studies on biological membranes. Recently, increasing attention has been paid to models also representing the lipid asymmetry of biological membranes. Here, we review in-vitro methods that have been established to prepare free-floating vesicles containing different compositions of the classic two-chain glycero- or sphingolipids in their outer and inner leaflet. In total, 72 reports are listed and assigned to four general strategies that are (A) enzymatic conversion of outer leaflet lipids, (B) re-sorting of lipids between leaflets, (C) assembly from different monolayers and (D) exchange of outer leaflet lipids. To guide the reader through this broad field of available techniques, we attempt to draw a road map that leads to the lipid-asymmetric vesicles that suit a given purpose. Of each method, we discuss advantages and limitations. In addition, various verification strategies of asymmetry as well as the role of cholesterol are briefly discussed. The ability to specifically induce lipid asymmetry in model membranes offers insights into the biological functions of asymmetry and may also benefit the technical applications of liposomes.
Collapse
Affiliation(s)
- Mona Krompers
- Department of Pharmaceutical Technology and Biopharmacy, Institute for Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Heiko Heerklotz
- Department of Pharmaceutical Technology and Biopharmacy, Institute for Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, 79085 Freiburg im Breisgau, Germany
| |
Collapse
|
23
|
Ghosh R, Satarifard V, Lipowsky R. Different pathways for engulfment and endocytosis of liquid droplets by nanovesicles. Nat Commun 2023; 14:615. [PMID: 36739277 PMCID: PMC9899248 DOI: 10.1038/s41467-023-35847-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/04/2023] [Indexed: 02/06/2023] Open
Abstract
During endocytosis of nanoparticles by cells, the cellular membranes engulf the particles, thereby forming a closed membrane neck that subsequently undergoes fission. For solid nanoparticles, these endocytic processes have been studied in some detail. Recently, such processes have also been found for liquid and condensate droplets, both in vitro and in vivo. These processes start with the spreading of the droplet onto the membrane followed by partial or complete engulfment of the droplet. Here, we use molecular dynamics simulations to study these processes at the nanoscale, for nano-sized droplets and vesicles. For both partial and complete engulfment, we observe two different endocytic pathways. Complete engulfment leads to a closed membrane neck which may be formed in a circular or strongly non-circular manner. A closed circular neck undergoes fission, thereby generating two nested daughter vesicles whereas a non-circular neck hinders the fission process. Likewise, partial engulfment of larger droplets leads to open membrane necks which can again have a circular or non-circular shape. Two key parameters identified here for these endocytic pathways are the transbilayer stress asymmetry of the vesicle membrane and the positive or negative line tension of the membrane-droplet contact line.
Collapse
Affiliation(s)
- Rikhia Ghosh
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.,Icahn School of Medicine Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Vahid Satarifard
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.,Yale Institute for Network Science, Yale University, New Haven, CT, 06520, USA
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.
| |
Collapse
|
24
|
Al Badri YN, Chaw CS, Elkordy AA. Insights into Asymmetric Liposomes as a Potential Intervention for Drug Delivery Including Pulmonary Nanotherapeutics. Pharmaceutics 2023; 15:pharmaceutics15010294. [PMID: 36678922 PMCID: PMC9867527 DOI: 10.3390/pharmaceutics15010294] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Liposome-based drug delivery systems are nanosized spherical lipid bilayer carriers that can encapsulate a broad range of small drug molecules (hydrophilic and hydrophobic drugs) and large drug molecules (peptides, proteins, and nucleic acids). They have unique characteristics, such as a self-assembling bilayer vesicular structure. There are several FDA-approved liposomal-based medicines for treatment of cancer, bacterial, and viral infections. Most of the FDA-approved liposomal-based therapies are in the form of conventional "symmetric" liposomes and they are administered mainly by injection. Arikace® is the first and only FDA-approved liposomal-based inhalable therapy (amikacin liposome inhalation suspension) to treat only adults with difficult-to-treat Mycobacterium avium complex (MAC) lung disease as a combinational antibacterial treatment. To date, no "asymmetric liposomes" are yet to be approved, although asymmetric liposomes have many advantages due to the asymmetric distribution of lipids through the liposome's membrane (which is similar to the biological membranes). There are many challenges for the formulation and stability of asymmetric liposomes. This review will focus on asymmetric liposomes in contrast to conventional liposomes as a potential clinical intervention drug delivery system as well as the formulation techniques available for symmetric and asymmetric liposomes. The review aims to renew the research in liposomal nanovesicle delivery systems with particular emphasis on asymmetric liposomes as future potential carriers for enhancing drug delivery including pulmonary nanotherapeutics.
Collapse
Affiliation(s)
| | | | - Amal Ali Elkordy
- Correspondence: ; Tel.: +44-(0)-1915152576; Fax: +44-(0)-1915153405
| |
Collapse
|
25
|
Assembly methods for asymmetric lipid and polymer-lipid vesicles. Emerg Top Life Sci 2022; 6:609-617. [PMID: 36533596 DOI: 10.1042/etls20220055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Asymmetric unilamellar vesicles are aqueous bodies surrounded by two dissimilar leaflets made from lipids, polymers, or both. They are great models for cell membranes and attractive vehicles in potential biomedicine applications. Despite their promise, asymmetric unilamellar vesicles are not widely studied or adopted in applications. This is largely due to the complexity in generating asymmetric membranes. Recent technical advances in microfluidics have opened doors to high throughput fabrication of asymmetric unilamellar vesicles. In this review, we focus on microfluidic methods for generating asymmetric lipid vesicles, with two dissimilar lipid leaflets, and asymmetric lipid-polymer vesicles, with one lipid leaflet and one polymer leaflet. We also review a few standard non-microfluidic methods for generating asymmetric vesicles. We hope to highlight the improved capability in obtaining asymmetric vesicles through a variety of methods and encourage the wider scientific community to adopt some of these for their own work.
Collapse
|
26
|
Sarangi N, Shafaq-Zadah M, Berselli GB, Robinson J, Dransart E, Di Cicco A, Lévy D, Johannes L, Keyes TE. Galectin-3 Binding to α 5β 1 Integrin in Pore Suspended Biomembranes. J Phys Chem B 2022; 126:10000-10017. [PMID: 36413808 PMCID: PMC9743206 DOI: 10.1021/acs.jpcb.2c05717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Galectin-3 (Gal3) is a β-galactoside binding lectin that mediates many physiological functions, including the binding of cells to the extracellular matrix for which the glycoprotein α5β1 integrin is of critical importance. The mechanisms by which Gal3 interacts with membranes have not been widely explored to date due to the complexity of cell membranes and the difficulty of integrin reconstitution within model membranes. Herein, to study their interaction, Gal3 and α5β1 were purified, and the latter reconstituted into pore-suspended lipid bilayers comprised eggPC:eggPA. Using electrochemical impedance and fluorescence lifetime correlation spectroscopy, we found that on incubation with low nanomolar concentrations of wild-type Gal3, the membrane's admittance and fluidity, as well as integrin's lateral diffusivity, were enhanced. These effects were diminished in the following conditions: (i) absence of integrin, (ii) presence of lactose as a competitive inhibitor of glycan-Gal3 interaction, and (iii) use of a Gal3 mutant that lacked the N-terminal oligomerization domain (Gal3ΔNter). These findings indicated that WTGal3 oligomerized on α5β1 integrin in a glycan-dependent manner and that the N-terminal domain interacted directly with membranes in a way that is yet to be fully understood. At concentrations above 10 nM of WTGal3, membrane capacitance started to decrease and very slowly diffusing molecular species appeared, which indicated the formation of protein clusters made from WTGal3-α5β1 integrin assemblies. Overall, our study demonstrates the capacity of WTGal3 to oligomerize in a cargo protein-dependent manner at low nanomolar concentrations. Of note, these WTGal3 oligomers appeared to have membrane active properties that could only be revealed using our sensitive methods. At slightly higher WTGal3 concentrations, the capacity to generate lateral assemblies between cargo proteins was observed. In cells, this could lead to the construction of tubular endocytic pits according to the glycolipid-lectin (GL-Lect) hypothesis or to the formation of galectin lattices, depending on cargo glycoprotein stability at the membrane, the local Gal3 concentration, or plasma membrane intrinsic parameters. The study also demonstrates the utility of microcavity array-suspended lipid bilayers to address the biophysics of transmembrane proteins.
Collapse
Affiliation(s)
- Nirod
Kumar Sarangi
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, DCU Glasnevin Campus, D09 V209Dublin 9, Ireland
| | - Massiullah Shafaq-Zadah
- Institut
Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular
and Chemical Biology Unit, 75248Paris Cedex 05, France
| | - Guilherme B. Berselli
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, DCU Glasnevin Campus, D09 V209Dublin 9, Ireland
| | - Jack Robinson
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, DCU Glasnevin Campus, D09 V209Dublin 9, Ireland
| | - Estelle Dransart
- Institut
Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular
and Chemical Biology Unit, 75248Paris Cedex 05, France
| | - Aurélie Di Cicco
- Institut
Curie, PSL Research University, UMR 168 CNRS, 75248Paris Cedex 05, France
| | - Daniel Lévy
- Institut
Curie, PSL Research University, UMR 168 CNRS, 75248Paris Cedex 05, France
| | - Ludger Johannes
- Institut
Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, Cellular
and Chemical Biology Unit, 75248Paris Cedex 05, France,
| | - Tia E. Keyes
- School
of Chemical Sciences and National Centre for Sensor Research, Dublin City University, DCU Glasnevin Campus, D09 V209Dublin 9, Ireland,
| |
Collapse
|
27
|
Biophysical quantification of unitary solute and solvent permeabilities to enable translation to membrane science. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Varma M, Deserno M. Distribution of cholesterol in asymmetric membranes driven by composition and differential stress. Biophys J 2022; 121:4001-4018. [PMID: 35927954 PMCID: PMC9674969 DOI: 10.1016/j.bpj.2022.07.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Many lipid membranes of eukaryotic cells are asymmetric, which means the two leaflets differ in at least one physical property, such as lipid composition or lateral stress. Maintaining this asymmetry is helped by the fact that ordinary phospholipids rarely transition between leaflets, but cholesterol is an exception: its flip-flop times are in the microsecond range, so that its distribution between leaflets is determined by a chemical equilibrium. In particular, preferential partitioning can draw cholesterol into a more saturated leaflet, and phospholipid number asymmetry can force it out of a compressed leaflet. Combining highly coarse-grained membrane simulations with theoretical modeling, we investigate how these two driving forces play against each other until cholesterol's chemical potential is equilibrated. The theory includes two coupled elastic sheets and a Flory-Huggins mixing free energy with a χ parameter. We obtain a relationship between χ and the interaction strength between cholesterol and lipids in either of the two leaflets, and we find that it depends, albeit weakly, on lipid number asymmetry. The differential stress measurements under various asymmetry conditions agree with our theoretical predictions. Using the two kinds of asymmetries in combination, we find that it is possible to counteract the phospholipid number bias, and the resultant stress in the membrane, via the control of cholesterol mixing in the leaflets.
Collapse
Affiliation(s)
- Malavika Varma
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
29
|
Ali AA, Bagheri Y, Tian Q, You M. Advanced DNA Zipper Probes for Detecting Cell Membrane Lipid Domains. NANO LETTERS 2022; 22:7579-7587. [PMID: 36084301 PMCID: PMC10368464 DOI: 10.1021/acs.nanolett.2c02605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The cell membrane is a complex mixture of lipids, proteins, and other components. By forming dynamic lipid domains, different membrane molecules can selectively interact with each other to control cell signaling. Herein, we report several new types of lipid-DNA conjugates, termed as "DNA zippers", which can be used to measure cell membrane dynamic interactions and the formation of lipid domains. Dependent on the choice of lipid moieties, cholesterol- and sphingomyelin-conjugated DNA zippers specifically locate in and detect membrane lipid-ordered domains, while in contrast, a tocopherol-DNA zipper can be applied for the selective imaging of lipid-disordered phases. These versatile and programmable probes can be further engineered into membrane competition assays to simultaneously detect multiple types of membrane dynamic interactions. These DNA zipper probes can be broadly used to study the correlation between lipid domains and various cellular processes, such as the epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Ahsan Ausaf Ali
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Yousef Bagheri
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Qian Tian
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
30
|
Notti RQ, Walz T. Native-like environments afford novel mechanistic insights into membrane proteins. Trends Biochem Sci 2022; 47:561-569. [PMID: 35331611 PMCID: PMC9847468 DOI: 10.1016/j.tibs.2022.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 01/21/2023]
Abstract
Advances in cryogenic electron microscopy (cryo-EM) enabled routine near-atomic structure determination of membrane proteins, while nanodisc technology has provided a way to provide membrane proteins with a native or native-like lipid environment. After giving a brief history of membrane mimetics, we present example structures of membrane proteins in nanodiscs that revealed information not provided by structures obtained in detergent. We describe how the lipid environment surrounding the membrane protein can be custom designed during nanodisc assembly and how it can be modified after assembly to test functional hypotheses. Because nanodiscs most closely replicate the physiologic environment of membrane proteins and often afford novel mechanistic insights, we propose that nanodiscs ought to become the standard for structural studies on membrane proteins.
Collapse
Affiliation(s)
- Ryan Q. Notti
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, New York, NY 10065,Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, 1230 York Avenue, New York, NY 10065,Correspondence: (Walz, T.)
| |
Collapse
|
31
|
Almarghlani A, Settem RP, Croft AJ, Metcalfe S, Giangreco M, Kay JG. Interleukin-34 Permits Porphyromonas gingivalis Survival and NF-κB p65 Inhibition in Macrophages. Mol Oral Microbiol 2022; 37:109-121. [PMID: 35576119 DOI: 10.1111/omi.12366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Interleukin-34 (IL-34) is a cytokine that supports the viability and differentiation of macrophages. An important cytokine for the development of epidermal immunity, IL-34 is present and plays a role in the immunity of the oral environment. IL-34 has been linked to inflammatory periodontal diseases, which involve innate phagocytes, including macrophages. Whether IL-34 can alter the ability of macrophages to effectively interact with oral microbes is currently unclear. Using macrophages derived from human blood monocytes with either the canonical cytokine colony-stimulating factor (CSF)1 or IL-34, we compared the ability of the macrophages to phagocytose, kill, and respond through the production of cytokines to the periodontal keystone pathogen Porphyromonas gingivalis. While macrophages derived from both cytokines were able to engulf the bacterium equally, IL-34 derived macrophages were much less capable of killing internalized P. gingivalis. Of the macrophage cell surface receptors known to interact with P. gingivalis, DC-SIGN was found to have the largest variation between IL-34 and CSF1-derived macrophages. We also found that upon interaction with P. gingivalis, IL-34 derived macrophages produced significantly less of the neutrophil chemotactic factor IL-8 than macrophages derived in the presence of CSF1. Mechanistically, we identified that levels of IL-8 corresponded with P. gingivalis survival and dephosphorylation of the major transcription factor NF-κB p65. Overall, we found that macrophages differentiated in the presence of IL-34, a dominant cytokine in the oral gingiva, have a reduced ability to kill the keystone pathogen P. gingivalis and may be susceptible to specific bacteria-mediated cytokine modification. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ammar Almarghlani
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA.,Current Address: Department of Periodontics, Faculty of Dentistry, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Rajendra P Settem
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Andrew J Croft
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Sarah Metcalfe
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Matthew Giangreco
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| | - Jason G Kay
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, 3435 Main Street, Buffalo, NY, 14214, USA
| |
Collapse
|
32
|
Ahamed MK, Ahmed M, Karal MAS. Quantification of pulsed electric field for the rupture of giant vesicles with various surface charges, cholesterols and osmotic pressures. PLoS One 2022; 17:e0262555. [PMID: 35025973 PMCID: PMC8757908 DOI: 10.1371/journal.pone.0262555] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/28/2021] [Indexed: 12/02/2022] Open
Abstract
Electropermeabilization is a promising phenomenon that occurs when pulsed electric field with high frequency is applied to cells/vesicles. We quantify the required values of pulsed electric fields for the rupture of cell-sized giant unilamellar vesicles (GUVs) which are prepared under various surface charges, cholesterol contents and osmotic pressures. The probability of rupture and the average time of rupture are evaluated under these conditions. The electric field changes from 500 to 410 Vcm-1 by varying the anionic lipid mole fraction from 0 to 0.60 for getting the maximum probability of rupture (i.e., 1.0). In contrast, the same probability of rupture is obtained for changing the electric field from 410 to 630 Vcm-1 by varying the cholesterol mole fraction in the membranes from 0 to 0.40. These results suggest that the required electric field for the rupture decreases with the increase of surface charge density but increases with the increase of cholesterol. We also quantify the electric field for the rupture of GUVs containing anionic mole fraction of 0.40 under various osmotic pressures. In the absence of osmotic pressure, the electric field for the rupture is obtained 430 Vcm-1, whereas the field is 300 Vcm-1 in the presence of 17 mOsmL-1, indicating the instability of GUVs at higher osmotic pressures. These investigations open an avenue of possibilities for finding the electric field dependent rupture of cell-like vesicles along with the insight of biophysical and biochemical processes.
Collapse
Affiliation(s)
- Md. Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
- * E-mail:
| |
Collapse
|
33
|
Bagheri Y, Ali AA, Keshri P, Chambers J, Gershenson A, You M. Imaging Membrane Order and Dynamic Interactions in Living Cells with a DNA Zipper Probe. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yousef Bagheri
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
| | - Ahsan Ausaf Ali
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
| | - Puspam Keshri
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
| | - James Chambers
- Institute for Applied Life Sciences University of Massachusetts Amherst MA 01003 USA
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology University of Massachusetts Amherst MA 01003 USA
| | - Mingxu You
- Department of Chemistry University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
34
|
Suresh P, London E. Using cyclodextrin-induced lipid substitution to study membrane lipid and ordered membrane domain (raft) function in cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183774. [PMID: 34534531 PMCID: PMC9128603 DOI: 10.1016/j.bbamem.2021.183774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023]
Abstract
Methods for efficient cyclodextrin-induced lipid exchange have been developed in our lab. These make it possible to almost completely replace the lipids in the outer leaflet of artificial membranes or the plasma membranes of living cells with exogenous lipids. Lipid replacement/substitution allows detailed studies of how lipid composition and asymmetry influence the structure and function of membrane domains and membrane proteins. In this review, we both summarize progress on cyclodextrin exchange in cells, mainly by the use of methyl-alpha cyclodextrin to exchange phospholipids and sphingolipids, and discuss the issues to consider when carrying out lipid exchange experiments upon cells. Issues that impact interpretation of lipid exchange are also discussed. This includes how overly naïve interpretation of how lipid exchange-induced changes in domain formation can impact protein function.
Collapse
|
35
|
Bagheri Y, Ali AA, Keshri P, Chambers J, Gershenson A, You M. Imaging Membrane Order and Dynamic Interactions in Living Cells with a DNA Zipper Probe. Angew Chem Int Ed Engl 2022; 61:e202112033. [PMID: 34767659 PMCID: PMC8792286 DOI: 10.1002/anie.202112033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/19/2021] [Indexed: 02/03/2023]
Abstract
The cell membrane is a dynamic and heterogeneous structure composed of distinct sub-compartments. Within these compartments, preferential interactions occur among various lipids and proteins. Currently, it is still challenging to image these short-lived membrane complexes, especially in living cells. In this work, we present a DNA-based probe, termed "DNA Zipper", which allows the membrane order and pattern of transient interactions to be imaged in living cells using standard fluorescence microscopes. By fine-tuning the length and binding affinity of DNA duplex, these probes can precisely extend the duration of membrane lipid interactions via dynamic DNA hybridization. The correlation between membrane order and the activation of T-cell receptor signaling has also been studied. These programmable DNA probes function after a brief cell incubation, which can be easily adapted to study lipid interactions and membrane order during different membrane signaling events.
Collapse
Affiliation(s)
- Yousef Bagheri
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003 (USA)
| | - Ahsan Ausaf Ali
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003 (USA)
| | - Puspam Keshri
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003 (USA)
| | - James Chambers
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003 (USA)
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA 01003 (USA)
| | - Mingxu You
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003 (USA)
| |
Collapse
|
36
|
Vázquez RF, Ovalle-García E, Antillón A, Ortega-Blake I, Muñoz-Garay C, Maté SM. Formation and Nanoscale Characterization of Asymmetric Supported Lipid Bilayers Containing Raft-Like Domains. Methods Mol Biol 2022; 2402:243-256. [PMID: 34854049 DOI: 10.1007/978-1-0716-1843-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of new strategies for achieving stable asymmetric membrane models has turned interleaflet lipid asymmetry into a topic of major interest. Cyclodextrin-mediated lipid exchange constitutes a simple and versatile method for preparing asymmetric membrane models without the need for sophisticated equipment. Here we describe a protocol for preparing asymmetric supported lipid bilayers mimicking membrane rafts by cyclodextrin-mediated lipid exchange and the main guidelines for obtaining structural information and quantitative measures of their mechanical properties using Atomic force microscopy and Force spectroscopy; two powerful techniques that allow membrane characterization at the nanoscale.
Collapse
Affiliation(s)
- Romina F Vázquez
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Erasmo Ovalle-García
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Armando Antillón
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Carlos Muñoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Sabina M Maté
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT-La Plata, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
37
|
Kakuda S, Suresh P, Li G, London E. Loss of plasma membrane lipid asymmetry can induce ordered domain (raft) formation. J Lipid Res 2022; 63:100155. [PMID: 34843684 PMCID: PMC8953672 DOI: 10.1016/j.jlr.2021.100155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
In some cases, lipids in one leaflet of an asymmetric artificial lipid vesicle suppress the formation of ordered lipid domains (rafts) in the opposing leaflet. Whether this occurs in natural membranes is unknown. Here, we investigated this issue using plasma membrane vesicles (PMVs) from rat leukemia RBL-2H3 cells. Membrane domain formation and order was assessed by fluorescence resonance energy transfer and fluorescence anisotropy. We found that ordered domains in PMVs prepared from cells by N-ethyl maleimide (NEM) treatment formed up to ∼37°C, whereas ordered domains in symmetric vesicles formed from the extracted PMV lipids were stable up to 55°C, indicating the stability of ordered domains was substantially decreased in intact PMVs. This behavior paralleled lesser ordered domain stability in artificial asymmetric lipid vesicles relative to the corresponding symmetric vesicles, suggesting intact PMVs exhibit some degree of lipid asymmetry. This was supported by phosphatidylserine mislocalization on PMV outer leaflets as judged by annexin binding, which indicated NEM-induced PMVs are much more asymmetric than PMVs formed by dithiothreitol/paraformaldehyde treatment. Destroying asymmetry by reconstitution of PMVs using detergent dilution also showed stabilization of domain formation, even though membrane proteins remained associated with reconstituted vesicles. Similar domain stabilization was observed in artificial asymmetric lipid vesicles after destroying asymmetry via detergent reconstitution. Proteinase K digestion of proteins had little effect on domain stability in NEM PMVs. We conclude that loss of PMV lipid asymmetry can induce ordered domain formation. The dynamic control of lipid asymmetry in cells may regulate domain formation in plasma membranes.
Collapse
Affiliation(s)
- Shinako Kakuda
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Pavana Suresh
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Guangtao Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
38
|
Li MH, Raleigh DP, London E. Preparation of Asymmetric Vesicles with Trapped CsCl Avoids Osmotic Imbalance, Non-Physiological External Solutions, and Minimizes Leakage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11611-11617. [PMID: 34550698 PMCID: PMC9128599 DOI: 10.1021/acs.langmuir.1c01971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The natural asymmetry of cellular membranes influences their properties. In recent years, methodologies for preparing asymmetric vesicles have been developed that rely on cyclodextrin-catalyzed exchange of lipids between donor lipid multilamellar vesicles and acceptor lipid unilamellar vesicles, and the subsequent separation of the, now asymmetric, acceptor vesicles from the donors. Isolation is often accomplished by preloading acceptor vesicles with a high concentration of sucrose, typically 25% (w/w), and separating from donor and cyclodextrin by sucrose gradient centrifugation. We found that when the asymmetric vesicles prepared using methyl-α-cyclodextrin exchange were dispersed under hypotonic conditions using physiological salt solutions, there was enhanced leakage of an entrapped probe, 6-carboxyfluorescein. Studies with symmetric vesicles showed this was due to osmotic pressure and was specific to hypotonic solutions. Inclusion of cholesterol partly reduced leakage but did not completely eliminate it. To avoid having to use hypotonic conditions or to suspend vesicles at nonphysiological solute concentrations to minimize leakage, a method for preparing asymmetric vesicles using acceptor vesicle-entrapped CsCl at a physiological ion concentration (100 mM) was developed. Asymmetric vesicles prepared with the entrapped CsCl protocol were highly resistant to 6-carboxyfluorescein leakage out of the vesicles.
Collapse
Affiliation(s)
- Ming-Hao Li
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Daniel P. Raleigh
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - Erwin London
- Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Biochemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
39
|
Stephenson EB, Elvira KS. Biomimetic artificial cells to model the effect of membrane asymmetry on chemoresistance. Chem Commun (Camb) 2021; 57:6534-6537. [PMID: 34106114 DOI: 10.1039/d1cc02043a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a microfluidic platform that enables the formation of bespoke asymmetric droplet interface bilayers (DIBs) as artificial cell models from naturally-derived lipids. We use them to perform pharmacokinetic assays to quantify how lipid asymmetry affects the permeability of the chemotherapy drug doxorubicin. Previous attempts to model bilayer asymmetry with DIBs have relied on the use of synthetic lipids to achieve asymmetry. Use of natural lipids serves to increase the biomimetic nature of these artificial cells, showcasing the next step towards forming a true artificial cell membrane in vitro. Here we use our microfluidic platform to form biomimetic, asymmetric and symmetric DIBs, with their asymmetry quantified through their life-mimicking degree of curvature. We subsequently examine permeability of these membranes to doxorubicin, and reveal measurable differences in its pharmacokinetics induced by membrane asymmetry, highlighting another factor that potentially contributes to chemoresistance in some forms of cancer.
Collapse
Affiliation(s)
- Elanna B Stephenson
- University of Victoria, Department of Chemistry, Victoria BC, V8W 2Y2, Canada.
| | - Katherine S Elvira
- University of Victoria, Department of Chemistry, Victoria BC, V8W 2Y2, Canada.
| |
Collapse
|
40
|
Suresh P, Miller WT, London E. Phospholipid exchange shows insulin receptor activity is supported by both the propensity to form wide bilayers and ordered raft domains. J Biol Chem 2021; 297:101010. [PMID: 34324831 PMCID: PMC8379460 DOI: 10.1016/j.jbc.2021.101010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022] Open
Abstract
Insulin receptor (IR) is a membrane tyrosine kinase that mediates the response of cells to insulin. IR activity has been shown to be modulated by changes in plasma membrane lipid composition, but the properties and structural determinants of lipids mediating IR activity are poorly understood. Here, using efficient methyl-alpha-cyclodextrin mediated lipid exchange, we studied the effect of altering plasma membrane outer leaflet phospholipid composition upon the activity of IR in mammalian cells. After substitution of endogenous lipids with lipids having an ability to form liquid ordered (Lo) domains (sphingomyelins) or liquid disordered (Ld) domains (unsaturated phosphatidylcholines (PCs)), we found that the propensity of lipids to form ordered domains is required for high IR activity. Additional substitution experiments using a series of saturated PCs showed that IR activity increased substantially with increasing acyl chain length, which increases both bilayer width and the propensity to form ordered domains. Incorporating purified IR into alkyl maltoside micelles with increasing hydrocarbon lengths also increased IR activity, but more modestly than by increasing lipid acyl chain length in cells. These results suggest that the ability to form Lo domains as well as wide bilayer width contributes to increased IR activity. Inhibition of phosphatases showed that some of the lipid dependence of IR activity upon lipid structure reflected protection from phosphatases by lipids that support Lo domain formation. These results are consistent with a model in which a combination of bilayer width and ordered domain formation modulates IR activity via IR conformation and accessibility to phosphatases.
Collapse
Affiliation(s)
- Pavana Suresh
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA; Department of Veterans Affairs Medical Center, Northport, New York, USA
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
41
|
Scott HL, Kennison KB, Enoki TA, Doktorova M, Kinnun JJ, Heberle FA, Katsaras J. Model Membrane Systems Used to Study Plasma Membrane Lipid Asymmetry. Symmetry (Basel) 2021; 13. [PMID: 35498375 PMCID: PMC9053528 DOI: 10.3390/sym13081356] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is well known that the lipid distribution in the bilayer leaflets of mammalian plasma membranes (PMs) is not symmetric. Despite this, model membrane studies have largely relied on chemically symmetric model membranes for the study of lipid–lipid and lipid–protein interactions. This is primarily due to the difficulty in preparing stable, asymmetric model membranes that are amenable to biophysical studies. However, in the last 20 years, efforts have been made in producing more biologically faithful model membranes. Here, we review several recently developed experimental and computational techniques for the robust generation of asymmetric model membranes and highlight a new and particularly promising technique to study membrane asymmetry.
Collapse
Affiliation(s)
- Haden L. Scott
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Kristen B. Kennison
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Thais A. Enoki
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Jacob J. Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - Frederick A. Heberle
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| | - John Katsaras
- Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
- Correspondence: (H.L.S.); (K.B.K.); (T.A.E.); (M.D.); (J.J.K.); (F.A.H.); (J.K.)
| |
Collapse
|
42
|
Liu P, Zabala-Ferrera O, Beltramo PJ. Fabrication and electromechanical characterization of freestanding asymmetric membranes. Biophys J 2021; 120:1755-1764. [PMID: 33675759 PMCID: PMC8204216 DOI: 10.1016/j.bpj.2021.02.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/12/2021] [Accepted: 02/24/2021] [Indexed: 01/07/2023] Open
Abstract
All biological cell membranes maintain an electric transmembrane potential of around 100 mV, due in part to an asymmetric distribution of charged phospholipids across the membrane. This asymmetry is crucial to cell health and physiological processes such as intracell signaling, receptor-mediated endocytosis, and membrane protein function. Experimental artificial membrane systems incorporate essential cell membrane structures, such as the phospholipid bilayer, in a controllable manner in which specific properties and processes can be isolated and examined. Here, we describe an approach to fabricate and characterize planar, freestanding, asymmetric membranes and use it to examine the effect of headgroup charge on membrane stiffness. The approach relies on a thin film balance used to form a freestanding membrane by adsorbing aqueous phase lipid vesicles to an oil-water interface and subsequently thinning the oil to form a bilayer. We validate this lipid-in-aqueous approach by analyzing the thickness and compressibility of symmetric membranes with varying zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and anionic 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) sodium salt (DOPG) content as compared with previous lipid-in-oil methods. We find that as the concentration of DOPG increases, membranes become thicker and stiffer. Asymmetric membranes are fabricated by controlling the lipid vesicle composition in the aqueous reservoirs on either side of the oil. Membrane compositional asymmetry is qualitatively demonstrated using a fluorescence quenching assay and quantitatively characterized through voltage-dependent capacitance measurements. Stable asymmetric membranes with DOPC on one side and DOPC-DOPG mixtures on the other were created with transmembrane potentials ranging from 15 to 80 mV. Introducing membrane charge asymmetry decreases both the thickness and stiffness in comparison with symmetric membranes with the same overall phospholipid composition. These initial successes demonstrate a viable pathway to quantitatively characterize asymmetric bilayers that can be extended to accommodate more complex membranes and membrane processes in the future.
Collapse
Affiliation(s)
- Paige Liu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Oscar Zabala-Ferrera
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Peter J Beltramo
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts.
| |
Collapse
|
43
|
Kinnun JJ, Scott HL, Ashkar R, Katsaras J. Biomembrane Structure and Material Properties Studied With Neutron Scattering. Front Chem 2021; 9:642851. [PMID: 33987167 PMCID: PMC8110834 DOI: 10.3389/fchem.2021.642851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cell membranes and their associated structures are dynamical supramolecular structures where different physiological processes take place. Detailed knowledge of their static and dynamic structures is therefore needed, to better understand membrane biology. The structure–function relationship is a basic tenet in biology and has been pursued using a range of different experimental approaches. In this review, we will discuss one approach, namely the use of neutron scattering techniques as applied, primarily, to model membrane systems composed of lipid bilayers. An advantage of neutron scattering, compared to other scattering techniques, is the differential sensitivity of neutrons to isotopes of hydrogen and, as a result, the relative ease of altering sample contrast by substituting protium for deuterium. This property makes neutrons an ideal probe for the study of hydrogen-rich materials, such as biomembranes. In this review article, we describe isotopic labeling studies of model and viable membranes, and discuss novel applications of neutron contrast variation in order to gain unique insights into the structure, dynamics, and molecular interactions of biological membranes. We specifically focus on how small-angle neutron scattering data is modeled using different contrast data and molecular dynamics simulations. We also briefly discuss neutron reflectometry and present a few recent advances that have taken place in neutron spin echo spectroscopy studies and the unique membrane mechanical data that can be derived from them, primarily due to new models used to fit the data.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Oak Ridge National Laboratory, Shull-Wollan Center, Oak Ridge, TN, United States
| | - Haden L Scott
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Oak Ridge National Laboratory, Shull-Wollan Center, Oak Ridge, TN, United States
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA, United States.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| | - John Katsaras
- Oak Ridge National Laboratory, Shull-Wollan Center, Oak Ridge, TN, United States.,Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
44
|
Maktabi S, Malmstadt N, Schertzer JW, Chiarot PR. An integrated microfluidic platform to fabricate single-micrometer asymmetric giant unilamellar vesicles (GUVs) using dielectrophoretic separation of microemulsions. BIOMICROFLUIDICS 2021; 15:024112. [PMID: 33912267 PMCID: PMC8064763 DOI: 10.1063/5.0047265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
We present a microfluidic technique that generates asymmetric giant unilamellar vesicles (GUVs) in the size range of 2-14 μm. In our method, we (i) create water-in-oil emulsions as the precursors to build synthetic vesicles, (ii) deflect the emulsions across two oil streams containing different phospholipids at high throughput to establish an asymmetric architecture in the lipid bilayer membranes, and (iii) direct the water-in-oil emulsions across the oil-water interface of an oscillating oil jet in a co-flowing confined geometry to encapsulate the inner aqueous phase inside a lipid bilayer and complete the fabrication of GUVs. In the first step, we utilize a flow-focusing geometry with precisely controlled pneumatic pressures to form monodisperse water-in-oil emulsions. We observed different regimes in forming water-in-oil multiphase flows by changing the applied pressures and discovered a hysteretic behavior in jet breakup and droplet generation. In the second step of GUV fabrication, an oil stream containing phospholipids carries the emulsions into a separation region where we steer the emulsions across two parallel oil streams using active dielectrophoretic and pinched-flow fractionation separations. We explore the effect of applied DC voltage magnitude and carrier oil stream flow rate on the separation efficiency. We develop an image processing code that measures the degree of mixing between the two oil streams as the water-in-oil emulsions travel across them under dielectrophoretic steering to find the ideal operational conditions. Finally, we utilize an oscillating co-flowing jet to complete the formation of asymmetric giant unilamellar vesicles and transfer them to an aqueous phase. We investigate the effect of flow rates on properties of the co-flowing jet oscillating in the whipping mode (i.e., wavelength and amplitude) and define the phase diagram for the oil-in-water jet. Assays used to probe the lipid bilayer membrane of fabricated GUVs showed that membranes were unilamellar, minimal residual oil remained trapped between the two lipid leaflets, and 83% asymmetry was achieved across the lipid bilayers of GUVs.
Collapse
Affiliation(s)
| | - Noah Malmstadt
- Departments of Chemical Engineering & Materials Science, Biomedical Engineering, and Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | | | - Paul R. Chiarot
- Author to whom correspondence should be addressed:. Tel.: +1 607 777 3208
| |
Collapse
|
45
|
Investigation of the domain line tension in asymmetric vesicles prepared via hemifusion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183586. [PMID: 33647248 DOI: 10.1016/j.bbamem.2021.183586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/28/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
The plasma membrane (PM) is asymmetric in lipid composition. The distinct and characteristic lipid compositions of the exoplasmic and cytoplasmic leaflets lead to different lipid-lipid interactions and physical-chemical properties in each leaflet. The exoplasmic leaflet possesses an intrinsic ability to form coexisting ordered and disordered fluid domains, whereas the cytoplasmic leaflet seems to form a single fluid phase. To better understand the interleaflet interactions that influence domains, we compared asymmetric model membranes that capture salient properties of the PM with simpler symmetric membranes. Using asymmetric giant unilamellar vesicles (aGUVs) prepared by hemifusion with a supported lipid bilayer, we investigate the domain line tension that characterizes the behavior of coexisting ordered + disordered domains. The line tension can be related to the contact perimeter of the different phases. Compared to macroscopic phase separation, the appearance of modulated phases was found to be a robust indicator of a decrease in domain line tension. Symmetric GUVs of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)/1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC)/cholesterol (chol) were formed into aGUVs by replacing the GUV outer leaflet with DOPC/chol = 0.8/0.2 in order to create a cytoplasmic leaflet model. These aGUVs revealed lower line tension for the ordered + disordered domains of the exoplasmic model leaflet.
Collapse
|
46
|
Kakuda S, Li B, London E. Preparation and utility of asymmetric lipid vesicles for studies of perfringolysin O-lipid interactions. Methods Enzymol 2021; 649:253-276. [PMID: 33712189 DOI: 10.1016/bs.mie.2021.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Studying the interaction of pore-forming toxins, including perfringolysin O (PFO), with lipid is crucial to understanding how they insert into membranes, assemble, and associate with membrane domains. In almost all past studies, symmetric lipid bilayers, i.e., bilayers having the same lipid composition in each monolayer (leaflet), have been used to study this process. However, practical methods to make asymmetric lipid vesicles have now been developed. These involve a cyclodextrin-catalyzed lipid exchange process in which the outer leaflet lipids are switched between two lipid vesicle populations with different lipid compositions. By use of alpha class cyclodextrins, it is practical to include a wide range of sterol concentrations in asymmetric vesicles. In this article, protocols for preparing asymmetric lipid vesicles are described, and to illustrate how they may be applied to studies of pore-forming toxin behavior, we summarize what has been learned about PFO conformation and its lipid interaction in symmetric and in asymmetric artificial lipid vesicles.
Collapse
Affiliation(s)
- Shinako Kakuda
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Bingchen Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States.
| |
Collapse
|
47
|
Semeraro EF, Marx L, Frewein MPK, Pabst G. Increasing complexity in small-angle X-ray and neutron scattering experiments: from biological membrane mimics to live cells. SOFT MATTER 2021; 17:222-232. [PMID: 32104874 DOI: 10.1039/c9sm02352f] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Small-angle X-ray and neutron scattering are well-established, non-invasive experimental techniques to interrogate global structural properties of biological membrane mimicking systems under physiologically relevant conditions. Recent developments, both in bottom-up sample preparation techniques for increasingly complex model systems, and in data analysis techniques have opened the path toward addressing long standing issues of biological membrane remodelling processes. These efforts also include emerging quantitative scattering studies on live cells, thus enabling a bridging of molecular to cellular length scales. Here, we review recent progress in devising compositional models for joint small-angle X-ray and neutron scattering studies on diverse membrane mimics - with a specific focus on membrane structural coupling to amphiphatic peptides and integral proteins - and live Escherichia coli. In particular, we outline the present state-of-the-art in small-angle scattering methods applied to complex membrane systems, highlighting how increasing system complexity must be followed by an advance in compositional modelling and data-analysis tools.
Collapse
Affiliation(s)
- Enrico F Semeraro
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria. and BioTechMed Graz, 8010 Graz, Austria
| | - Lisa Marx
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria. and BioTechMed Graz, 8010 Graz, Austria
| | - Moritz P K Frewein
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria. and BioTechMed Graz, 8010 Graz, Austria and Institut Laue-Langevin, 38000 Grenoble, France
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, 8010 Graz, Austria. and BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
48
|
Hossein A, Deserno M. Stiffening transition in asymmetric lipid bilayers: The role of highly ordered domains and the effect of temperature and size. J Chem Phys 2021; 154:014704. [PMID: 33412863 DOI: 10.1063/5.0028255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cellular membranes consist of a large variety of lipids and proteins, with a composition that generally differs between the two leaflets of the same bilayer. One consequence of this asymmetry is thought to be the emergence of differential stress, i.e., a mismatch in the lateral tension of the two leaflets. This can affect a membrane's mechanical properties; for instance, it can increase the bending rigidity once the differential stress exceeds a critical threshold. Using coarse-grained molecular dynamics simulations based on the MARTINI model, we show that this effect arises due to the formation of more highly ordered domains in the compressed leaflet. The threshold asymmetry increases with temperature, indicating that the transition to a stiffened regime might be restricted to a limited temperature range above the gel transition. We also show that stiffening occurs more readily for larger membranes with smaller typical curvatures, suggesting that the stiffening transition is easier to observe experimentally than in the small-scale systems accessible to simulation.
Collapse
Affiliation(s)
- Amirali Hossein
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
49
|
Foley S, Deserno M. Stabilizing Leaflet Asymmetry under Differential Stress in a Highly Coarse-Grained Lipid Membrane Model. J Chem Theory Comput 2020; 16:7195-7206. [PMID: 33126796 DOI: 10.1021/acs.jctc.0c00862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a version of the coarse-grained Cooke lipid model, modified to simulate asymmetric lipid membranes. It is inspired by a method employed by Wang et al. [ Commun. Comput. Phys. 2013, 13, 1093-1106] for artificially penalizing lipid flip-flop but copes more robustly with differential stress, at the cost of one additional bead per lipid and the concomitant increase in computational overhead. Bilayer asymmetry ultimately breaks down beyond a system size dependent critical differential stress, which can be predicted from a simple analytical model. We remeasure many important material parameters for the new model and find it to be consistent with typical fluid lipid membranes. Maintaining a stable stress asymmetry has many applications, and we give two examples: (i) connecting monolayer stress to lipid number asymmetry in order to directly measure the monolayer area modulus and (ii) finding its strain-dependent higher-order correction by monitoring the equilibrium bilayer area.
Collapse
Affiliation(s)
- Samuel Foley
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
50
|
Guo HY, Sun HY, Deng G, Xu J, Wu FG, Yu ZW. Fabrication of Asymmetric Phosphatidylserine-Containing Lipid Vesicles: A Study on the Effects of Size, Temperature, and Lipid Composition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12684-12691. [PMID: 33047603 DOI: 10.1021/acs.langmuir.0c02273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The asymmetric distribution of lipids in plasma membranes is closely related to the physiological functions of cells. To improve our previous approach in fabricating asymmetric vesicles, we defined a parameter, asymmetric degree, in this work and investigated the effects of vesicle size, incubation temperature, and lipid composition on the formation process of asymmetric phosphatidylserine (PS)-containing lipid vesicles. The results indicate that all of the three factors have marked but different effects on the time-dependent asymmetric degree of the vesicles as well as the flip and flop rate constants of the PS lipids. However, only vesicle size and PS content show significant influence on the maximal asymmetric degree of the vesicles, while the incubation temperature exhibits negligible effect. This work not only deepens our understanding on the packing property of PS molecules in self-assembled membranes and the formation mechanism of asymmetric vesicles but also practically provides a solution to regulate the asymmetric degree of the PS-containing vesicles using the established kinetic equation. In addition, the method would facilitate researches related to asymmetric vesicles or reconstruction of biological membranes.
Collapse
Affiliation(s)
- Hao-Yue Guo
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Hai-Yuan Sun
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Geng Deng
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jing Xu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Zhi-Wu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|