1
|
Herwig M, Begovic M, Budde H, Delalat S, Zhazykbayeva S, Sieme M, Schneider L, Jaquet K, Mügge A, Akin I, El-Battrawy I, Fielitz J, Hamdani N. Protein Kinase D Plays a Crucial Role in Maintaining Cardiac Homeostasis by Regulating Post-Translational Modifications of Myofilament Proteins. Int J Mol Sci 2024; 25:2790. [PMID: 38474037 DOI: 10.3390/ijms25052790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Protein kinase D (PKD) enzymes play important roles in regulating myocardial contraction, hypertrophy, and remodeling. One of the proteins phosphorylated by PKD is titin, which is involved in myofilament function. In this study, we aimed to investigate the role of PKD in cardiomyocyte function under conditions of oxidative stress. To do this, we used mice with a cardiomyocyte-specific knock-out of Prkd1, which encodes PKD1 (Prkd1loxP/loxP; αMHC-Cre; PKD1 cKO), as well as wild type littermate controls (Prkd1loxP/loxP; WT). We isolated permeabilized cardiomyocytes from PKD1 cKO mice and found that they exhibited increased passive stiffness (Fpassive), which was associated with increased oxidation of titin, but showed no change in titin ubiquitination. Additionally, the PKD1 cKO mice showed increased myofilament calcium (Ca2+) sensitivity (pCa50) and reduced maximum Ca2+-activated tension. These changes were accompanied by increased oxidation and reduced phosphorylation of the small myofilament protein cardiac myosin binding protein C (cMyBPC), as well as altered phosphorylation levels at different phosphosites in troponin I (TnI). The increased Fpassive and pCa50, and the reduced maximum Ca2+-activated tension were reversed when we treated the isolated permeabilized cardiomyocytes with reduced glutathione (GSH). This indicated that myofilament protein oxidation contributes to cardiomyocyte dysfunction. Furthermore, the PKD1 cKO mice exhibited increased oxidative stress and increased expression of pro-inflammatory markers interleukin (IL)-6, IL-18, and tumor necrosis factor alpha (TNF-α). Both oxidative stress and inflammation contributed to an increase in microtubule-associated protein 1 light chain 3 (LC3)-II levels and heat shock response by inhibiting the mammalian target of rapamycin (mTOR) in the PKD1 cKO mouse myocytes. These findings revealed a previously unknown role for PKD1 in regulating diastolic passive properties, myofilament Ca2+ sensitivity, and maximum Ca2+-activated tension under conditions of oxidative stress. Finally, we emphasized the importance of PKD1 in maintaining the balance of oxidative stress and inflammation in the context of autophagy, as well as cardiomyocyte function.
Collapse
Affiliation(s)
- Melissa Herwig
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Merima Begovic
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Heidi Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Simin Delalat
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Saltanat Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Marcel Sieme
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Luca Schneider
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Kornelia Jaquet
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
| | - Andreas Mügge
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, UK RUB, Ruhr University Bochum, 44789 Bochum, Germany
| | - Ibrahim Akin
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Ibrahim El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, UK RUB, Ruhr University Bochum, 44789 Bochum, Germany
| | - Jens Fielitz
- Department of Molecular Cardiology, DZHK (German Center for Cardiovascular Research), Partner Site, 17475 Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, 44801 Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Physiology, University Maastricht, 6211 LK Maastricht, The Netherlands
- HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary
| |
Collapse
|
2
|
Burciaga SD, Saavedra F, Fischer L, Johnstone K, Jensen ED. Protein kinase D3 conditional knockout impairs osteoclast formation and increases trabecular bone volume in male mice. Bone 2023; 172:116759. [PMID: 37044359 DOI: 10.1016/j.bone.2023.116759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Studies using kinase inhibitors have shown that the protein kinase D (PRKD) family of serine/threonine kinases are required for formation and function of osteoclasts in culture. However, the involvement of individual protein kinase D genes and their in vivo significance to skeletal dynamics remains unclear. In the current study we present data indicating that protein kinase D3 is the primary form of PRKD expressed in osteoclasts. We hypothesized that loss of PRKD3 would impair osteoclast formation, thereby decreasing bone resorption and increasing bone mass. Conditional knockout (cKO) of Prkd3 using a murine Cre/Lox system driven by cFms-Cre revealed that its loss in osteoclast-lineage cells reduced osteoclast differentiation and resorptive function in culture. Examination of the Prkd3 cKO mice showed that bone parameters were unaffected in the femur at 4 weeks of age, but consistent with our hypothesis, Prkd3 conditional knockout resulted in 18 % increased trabecular bone mass in male mice at 12 weeks and a similar increase at 6 months. These effects were not observed in female mice. As a further test of our hypothesis, we asked if Prkd3 cKO could protect against bone loss in a ligature-induced periodontal disease model but did not see any reduction in bone destruction in this system. Together, our data indicate that PRKD3 promotes osteoclastogenesis both in vitro and in vivo.
Collapse
Affiliation(s)
- Samuel D Burciaga
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Flavia Saavedra
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Lori Fischer
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Karen Johnstone
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | - Eric D Jensen
- Department of Diagnostic & Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| |
Collapse
|
3
|
Reinhardt R, Hirzel K, Link G, Eisler SA, Hägele T, Parson MAH, Burke JE, Hausser A, Leonard TA. PKD autoinhibition in trans regulates activation loop autophosphorylation in cis. Proc Natl Acad Sci U S A 2023; 120:e2212909120. [PMID: 36745811 PMCID: PMC9962925 DOI: 10.1073/pnas.2212909120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
Phosphorylation is a ubiquitous mechanism by which signals are transduced in cells. Protein kinases, enzymes that catalyze the phosphotransfer reaction are, themselves, often regulated by phosphorylation. Paradoxically, however, a substantial fraction of more than 500 human protein kinases are capable of catalyzing their own activation loop phosphorylation. Commonly, these kinases perform this autophosphorylation reaction in trans, whereby transient dimerization leads to the mutual phosphorylation of the activation loop of the opposing protomer. In this study, we demonstrate that protein kinase D (PKD) is regulated by the inverse mechanism of dimerization-mediated trans-autoinhibition, followed by activation loop autophosphorylation in cis. We show that PKD forms a stable face-to-face homodimer that is incapable of either autophosphorylation or substrate phosphorylation. Dissociation of this trans-autoinhibited dimer results in activation loop autophosphorylation, which occurs exclusively in cis. Phosphorylation serves to increase PKD activity and prevent trans-autoinhibition, thereby switching PKD on. Our findings not only reveal the mechanism of PKD regulation but also have profound implications for the regulation of many other eukaryotic kinases.
Collapse
Affiliation(s)
- Ronja Reinhardt
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter, Vienna1030, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Vienna1090, Austria
| | - Kai Hirzel
- Institute of Cell Biology and Immunology, University of Stuttgart70569, Stuttgart, Germany
| | - Gisela Link
- Institute of Cell Biology and Immunology, University of Stuttgart70569, Stuttgart, Germany
| | - Stephan A. Eisler
- Stuttgart Research Center Systems Biology, University of Stuttgart70569, Stuttgart, Germany
| | - Tanja Hägele
- Institute of Cell Biology and Immunology, University of Stuttgart70569, Stuttgart, Germany
| | - Matthew A. H. Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, CanadaV8W 2Y2
| | - John E. Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, CanadaV8W 2Y2
- Department of Biochemistry and Molecular Biology, The University of British Columbia, VancouverBCV6T 1Z3, Canada
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart70569, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart70569, Stuttgart, Germany
| | - Thomas A. Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter, Vienna1030, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Vienna1090, Austria
| |
Collapse
|
4
|
Wang F, Yin XS, Lu J, Cen C, Wang Y. Phosphorylation-dependent positive feedback on the oxytocin receptor through the kinase PKD1 contributes to long-term social memory. Sci Signal 2022; 15:eabd0033. [PMID: 35104164 DOI: 10.1126/scisignal.abd0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Social memory enables one to recognize and distinguish specific individuals. It is fundamental to social behaviors that can be mediated by the oxytocin receptor (OXTR), such as forming relationships. We investigated the molecular regulation and function of OXTR in animal behavior involving social memory. We found that Ser261 in OXTR was phosphorylated by protein kinase D1 (PKD1). Neuronal Ca2+ signaling and behavior analyses revealed that rats expressing a mutated form of OXTR that cannot be phosphorylated at this residue (OXTR S261A) in the medial amygdala (MeA) exhibited impaired long-term social memory (LTSM). Blocking the phosphorylation of wild-type OXTR in the MeA using an interfering peptide in rats or through conditional knockout of Pkd1 in mice reduced social memory retention, whereas expression of a phosphomimetic mutant of OXTR rescued it. In HEK293A cells, the PKD1-mediated phosphorylation of OXTR promoted its binding to Gq protein and, in turn, OXTR-mediated phosphorylation of PKD1, indicating a positive feedback loop. In addition, OXTR with a single-nucleotide polymorphism found in humans (rs200362197), which has a mutation in the conserved recognition region in the PKD1 phosphorylation site, showed impaired activation and signaling in vitro and in HEK293A cells similar to that of the S216A mutant. Our findings describe a phosphoregulatory loop for OXTR and its critical role in social behavior that might be further explored in associated disorders.
Collapse
Affiliation(s)
- Fei Wang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China.,Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiang-Sha Yin
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Jie Lu
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Cheng Cen
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Yun Wang
- Department of Neurobiology, School of Basic Medical Sciences and Neuroscience Research Institute; Key Lab for Neuroscience, Ministry of Education of China and National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Steinberg SF. Decoding the Cardiac Actions of Protein Kinase D Isoforms. Mol Pharmacol 2021; 100:558-567. [PMID: 34531296 DOI: 10.1124/molpharm.121.000341] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022] Open
Abstract
Protein kinase D (PKD) consists of a family of three structurally related enzymes that play key roles in a wide range of biological functions that contribute to the evolution of cardiac hypertrophy and heart failure. PKD1 (the founding member of this enzyme family) has been implicated in the phosphorylation of substrates that regulate cardiac hypertrophy, contraction, and susceptibility to ischemia/reperfusion injury, and de novo PRKD1 (protein kinase D1 gene) mutations have been identified in patients with syndromic congenital heart disease. However, cardiomyocytes coexpress all three PKDs. Although stimulus-specific activation patterns for PKD1, PKD2, and PKD3 have been identified in cardiomyocytes, progress toward identifying PKD isoform-specific functions in the heart have been hampered by significant gaps in our understanding of the molecular mechanisms that regulate PKD activity. This review incorporates recent conceptual breakthroughs in our understanding of various alternative mechanisms for PKD activation, with an emphasis on recent evidence that PKDs activate certain effector responses as dimers, to consider the role of PKD isoforms in signaling pathways that drive cardiac hypertrophy and ischemia/reperfusion injury. The focus is on whether the recently identified activation mechanisms that enhance the signaling repertoire of PKD family enzymes provide novel therapeutic strategies to target PKD enzymes and prevent or slow the evolution of cardiac injury and pathological cardiac remodeling. SIGNIFICANCE STATEMENT: PKD isoforms regulate a large number of fundamental biological processes, but the understanding of the biological actions of individual PKDs (based upon studies using adenoviral overexpression or gene-silencing methods) remains incomplete. This review focuses on dimerization, a recently identified mechanism for PKD activation, and the notion that this mechanism provides a strategy to develop novel PKD-targeted pharmaceuticals that restrict proliferation, invasion, or angiogenesis in cancer and prevent or slow the evolution of cardiac injury and pathological cardiac remodeling.
Collapse
|
6
|
Gilles P, Voets L, Van Lint J, De Borggraeve WM. Developments in the Discovery and Design of Protein Kinase D Inhibitors. ChemMedChem 2021; 16:2158-2171. [PMID: 33829655 DOI: 10.1002/cmdc.202100110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Indexed: 01/16/2023]
Abstract
Protein kinase D (PKD) is a serine/threonine kinase family belonging to the Ca2+/calmodulin-dependent protein kinase group. Since its discovery two decades ago, many efforts have been put in elucidating PKD's structure, cellular role and functioning. The PKD family consists of three highly homologous isoforms: PKD1, PKD2 and PKD3. Accumulating cell-signaling research has evidenced that dysregulated PKD plays a crucial role in the pathogenesis of cardiac hypertrophy and several cancer types. These findings led to a broad interest in the design of small-molecule protein kinase D inhibitors. In this review, we present an extensive overview on the past and recent advances in the discovery and development of PKD inhibitors. The focus extends from broad-spectrum kinase inhibitors used in PKD signaling experiments to intentionally developed, bioactive PKD inhibitors. Finally, attention is paid to PKD inhibitors that have been identified as an off-target through large kinome screening panels.
Collapse
Affiliation(s)
- Philippe Gilles
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F - Box 2404, 3001, Leuven, Belgium
| | - Lauren Voets
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F - Box 2404, 3001, Leuven, Belgium
| | - Johan Van Lint
- Department of Cellular and Molecular Medicine & Leuven Cancer Institute, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven O&N I, Herestraat 49 - Box 901, 3000, Leuven, Belgium
| | - Wim M De Borggraeve
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F - Box 2404, 3001, Leuven, Belgium
| |
Collapse
|
7
|
Alter S, Zimmer AD, Park M, Gong J, Caliebe A, Fölster-Holst R, Torrelo A, Colmenero I, Steinberg SF, Fischer J. Telangiectasia-ectodermal dysplasia-brachydactyly-cardiac anomaly syndrome is caused by de novo mutations in protein kinase D1. J Med Genet 2020; 58:415-421. [PMID: 32817298 DOI: 10.1136/jmedgenet-2019-106564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/18/2020] [Accepted: 05/30/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND We describe two unrelated patients who display similar clinical features including telangiectasia, ectodermal dysplasia, brachydactyly and congenital heart disease. METHODS We performed trio whole exome sequencing and functional analysis using in vitro kinase assays with recombinant proteins. RESULTS We identified two different de novo mutations in protein kinase D1 (PRKD1, NM_002742.2): c.1774G>C, p.(Gly592Arg) and c.1808G>A, p.(Arg603His), one in each patient. PRKD1 (PKD1, HGNC:9407) encodes a kinase that is a member of the protein kinase D (PKD) family of serine/threonine protein kinases involved in diverse cellular processes such as cell differentiation and proliferation and cell migration as well as vesicle transport and angiogenesis. Functional analysis using in vitro kinase assays with recombinant proteins showed that the mutation c.1808G>A, p.(Arg603His) represents a gain-of-function mutation encoding an enzyme with a constitutive, lipid-independent catalytic activity. The mutation c.1774G>C, p.(Gly592Arg) in contrast shows a defect in substrate phosphorylation representing a loss-of-function mutation. CONCLUSION The present cases represent a syndrome, which associates symptoms from several different organ systems: skin, teeth, bones and heart, caused by heterozygous de novo mutations in PRKD1 and expands the clinical spectrum of PRKD1 mutations, which have hitherto been linked to syndromic congenital heart disease and limb abnormalities.
Collapse
Affiliation(s)
- Svenja Alter
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas David Zimmer
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Misun Park
- Department of Pharmacology, Columbia University, New York, New York, USA
| | - Jianli Gong
- Department of Pharmacology, Columbia University, New York, New York, USA
| | - Almuth Caliebe
- Institute of Human Genetics, Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| | - Regina Fölster-Holst
- Department of Dermatology, Christian-Albrechts University Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| | - Antonio Torrelo
- Department of Dermatology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Isabel Colmenero
- Department of Pathology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Susan F Steinberg
- Department of Pharmacology, Columbia University, New York, New York, USA
| | - Judith Fischer
- Institute of Human Genetics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Khan S, Ferdaoussi M, Bautista A, Bergeron V, Smith N, Poitout V, MacDonald PE. A role for PKD1 in insulin secretion downstream of P2Y 1 receptor activation in mouse and human islets. Physiol Rep 2019; 7:e14250. [PMID: 31591827 PMCID: PMC6779929 DOI: 10.14814/phy2.14250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/30/2019] [Accepted: 09/08/2019] [Indexed: 01/03/2023] Open
Abstract
Along with insulin, β-cells co-secrete the neurotransmitter ATP which acts as a positive autocrine signal via P2Y1 receptors to activate phospholipase C and increase the production of diacylglycerol (DAG). However, the downstream signaling that couples P2Y1 activation to insulin secretion remains to be fully elucidated. Since DAG activates protein kinase D1 (PKD1) to potentiate glucose-stimulated insulin release, we hypothesized that autocrine ATP signaling activates downstream PKD1 to regulate insulin secretion. Indeed, we find that the P2Y1 receptor agonists, MRS2365 and ATP induce, PKD1 phosphorylation at serine 916 in mouse islets. Similarly, direct depolarization of islets by KCl caused PKD1 activation, which is reduced upon P2Y1 antagonism. Potentiation of insulin secretion by P2Y1 activation was lost from PKD1-/- mouse islets, and knockdown of PKD1 reduced the ability of P2Y1 activation to facilitate exocytosis in single mouse β-cells. Finally, qPCR analysis confirmed PKD1 transcript (PRKD1) expression in human islets, and insulin secretion assays showed that inhibition of either P2Y1 or PKD1 signaling impaired glucose-stimulated insulin secretion. Human islets showed donor-to-donor variation in their responses to both P2Y1 and PKD1 inhibition, however, and we find that the P2Y1 -PKD1 pathway contributes a substantially greater proportion of insulin secretion from islets of overweight and obese donors. Thus, PKD1 promotes increased insulin secretion, likely mediating an autocrine ATP effect via P2Y1 receptor activation which may be more important in islets of donors who are overweight or obese.
Collapse
Affiliation(s)
- Shara Khan
- Department of Pharmacology and Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Mourad Ferdaoussi
- Department of Pharmacology and Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Austin Bautista
- Department of Pharmacology and Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Valérie Bergeron
- Département de MédecineUniversité de MontréalMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM)MontréalQuebecCanada
| | - Nancy Smith
- Department of Pharmacology and Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Vincent Poitout
- Département de MédecineUniversité de MontréalMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM)MontréalQuebecCanada
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
9
|
Elsner DJ, Siess KM, Gossenreiter T, Hartl M, Leonard TA. A ubiquitin-like domain controls protein kinase D dimerization and activation by trans-autophosphorylation. J Biol Chem 2019; 294:14422-14441. [PMID: 31406020 PMCID: PMC6768651 DOI: 10.1074/jbc.ra119.008713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/30/2019] [Indexed: 11/25/2022] Open
Abstract
Protein kinase D (PKD) is an essential Ser/Thr kinase in animals and controls a variety of diverse cellular functions, including vesicle trafficking and mitogenesis. PKD is activated by recruitment to membranes containing the lipid second messenger diacylglycerol (DAG) and subsequent phosphorylation of its activation loop. Here, we report the crystal structure of the PKD N terminus at 2.2 Å resolution containing a previously unannotated ubiquitin-like domain (ULD), which serves as a dimerization domain. A single point mutation in the dimerization interface of the ULD not only abrogated dimerization in cells but also prevented PKD activation loop phosphorylation upon DAG production. We further show that the kinase domain of PKD dimerizes in a concentration-dependent manner and autophosphorylates on a single residue in its activation loop. We also provide evidence that PKD is expressed at concentrations 2 orders of magnitude below the ULD dissociation constant in mammalian cells. We therefore propose a new model for PKD activation in which the production of DAG leads to the local accumulation of PKD at the membrane, which drives ULD-mediated dimerization and subsequent trans-autophosphorylation of the kinase domain.
Collapse
Affiliation(s)
- Daniel J Elsner
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030 Vienna, Austria.,Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina M Siess
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030 Vienna, Austria.,Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Gossenreiter
- Mass Spectrometry Facility, Max Perutz Labs, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Markus Hartl
- Mass Spectrometry Facility, Max Perutz Labs, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.,Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030 Vienna, Austria .,Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
10
|
Goto A, Charman M, Ridgway ND. Protein kinase D1 and oxysterol-binding protein form a regulatory complex independent of phosphorylation. Traffic 2018; 19:854-866. [DOI: 10.1111/tra.12609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Asako Goto
- Department of Pediatrics; Atlantic Research Centre, Dalhousie University; Halifax Nova Scotia Canada
- Department of Molecular Biology and Molecular Biology; Atlantic Research Centre, Dalhousie University; Halifax Nova Scotia Canada
| | - Mark Charman
- Department of Pediatrics; Atlantic Research Centre, Dalhousie University; Halifax Nova Scotia Canada
- Department of Molecular Biology and Molecular Biology; Atlantic Research Centre, Dalhousie University; Halifax Nova Scotia Canada
| | - Neale D. Ridgway
- Department of Pediatrics; Atlantic Research Centre, Dalhousie University; Halifax Nova Scotia Canada
- Department of Molecular Biology and Molecular Biology; Atlantic Research Centre, Dalhousie University; Halifax Nova Scotia Canada
| |
Collapse
|
11
|
Cobbaut M, Derua R, Parker PJ, Waelkens E, Janssens V, Van Lint J. Protein kinase D displays intrinsic Tyr autophosphorylation activity: insights into mechanism and regulation. FEBS Lett 2018; 592:2432-2443. [PMID: 29933512 PMCID: PMC6099456 DOI: 10.1002/1873-3468.13171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/26/2018] [Accepted: 06/12/2018] [Indexed: 01/31/2023]
Abstract
The protein kinase D (PKD) family is regulated through multi-site phosphorylation, including autophosphorylation. For example, PKD displays in vivo autophosphorylation on Ser-742 (and Ser-738 in vitro) in the activation loop and Ser-910 in the C-tail (hPKD1 numbering). In this paper, we describe the surprising observation that PKD also displays in vitro autocatalytic activity towards a Tyr residue in the P + 1 loop of the activation segment. We define the molecular determinants for this unusual activity and identify a Cys residue (C705 in PKD1) in the catalytic loop as of utmost importance. In cells, PKD Tyr autophosphorylation is suppressed through the association of an inhibitory factor. Our findings provide important novel insights into PKD (auto)regulation.
Collapse
Affiliation(s)
- Mathias Cobbaut
- Laboratory of Protein Phosphorylation and ProteomicsDepartment of Cellular and Molecular MedicineFaculty of MedicineKU LeuvenBelgium
- Leuven Cancer Institute (LKI)KU LeuvenBelgium
- Present address:
Protein Phosphorylation LabThe Francis Crick InstituteLondonUK
| | - Rita Derua
- Laboratory of Protein Phosphorylation and ProteomicsDepartment of Cellular and Molecular MedicineFaculty of MedicineKU LeuvenBelgium
| | - Peter J. Parker
- Protein Phosphorylation LabThe Francis Crick InstituteLondonUK
- School of Cancer and Pharmaceutical SciencesKing's College LondonUK
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and ProteomicsDepartment of Cellular and Molecular MedicineFaculty of MedicineKU LeuvenBelgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and ProteomicsDepartment of Cellular and Molecular MedicineFaculty of MedicineKU LeuvenBelgium
- Leuven Cancer Institute (LKI)KU LeuvenBelgium
| | - Johan Van Lint
- Laboratory of Protein Phosphorylation and ProteomicsDepartment of Cellular and Molecular MedicineFaculty of MedicineKU LeuvenBelgium
- Leuven Cancer Institute (LKI)KU LeuvenBelgium
| |
Collapse
|
12
|
Function and Regulation of Protein Kinase D in Oxidative Stress: A Tale of Isoforms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2138502. [PMID: 29854077 PMCID: PMC5944262 DOI: 10.1155/2018/2138502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/19/2018] [Indexed: 12/17/2022]
Abstract
Oxidative stress is a condition that arises when cells are faced with levels of reactive oxygen species (ROS) that destabilize the homeostatic redox balance. High levels of ROS can cause damage to macromolecules including DNA, lipids, and proteins, eventually resulting in cell death. Moderate levels of ROS however serve as signaling molecules that can drive and potentiate several cellular phenotypes. Increased levels of ROS are associated with a number of diseases including neurological disorders and cancer. In cancer, increased ROS levels can contribute to cancer cell survival and proliferation via the activation of several signaling pathways. One of the downstream effectors of increased ROS is the protein kinase D (PKD) family of kinases. In this review, we will discuss the regulation and function of this family of ROS-activated kinases and describe their unique isoform-specific features, in terms of both kinase regulation and signaling output.
Collapse
|
13
|
Roy A, Ye J, Deng F, Wang QJ. Protein kinase D signaling in cancer: A friend or foe? Biochim Biophys Acta Rev Cancer 2017; 1868:283-294. [PMID: 28577984 DOI: 10.1016/j.bbcan.2017.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 12/18/2022]
Abstract
Protein kinase D is a family of evolutionarily conserved serine/threonine kinases that belongs to the Ca++/Calmodulin-dependent kinase superfamily. Signal transduction pathways mediated by PKD can be triggered by a variety of stimuli including G protein-coupled receptor agonists, growth factors, hormones, and cellular stresses. The regulatory mechanisms and physiological roles of PKD have been well documented including cell proliferation, survival, migration, angiogenesis, regulation of gene expression, and protein/membrane trafficking. However, its precise roles in disease progression, especially in cancer, remain elusive. A plethora of studies documented the cell- and tissue-specific expressions and functions of PKD in various cancer-associated biological processes, while the causes of the differential effects of PKD have not been thoroughly investigated. In this review, we have discussed the structural-functional properties, activation mechanisms, signaling pathways and physiological functions of PKD in the context of human cancer. Additionally, we have provided a comprehensive review of the reported tumor promoting or tumor suppressive functions of PKD in several major cancer types and discussed the discrepancies that have been raised on PKD as a major regulator of malignant transformation.
Collapse
Affiliation(s)
- Adhiraj Roy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Jing Ye
- Department of Anesthesiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
14
|
Verschueren K, Cobbaut M, Demaerel J, Saadah L, Voet ARD, Van Lint J, De Borggraeve WM. Discovery of a potent protein kinase D inhibitor: insights in the binding mode of pyrazolo[3,4- d]pyrimidine analogues. MEDCHEMCOMM 2017; 8:640-646. [PMID: 28890776 PMCID: PMC5567267 DOI: 10.1039/c6md00675b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 01/31/2017] [Indexed: 12/17/2022]
Abstract
In this study, we set out to rationally optimize PKD inhibitors based on the pyrazolo[3,4-d]pyrimidine scaffold. The lead compound for this study was 1-NM-PP1, which was previously found by us and others to inhibit PKD. In our screening we identified one compound (3-IN-PP1) displaying a 10-fold increase in potency over 1-NM-PP1, opening new possibilities for specific protein kinase inhibitors for kinases that show sensitivity towards pyrazolo[3,4-d]pyrimidine derived compounds. Interestingly the observed SAR was not in complete agreement with the commonly observed binding mode where the pyrazolo[3,4-d]pyrimidine compounds are bound in a similar fashion as PKD's natural ligand ATP. Therefore we suggest an alternate binding mode where the compounds are flipped 180 degrees. This possible alternate binding mode for pyrazolo[3,4-d]pyrimidine based compounds could pave the way for a new class of specific protein kinase inhibitors for kinases sensitive towards pyrazolo[3,4-d]pyrmidines.
Collapse
Affiliation(s)
- Klaas Verschueren
- Department of Chemistry , Molecular Design and Synthesis , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium .
| | - Mathias Cobbaut
- Department of Cellular and Molecular Medicine , Laboratory of Protein Phosphorylation and Proteomics , KU Leuven , Herestraat 49 box 901 , 3000 Leuven , Belgium
| | - Joachim Demaerel
- Department of Chemistry , Molecular Design and Synthesis , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium .
| | - Lina Saadah
- Department of Cellular and Molecular Medicine , Laboratory of Protein Phosphorylation and Proteomics , KU Leuven , Herestraat 49 box 901 , 3000 Leuven , Belgium
| | - Arnout R D Voet
- Department of Chemistry , Laboratory of Biomolecular Modeling and Design , KU Leuven , Celestijnenlaan 200G , 3001 Leuven , Belgium
| | - Johan Van Lint
- Department of Cellular and Molecular Medicine , Laboratory of Protein Phosphorylation and Proteomics , KU Leuven , Herestraat 49 box 901 , 3000 Leuven , Belgium
| | - Wim M De Borggraeve
- Department of Chemistry , Molecular Design and Synthesis , KU Leuven , Celestijnenlaan 200F , 3001 Leuven , Belgium .
| |
Collapse
|
15
|
Wood BM, Bossuyt J. Emergency Spatiotemporal Shift: The Response of Protein Kinase D to Stress Signals in the Cardiovascular System. Front Pharmacol 2017; 8:9. [PMID: 28174535 PMCID: PMC5258689 DOI: 10.3389/fphar.2017.00009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022] Open
Abstract
Protein Kinase D isoforms (PKD 1-3) are key mediators of neurohormonal, oxidative, and metabolic stress signals. PKDs impact a wide variety of signaling pathways and cellular functions including actin dynamics, vesicle trafficking, cell motility, survival, contractility, energy substrate utilization, and gene transcription. PKD activity is also increasingly linked to cancer, immune regulation, pain modulation, memory, angiogenesis, and cardiovascular disease. This increasing complexity and diversity of PKD function, highlights the importance of tight spatiotemporal control of the kinase via protein–protein interactions, post-translational modifications or targeting via scaffolding proteins. In this review, we focus on the spatiotemporal regulation and effects of PKD signaling in response to neurohormonal, oxidant and metabolic signals that have implications for myocardial disease. Precise targeting of these mechanisms will be crucial in the design of PKD-based therapeutic strategies.
Collapse
Affiliation(s)
- Brent M Wood
- Department of Pharmacology, University of California, Davis, Davis CA, USA
| | - Julie Bossuyt
- Department of Pharmacology, University of California, Davis, Davis CA, USA
| |
Collapse
|
16
|
Zhang T, Braun U, Leitges M. PKD3 deficiency causes alterations in microtubule dynamics during the cell cycle. Cell Cycle 2016; 15:1844-54. [PMID: 27245420 DOI: 10.1080/15384101.2016.1188237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Protein kinase D 3 (PKD3) is a member of the PKD family that has been linked to many intracellular signaling pathways. However, defined statements regarding isoform specificity and in vivo functions are rare. Here, we use mouse embryonic fibroblast cells that are genetically depleted of PKD3 to identify isoform-specific functions. We show that PKD3 is involved in the regulation of the cell cycle by modulating microtubule nucleation and dynamics. In addition we also show that PKD1 partially can compensate for PKD3 function. Taken together our data provide new insights of a specific PKD3 signaling pathway by identifying a new function, which has not been identified before.
Collapse
Affiliation(s)
- Tianzhou Zhang
- a Biotechnology Center of Oslo , University of Oslo , Oslo , Norway
| | - Ursula Braun
- a Biotechnology Center of Oslo , University of Oslo , Oslo , Norway
| | - Michael Leitges
- a Biotechnology Center of Oslo , University of Oslo , Oslo , Norway
| |
Collapse
|
17
|
Tsutsuki H, Yahiro K, Ogura K, Ichimura K, Iyoda S, Ohnishi M, Nagasawa S, Seto K, Moss J, Noda M. Subtilase cytotoxin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli induces stress granule formation. Cell Microbiol 2016; 18:1024-40. [PMID: 26749168 PMCID: PMC10068837 DOI: 10.1111/cmi.12565] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 12/24/2015] [Accepted: 01/06/2016] [Indexed: 12/13/2022]
Abstract
Subtilase cytotoxin (SubAB) is mainly produced by locus of enterocyte effacement (LEE)-negative strains of Shiga-toxigenic Escherichia coli (STEC). SubAB cleaves an endoplasmic reticulum (ER) chaperone, BiP/Grp78, leading to induction of ER stress. This stress causes activation of ER stress sensor proteins and induction of caspase-dependent apoptosis. We found that SubAB induces stress granules (SG) in various cells. Aim of this study was to explore the mechanism by which SubAB induced SG formation. Here, we show that SubAB-induced SG formation is regulated by activation of double-stranded RNA-activated protein kinase (PKR)-like endoplasmic reticulum kinase (PERK). The culture supernatant of STEC O113:H21 dramatically induced SG in Caco2 cells, although subAB knockout STEC O113:H21 culture supernatant did not. Treatment with phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, and lysosomal inhibitors, NH4 Cl and chloroquine, suppressed SubAB-induced SG formation, which was enhanced by PKC and PKD inhibitors. SubAB attenuated the level of PKD1 phosphorylation. Depletion of PKCδ and PKD1 by siRNA promoted SG formation in response to SubAB. Furthermore, death-associated protein 1 (DAP1) knockdown increased basal phospho-PKD1(S916) and suppressed SG formation by SubAB. However, SG formation by an ER stress inducer, Thapsigargin, was not inhibited in PMA-treated cells. Our findings show that SubAB-induced SG formation is regulated by the PERK/DAP1 signalling pathway, which may be modulated by PKCδ/PKD1, and different from the signal transduction pathway that results in Thapsigargin-induced SG formation.
Collapse
Affiliation(s)
- Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kohei Ogura
- Pathogenic Microbe Laboratory, Research Institute, National Centre for Global Health and Medicine, Tokyo, Japan
| | - Kimitoshi Ichimura
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sayaka Nagasawa
- Department of Legal Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuko Seto
- Division of Bacteriology, Osaka Prefectural Institute of Public Health, Osaka, Japan
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Masatoshi Noda
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
18
|
Varga A, Gyulavári P, Greff Z, Futosi K, Németh T, Simon-Szabó L, Kerekes K, Szántai-Kis C, Brauswetter D, Kokas M, Borbély G, Erdei A, Mócsai A, Kéri G, Vántus T. Targeting vascular endothelial growth factor receptor 2 and protein kinase D1 related pathways by a multiple kinase inhibitor in angiogenesis and inflammation related processes in vitro. PLoS One 2015; 10:e0124234. [PMID: 25874616 PMCID: PMC4396990 DOI: 10.1371/journal.pone.0124234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/27/2015] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence suggests that the vascular endothelial growth factor receptor 2 (VEGFR2) and protein kinase D1 (PKD1) signaling axis plays a critical role in normal and pathological angiogenesis and inflammation related processes. Despite all efforts, the currently available therapeutic interventions are limited. Prior studies have also proved that a multiple target inhibitor can be more efficient compared to a single target one. Therefore, development of novel inflammatory pathway-specific inhibitors would be of great value. To test this possibility, we screened our molecular library using recombinant kinase assays and identified the previously described compound VCC251801 with strong inhibitory effect on both VEGFR2 and PKD1. We further analyzed the effect of VCC251801 in the endothelium-derived EA.hy926 cell line and in different inflammatory cell types. In EA.hy926 cells, VCC251801 potently inhibited the intracellular activation and signaling of VEGFR2 and PKD1 which inhibition eventually resulted in diminished cell proliferation. In this model, our compound was also an efficient inhibitor of in vitro angiogenesis by interfering with endothelial cell migration and tube formation processes. Our results from functional assays in inflammatory cellular models such as neutrophils and mast cells suggested an anti-inflammatory effect of VCC251801. The neutrophil study showed that VCC251801 specifically blocked the immobilized immune-complex and the adhesion dependent TNF-α -fibrinogen stimulated neutrophil activation. Furthermore, similar results were found in mast cell degranulation assay where VCC251801 caused significant reduction of mast cell response. In summary, we described a novel function of a multiple kinase inhibitor which strongly inhibits the VEGFR2-PKD1 signaling and might be a novel inhibitor of pathological inflammatory pathways.
Collapse
Affiliation(s)
- Attila Varga
- Pathobiochemistry Research Group, Hungarian Academy of Sciences—Semmelweis University, Budapest, Hungary
| | - Pál Gyulavári
- Pathobiochemistry Research Group, Hungarian Academy of Sciences—Semmelweis University, Budapest, Hungary
| | | | - Krisztina Futosi
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Laura Simon-Szabó
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Krisztina Kerekes
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | | | - Diána Brauswetter
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Márton Kokas
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Gábor Borbély
- Pathobiochemistry Research Group, Hungarian Academy of Sciences—Semmelweis University, Budapest, Hungary
| | - Anna Erdei
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - György Kéri
- Pathobiochemistry Research Group, Hungarian Academy of Sciences—Semmelweis University, Budapest, Hungary
- Vichem Chemie Research Ltd., Budapest, Hungary
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Tibor Vántus
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
19
|
Promiscuous actions of small molecule inhibitors of the protein kinase D-class IIa HDAC axis in striated muscle. FEBS Lett 2015; 589:1080-8. [PMID: 25816750 DOI: 10.1016/j.febslet.2015.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/15/2015] [Accepted: 03/16/2015] [Indexed: 11/23/2022]
Abstract
PKD-mediated phosphorylation of class IIa HDACs frees the MEF2 transcription factor to activate genes that govern muscle differentiation and growth. Studies of the regulation and function of this signaling axis have involved MC1568 and Gö-6976, which are small molecule inhibitors of class IIa HDAC and PKD catalytic activity, respectively. We describe unanticipated effects of these compounds. MC1568 failed to inhibit class IIa HDAC catalytic activity in vitro, and exerted divergent effects on skeletal muscle differentiation compared to a bona fide inhibitor of these HDACs. In cardiomyocytes, Gö-6976 triggered calcium signaling and activated stress-inducible kinases. Based on these findings, caution is warranted when employing MC1568 and Gö-6976 as pharmacological tool compounds to assess functions of class IIa HDACs and PKD.
Collapse
|
20
|
Qiu W, Zhang F, Steinberg SF. The protein kinase D1 COOH terminus: marker or regulator of enzyme activity? Am J Physiol Cell Physiol 2014; 307:C606-10. [PMID: 25080487 DOI: 10.1152/ajpcell.00155.2014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase D1 (PKD1) is a Ser/Thr kinase implicated in a wide variety of cellular responses. PKD1 activation is generally attributed to a PKC-dependent pathway that leads to phosphorylation of the activation loop at Ser(744)/Ser(748). This modification increases catalytic activity, including that toward an autophosphorylation site (Ser(916)) in a postsynaptic density-95/disks large/zonula occludens-1 (PDZ)-binding motif at the extreme COOH terminus. However, there is growing evidence that PKD1 activation can also result from a PKC-independent autocatalytic reaction at Ser(744)/Ser(748) and that certain stimuli increase in PKD1 phosphorylation at Ser(744)/S(748) without an increase in autophosphorylation at Ser(916). This study exposes a mechanism that results in a discrepancy between PKD1 COOH-terminal autocatalytic activity and activity toward other substrates. We show that PKD1 constructs harboring COOH-terminal epitope tags display high levels of in vitro activation loop autocatalytic activity and activity toward syntide-2 (a peptide substrate), but no Ser(916) autocatalytic activity. Cell-based studies show that the COOH-terminal tag, adjacent to PKD1's PDZ1-binding motif, does not grossly influence PKD1 partitioning between soluble and particulate fractions in resting cells or PKD1 translocation to the particulate fraction following treatment with PMA. However, a COOH-terminal tag that confers a high level of activation loop autocatalytic activity decreases the PKC requirement for agonist-dependent PKD1 activation in cells. The recognition that COOH-terminal tags alter PKD1's pharmacological profile is important from a technical standpoint. The altered dynamics and activation mechanisms for COOH-terminal-tagged PKD1 enzymes also could model the signaling properties of localized pools of enzyme anchored through the COOH terminus to PDZ domain-containing scaffolding proteins.
Collapse
Affiliation(s)
- Weihua Qiu
- Department of Pharmacology, Columbia University, New York, New York
| | - Fan Zhang
- Department of Pharmacology, Columbia University, New York, New York
| | | |
Collapse
|
21
|
Asaithambi A, Ay M, Jin H, Gosh A, Anantharam V, Kanthasamy A, Kanthasamy AG. Protein kinase D1 (PKD1) phosphorylation promotes dopaminergic neuronal survival during 6-OHDA-induced oxidative stress. PLoS One 2014; 9:e96947. [PMID: 24806360 PMCID: PMC4013052 DOI: 10.1371/journal.pone.0096947] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/12/2014] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress is a major pathophysiological mediator of degenerative processes in many neurodegenerative diseases including Parkinson’s disease (PD). Aberrant cell signaling governed by protein phosphorylation has been linked to oxidative damage of dopaminergic neurons in PD. Although several studies have associated activation of certain protein kinases with apoptotic cell death in PD, very little is known about protein kinase regulation of cell survival and protection against oxidative damage and degeneration in dopaminergic neurons. Here, we characterized the PKD1-mediated protective pathway against oxidative damage in cell culture models of PD. Dopaminergic neurotoxicant 6-hydroxy dopamine (6-OHDA) was used to induce oxidative stress in the N27 dopaminergic cell model and in primary mesencephalic neurons. Our results indicated that 6-OHDA induced the PKD1 activation loop (PKD1S744/S748) phosphorylation during early stages of oxidative stress and that PKD1 activation preceded cell death. We also found that 6-OHDA rapidly increased phosphorylation of the C-terminal S916 in PKD1, which is required for PKD1 activation loop (PKD1S744/748) phosphorylation. Interestingly, negative modulation of PKD1 activation by RNAi knockdown or by the pharmacological inhibition of PKD1 by kbNB-14270 augmented 6-OHDA-induced apoptosis, while positive modulation of PKD1 by the overexpression of full length PKD1 (PKD1WT) or constitutively active PKD1 (PKD1S744E/S748E) attenuated 6-OHDA-induced apoptosis, suggesting an anti-apoptotic role for PKD1 during oxidative neuronal injury. Collectively, our results demonstrate that PKD1 signaling plays a cell survival role during early stages of oxidative stress in dopaminergic neurons and therefore, positive modulation of the PKD1-mediated signal transduction pathway can provide a novel neuroprotective strategy against PD.
Collapse
Affiliation(s)
- Arunkumar Asaithambi
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Muhammet Ay
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Huajun Jin
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Anamitra Gosh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Anumantha G. Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
22
|
Tao H, Shi KH, Yang JJ, Huang C, Zhan HY, Li J. Histone deacetylases in cardiac fibrosis: current perspectives for therapy. Cell Signal 2013; 26:521-7. [PMID: 24321371 DOI: 10.1016/j.cellsig.2013.11.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 11/30/2013] [Accepted: 11/30/2013] [Indexed: 12/17/2022]
Abstract
Cardiac fibrosis is an important pathological feature of cardiac remodeling in heart diseases. The molecular mechanisms of cardiac fibrosis are unknown. Histone deacetylases (HDACs) are enzymes that balance the acetylation activities of histone acetyltransferases on chromatin remodeling and play essential roles in regulating gene transcription. In recent years, the role of HDACs in cardiac fibrosis initiation and progression, as well as the therapeutic effects of HDAC inhibitors, has been well studied. Moreover, numerous studies indicated that HDAC activity is associated with the development and progression of cardiac fibrosis. In this review, the innovative aspects of HDACs are discussed, with respect to biogenesis, their role in cardiac fibrosis. Furthermore, the potential applications of HDAC inhibitors in the treatment of cardiac fibrosis associated with fibroblast activation and proliferation.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China; Cardiovascular Research Center, Anhui Medical University, Hefei 230601, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China; Cardiovascular Research Center, Anhui Medical University, Hefei 230601, China.
| | - Jing-Jing Yang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hong-Ying Zhan
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China; Cardiovascular Research Center, Anhui Medical University, Hefei 230601, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
23
|
Protein kinase D1 has a key role in wound healing and skin carcinogenesis. J Invest Dermatol 2013; 134:902-909. [PMID: 24213370 PMCID: PMC3961536 DOI: 10.1038/jid.2013.474] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/10/2013] [Accepted: 10/15/2013] [Indexed: 01/14/2023]
Abstract
Protein kinase D (PKD) is a family of stress-responsive serine/threonine kinases implicated in the regulation of diverse cellular functions including cell growth, differentiation, apoptosis, and cell motility. Although all three isoforms are expressed in keratinocytes, their role in skin biology and pathology is poorly understood. We recently identified a critical role for PKD1 during reversal of keratinocyte differentiation in culture, suggesting a potential pro-proliferative role in epidermal adaptive responses. Here, we generated mice with targeted deletion of PKD1 in epidermis to evaluate the significance of PKD1 in normal and hyperplastic conditions. These mice displayed a normal skin phenotype indicating that PKD1 is dispensable for skin development and homeostasis. Upon wounding however, PKD1-deficient mice exhibited delayed wound re-epithelialization correlated with a reduced proliferation and migration of keratinocytes at the wound edge. In addition, the hyperplastic and inflammatory responses to topical phorbol ester were significantly suppressed suggesting involvement of PKD1 in tumor promotion. Consistently, when subjected to two-stage chemical skin carcinogenesis protocol, PKD1-deficient mice were resistant to papilloma formation when compared to control littermates. These results revealed a critical pro-proliferative role for PKD1 in epidermal adaptive responses, suggesting a potential therapeutic target in skin wound and cancer treatment.
Collapse
|
24
|
Lau WW, Chan AS, Poon LS, Zhu J, Wong YH. Gβγ-mediated activation of protein kinase D exhibits subunit specificity and requires Gβγ-responsive phospholipase Cβ isoforms. Cell Commun Signal 2013; 11:22. [PMID: 23561540 PMCID: PMC3637504 DOI: 10.1186/1478-811x-11-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/22/2013] [Indexed: 11/29/2022] Open
Abstract
Background Protein kinase D (PKD) constitutes a novel family of serine/threonine protein kinases implicated in fundamental biological activities including cell proliferation, survival, migration, and immune responses. Activation of PKD in these cellular activities has been linked to many extracellular signals acting through antigen receptor engagement, receptor tyrosine kinases, as well as G protein-coupled receptors. In the latter case, it is generally believed that the Gα subunits of the Gq family are highly effective in mediating PKD activation, whereas little is known with regard to the ability of Gβγ dimers and other Gα subunits to stimulate PKD. It has been suggested that the interaction between Gβγ and the PH domain of PKD, or the Gβγ-induced PLCβ/PKC activity is critical for the induction of PKD activation. However, the relative contribution of these two apparently independent events to Gβγ-mediated PKD activation has yet to be addressed. Results In this report, we demonstrate that among various members in the four G protein families, only the Gα subunits of the Gq family effectively activate all the three PKD isoforms (PKD1/2/3), while Gα subunits of other G protein families (Gs, Gi, and G12) are ineffective. Though the Gα subunits of Gi family are unable to stimulate PKD, receptors linked to Gi proteins are capable of triggering PKD activation in cell lines endogenously expressing (HeLa cells and Jurkat T-cells) or exogenously transfected with (HEK293 cells) Gβγ-sensitive PLCβ2/3 isoforms. This indicates that the Gi-mediated PKD activation is dependent on the released Gβγ dimers upon stimulation. Further investigation on individual Gβγ combinations (i.e. Gβ1 with Gγ1–13) revealed that, even if they can stimulate the PLCβ activity in a comparable manner, only those Gβ1γ dimers with γ2, γ3, γ4, γ5, γ7, and γ10 can serve as effective activators of PKD. We also demonstrated that Gi-mediated PKD activation is essential for the SDF-1α-induced chemotaxis on Jurkat T-cells. Conclusions Our current report illustrates that Gβγ dimers from the Gi proteins may activate PKD in a PLCβ2/3-dependent manner, and the specific identities of Gγ components within Gβγ dimers may determine this stimulatory action.
Collapse
Affiliation(s)
- Winnie Wi Lau
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | | | | | | | |
Collapse
|
25
|
Ellwanger K, Hausser A. Physiological functions of protein kinase D in vivo. IUBMB Life 2013; 65:98-107. [PMID: 23288632 DOI: 10.1002/iub.1116] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 10/25/2012] [Indexed: 11/10/2022]
Abstract
The cellular functions of the serine/threonine protein kinase D (PKD) have been extensively studied within the last decade and distinct roles such as fission of vesicles at the Golgi compartment, coordination of cell migration and invasion, and regulation of gene transcription have been correlated with this kinase family. Here, we highlight the current state of in vivo studies on PKD function with a focus on animal models and discuss the molecular basis of the observed phenotypic characteristics associated with this kinase family.
Collapse
Affiliation(s)
- Kornelia Ellwanger
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, Stuttgart, Germany
| | | |
Collapse
|
26
|
Lynch CM, Leandry LA, Matheny RW. Lysophosphatidic acid-stimulated phosphorylation of PKD2 is mediated by PI3K p110β and PKCδ in myoblasts. J Recept Signal Transduct Res 2012; 33:41-8. [DOI: 10.3109/10799893.2012.752005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Ferdaoussi M, Bergeron V, Zarrouki B, Kolic J, Cantley J, Fielitz J, Olson EN, Prentki M, Biden T, MacDonald PE, Poitout V. G protein-coupled receptor (GPR)40-dependent potentiation of insulin secretion in mouse islets is mediated by protein kinase D1. Diabetologia 2012; 55:2682-2692. [PMID: 22820510 PMCID: PMC3543464 DOI: 10.1007/s00125-012-2650-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
Abstract
AIMS/HYPOTHESIS Activation of the G protein-coupled receptor (GPR)40 by long-chain fatty acids potentiates glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells, and GPR40 agonists are in clinical development for type 2 diabetes therapy. GPR40 couples to the G protein subunit Gα(q/11) but the signalling cascade activated downstream is unknown. This study aimed to determine the mechanisms of GPR40-dependent potentiation of GSIS by fatty acids. METHODS Insulin secretion in response to glucose, oleate or diacylglycerol (DAG) was assessed in dynamic perifusions and static incubations in islets from wild-type (WT) and Gpr40 (-/-) mice. Depolymerisation of filamentous actin (F-actin) was visualised by phalloidin staining and epifluorescence. Pharmacological and molecular approaches were used to ascertain the roles of protein kinase D (PKD) and protein kinase C delta in GPR40-mediated potentiation of GSIS. RESULTS Oleate potentiates the second phase of GSIS, and this effect is largely dependent upon GPR40. Accordingly, oleate induces rapid F-actin remodelling in WT but not in Gpr40 (-/-) islets. Exogenous DAG potentiates GSIS in both WT and Gpr40 (-/-) islets. Oleate induces PKD phosphorylation at residues Ser-744/748 and Ser-916 in WT but not Gpr40 (-/-) islets. Importantly, oleate-induced F-actin depolymerisation and potentiation of GSIS are lost upon pharmacological inhibition of PKD1 or deletion of Prkd1. CONCLUSIONS/INTERPRETATION We conclude that the signalling cascade downstream of GPR40 activation by fatty acids involves activation of PKD1, F-actin depolymerisation and potentiation of second-phase insulin secretion. These results provide important information on the mechanisms of action of GPR40, a novel drug target for type 2 diabetes.
Collapse
Affiliation(s)
- M Ferdaoussi
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - V Bergeron
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - B Zarrouki
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - J Kolic
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - J Cantley
- Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, NSW, Australia
| | - J Fielitz
- Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- Medical Department, Division of Cardiology, Charité University, Campus Virchow-Klinikum, Berlin, Germany
| | - E N Olson
- Departments of Molecular Biology, Internal Medicine, and Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M Prentki
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal, QC, Canada
| | - T Biden
- Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, NSW, Australia
| | - P E MacDonald
- Department of Pharmacology and the Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - V Poitout
- Montreal Diabetes Research Center, CRCHUM, Technopole Angus, 2901 Rachel Est, Montréal, QC, Canada, H1W 4A4.
- Department of Medicine, University of Montreal, Montreal, QC, Canada.
- Departments of Nutrition and Biochemistry, University of Montreal, Montreal, QC, Canada.
| |
Collapse
|
28
|
Protein kinase D-HDAC5 signaling regulates erythropoiesis and contributes to erythropoietin cross-talk with GATA1. Blood 2012; 120:4219-28. [PMID: 22983445 DOI: 10.1182/blood-2011-10-387050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In red cell development, the differentiation program directed by the transcriptional regulator GATA1 requires signaling by the cytokine erythropoietin, but the mechanistic basis for this signaling requirement has remained unknown. Here we show that erythropoietin regulates GATA1 through protein kinase D activation, promoting histone deacetylase 5 (HDAC5) dissociation from GATA1, and subsequent GATA1 acetylation. Mice deficient for HDAC5 show resistance to anemic challenge and altered marrow responsiveness to erythropoietin injections. In ex vivo studies, HDAC5(-/-) progenitors display enhanced entry into and passage through the erythroid lineage, as well as evidence of erythropoietin-independent differentiation. These results reveal a molecular pathway that contributes to cytokine regulation of hematopoietic differentiation and offer a potential mechanism for fine tuning of lineage-restricted transcription factors by lineage-specific cytokines.
Collapse
|
29
|
Rybin VO, Guo J, Harleton E, Zhang F, Steinberg SF. Regulatory domain determinants that control PKD1 activity. J Biol Chem 2012; 287:22609-15. [PMID: 22582392 DOI: 10.1074/jbc.m112.379719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The canonical pathway for protein kinase D1 (PKD1) activation by growth factor receptors involves diacylglycerol binding to the C1 domain and protein kinase C-dependent phosphorylation at the activation loop. PKD1 then autophosphorylates at Ser(916), a modification frequently used as a surrogate marker of PKD1 activity. PKD1 also is cleaved by caspase-3 at a site in the C1-PH interdomain during apoptosis; the functional consequences of this cleavage event remain uncertain. This study shows that PKD1-Δ1-321 (an N-terminal deletion mutant lacking the C1 domain and flanking sequence that models the catalytic fragment that accumulates during apoptosis) and PKD1-CD (the isolated catalytic domain) display high basal Ser(916) autocatalytic activity and robust activity toward CREBtide (a peptide substrate) but little to no activation loop autophosphorylation and no associated activity toward protein substrates, such as cAMP-response element binding protein and cardiac troponin I. In contrast, PKD1-ΔPH (a PH domain deletion mutant) is recovered as a constitutively active enzyme, with high basal autocatalytic activity and high basal activity toward peptide and protein substrates. These results indicate that individual regions in the regulatory domain act in a distinct manner to control PKD1 activity. Finally, cell-based studies show that PKD1-Δ1-321 does not substitute for WT-PKD1 as an in vivo activator of cAMP-response element binding protein and ERK phosphorylation. Proteolytic events that remove the C1 domain (but not the autoinhibitory PH domain) limit maximal PKD1 activity toward physiologically relevant protein substrates and lead to a defect in PKD1-dependent cellular responses.
Collapse
Affiliation(s)
- Vitalyi O Rybin
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
30
|
Uesugi A, Kataoka A, Tozaki-Saitoh H, Koga Y, Tsuda M, Robaye B, Boeynaems JM, Inoue K. Involvement of protein kinase D in uridine diphosphate-induced microglial macropinocytosis and phagocytosis. Glia 2012; 60:1094-105. [PMID: 22488958 DOI: 10.1002/glia.22337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 03/13/2012] [Indexed: 11/09/2022]
Abstract
The clearance of tissue debris by microglia is a crucial component of maintaining brain homeostasis. Microglia continuously survey the brain parenchyma and utilize extracellular nucleotides to trigger the initiation of their dynamic responses. Extracellular uridine diphosphate (UDP), which leaks or is released from damaged neurons, has been reported to stimulate the phagocytotic activity of microglia through P2Y(6) receptor activation. However, the intracellular mechanisms underlying microglial P2Y(6) receptor signals have not been identified. In this study, we demonstrated that UDP stimulation induced immediate and long-lasting dynamic movements in the cell membrane. After 60 min of UDP stimulation, there was an upregulation in the number of large vacuoles formed in the cell that incorporate extracellular fluorescent-labeled dextran, which indicates microglial macropinocytosis. In addition, UDP-induced vacuole formation and continuous membrane motility were suppressed by the protein kinase D (PKD) inhibitors, Gö6976 and CID755673, unlike Gö6983, which is far less sensitive to PKD. The inhibition of PKD also reduced UDP-induced incorporation of fluorescent-labeled dextran and soluble β-amyloid and phagocytosis of microspheres. UDP induced rapid phosphorylation and membrane translocation of PKD, which was abrogated by the inhibition of protein kinase C (PKC) with Gö6983. However, Gö6983 failed to suppress UDP-induced incorporation of microspheres. Finally, we found that inhibition of PKD by CID755673 significantly suppressed UDP-induced engulfment of IgG-opsonized microspheres. These data suggest that a PKC-independent function of PKD regulates UDP-induced membrane movement and contributes to the increased uptake of extracellular fluid and microspheres in microglia.
Collapse
Affiliation(s)
- Ayumi Uesugi
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Protein kinase D1 (PKD1) is a stress-activated serine/threonine kinase that plays a vital role in various physiologically important biological processes, including cell growth, apoptosis, adhesion, motility, and angiogenesis. Dysregulated PKD1 expression also contributes to the pathogenesis of certain cancers and cardiovascular disorders. Studies to date have focused primarily on the canonical membrane-delimited pathway for PKD1 activation by G protein-coupled receptors or peptide growth factors. Here, agonist-dependent increases in diacylglycerol accumulation lead to the activation of protein kinase C (PKC) and PKC-dependent phosphorylation of PKD1 at two highly conserved serine residues in the activation loop; this modification increases PKD1 catalytic activity, as assessed by PKD1 autophosphorylation at a consensus phosphorylation motif at the extreme C terminus. However, recent studies expose additional controls and consequences for PKD1 activation loop and C-terminal phosphorylation as well as additional autophosphorylation reactions and trans-phosphorylations (by PKC and other cellular enzymes) that contribute to the spatiotemporal control of PKD1 signaling in cells. This review focuses on the multisite phosphorylations that are known or predicted to influence PKD1 catalytic activity and may also influence docking interactions with cellular scaffolds and trafficking to signaling microdomains in various subcellular compartments. These modifications represent novel targets for the development of PKD1-directed pharmaceuticals for the treatment of cancers and cardiovascular disorders.
Collapse
Affiliation(s)
- Susan F Steinberg
- Department of Pharmacology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
32
|
Fu Y, Rubin CS. Protein kinase D: coupling extracellular stimuli to the regulation of cell physiology. EMBO Rep 2011; 12:785-96. [PMID: 21738220 DOI: 10.1038/embor.2011.139] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/17/2011] [Indexed: 01/07/2023] Open
Abstract
Protein kinase D (PKD) mediates the actions of stimuli that promote diacylglycerol (DAG) biogenesis. By phosphorylating effectors that regulate transcription, fission and polarized transport of Golgi vesicles, as well as cell migration and survival after oxidative stress, PKDs substantially expand the range of physiological processes controlled by DAG. Dysregulated PKDs have been linked to pathologies including heart hypertrophy and cancer invasiveness. Our understanding of PKD regulation by trans- and autophosphorylation, as well as the subcellular dynamics of PKD substrate phosphorylation, have increased markedly. Selective PKD inhibitors provide new, powerful tools for elucidating the physiological roles of PKDs and potentially treating cardiac disease and cancer.
Collapse
Affiliation(s)
- Ya Fu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | |
Collapse
|
33
|
Phan D, Stratton MS, Khai Huynh Q, McKinsey TA. A novel protein kinase C target site in protein kinase D is phosphorylated in response to signals for cardiac hypertrophy. Biochem Biophys Res Commun 2011; 411:335-41. [DOI: 10.1016/j.bbrc.2011.06.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 01/19/2023]
|
34
|
Bhavanasi D, Kim S, Goldfinger LE, Kunapuli SP. Protein kinase Cδ mediates the activation of protein kinase D2 in platelets. Biochem Pharmacol 2011; 82:720-7. [PMID: 21736870 DOI: 10.1016/j.bcp.2011.06.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 01/25/2023]
Abstract
Protein kinase D (PKD) is a subfamily of serine/threonine specific family of kinases, comprised of PKD1, PKD2 and PKD3 (PKCμ, PKD2 and PKCv in humans). It is known that PKCs activate PKD, but the relative expression of isoforms of PKD or the specific PKC isoform/s responsible for its activation in platelets is not known. This study is aimed at investigating the pathway involved in activation of PKD in platelets. We show that PKD2 is the major isoform of PKD that is expressed in human as well as murine platelets but not PKD1 or PKD3. PKD2 activation induced by AYPGKF was abolished with a G(q) inhibitor YM-254890, but was not affected by Y-27632, a RhoA/p160ROCK inhibitor, indicating that PKD2 activation is G(q)-, but not G₁₂/₁₃-mediated Rho-kinase dependent. Calcium-mediated signals are also required for activation of PKD2 as dimethyl BAPTA inhibited its phosphorylation. GF109203X, a pan PKC inhibitor abolished PKD2 phosphorylation but Go6976, a classical PKC inhibitor had no effect suggesting that novel PKC isoforms are involved in PKD2 activation. Importantly, Rottlerin, a non-selective PKCδ inhibitor, inhibited AYPGKF-induced PKD2 activation in human platelets. Similarly, AYPGKF- and Convulxin-induced PKD2 phosphorylation was dramatically inhibited in PKCδ-deficient platelets, but not in PKCθ- or PKCɛ-deficient murine platelets compared to that of wild type platelets. Hence, we conclude that PKD2 is a common signaling target downstream of various agonist receptors in platelets and G(q)-mediated signals along with calcium and novel PKC isoforms, in particular, PKCδ activate PKD2 in platelets.
Collapse
Affiliation(s)
- Dheeraj Bhavanasi
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Protein kinase D1 (PKD1) is a serine-threonine kinase that regulates various functions within the cell, including cell proliferation, apoptosis, adhesion, and cell motility. In normal cells, this protein plays key roles in multiple signaling pathways by relaying information from the extracellular environment and/or upstream kinases and converting them into a regulated intracellular response. The aberrant expression of PKD1 is associated with enhanced cancer phenotypes, such as deregulated cell proliferation, survival, motility, and epithelial mesenchymal transition. In this review, we summarize the structural and functional aspects of PKD1 and highlight the pathobiological roles of this kinase in cancer.
Collapse
Affiliation(s)
- Vasudha Sundram
- Cancer Biology Research Center, Sanford Research/USD, University of South Dakota, Sioux Falls, South Dakota 57105, USA
| | | | | |
Collapse
|
36
|
Evans IM, Zachary IC. Protein kinase D in vascular biology and angiogenesis. IUBMB Life 2011; 63:258-63. [DOI: 10.1002/iub.456] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Kedei N, Telek A, Czap A, Lubart ES, Czifra G, Yang D, Chen J, Morrison T, Goldsmith PK, Lim L, Mannan P, Garfield SH, Kraft MB, Li W, Keck GE, Blumberg PM. The synthetic bryostatin analog Merle 23 dissects distinct mechanisms of bryostatin activity in the LNCaP human prostate cancer cell line. Biochem Pharmacol 2011; 81:1296-308. [PMID: 21458422 DOI: 10.1016/j.bcp.2011.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/19/2011] [Accepted: 03/22/2011] [Indexed: 12/20/2022]
Abstract
Bryostatin 1 has attracted considerable attention both as a cancer chemotherapeutic agent and for its unique activity. Although it functions, like phorbol esters, as a potent protein kinase C (PKC) activator, it paradoxically antagonizes many phorbol ester responses in cells. Because of its complex structure, little is known of its structure-function relations. Merle 23 is a synthetic derivative, differing from bryostatin 1 at only four positions. However, in U-937 human leukemia cells, Merle 23 behaves like a phorbol ester and not like bryostatin 1. Here, we characterize the behavior of Merle 23 in the human prostate cancer cell line LNCaP. In this system, bryostatin 1 and phorbol ester have contrasting activities, with the phorbol ester but not bryostatin 1 blocking cell proliferation or tumor necrosis factor alpha secretion, among other responses. We show that Merle 23 displays a highly complex pattern of activity in this system. Depending on the specific biological response or mechanistic change, it was bryostatin-like, phorbol ester-like, intermediate in its behavior, or more effective than either. The pattern of response, moreover, varied depending on the conditions. We conclude that the newly emerging bryostatin derivatives such as Merle 23 provide powerful tools to dissect subsets of bryostatin mechanism and response.
Collapse
Affiliation(s)
- Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Amako Y, Syed GH, Siddiqui A. Protein kinase D negatively regulates hepatitis C virus secretion through phosphorylation of oxysterol-binding protein and ceramide transfer protein. J Biol Chem 2011; 286:11265-74. [PMID: 21285358 DOI: 10.1074/jbc.m110.182097] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hepatitis C virus (HCV) RNA replicates its genome on specialized endoplasmic reticulum modified membranes termed membranous web and utilizes lipid droplets for initiating the viral nucleocapsid assembly. HCV maturation and/or the egress pathway requires host sphingolipid synthesis, which occur in the Golgi. Ceramide transfer protein (CERT) and oxysterol-binding protein (OSBP) play a crucial role in sphingolipid biosynthesis. Protein kinase D (PKD), a serine/threonine kinase, is recruited to the trans-Golgi network where it influences vesicular trafficking to the plasma membrane by regulation of several important mediators via phosphorylation. PKD attenuates the function of both CERT and OSBP by phosphorylation at their respective Ser(132) and Ser(240) residues (phosphorylation inhibition). Here, we investigated the functional role of PKD in HCV secretion. Our studies show that HCV gene expression down-regulated PKD activation. PKD depletion by shRNA or inhibition by pharmacological inhibitor Gö6976 enhanced HCV secretion. Overexpression of a constitutively active form of PKD suppressed HCV secretion. The suppression by PKD was subverted by the ectopic expression of nonphosphorylatable serine mutant CERT S132A or OSBP S240A. These observations imply that PKD negatively regulates HCV secretion/release by attenuating OSBP and CERT functions by phosphorylation inhibition. This study identifies the key role of the Golgi components in the HCV maturation process.
Collapse
Affiliation(s)
- Yutaka Amako
- Department of Medicine, Division of Infectious Diseases, Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
39
|
Thrower EC, Yuan J, Usmani A, Liu Y, Jones C, Minervini SN, Alexandre M, Pandol SJ, Guha S. A novel protein kinase D inhibitor attenuates early events of experimental pancreatitis in isolated rat acini. Am J Physiol Gastrointest Liver Physiol 2011; 300:G120-9. [PMID: 20947701 PMCID: PMC3025506 DOI: 10.1152/ajpgi.00300.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Novel protein kinase C isoforms (PKC δ and ε) mediate early events in acute pancreatitis. Protein kinase D (PKD/PKD1) is a convergent point of PKC δ and ε in the signaling pathways triggered through CCK or cholinergic receptors and has been shown to activate the transcription factor NF-κB in acute pancreatitis. For the present study we hypothesized that a newly developed PKD/PKD1 inhibitor, CRT0066101, would prevent the initial events leading to pancreatitis. We pretreated isolated rat pancreatic acinar cells with CRT0066101 and a commercially available inhibitor Gö6976 (10 μM). This was followed by stimulation for 60 min with high concentrations of cholecystokinin (CCK, 0.1 μM), carbachol (CCh, 1 mM), or bombesin (10 μM) to induce initial events of pancreatitis. PKD/PKD1 phosphorylation and activity were measured as well as zymogen activation, amylase secretion, cell injury and NF-κB activation. CRT0066101 dose dependently inhibited secretagogue-induced PKD/PKD1 activation and autophosphorylation at Ser-916 with an IC(50) ∼3.75-5 μM but had no effect on PKC-dependent phosphorylation of the PKD/PKD1 activation loop (Ser-744/748). Furthermore, CRT0066101 reduced secretagogue-induced zymogen activation and amylase secretion. Gö6976 reduced zymogen activation but not amylase secretion. Neither inhibitor affected basal zymogen activation or secretion. CRT0066101 did not affect secretagogue-induced cell injury or changes in cell morphology, but it reduced NF-κB activation by 75% of maximal for CCK- and CCh-stimulated acinar cells. In conclusion, CRT0066101 is a potent and specific PKD family inhibitor. Furthermore, PKD/PKD1 is a potential mediator of zymogen activation, amylase secretion, and NF-κB activation induced by a range of secretagogues in pancreatic acinar cells.
Collapse
Affiliation(s)
- Edwin C. Thrower
- 1Department of Internal Medicine, Section of Digestive Diseases, and the Veterans Administration Connecticut Healthcare, West Haven, and Yale University School of Medicine, New Haven, Connecticut;
| | - Jingzhen Yuan
- 2Southern California Research Center for Alcoholic Liver and Pancreatic Diseases, Veterans Affairs Greater Los Angeles Health Care System and University of California, Los Angeles, California; and
| | - Ashar Usmani
- 1Department of Internal Medicine, Section of Digestive Diseases, and the Veterans Administration Connecticut Healthcare, West Haven, and Yale University School of Medicine, New Haven, Connecticut;
| | - Yannan Liu
- 2Southern California Research Center for Alcoholic Liver and Pancreatic Diseases, Veterans Affairs Greater Los Angeles Health Care System and University of California, Los Angeles, California; and
| | - Courtney Jones
- 1Department of Internal Medicine, Section of Digestive Diseases, and the Veterans Administration Connecticut Healthcare, West Haven, and Yale University School of Medicine, New Haven, Connecticut;
| | - Samantha N. Minervini
- 1Department of Internal Medicine, Section of Digestive Diseases, and the Veterans Administration Connecticut Healthcare, West Haven, and Yale University School of Medicine, New Haven, Connecticut;
| | - Martine Alexandre
- 1Department of Internal Medicine, Section of Digestive Diseases, and the Veterans Administration Connecticut Healthcare, West Haven, and Yale University School of Medicine, New Haven, Connecticut;
| | - Stephen J. Pandol
- 2Southern California Research Center for Alcoholic Liver and Pancreatic Diseases, Veterans Affairs Greater Los Angeles Health Care System and University of California, Los Angeles, California; and
| | - Sushovan Guha
- 3University of Texas M.D. Anderson Cancer Center Department of Gastroenterology, Hepatology and Nutrition, Houston, Texas
| |
Collapse
|
40
|
Ligand-stimulated downregulation of the alpha interferon receptor: role of protein kinase D2. Mol Cell Biol 2010; 31:710-20. [PMID: 21173164 DOI: 10.1128/mcb.01154-10] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Alpha interferon (IFN-α) controls homeostasis of hematopoietic stem cells, regulates antiviral resistance, inhibits angiogenesis, and suppresses tumor growth. This cytokine is often used to treat cancers and chronic viral infections. The extent of cellular responses to IFN-α is limited by the IFN-induced ubiquitination and degradation of the IFN-α/β receptor chain 1 (IFNAR1) chain of the cognate receptor. IFNAR1 ubiquitination is facilitated by the βTrcp E3 ubiquitin ligase that is recruited to IFNAR1 upon its degron phosphorylation, which is induced by the ligand. Here we report identification of protein kinase D2 (PKD2) as a kinase that mediates the ligand-inducible phosphorylation of IFNAR1 degron and enables binding of βTrcp to the receptor. Treatment of cells with IFN-α induces catalytic activity of PKD2 and stimulates its interaction with IFNAR1. Expression and kinase activity of PKD2 are required for the ligand-inducible stimulation of IFNAR1 ubiquitination and endocytosis and for accelerated proteolytic turnover of IFNAR1. Furthermore, inhibition or knockdown of PKD2 robustly augments intracellular signaling induced by IFN-α and increases the efficacy of its antiviral effects. The mechanisms of the ligand-inducible elimination of IFNAR1 are discussed, along with the potential medical significance of this regulation.
Collapse
|
41
|
Guo J, Gertsberg Z, Ozgen N, Sabri A, Steinberg SF. Protein kinase D isoforms are activated in an agonist-specific manner in cardiomyocytes. J Biol Chem 2010; 286:6500-9. [PMID: 21156805 DOI: 10.1074/jbc.m110.208058] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein kinase D (PKD) exists as a family of structurally related enzymes that are activated through similar phosphorylation-dependent mechanisms involving protein kinase C (PKC). While individual PKD isoforms could in theory mediate distinct biological functions, previous studies identify a high level of functional redundancy for PKD1 and PKD2 in various cellular contexts. This study shows that PKD1 and PKD2 are activated in a stimulus-specific manner in neonatal cardiomyocytes. The α(1)-adrenergic receptor agonist norepinephrine selectively activates PKD1, thrombin and PDGF selectively activate PKD2, and endothelin-1 and PMA activate both PKD1 and PKD2. PKC activity is implicated in the α(1)-adrenergic receptor pathway that activates PKD1 and the thrombin- and PDGF-dependent pathways that activate PKD2. Endothelin-1 activates PKD via both rapid PKC-dependent and more sustained PKC-independent mechanisms. The functional consequences of PKD activation were assessed by tracking phosphorylation of CREB and cardiac troponin I (cTnI), two physiologically relevant PKD substrates in cardiomyocytes. We show that overexpression of an activated PKD1-S744E/S748E transgene increases CREB-Ser(133) and cTnI-Ser(23)/Ser(24) phosphorylation, but agonist-dependent pathways that activate native PKD1 or PKD2 selectively increase CREB-Ser(133) phosphorylation; there is no associated increase in cTnI-Ser(23)/Ser(24) phosphorylation. Gene silencing studies provide unanticipated evidence that PKD1 down-regulation leads to a compensatory increase in PKD2 activity and that down-regulation of PKD1 (alone or in combination with PKD2) leads to an increase in CREB-Ser(133) phosphorylation. Collectively, these studies identify distinct roles for native PKD1 and PKD2 enzymes in stress-dependent pathways that influence cardiac remodeling and the progression of heart failure.
Collapse
Affiliation(s)
- Jianfen Guo
- Department of Pharmacology, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
42
|
M3-muscarinic receptor promotes insulin release via receptor phosphorylation/arrestin-dependent activation of protein kinase D1. Proc Natl Acad Sci U S A 2010; 107:21181-6. [PMID: 21078968 DOI: 10.1073/pnas.1011651107] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The activity of G protein-coupled receptors is regulated via hyper-phosphorylation following agonist stimulation. Despite the universal nature of this regulatory process, the physiological impact of receptor phosphorylation remains poorly studied. To address this question, we have generated a knock-in mouse strain that expresses a phosphorylation-deficient mutant of the M(3)-muscarinic receptor, a prototypical G(q/11)-coupled receptor. This mutant mouse strain was used here to investigate the role of M(3)-muscarinic receptor phosphorylation in the regulation of insulin secretion from pancreatic islets. Importantly, the phosphorylation deficient receptor coupled to G(q/11)-signaling pathways but was uncoupled from phosphorylation-dependent processes, such as receptor internalization and β-arrestin recruitment. The knock-in mice showed impaired glucose tolerance and insulin secretion, indicating that M(3)-muscarinic receptors expressed on pancreatic islets regulate glucose homeostasis via receptor phosphorylation-/arrestin-dependent signaling. The mechanism centers on the activation of protein kinase D1, which operates downstream of the recruitment of β-arrestin to the phosphorylated M(3)-muscarinic receptor. In conclusion, our findings support the unique concept that M(3)-muscarinic receptor-mediated augmentation of sustained insulin release is largely independent of G protein-coupling but involves phosphorylation-/arrestin-dependent coupling of the receptor to protein kinase D1.
Collapse
|
43
|
Goodall MH, Wardlow RD, Goldblum RR, Ziman A, Lederer WJ, Randall W, Rogers TB. Novel function of cardiac protein kinase D1 as a dynamic regulator of Ca2+ sensitivity of contraction. J Biol Chem 2010; 285:41686-700. [PMID: 21041300 DOI: 10.1074/jbc.m110.179648] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the function of protein kinase D1 (PKD) in cardiac cells has remained enigmatic, recent work has shown that PKD phosphorylates the nuclear regulators HDAC5/7 (histone deacetylase 5/7) and CREB, implicating this kinase in the development of dysfunction seen in heart failure. Additional studies have shown that PKD also phosphorylates multiple sarcomeric substrates to regulate myofilament function. Initial studies examined PKD through adenoviral vector expression of wild type PKD, constitutively active PKD (caPKD), or dominant negative PKD in cultured adult rat ventricular myocytes. Confocal immunofluorescent images of these cells reveal a predominant distribution of all PKD forms in a non-nuclear, Z-line localized, striated reticular pattern, suggesting the importance of PKD in Ca(2+) signaling in heart. Consistent with an established role of PKD in targeting cardiac troponin I (cTnI), caPKD expression led to a marked decrease in contractile myofilament Ca(2+) sensitivity with an unexpected electrical stimulus dependence to this response. This desensitization was accompanied by stimulus-dependent increases in cTnI phosphorylation in control and caPKD cells with a more pronounced effect in the latter. Electrical stimulation also provoked phosphorylation of regulatory site Ser(916) on PKD. The functional importance of this phospho-Ser(916) event is demonstrated in experiments with a phosphorylation-defective mutant, caPKD-S916A, which is functionally inactive and blocks stimulus-dependent increases in cTnI phosphorylation. Dominant negative PKD expression resulted in sensitization of the myofilaments to Ca(2+) and blocked stimulus-dependent increases in cTnI phosphorylation. Taken together, these data reveal that localized PKD may play a role as a dynamic regulator of Ca(2+) sensitivity of contraction in cardiac myocytes.
Collapse
Affiliation(s)
- Mariah H Goodall
- Department of Biochemistry and Molecular Biology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Characterization of the biological effects of a novel protein kinase D inhibitor in endothelial cells. Biochem J 2010; 429:565-72. [PMID: 20497126 PMCID: PMC2907712 DOI: 10.1042/bj20100578] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
VEGF (vascular endothelial growth factor) plays an essential role in angiogenesis during development and in disease largely mediated by signalling events initiated by binding of VEGF to its receptor, VEGFR2 (VEGF receptor 2)/KDR (kinase insert domain receptor). Recent studies indicate that VEGF activates PKD (protein kinase D) in endothelial cells to regulate a variety of cellular functions, including signalling events, proliferation, migration and angiogenesis. To better understand the role of PKD in VEGF-mediated endothelial function, we characterized the effects of a novel pyrazine benzamide PKD inhibitor CRT5 in HUVECs (human umbilical vein endothelial cells). The activity of the isoforms PKD1 and PKD2 were blocked by this inhibitor as indicated by reduced phosphorylation, at Ser916 and Ser876 respectively, after VEGF stimulation. The VEGF-induced phosphorylation of three PKD substrates, histone deacetylase 5, CREB (cAMP-response-element-binding protein) and HSP27 (heat-shock protein 27) at Ser82, was also inhibited by CRT5. In contrast, CRT6, an inactive analogue of CRT5, had no effect on PKD or HSP27 Ser82 phosphorylation. Furthermore, phosphorylation of HSP27 at Ser78, which occurs solely via the p38 MAPK (mitogen-activated protein kinase) pathway, was also unaffected by CRT5. In vitro kinase assays show that CRT5 did not significantly inhibit several PKC isoforms expressed in endothelial cells. CRT5 also decreased VEGF-induced endothelial migration, proliferation and tubulogenesis, similar to effects seen when the cells were transfected with PKD siRNA (small interfering RNA). CRT5, a novel specific PKD inhibitor, will greatly facilitate the study of the role of PKD signalling mechanisms in angiogenesis.
Collapse
|
45
|
Li C, Macdonald JIS, Hryciw T, Meakin SO. Nerve growth factor activation of the TrkA receptor induces cell death, by macropinocytosis, in medulloblastoma Daoy cells. J Neurochem 2010; 112:882-99. [PMID: 19943845 DOI: 10.1111/j.1471-4159.2009.06507.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ectopic expression of the TrkA receptor tyrosine kinase in tumors of the nervous system can mediate nerve growth factor (NGF)-dependent cell death by apoptosis and /or autophagy. Herein, we demonstrate that TrkA can also induce cell death in medulloblastoma Daoy cells by a caspase-independent mechanism that involves the hyperstimulation of macropinocytosis. Specifically, NGF-stimulates the uptake of AlexaFluor546-dextran into lysosome-associated membrane protein-1 positive vacuoles which fuse with microtubule associated protein light chain 3 (LC3) positive autophagosomes, to form large intracellular vacuoles (> 1 mum), which then fuse with lysotracker positive lysosomes. While LC3 cleavage and the appearance of LC3 positive vacuoles suggest the induction of autophagy, siRNA reduced expression of four proteins essential to autophagy (beclin-1, Atg5, LC3 and Atg9) neither blocks NGF-induced vacuole formation nor cell death. TrkA activated cell death does not require p38, JNK or Erk1/2 kinases but does require activation of class III PI-3 kinase and is blocked by the casein kinase 1 (CK1) inhibitor, D4476. This inhibitor does not interfere with TrkA activation but does block NGF-dependent AlexaFluor546-dextran uptake and CK1 dependent phosphorylation of beta-catenin. Collectively, these data demonstrate that TrkA stimulates cell death by a novel mechanism involving CK1-dependent hyperstimulation of macropinocytosis.
Collapse
Affiliation(s)
- Chunhui Li
- Laboratory of Neural Signalling, The Robarts Research Institute, London, Ontario, Canada
| | | | | | | |
Collapse
|
46
|
Deng K, Gao Y, Cao Z, Graziani EI, Wood A, Doherty P, Walsh FS. Overcoming amino-Nogo-induced inhibition of cell spreading and neurite outgrowth by 12-O-tetradecanoylphorbol-13-acetate-type tumor promoters. J Biol Chem 2009; 285:6425-33. [PMID: 20018888 DOI: 10.1074/jbc.m109.071548] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The N-terminal domain of NogoA, called amino-Nogo, inhibits axonal outgrowth and cell spreading via a largely unknown mechanism. In the present study, we show that amino-Nogo decreases Rac1 activity and inhibits fibroblast spreading. 12-O-Tetradecanoylphorbol-13-acetate-type tumor promoters, such as phorbol 12-myristate 13-acetate (PMA) and teleocidin, increase Rac1 activity and overcome the amino-Nogo-induced inhibition of cell spreading. The stimulating effect of tumor promoters on cell spreading requires activation of protein kinase D and the subsequent activation of Akt1. Furthermore, we identified Akt1 as a new signaling component of the amino-Nogo pathway. Akt1 phosphorylation is decreased by amino-Nogo. Activation of Akt1 with a cell-permeable peptide, TAT-TCL1, blocks the amino-Nogo inhibition. Finally, we provide evidence that these signaling pathways operate in neurons in addition to fibroblasts. Our results suggest that activation of protein kinase D and Akt1 are approaches to promote axonal regeneration after injury.
Collapse
Affiliation(s)
- Kangwen Deng
- Neuroscience Research, Pfizer Global Research and Development, Princeton, New Jersey 08543, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Heat shock protein 27 mediates repression of androgen receptor function by protein kinase D1 in prostate cancer cells. Oncogene 2009; 28:4386-96. [DOI: 10.1038/onc.2009.291] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Ozgen N, Guo J, Gertsberg Z, Danilo P, Rosen MR, Steinberg SF. Reactive oxygen species decrease cAMP response element binding protein expression in cardiomyocytes via a protein kinase D1-dependent mechanism that does not require Ser133 phosphorylation. Mol Pharmacol 2009; 76:896-902. [PMID: 19620255 DOI: 10.1124/mol.109.056473] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) exert pleiotropic effects on a wide array of signaling proteins that regulate cellular growth and apoptosis. This study shows that long-term treatment with a low concentration of H2O2 leads to the activation of signaling pathways involving extracellular signal-regulated kinase, ribosomal protein S6 kinase, and protein kinase D (PKD) that increase cAMP binding response element protein (CREB) phosphorylation at Ser(133) in cardiomyocytes. Although CREB-Ser(133) phosphorylation typically mediates cAMP-dependent increases in CREB target gene expression, the H2O2-dependent increase in CREB-Ser(133) phosphorylation is accompanied by a decrease in CREB protein abundance and no change in Cre-luciferase reporter activity. Mutagenesis studies indicate that H2O2 decreases CREB protein abundance via a mechanism that does not require CREB-Ser(133) phosphorylation. Rather, the H2O2-dependent decrease in CREB protein is prevented by the proteasome inhibitor lactacystin, by inhibitors of mitogen-activated protein kinase kinase or protein kinase C activity, or by adenoviral-mediated delivery of a small interfering RNA that decreases PKD1 expression. A PKD1-dependent mechanism that links oxidative stress to decreased CREB protein abundance is predicted to contribute to the pathogenesis of heart failure by influencing cardiac growth and apoptosis responses.
Collapse
Affiliation(s)
- Nazira Ozgen
- Center for Molecular Therapeutics, Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|