1
|
Huffer K, Denley MCS, Oskoui EV, Swartz KJ. Conservation of the cooling agent binding pocket within the TRPM subfamily. eLife 2024; 13:RP99643. [PMID: 39485376 PMCID: PMC11530238 DOI: 10.7554/elife.99643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
Transient receptor potential (TRP) channels are a large and diverse family of tetrameric cation-selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here, we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4, and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of mouse TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Matthew CS Denley
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Elisabeth V Oskoui
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| | - Kenton J Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
2
|
Huffer K, Denley MC, Oskoui EV, Swartz KJ. Conservation of the cooling agent binding pocket within the TRPM subfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595003. [PMID: 38826484 PMCID: PMC11142142 DOI: 10.1101/2024.05.20.595003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Transient Receptor Potential (TRP) channels are a large and diverse family of tetrameric cation selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4 and TRPM5, contain pockets very similar to the cooling agent binding pocket in TRPM8. We then show how the cooling agent icilin modulates activation of TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by cooling agents similarly alter activation of TRPM4 by icilin, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related ligand binding pockets that are allosterically coupled to opening of the pore.
Collapse
Affiliation(s)
- Kate Huffer
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Matthew C.S. Denley
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Elisabeth V. Oskoui
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
- Present Address: Imperial College London, Exhibition Rd, South Kensington, London SW7 2AZ, UK
| | - Kenton J. Swartz
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
3
|
Pertusa M, Solorza J, Madrid R. Molecular determinants of TRPM8 function: key clues for a cool modulation. Front Pharmacol 2023; 14:1213337. [PMID: 37388453 PMCID: PMC10301734 DOI: 10.3389/fphar.2023.1213337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Cold thermoreceptor neurons detect temperature drops with highly sensitive molecular machinery concentrated in their peripheral free nerve endings. The main molecular entity responsible for cold transduction in these neurons is the thermo-TRP channel TRPM8. Cold, cooling compounds such as menthol, voltage, and osmolality rises activate this polymodal ion channel. Dysregulation of TRPM8 activity underlies several physiopathological conditions, including painful cold hypersensitivity in response to axonal damage, migraine, dry-eye disease, overactive bladder, and several forms of cancer. Although TRPM8 could be an attractive target for treating these highly prevalent diseases, there is still a need for potent and specific modulators potentially suitable for future clinical trials. This goal requires a complete understanding of the molecular determinants underlying TRPM8 activation by chemical and physical agonists, inhibition by antagonists, and the modulatory mechanisms behind its function to guide future and more successful treatment strategies. This review recapitulates information obtained from different mutagenesis approaches that have allowed the identification of specific amino acids in the cavity comprised of the S1-S4 and TRP domains that determine modulation by chemical ligands. In addition, we summarize different studies revealing specific regions within the N- and C-terminus and the transmembrane domain that contribute to cold-dependent TRPM8 gating. We also highlight the latest milestone in the field: cryo-electron microscopy structures of TRPM8, which have provided a better comprehension of the 21 years of extensive research in this ion channel, shedding light on the molecular bases underlying its modulation, and promoting the future rational design of novel drugs to selectively regulate abnormal TRPM8 activity under pathophysiological conditions.
Collapse
Affiliation(s)
- María Pertusa
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Jocelyn Solorza
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Rodolfo Madrid
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| |
Collapse
|
4
|
Plaza‐Cayón A, González‐Muñiz R, Martín‐Martínez M. Mutations of TRPM8 channels: Unraveling the molecular basis of activation by cold and ligands. Med Res Rev 2022; 42:2168-2203. [PMID: 35976012 PMCID: PMC9805079 DOI: 10.1002/med.21920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 01/09/2023]
Abstract
The cation nonselective channel TRPM8 is activated by multiple stimuli, including moderate cold and various chemical compounds (i.e., menthol and icilin [Fig. 1], among others). While research continues growing on the understanding of the physiological involvement of TRPM8 channels and their role in various pathological states, the information available on its activation mechanisms has also increased, supported by mutagenesis and structural studies. This review compiles known information on specific mutations of channel residues and their consequences on channel viability and function. Besides, the comparison of sequence of animals living in different environments, together with chimera and mutagenesis studies are helping to unravel the mechanism of adaptation to different temperatures. The results of mutagenesis studies, grouped by different channel regions, are compared with the current knowledge of TRPM8 structures obtained by cryo-electron microscopy. Trying to make this review self-explicative and highly informative, important residues for TRPM8 function are summarized in a figure, and mutants, deletions and chimeras are compiled in a table, including also the observed effects by different methods of activation and the corresponding references. The information provided by this review may also help in the design of new ligands for TRPM8, an interesting biological target for therapeutic intervention.
Collapse
|
5
|
Yin Y, Zhang F, Feng S, Butay KJ, Borgnia MJ, Im W, Lee SY. Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP 2. Science 2022; 378:eadd1268. [PMID: 36227998 PMCID: PMC9795508 DOI: 10.1126/science.add1268] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The transient receptor potential melastatin 8 (TRPM8) channel is the primary molecular transducer responsible for the cool sensation elicited by menthol and cold in mammals. TRPM8 activation is controlled by cooling compounds together with the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2). Our knowledge of cold sensation and the therapeutic potential of TRPM8 for neuroinflammatory diseases and pain will be enhanced by understanding the structural basis of cooling agonist- and PIP2-dependent TRPM8 activation. We present cryo-electron microscopy structures of mouse TRPM8 in closed, intermediate, and open states along the ligand- and PIP2-dependent gating pathway. Our results uncover two discrete agonist sites, state-dependent rearrangements in the gate positions, and a disordered-to-ordered transition of the gate-forming S6-elucidating the molecular basis of chemically induced cool sensation in mammals.
Collapse
Affiliation(s)
- Ying Yin
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Feng Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shasha Feng
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Kevin John Butay
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Mario J. Borgnia
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.,Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.,Correspondence to: S.-Y. Lee, , telephone: 919-684-1005
| |
Collapse
|
6
|
Rosenbaum T, Morales-Lázaro SL, Islas LD. TRP channels: a journey towards a molecular understanding of pain. Nat Rev Neurosci 2022; 23:596-610. [PMID: 35831443 DOI: 10.1038/s41583-022-00611-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 12/18/2022]
Abstract
The perception of nociceptive signals, which are translated into pain, plays a fundamental role in the survival of organisms. Because pain is linked to a negative sensation, animals learn to avoid noxious signals. These signals are detected by receptors, which include some members of the transient receptor potential (TRP) family of ion channels that act as transducers of exogenous and endogenous noxious cues. These proteins have been in the focus of the field of physiology for several years, and much knowledge of how they regulate the function of the cell types and organs where they are expressed has been acquired. The last decade has been especially exciting because the 'resolution revolution' has allowed us to learn the molecular intimacies of TRP channels using cryogenic electron microscopy. These findings, in combination with functional studies, have provided insights into the role played by these channels in the generation and maintenance of pain.
Collapse
Affiliation(s)
- Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico.
| | - Sara L Morales-Lázaro
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina, UNAM, Mexico City, Mexico
| |
Collapse
|
7
|
Hilfiger L, Triaux Z, Marcic C, Héberlé E, Emhemmed F, Darbon P, Marchioni E, Petitjean H, Charlet A. Anti-Hyperalgesic Properties of Menthol and Pulegone. Front Pharmacol 2021; 12:753873. [PMID: 34916937 PMCID: PMC8670501 DOI: 10.3389/fphar.2021.753873] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022] Open
Abstract
Context: Menthol, the main monoterpene found in Mentha piperita L. (M. piperita) is known to modulate nociceptive threshold and is present in different curative preparations that reduce sensory hypersensitivities in pain conditions. While for pulegone, a menthol-like monoterpene, only a limited number of studies focus on its putative analgesic effects, pulegone is the most abundant monoterpene present in Calamintha nepeta (L.) Savi (C. nepeta), a plant of the Lamiaceae family used in traditional medicine to alleviate rheumatic disorders, which counts amongst chronic inflammatory diseases. Objectives: Here, we analyzed the monoterpenes composition of C. nepeta and M. piperita. We then compared the putative anti-hyperalgesic effects of the main monoterpenes found, menthol and pulegone, in acute inflammatory pain conditions. Methods:C. nepeta and M. piperita extracts were obtained through pressurized liquid extraction and analyzed by gas chromatography-mass spectrometry. The in vitro anti-inflammatory activity of menthol or pulegone was evaluated by measuring the secretion of the tumour necrosis factor alpha (TNF α) from LPS-stimulated THP-1 cells. The in vivo anti-hyperalgesic effects of menthol and pulegone were tested on a rat inflammatory pain model. Results: Pulegone and menthol are the most abundant monoterpene found in C. nepeta (49.41%) and M. piperita (42.85%) extracts, respectively. In vitro, both pulegone and menthol act as strong anti-inflammatory molecules, with EC50 values of 1.2 ± 0.2 and 1.5 ± 0.1 mM, respectively, and exert cytotoxicity with EC50 values of 6.6 ± 0.3 and 3.5 ± 0.2 mM, respectively. In vivo, 100 mg/kg pulegone exerts a transient anti-hyperalgesic effect on both mechanical (pulegone: 274.25 ± 68.89 g, n = 8; vehicle: 160.88 ± 35.17 g, n = 8, p < 0.0001), thermal heat (pulegone: 4.09 ± 0.62 s, n = 8; vehicle: 2.25 ± 0.34 s, n = 8, p < 0.0001), and cold (pulegone: 2.25 ± 1.28 score, n = 8; vehicle: 4.75 ± 1.04 score, n = 8, p = 0.0003). In a similar way, 100 mg/kg menthol exerts a transient anti-hyperalgesic effect on both mechanical (mechanical: menthol: 281.63 ± 45.52 g, n = 8; vehicle: 166.25 ± 35.4 g, n = 8, p < 0.0001) and thermal heat (menthol: 3.65 ± 0.88 s, n = 8; vehicle: 2.19 ± 0.26 s, n = 8, <0.0001). Conclusion: Here, we show that both pulegone and menthol are anti-inflammatory and anti-hyperalgesic monoterpenes. These results might open the path towards new compound mixes to alleviate the pain sensation.
Collapse
Affiliation(s)
- Louis Hilfiger
- Benephyt, Strasbourg, France.,Centre National de la Recherche Scientifique, University of Strasbourg, Institute of Cellular and Integrative Neurosciences, INCI UPR3212, Strasbourg, France
| | - Zélie Triaux
- Benephyt, Strasbourg, France.,Centre National de la Recherche Scientifique, University of Strasbourg, Institut Pluridisciplinaire Hubert Curien, IPHC UMR, Strasbourg, France
| | - Christophe Marcic
- Centre National de la Recherche Scientifique, University of Strasbourg, Institut Pluridisciplinaire Hubert Curien, IPHC UMR, Strasbourg, France
| | | | - Fathi Emhemmed
- Centre National de la Recherche Scientifique, University of Strasbourg, Institut Pluridisciplinaire Hubert Curien, IPHC UMR, Strasbourg, France
| | - Pascal Darbon
- Centre National de la Recherche Scientifique, University of Strasbourg, Institute of Cellular and Integrative Neurosciences, INCI UPR3212, Strasbourg, France
| | - Eric Marchioni
- Centre National de la Recherche Scientifique, University of Strasbourg, Institut Pluridisciplinaire Hubert Curien, IPHC UMR, Strasbourg, France
| | | | - Alexandre Charlet
- Centre National de la Recherche Scientifique, University of Strasbourg, Institute of Cellular and Integrative Neurosciences, INCI UPR3212, Strasbourg, France
| |
Collapse
|
8
|
Grolez GP, Hammadi M, Barras A, Gordienko D, Slomianny C, Völkel P, Angrand PO, Pinault M, Guimaraes C, Potier-Cartereau M, Prevarskaya N, Boukherroub R, Gkika D. Encapsulation of a TRPM8 Agonist, WS12, in Lipid Nanocapsules Potentiates PC3 Prostate Cancer Cell Migration Inhibition through Channel Activation. Sci Rep 2019; 9:7926. [PMID: 31138874 PMCID: PMC6538610 DOI: 10.1038/s41598-019-44452-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/14/2019] [Indexed: 01/24/2023] Open
Abstract
In prostate carcinogenesis, expression and/or activation of the Transient Receptor Potential Melastatin 8 channel (TRPM8) was shown to block in vitro Prostate Cancer (PCa) cell migration. Because of their localization at the plasma membrane, ion channels, such as TRPM8 and other membrane receptors, are promising pharmacological targets. The aim of this study was thus to use nanocarriers encapsulating a TRPM8 agonist to efficiently activate the channel and therefore arrest PCa cell migration. To achieve this goal, the most efficient TRPM8 agonist, WS12, was encapsulated into Lipid NanoCapsules (LNC). The effect of the nanocarriers on channel activity and cellular physiological processes, such as cell viability and migration, were evaluated in vitro and in vivo. These results provide a proof-of-concept support for using TRPM8 channel-targeting nanotechnologies based on LNC to develop more effective methods inhibiting PCa cell migration in zebrafish xenograft.
Collapse
Affiliation(s)
- G P Grolez
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - M Hammadi
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000, Lille, France
| | - A Barras
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000, Lille, France
| | - D Gordienko
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - C Slomianny
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - P Völkel
- Univ. Lille, U908 - CPAC, Cell Plasticity and Cancer, F-59000, Lille, France.,CNRS, CPAC, Cell Plasticity and Cancer, Lille, France
| | - P O Angrand
- Univ. Lille, U908 - CPAC, Cell Plasticity and Cancer, F-59000, Lille, France
| | - M Pinault
- Université de Tours, Nutrition, Croissance et Cancer, Inserm UMR1069, Tours, France.,Ion channel Network and Cancer-Canceropole Grand Ouest, (IC-CGO), Nantes, France
| | - C Guimaraes
- Université de Tours, Nutrition, Croissance et Cancer, Inserm UMR1069, Tours, France.,Ion channel Network and Cancer-Canceropole Grand Ouest, (IC-CGO), Nantes, France
| | - M Potier-Cartereau
- Université de Tours, Nutrition, Croissance et Cancer, Inserm UMR1069, Tours, France.,Ion channel Network and Cancer-Canceropole Grand Ouest, (IC-CGO), Nantes, France
| | - N Prevarskaya
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - R Boukherroub
- Univ. Lille, CNRS, Central Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000, Lille, France
| | - D Gkika
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000, Lille, France. .,Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France.
| |
Collapse
|
9
|
Yin Y, Le SC, Hsu AL, Borgnia MJ, Yang H, Lee SY. Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel. Science 2019; 363:eaav9334. [PMID: 30733385 PMCID: PMC6478609 DOI: 10.1126/science.aav9334] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/27/2019] [Indexed: 12/14/2022]
Abstract
Transient receptor potential melastatin member 8 (TRPM8) is a calcium ion (Ca2+)-permeable cation channel that serves as the primary cold and menthol sensor in humans. Activation of TRPM8 by cooling compounds relies on allosteric actions of agonist and membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2), but lack of structural information has thus far precluded a mechanistic understanding of ligand and lipid sensing by TRPM8. Using cryo-electron microscopy, we determined the structures of TRPM8 in complex with the synthetic cooling compound icilin, PIP2, and Ca2+, as well as in complex with the menthol analog WS-12 and PIP2 Our structures reveal the binding sites for cooling agonists and PIP2 in TRPM8. Notably, PIP2 binds to TRPM8 in two different modes, which illustrate the mechanism of allosteric coupling between PIP2 and agonists. This study provides a platform for understanding the molecular mechanism of TRPM8 activation by cooling agents.
Collapse
Affiliation(s)
- Ying Yin
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Son C Le
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Allen L Hsu
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Mario J Borgnia
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
10
|
Bertamino A, Iraci N, Ostacolo C, Ambrosino P, Musella S, Di Sarno V, Ciaglia T, Pepe G, Sala M, Soldovieri MV, Mosca I, Gonzalez-Rodriguez S, Fernandez-Carvajal A, Ferrer-Montiel A, Novellino E, Taglialatela M, Campiglia P, Gomez-Monterrey I. Identification of a Potent Tryptophan-Based TRPM8 Antagonist With in Vivo Analgesic Activity. J Med Chem 2018; 61:6140-6152. [PMID: 29939028 DOI: 10.1021/acs.jmedchem.8b00545] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
TRPM8 has been implicated in nociception and pain and is currently regarded as an attractive target for the pharmacological treatment of neuropathic pain syndromes. A series of analogues of N, N'-dibenzyl tryptamine 1, a potent TRPM8 antagonist, was prepared and screened using a fluorescence-based in vitro assay based on menthol-evoked calcium influx in TRPM8 stably transfected HEK293 cells. The tryptophan derivative 14 was identified as a potent (IC50 0.2 ± 0.2 nM) and selective TRPM8 antagonist. In vivo, 14 showed significant target coverage in both an icilin-induced WDS (at 1-30 mg/kg s.c.) and oxaliplatin-induced cold allodynia (at 0.1-1 μg s.c.) mice models. Molecular modeling studies identified the putative binding mode of these antagonists, suggesting that they could influence an interaction network between the S1-4 transmembrane segments and the TRP domains of the channel subunits. The tryptophan moiety provides a new pharmacophoric scaffold for the design of highly potent modulators of TRPM8-mediated pain.
Collapse
Affiliation(s)
- Alessia Bertamino
- Department of Pharmacy , University of Salerno , Via G. Paolo II 132 , 84084 Fisciano , Salerno Italy
| | - Nunzio Iraci
- Department of Pharmacy , University of Salerno , Via G. Paolo II 132 , 84084 Fisciano , Salerno Italy
| | - Carmine Ostacolo
- Department of Pharmacy , University Federico II of Naples , Via D. Montesano 49 , 80131 Naples , Italy
| | - Paolo Ambrosino
- Department of Medicine and Health Science V. Tiberio , University of Molise , Via F. de Sanctis , 86100 Campobasso , Italy
| | - Simona Musella
- Department of Pharmacy , University Federico II of Naples , Via D. Montesano 49 , 80131 Naples , Italy
| | - Veronica Di Sarno
- Department of Pharmacy , University of Salerno , Via G. Paolo II 132 , 84084 Fisciano , Salerno Italy
| | - Tania Ciaglia
- Department of Pharmacy , University of Salerno , Via G. Paolo II 132 , 84084 Fisciano , Salerno Italy
| | - Giacomo Pepe
- Department of Pharmacy , University of Salerno , Via G. Paolo II 132 , 84084 Fisciano , Salerno Italy
| | - Marina Sala
- Department of Pharmacy , University of Salerno , Via G. Paolo II 132 , 84084 Fisciano , Salerno Italy
| | - Maria Virginia Soldovieri
- Department of Medicine and Health Science V. Tiberio , University of Molise , Via F. de Sanctis , 86100 Campobasso , Italy
| | - Ilaria Mosca
- Department of Medicine and Health Science V. Tiberio , University of Molise , Via F. de Sanctis , 86100 Campobasso , Italy
| | - Sara Gonzalez-Rodriguez
- Institute of Molecular and Cellular Biology , Universitas Miguel Hernández, Avda de la Universidad , 032020 Elche , Spain
| | - Asia Fernandez-Carvajal
- Institute of Molecular and Cellular Biology , Universitas Miguel Hernández, Avda de la Universidad , 032020 Elche , Spain
| | - Antonio Ferrer-Montiel
- Institute of Molecular and Cellular Biology , Universitas Miguel Hernández, Avda de la Universidad , 032020 Elche , Spain
| | - Ettore Novellino
- Department of Pharmacy , University Federico II of Naples , Via D. Montesano 49 , 80131 Naples , Italy
| | - Maurizio Taglialatela
- Department of Neuroscience, Reproductive Sciences and Dentistry , University Federico II of Naples , Via Pansini, 5 , 80131 Naples , Italy
| | - Pietro Campiglia
- Department of Pharmacy , University of Salerno , Via G. Paolo II 132 , 84084 Fisciano , Salerno Italy
| | - Isabel Gomez-Monterrey
- Department of Pharmacy , University Federico II of Naples , Via D. Montesano 49 , 80131 Naples , Italy
| |
Collapse
|
11
|
Noyer L, Grolez GP, Prevarskaya N, Gkika D, Lemonnier L. TRPM8 and prostate: a cold case? Pflugers Arch 2018; 470:1419-1429. [PMID: 29926226 DOI: 10.1007/s00424-018-2169-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022]
Abstract
While originally cloned from the prostate in 2001, transient receptor potential, melastatin member 8 (TRPM8) has since been identified as the cold/menthol receptor in the peripheral nervous system. This discovery has led to hundreds of studies regarding the role of this channel in pain and thermosensation phenomena, while relegating TRPM8 involvement in cancer to a secondary role. Despite these findings, there is growing evidence that TRPM8 should be carefully studied within the frame of carcinogenesis, especially in the prostate, where it is highly expressed and where many teams have confirmed variations in its expression during cancer progression. Its regulation by physiological factors, such as PSA and androgens, has proved that TRPM8 can exhibit an activity beyond that of a cold receptor, thus explaining how the channel can be activated in organs not exposed to temperature variations. With this review, we aim to provide a brief overview of the current knowledge regarding the complex roles of TRPM8 in prostate carcinogenesis and to show that this research path still represents a "hot" topic with potential clinical applications in the short term.
Collapse
Affiliation(s)
- Lucile Noyer
- Inserm, U1003, Laboratory of Cell Physiology, University Lille Nord de France, 59655 Cedex, Villeneuve d'Ascq, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Guillaume P Grolez
- Inserm, U1003, Laboratory of Cell Physiology, University Lille Nord de France, 59655 Cedex, Villeneuve d'Ascq, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Inserm, U1003, Laboratory of Cell Physiology, University Lille Nord de France, 59655 Cedex, Villeneuve d'Ascq, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Dimitra Gkika
- Inserm, U1003, Laboratory of Cell Physiology, University Lille Nord de France, 59655 Cedex, Villeneuve d'Ascq, France
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France
| | - Loic Lemonnier
- Inserm, U1003, Laboratory of Cell Physiology, University Lille Nord de France, 59655 Cedex, Villeneuve d'Ascq, France.
- Laboratory of Excellence, Ion Channels Science and Therapeutics, Villeneuve d'Ascq, France.
| |
Collapse
|
12
|
Pérez de Vega MJ, Gómez-Monterrey I, Ferrer-Montiel A, González-Muñiz R. Transient Receptor Potential Melastatin 8 Channel (TRPM8) Modulation: Cool Entryway for Treating Pain and Cancer. J Med Chem 2016; 59:10006-10029. [PMID: 27437828 DOI: 10.1021/acs.jmedchem.6b00305] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TRPM8 ion channels, the primary cold sensors in humans, are activated by innocuous cooling (<28 °C) and cooling compounds (menthol, icilin) and are implicated in sensing unpleasant cold stimuli as well as in mammalian thermoregulation. Overexpression of these thermoregulators in prostate cancer and in other life-threatening tumors, along with their contribution to an increasing number of pathological conditions, opens a plethora of medicinal chemistry opportunities to develop receptor modulators. This Perspective seeks to describe current known modulators for this ion channel because both agonists and antagonists may be useful for the treatment of most TRPM8-mediated pathologies. We primarily focus on SAR data for the different families of compounds and the pharmacological properties of the most promising ligands. Furthermore, we also address the knowledge about the channel structure, although still in its infancy, and the role of the TRPM8 protein signalplex to channel function and dysfunction. We finally outline the potential future prospects of the challenging TRPM8 drug discovery field.
Collapse
Affiliation(s)
| | - Isabel Gómez-Monterrey
- Dipartimento di Farmacia, Università "Federico II" de Napoli , Via D. Montesano 49, 80131, Naples, Italy
| | - Antonio Ferrer-Montiel
- Instituto de Biología Molecular y Celular. Universitas Miguel Hernández . 03202 Alicante, Spain
| | | |
Collapse
|
13
|
De Petrocellis L, Arroyo FJ, Orlando P, Schiano Moriello A, Vitale RM, Amodeo P, Sánchez A, Roncero C, Bianchini G, Martín MA, López-Alvarado P, Menéndez JC. Tetrahydroisoquinoline-Derived Urea and 2,5-Diketopiperazine Derivatives as Selective Antagonists of the Transient Receptor Potential Melastatin 8 (TRPM8) Channel Receptor and Antiprostate Cancer Agents. J Med Chem 2016; 59:5661-83. [PMID: 27232526 DOI: 10.1021/acs.jmedchem.5b01448] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tetrahydroisoquinoline derivatives containing embedded urea functions were identified as selective TRPM8 channel receptor antagonists. Structure-activity relationships were investigated, with the following conclusions: (a) The urea function and the tetrahydroisoquinoline system are necessary for activity. (b) Bis(1-aryl-6,7dimethoxy-1,2,3,4-tetrahydroisoquinolyl)ureas are more active than compounds containing one tetrahydroisoquinoline ring and than an open phenetylamine ureide. (c) Trans compounds are more active than their cis isomers. (d) Aryl substituents are better than alkyls at the isoquinoline C-1 position. (e) Electron-withdrawing substituents lead to higher activities. The most potent compound is the 4-F derivative, with IC50 in the 10(-8) M range and selectivities around 1000:1 for most other TRP receptors. Selected compounds were found to be active in reducing the growth of LNCaP prostate cancer cells. TRPM8 inhibition reduces proliferation in the tumor cells tested but not in nontumor prostate cells, suggesting that the activity against prostate cancer is linked to TRPM8 inhibition.
Collapse
Affiliation(s)
- Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Protein Biochemistry and Institute of Applied Sciences & Intelligent Systems, National Research Council , Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Francisco J Arroyo
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| | - Pierangelo Orlando
- Endocannabinoid Research Group, Institute of Protein Biochemistry, National Research Council , Via P. Castellino 111, 80131 Naples, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Institute of Protein Biochemistry and Institute of Applied Sciences & Intelligent Systems, National Research Council , Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Rosa Maria Vitale
- Endocannabinoid Research Group, Institute of Protein Biochemistry and Institute of Applied Sciences & Intelligent Systems, National Research Council , Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Pietro Amodeo
- Endocannabinoid Research Group, Institute of Protein Biochemistry and Institute of Applied Sciences & Intelligent Systems, National Research Council , Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Aránzazu Sánchez
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| | - Cesáreo Roncero
- Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| | - Giulia Bianchini
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| | - M Antonia Martín
- S.D. Química Analítica, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| | - Pilar López-Alvarado
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| | - J Carlos Menéndez
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad Complutense , 28040 Madrid, Spain
| |
Collapse
|
14
|
|
15
|
Rath P, Hilton JK, Sisco NJ, Van Horn WD. Implications of Human Transient Receptor Potential Melastatin 8 (TRPM8) Channel Gating from Menthol Binding Studies of the Sensing Domain. Biochemistry 2015; 55:114-24. [PMID: 26653082 DOI: 10.1021/acs.biochem.5b00931] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The transient receptor potential melastatin 8 (TRPM8) ion channel is the primary cold sensor in humans. TRPM8 is gated by physiologically relevant cold temperatures and chemical ligands that induce cold sensations, such as the analgesic compound menthol. Characterization of TRPM8 ligand-gated channel activation will lead to a better understanding of the fundamental mechanisms that underlie TRPM8 function. Here, the direct binding of menthol to the isolated hTRPM8 sensing domain (transmembrane helices S1-S4) is investigated. These data are compared with two mutant sensing domain proteins, Y745H (S2 helix) and R842H (S4 helix), which have been previously identified in full length TRPM8 to be menthol insensitive. The data presented herein show that menthol specifically binds to the wild type, Y745H, and R842H TRPM8 sensing domain proteins. These results are the first to show that menthol directly binds to the TRPM8 sensing domain and indicates that Y745 and R842 residues, previously identified in functional studies as crucial to menthol sensitivity, do not affect menthol binding but instead alter coupling between the sensing domain and the pore domain.
Collapse
Affiliation(s)
- Parthasarathi Rath
- School of Molecular Sciences, Arizona State University , 551 E. University Drive, Tempe, Arizona 85287, United States.,The Biodesign Institute, Arizona State University , Tempe, Arizona 85281, United States.,The Virginia G. Piper Center for Personalized Diagnostics, Arizona State University , Tempe, Arizona 85281, United States.,The Magnetic Resonance Research Center, Arizona State University , Tempe, Arizona 85287, United States
| | - Jacob K Hilton
- School of Molecular Sciences, Arizona State University , 551 E. University Drive, Tempe, Arizona 85287, United States.,The Biodesign Institute, Arizona State University , Tempe, Arizona 85281, United States.,The Virginia G. Piper Center for Personalized Diagnostics, Arizona State University , Tempe, Arizona 85281, United States.,The Magnetic Resonance Research Center, Arizona State University , Tempe, Arizona 85287, United States
| | - Nicholas J Sisco
- School of Molecular Sciences, Arizona State University , 551 E. University Drive, Tempe, Arizona 85287, United States.,The Biodesign Institute, Arizona State University , Tempe, Arizona 85281, United States.,The Virginia G. Piper Center for Personalized Diagnostics, Arizona State University , Tempe, Arizona 85281, United States.,The Magnetic Resonance Research Center, Arizona State University , Tempe, Arizona 85287, United States
| | - Wade D Van Horn
- School of Molecular Sciences, Arizona State University , 551 E. University Drive, Tempe, Arizona 85287, United States.,The Biodesign Institute, Arizona State University , Tempe, Arizona 85281, United States.,The Virginia G. Piper Center for Personalized Diagnostics, Arizona State University , Tempe, Arizona 85281, United States.,The Magnetic Resonance Research Center, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|
16
|
Mueller-Tribbensee SM, Karna M, Khalil M, Neurath MF, Reeh PW, Engel MA. Differential Contribution of TRPA1, TRPV4 and TRPM8 to Colonic Nociception in Mice. PLoS One 2015. [PMID: 26207981 PMCID: PMC4514604 DOI: 10.1371/journal.pone.0128242] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Various transient receptor potential (TRP) channels in sensory neurons contribute to the transduction of mechanical stimuli in the colon. Recently, even the cold-sensing menthol receptor TRPM(melastatin)8 was suggested to be involved in murine colonic mechano-nociception. Methods To analyze the roles of TRPM8, TRPA1 and TRPV4 in distension-induced colonic nociception and pain, TRP-deficient mice and selective pharmacological blockers in wild-type mice (WT) were used. Visceromotor responses (VMR) to colorectal distension (CRD) in vivo were recorded and distension/pressure-induced CGRP release from the isolated murine colon ex vivo was measured by EIA. Results Distension-induced colonic CGRP release was markedly reduced in TRPA1-/- and TRPV4-/- mice at 90/150 mmHg compared to WT. In TRPM8-deficient mice the reduction was only distinct at 150 mmHg. Exposure to selective pharmacological antagonists (HC030031, 100 μM; RN1734, 10 μM; AMTB, 10 μM) showed corresponding effects. The unselective TRP blocker ruthenium red (RR, 10 μM) was as efficient in inhibiting distension-induced CGRP release as the unselective antagonists of mechanogated DEG/ENaC (amiloride, 100 μM) and stretch-activated channels (gadolinium, 50 μM). VMR to CRD revealed prominent deficits over the whole pressure range (up to 90 mmHg) in TRPA1-/- and TRPV4-/- but not TRPM8-/- mice; the drug effects of the TRP antagonists were again highly consistent with the results from mice lacking the respective TRP receptor gene. Conclusions TRPA1 and TRPV4 mediate colonic distension pain and CGRP release and appear to govern a wide and congruent dynamic range of distensions. The role of TRPM8 seems to be confined to signaling extreme noxious distension, at least in the healthy colon.
Collapse
Affiliation(s)
- Sonja M. Mueller-Tribbensee
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Manoj Karna
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mohammad Khalil
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Peter W. Reeh
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias A. Engel
- Department of Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
- * E-mail:
| |
Collapse
|
17
|
De Petrocellis L, Ortar G, Schiano Moriello A, Serum EM, Rusterholz DB. Structure-activity relationships of the prototypical TRPM8 agonist icilin. Bioorg Med Chem Lett 2015; 25:2285-90. [PMID: 25935641 DOI: 10.1016/j.bmcl.2015.04.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/10/2015] [Accepted: 04/12/2015] [Indexed: 01/28/2023]
Abstract
A series of structural analogues of the TRPM8 agonist icilin was prepared. The compounds were examined for their ability to exert agonist or antagonist effects in HEK-293 cells expressing the TRPM8 receptor. Most structural modifications of the icilin structure largely met with diminished TRPM8 agonist activity. Cinnamamide 'open-chain' analogs of icilin, however, demonstrated significant antagonistic actions at the TRPM8 receptor. Optimal potency (IC50=73 nM) was observed in the 3-iodo derivative 18l.
Collapse
Affiliation(s)
- Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy.
| | - Giorgio Ortar
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza-Università di Roma, piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, Comprensorio Olivetti, 80078 Pozzuoli, Naples, Italy
| | - Eric M Serum
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, United States
| | - David B Rusterholz
- Department of Chemistry, University of Wisconsin-River Falls, 410 S. Third St., River Falls, WI 54022, United States
| |
Collapse
|
18
|
Patel R, Gonçalves L, Leveridge M, Mack SR, Hendrick A, Brice NL, Dickenson AH. Anti-hyperalgesic effects of a novel TRPM8 agonist in neuropathic rats: a comparison with topical menthol. Pain 2014; 155:2097-107. [PMID: 25083927 PMCID: PMC4220012 DOI: 10.1016/j.pain.2014.07.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/21/2014] [Accepted: 07/25/2014] [Indexed: 11/27/2022]
Abstract
Menthol has historically been used topically to alleviate various pain conditions. At low concentrations, this non-selective TRPM8 agonist elicits a cooling sensation, however higher concentrations result in cold hyperalgesia in normal subjects and paradoxically analgesia in neuropathic patients. Through behavioural and electrophysiological means, we examined whether this back-translated into a pre-clinical rodent model. Menthol was applied topically to the hind paws of naive and spinal nerve-ligated (SNL) rats. In behavioural assays, menthol did not affect withdrawal thresholds to mechanical stimulation and 10% and 40% menthol rarely sensitised withdrawals to innocuous cooling in naïve rats. However, in SNL rats, 10% and 40% menthol alleviated cold hypersensitivity. This was partly corroborated by in vivo electrophysiological recordings of dorsal horn lamina V/VI neurones. As several studies have implicated TRPM8 in analgesia, we examined whether a novel systemically available TRPM8 agonist, M8-Ag, had more potent anti-hyperalgesic effects than menthol in neuropathic rats. In vitro, M8-Ag activates TRPM8, expressed in HEK293 cells, with an EC50 of 44.97 nM. In vivo, M8-Ag inhibited neuronal responses to innocuous and noxious cooling in SNL rats with no effect in sham-operated rats. This effect was modality selective; M8-Ag did not alter neuronal responses to mechanical, heat or brush stimulation. In addition, M8-Ag attenuated behavioural hypersensitivity to innocuous cooling but not mechanical stimulation. These data suggest that menthol induced hyperalgesia is not consistently replicable in the rat and that the analgesic properties are revealed by injury. Systemic TRPM8 agonists might be beneficial in neuropathy without affecting normal cold sensitivity.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Leonor Gonçalves
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | | | | | | | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
19
|
Icilin reduces voltage-gated calcium channel currents in naïve and injured DRG neurons in the rat spinal nerve ligation model. Brain Res 2014; 1557:171-9. [PMID: 24560602 DOI: 10.1016/j.brainres.2014.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 11/21/2022]
Abstract
Recently, the transient receptor potential (TRP) channels TRPM8 and TRPA1 have been identified as molecular sensors for cold, and it has been suggested that they play a crucial role in allodynia by modulating voltage-gated calcium channel currents (ICa(V)). The aim of this study was to analyze the modulation of ICa(V) by the TRPM8-agonist icilin in vitro and to investigate the analgesic effect of icilin in a neuropathic pain model in vivo. Whole cell patch-clamp recordings were performed on isolated naïve and injured rat dorsal root ganglia (DRG) neurons, and the analgesic efficacy of icilin applied topically to the paws or intrathecally was tested in rats after spinal nerve ligation (SNL). ICa(V) (depolarization from -80 to 0mV) in naïve DRG neurons was reduced dose dependently (0.002-200µM) by icilin (18-80%). Subtype isolation of calcium channels show a marked reduction of L-type channel currents compared to N-type channel currents. The effects of icilin on ICa(V) were not significantly different in non-injured and SNL-injured DRG neurons. In vivo, neither topical (10-200µM) nor intrathecal application of icilin (0.1nM to 1µM) affected tactile allodynia or thermal hyperalgesia after SNL, but it increases cold allodynia 6h after application. We conclude that the icilin-induced modulation of ICa(V) in DRG neurons is unlikely to mediate analgesic effects or contribute directly to the pathogenesis of cold allodynia in the rat SNL model, but it is a potential mechanism for the analgesic effects of icilin in other pain models.
Collapse
|
20
|
Abstract
Transient receptor potential melastatin 8 (TRPM8) was originally cloned from prostate tissue. Shortly thereafter, the protein was identified as a cold- and menthol-activated ion channel in peripheral sensory neurons, where it plays a critical role in cold temperature detection. In this chapter, we review our current understanding of the molecular and biophysical properties, the pharmacology, and the modulation by signaling molecules of this TRP channel. Finally, we examine the physiological role of TRPM8 and its emerging link to various human diseases, including pain, prostate cancer, dry eye disease, and metabolic disorders.
Collapse
Affiliation(s)
- Laura Almaraz
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Avenida S. Ramón y Cajal s.n., San Juan de Alicante, 03550, Spain
| | | | | | | |
Collapse
|
21
|
Selescu T, Ciobanu AC, Dobre C, Reid G, Babes A. Camphor Activates and Sensitizes Transient Receptor Potential Melastatin 8 (TRPM8) to Cooling and Icilin. Chem Senses 2013; 38:563-75. [DOI: 10.1093/chemse/bjt027] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Surface expression and channel function of TRPM8 are cooperatively controlled by transmembrane segments S3 and S4. Pflugers Arch 2013; 465:1599-610. [PMID: 23708837 DOI: 10.1007/s00424-013-1302-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/08/2013] [Accepted: 05/15/2013] [Indexed: 01/04/2023]
Abstract
TRPM8 is a voltage-dependent cation channel additionally gated by cold temperatures, menthol, and icilin. Stimulation by the chemical agonists is at least in part mediated by a conserved sequence motif in transmembrane segment S3. Based on molecular dynamics simulation studies for TRPM8 a gating model was recently developed which predicts a direct electrostatic interaction between S3 and S4. Here, we performed charge reversal mutations to pinpoint possible interactions of the putative S4 voltage sensor with S3. The charge reversals R842D, R842E, and D835R in S4 prevented channel glycosylation and function, indicating a deficient insertion into the plasma membrane. The mutations R842D and R842E were specifically rescued by the reciprocal charge reversal D802R in S3. The alternative charge reversal in S3, D796R, failed to compensate for the dysfunction of the mutants R842D and R842E. Remarkably, the double charge reversal mutants R842D + D802R and R842E + D802R retained intrinsic voltage-sensitivity, although the critical voltage sensor arginine was substituted by a negatively charged residue. Likewise, the insertion of three additional positively charged residues into S4 did not crucially change the voltage-sensitivity of TRPM8 but abolished the sensitivity to icilin. We conclude that S4 does not play a separate role for the gating of TRPM8. Instead, the cooperation with the adjacent segment S3 and the combined charges in these two segments is of general importance for both channel maturation and channel function. This mechanism distinguishes TRPM8 from other voltage-dependent cation channels within and outside the TRP family.
Collapse
|
23
|
TRPM8 activation attenuates inflammatory responses in mouse models of colitis. Proc Natl Acad Sci U S A 2013; 110:7476-81. [PMID: 23596210 DOI: 10.1073/pnas.1217431110] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transient Receptor Potential Melastatin-8 (TRPM8), a recently identified member of the transient receptor potential (TRP) family of ion channels, is activated by mild cooling and by chemical compounds such as the supercooling agent, icilin. Since cooling, possibly involving TRPM8 stimulation, diminishes injury-induced peripheral inflammation, we hypothesized that TRPM8 activation may also attenuate systemic inflammation. We thus studied the involvement of TRPM8 in regulating colonic inflammation using two mouse models of chemically induced colitis. TRPM8 expression, localized immunohistochemically in transgenic TRPM8(GFP) mouse colon, was up-regulated in both human- and murine-inflamed colon samples, as measured by real-time PCR. Wild-type mice (but not TRPM8-nulls) treated systemically with the TRPM8 agonist, icilin showed an attenuation of chemically induced colitis, as reflected by a decrease in macroscopic and microscopic damage scores, bowel thickness, and myeloperoxidase activity compared with untreated animals. Furthermore, icilin treatment reduced the 2,4,6-trinitrobenzenesulfonic acid-induced increase in levels of inflammatory cytokines and chemokines in the colon. In comparison with wild-type mice, Dextran Sodium Sulfate (DSS)-treated TRPM8 knockout mice showed elevated colonic levels of the inflammatory neuropeptide calcitonin-gene-related peptide, although inflammatory indices were equivalent for both groups. Further, TRPM8 activation by icilin blocked capsaicin-triggered calcitonin-gene-related peptide release from colon tissue ex vivo and blocked capsaicin-triggered calcium signaling in Transient Receptor Potential Vaniloid-1 (TRPV1) and TRPM8 transfected HEK cells. Our data document an anti-inflammatory role for TRPM8 activation, in part due to an inhibiton of neuropeptide release, pointing to a novel therapeutic target for colitis and other inflammatory diseases.
Collapse
|
24
|
Robbins A, Kurose M, Winterson BJ, Meng ID. Menthol activation of corneal cool cells induces TRPM8-mediated lacrimation but not nociceptive responses in rodents. Invest Ophthalmol Vis Sci 2012; 53:7034-42. [PMID: 22952122 DOI: 10.1167/iovs.12-10025] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Stimulation to the cornea via noxious chemical and mechanical means evokes tearing, blinking, and pain. In contrast, mild cooling of the ocular surface has been reported to increase lacrimation via activation of corneal cool primary afferent neurons. The purpose of our study was to determine whether menthol induces corneal cool cell activity and lacrimation via the transient receptor potential melastatin-8 (TRPM8) channel without evoking nociceptive responses. METHODS Tear measurements were made using a cotton thread in TRPM8 wild type and knockout mice after application of menthol (0.05-50 mM) to the cornea. In additional studies, nocifensive responses (eye swiping and lid closure) were quantified following cornea menthol application. Trigeminal ganglion electrophysiologic single unit recordings were performed in rats to determine the effect of low and high concentrations of menthol on corneal cool cells. RESULTS At low concentrations, menthol increased tear production in TRPM8 wild type and heterozygous animals, but had no effect in TRPM8 knockout mice, while nocifensive responses remained unaffected. At the highest concentration, menthol (50 mM) increased tearing and nocifensive responses in TRPM8 wild type and knockout animals. A low concentration of menthol (0.1 mM) increased cool cell activity, yet a high concentration of menthol (50 mM) had no effect. CONCLUSIONS These studies indicated that low concentrations of menthol can increase lacrimation via TRPM8 channels without evoking nocifensive behaviors. At high concentrations, menthol can induce lacrimation and nocifensive behaviors in a TRPM8 independent mechanism. The increase in lacrimation is likely due to an increase in cool cell activity.
Collapse
Affiliation(s)
- Ashlee Robbins
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, USA
| | | | | | | |
Collapse
|
25
|
Ortar G, Morera L, Moriello AS, Morera E, Nalli M, Di Marzo V, De Petrocellis L. Modulation of thermo-transient receptor potential (thermo-TRP) channels by thymol-based compounds. Bioorg Med Chem Lett 2012; 22:3535-9. [PMID: 22503249 DOI: 10.1016/j.bmcl.2012.03.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
Abstract
A series of thirty-three thymol, p-cymene-3-carboxylic acid, and 3-amino-p-cymene derivatives was synthesized and tested on TRPA1, TRPM8, and TRPV3 channels. Most of them acted as strong modulators of TRPA1, TRPM8, and TRPV3 channels with EC(50) and/or IC(50) values distinctly lower than those of thymol and related monoterpenoids. Some of the compounds examined, that is, 3c, 4e, f, 6b, and 8b exhibited an appreciable subtype-selectivity.
Collapse
Affiliation(s)
- Giorgio Ortar
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
26
|
Tamayo NA, Bo Y, Gore V, Ma V, Nishimura N, Tang P, Deng H, Klionsky L, Lehto SG, Wang W, Youngblood B, Chen J, Correll TL, Bartberger MD, Gavva NR, Norman MH. Fused piperidines as a novel class of potent and orally available transient receptor potential melastatin type 8 (TRPM8) antagonists. J Med Chem 2012; 55:1593-611. [PMID: 22329507 DOI: 10.1021/jm2013634] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transient receptor potential melastatin type 8 (TRPM8) is a nonselective cation channel primarily expressed in a subpopulation of sensory neurons that can be activated by a wide range of stimuli, including menthol, icilin, and cold temperatures (<25 °C). Antagonism of TRPM8 is currently under investigation as a new approach for the treatment of pain. As a result of our screening efforts, we identified tetrahydrothienopyridine 4 as an inhibitor of icilin-induced calcium influx in CHO cells expressing recombinant rat TRPM8. Exploration of the structure-activity relationships of 4 led to the identification of a potent and orally bioavailable TRPM8 antagonist, tetrahydroisoquinoline 87. Compound 87 demonstrated target coverage in vivo after oral administration in a rat pharmacodynamic model measuring the prevention of icilin-induced wet-dog shakes (WDS).
Collapse
Affiliation(s)
- Nuria A Tamayo
- Department of Chemistry Research and Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320-1799, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Calvo RR, Meegalla SK, Parks DJ, Parsons WH, Ballentine SK, Lubin ML, Schneider C, Colburn RW, Flores CM, Player MR. Discovery of vinylcycloalkyl-substituted benzimidazole TRPM8 antagonists effective in the treatment of cold allodynia. Bioorg Med Chem Lett 2012; 22:1903-7. [PMID: 22330635 DOI: 10.1016/j.bmcl.2012.01.060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 12/01/2022]
Abstract
Thermosensitive transient receptor potential melastatin 8 (TRPM8) antagonists are considered to be potential therapeutic agents for the treatment of cold hypersensitivity. The discovery of a new class of TRPM8 antagonists that shows in vivo efficacy in the rat chronic constriction injury (CCI)-induced model of neuropathic pain is described.
Collapse
Affiliation(s)
- Raul R Calvo
- Janssen Research & Development, Welsh and McKean Roads, Spring House, PA 19477-0776, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yudin Y, Lukacs V, Cao C, Rohacs T. Decrease in phosphatidylinositol 4,5-bisphosphate levels mediates desensitization of the cold sensor TRPM8 channels. J Physiol 2011; 589:6007-27. [PMID: 22005680 DOI: 10.1113/jphysiol.2011.220228] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The activity of the cold- and menthol-activated transient receptor potential melastatin 8 (TRPM8) channels diminishes over time in the presence of extracellular Ca(2+), a phenomenon referred to as desensitization or adaptation. Here we show that activation of TRPM8 by cold or menthol evokes a decrease in cellular phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] levels. The decrease in PtdIns(4,5)P(2) levels was accompanied by increased inositol 1,4,5 trisphosphate (InsP(3)) production, and was inhibited by loading the cells with the Ca(2+) chelator BAPTA-AM, showing that it was the consequence of the activation of phospholipase C (PLC) by increased intracellular Ca(2+) concentrations. PtdIns(4,5)P(2) hydrolysis showed excellent temporal correlation with current desensitization in simultaneous patch clamp and fluorescence-based PtdIns(4,5)P(2) level measurements. Intracellular dialysis of PtdIns(4,5)P(2) inhibited desensitization both in native neuronal and recombinant TRPM8 channels. PtdIns(4)P, the precursor of PtdIns(4,5)P(2), did not inhibit desensitization, consistent with its minimal effect in excised patches. Omission of MgATP from the intracellular solution accelerated desensitization, and MgATP reactivated TRPM8 channels in excised patches in a phosphatidylinositol 4-kinase (PI4K)-dependent manner. PLC-independent depletion of PtdIns(4,5)P(2) using a voltage-sensitive phosphatase (ci-VSP) inhibited TRPM8 currents, and omission of ATP from the intracellular solution inhibited recovery from this inhibition. Inhibitors of PKC had no effect on the kinetics of desensitization. We conclude that Ca(2+) influx through TRPM8 activates a Ca(2+)-sensitive PLC isoform, and the resulting depletion of PtdIns(4,5)P(2) plays a major role in desensitization of both cold and menthol responses.
Collapse
Affiliation(s)
- Yevgen Yudin
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
29
|
Lawrence D, Cadman B, Hoffman AC. Sensory properties of menthol and smoking topography. Tob Induc Dis 2011; 9 Suppl 1:S3. [PMID: 21624149 PMCID: PMC3102902 DOI: 10.1186/1617-9625-9-s1-s3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although there is a great deal known about menthol as a flavoring agent in foods and confections, less is known about the particular sensory properties of menthol cigarette smoke. Similarly, although smoking topography (the unique way an individual smokes a cigarette) has been well studied using non-menthol cigarettes, there is relatively less known about how menthol affects smoking behavior. The objective of this review is to assess the sensory properties of menthol tobacco smoke, and smoking topography associated with menthol cigarettes. The cooling, analgesic, taste, and respiratory effects of menthol are well established, and studies have indicated that menthol’s sensory attributes can have an influence on the positive, or rewarding, properties associated smoking, including ratings of satisfaction, taste, perceived smoothness, and perceived irritation. Despite these sensory properties, the data regarding menthol’s effect on smoking topography are inconsistent. Many of the topography studies have limitations due to various methodological issues.
Collapse
Affiliation(s)
- Deirdre Lawrence
- Center for Tobacco Products, Food and Drug Administration, Rockville, MD 20850, USA
| | | | | |
Collapse
|
30
|
Martínez-López P, Treviño CL, de la Vega-Beltrán JL, De Blas G, Monroy E, Beltrán C, Orta G, Gibbs GM, O'Bryan MK, Darszon A. TRPM8 in mouse sperm detects temperature changes and may influence the acrosome reaction. J Cell Physiol 2011; 226:1620-31. [DOI: 10.1002/jcp.22493] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Liu Y, Qin N. TRPM8 in health and disease: cold sensing and beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:185-208. [PMID: 21290296 DOI: 10.1007/978-94-007-0265-3_10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on TRPM8, one of the approximately 30 members of the diverse family of transient receptor potential (TRP) ion channels. Initially identified from the prostate, TRPM8 has been studied more extensively in the sensory system and is best established as a major transducer of environmental cold temperatures. An increasing body of evidence suggests that it may also be an important player in various chronic conditions, such as inflammatory/neuropathic pain and prostate cancer. Small molecule compounds that selectively modulate TRPM8 are beginning to emerge and will be critically valuable for better understanding the role of this channel in both physiological and pathological states, on which the prospects of TRPM8 as a viable therapeutic target rest.
Collapse
Affiliation(s)
- Yi Liu
- Johnson & Johnson Pharmaceutical Research and Development, LLC, San Diego, CA 92121, USA.
| | | |
Collapse
|
32
|
Parks DJ, Parsons WH, Colburn RW, Meegalla SK, Ballentine SK, Illig CR, Qin N, Liu Y, Hutchinson TL, Lubin ML, Stone DJ, Baker JF, Schneider CR, Ma J, Damiano BP, Flores CM, Player MR. Design and optimization of benzimidazole-containing transient receptor potential melastatin 8 (TRPM8) antagonists. J Med Chem 2010; 54:233-47. [PMID: 21128593 DOI: 10.1021/jm101075v] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transient receptor potential melastatin 8 (TRPM8) is a nonselective cation channel that is thermoresponsive to cool to cold temperatures (8-28 °C) and also may be activated by chemical agonists such as menthol and icilin. Antagonism of TRPM8 activation is currently under investigation for the treatment of painful conditions related to cold, such as cold allodynia and cold hyperalgesia. The design, synthesis, and optimization of a class of selective TRPM8 antagonists based on a benzimidazole scaffold is described, leading to the identification of compounds that exhibited potent antagonism of TRPM8 in cell-based functional assays for human, rat, and canine TRPM8 channels. Numerous compounds in the series demonstrated excellent in vivo activity in the TRPM8-selective "wet-dog shakes" (WDS) pharmacodynamic model and in the rat chronic constriction injury (CCI)-induced model of neuropathic pain. Taken together, the present results suggest that the in vivo antagonism of TRPM8 constitutes a viable new strategy for treating a variety of disorders associated with cold hypersensitivity, including certain types of neuropathic pain.
Collapse
Affiliation(s)
- Daniel J Parks
- Janssen Research and Development, Spring House, Pennsylvania 19477-0776, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Anand U, Otto WR, Anand P. Sensitization of capsaicin and icilin responses in oxaliplatin treated adult rat DRG neurons. Mol Pain 2010; 6:82. [PMID: 21106058 PMCID: PMC3003244 DOI: 10.1186/1744-8069-6-82] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 11/24/2010] [Indexed: 12/22/2022] Open
Abstract
Background Oxaliplatin chemotherapy induced neuropathy is a dose related cumulative toxicity that manifests as tingling, numbness, and chronic pain, compromising the quality of life and leading to discontinued chemotherapy. Patients report marked hypersensitivity to cold stimuli at early stages of treatment, when sensory testing reveals cold and heat hyperalgesia. This study examined the morphological and functional effects of oxaliplatin treatment in cultured adult rat DRG neurons. Results 48 hour exposure to oxaliplatin resulted in dose related reduction in neurite length, density, and number of neurons compared to vehicle treated controls, using Gap43 immunostaining. Neurons treated acutely with 20 μg/ml oxaliplatin showed significantly higher signal intensity for cyclic AMP immunofluorescence (160.5 ± 13 a.u., n = 3, P < 0.05), compared to controls (120.3 ± 4 a.u.). Calcium imaging showed significantly enhanced capsaicin (TRPV1 agonist), responses after acute 20 μg/ml oxaliplatin treatment where the second of paired capsaicin responses increased from 80.7 ± 0.6% without oxaliplatin, to 171.26 ± 29% with oxaliplatin, (n = 6 paired t test, P < 0.05); this was reduced to 81.42 ± 8.1% (P < 0.05), by pretretreatment with the cannabinoid CB2 receptor agonist GW 833972. Chronic oxaliplatin treatment also resulted in dose related increases in capsaicin responses. Similarly, second responses to icilin (TRPA1/TRPM8 agonist), were enhanced after acute (143.85 ± 7%, P = 0.004, unpaired t test, n = 3), and chronic (119.7 ± 11.8%, P < 0.05, n = 3) oxaliplatin treatment, compared to control (85.3 ± 1.7%). Responses to the selective TRPM8 agonist WS-12 were not affected. Conclusions Oxaliplatin treatment induces TRP sensitization mediated by increased intracellular cAMP, which may cause neuronal damage. These effects may be mitigated by co-treatment with adenylyl cyclase inhibitors, like CB2 agonists, to alleviate the neurotoxic effects of oxaliplatin.
Collapse
Affiliation(s)
- Uma Anand
- Histopathology Unit, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC1A 3PX, UK.
| | | | | |
Collapse
|
34
|
Kühn FJP, Witschas K, Kühn C, Lückhoff A. Contribution of the S5-pore-S6 domain to the gating characteristics of the cation channels TRPM2 and TRPM8. J Biol Chem 2010; 285:26806-26814. [PMID: 20587417 DOI: 10.1074/jbc.m110.109975] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The closely related cation channels TRPM2 and TRPM8 show completely different requirements for stimulation and are regulated by Ca(2+) in an opposite manner. TRPM8 is basically gated in a voltage-dependent process enhanced by cold temperatures and cooling compounds such as menthol and icilin. The putative S4 voltage sensor of TRPM8 is closely similar to that of TRPM2, which, however, is mostly devoid of voltage sensitivity. To gain insight into principal interactions of critical channel domains during the gating process, we created chimeras in which the entire S5-pore-S6 domains were reciprocally exchanged. The chimera M2-M8P (i.e. TRPM2 with the pore of TRPM8) responded to ADP-ribose and hydrogen peroxide and was regulated by extracellular and intracellular Ca(2+) as was wild-type TRPM2. Single-channel recordings revealed the characteristic pattern of TRPM2 with extremely long open times. Only at far-negative membrane potentials (-120 to -140 mV) did differences become apparent because currents were reduced by hyperpolarization in M2-M8P but not in TRPM2. The reciprocal chimera, M8-M2P, showed currents after stimulation with high concentrations of menthol and icilin, but these currents were only slightly larger than in controls. The transfer of the NUDT9 domain to the C terminus of TRPM8 produced a channel sensitive to cold, menthol, or icilin but insensitive to ADP-ribose or hydrogen peroxide. We conclude that the gating processes in TRPM2 and TRPM8 differ in their requirements for specific structures within the pore. Moreover, the regulation by extracellular and intracellular Ca(2+) and the single-channel properties in TRPM2 are not determined by the S5-pore-S6 region.
Collapse
Affiliation(s)
- Frank J P Kühn
- Institute of Physiology, Medical Faculty, RWTH Aachen University, D-52057 Aachen, Germany.
| | - Katja Witschas
- Institute of Physiology, Medical Faculty, RWTH Aachen University, D-52057 Aachen, Germany
| | - Cornelia Kühn
- Institute of Physiology, Medical Faculty, RWTH Aachen University, D-52057 Aachen, Germany
| | - Andreas Lückhoff
- Institute of Physiology, Medical Faculty, RWTH Aachen University, D-52057 Aachen, Germany
| |
Collapse
|
35
|
Ortar G, Petrocellis LD, Morera L, Moriello AS, Orlando P, Morera E, Nalli M, Marzo VD. (−)-Menthylamine derivatives as potent and selective antagonists of transient receptor potential melastatin type-8 (TRPM8) channels. Bioorg Med Chem Lett 2010; 20:2729-32. [DOI: 10.1016/j.bmcl.2010.03.076] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/17/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
|
36
|
Johnson CD, Melanaphy D, Purse A, Stokesberry SA, Dickson P, Zholos AV. Transient receptor potential melastatin 8 channel involvement in the regulation of vascular tone. Am J Physiol Heart Circ Physiol 2009; 296:H1868-77. [PMID: 19363131 DOI: 10.1152/ajpheart.01112.2008] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transient receptor potential melastatin 8 (TRPM8) channel has been characterized as a cold and menthol receptor expressed in a subpopulation of sensory neurons but was recently identified in other tissues, including the respiratory tract, urinary system, and vasculature. Thus TRPM8 may play multiple functional roles, likely to be in a tissue- and activation state-dependent manner. We examined the TRPM8 channel presence in large arteries from rats and the functional consequences of their activation. We also aimed to examine whether these channels contribute to control of conscious human skin blood flow. TRPM8 mRNA and protein were detected in rat tail, femoral and mesenteric arteries, and thoracic aorta. This was confirmed in single isolated vascular myocytes by immunocytochemistry. Isometric contraction studies on endothelium-denuded relaxed rat vessels found small contractions on application of the TRPM8-specific agonist menthol (300 microM). However, both menthol and another agonist icilin (50 microM) caused relaxation of vessels precontracted with KCl (60 mM) or the alpha-adrenoceptor agonist phenylephrine (2 microM) and a reduction in sympathetic nerve-mediated contraction. These effects were antagonized by bromoenol lactone treatment, suggesting the involvement of Ca(2+)-independent phospholipase A(2) activation in TRPM8-mediated vasodilatation. In thoracic aorta with intact endothelium, menthol-induced inhibition of KCl-induced contraction was enhanced. This was unaltered by preincubation with either N(omega)-nitro-l-arginine methyl ester (l-NAME; 100 nM), a nitric oxide synthase inhibitor, or the ACh receptor antagonist atropine (1 microM). Application of menthol (3% solution, topical application) to skin caused increased blood flow in conscious humans, as measured by laser Doppler fluximetry. Vasodilatation was markedly reduced or abolished by prior application of l-NAME (passive application, 10 mM) or atropine (iontophoretic application, 100 nM, 30 s at 70 microA). We conclude that TRPM8 channels are present in rat artery vascular smooth muscle and on activation cause vasoconstriction or vasodilatation, dependent on previous vasomotor tone. TRPM8 channels may also contribute to human cutaneous vasculature control, likely with the involvement of additional neuronal mechanisms.
Collapse
Affiliation(s)
- Christopher D Johnson
- Cardiovascular Biomedical Research Centre, School of Medicine, Dentistry and Biomedical Sciences, Medical Biology Centre, Queen's University of Belfast, Belfast, UK, BT9 7BL.
| | | | | | | | | | | |
Collapse
|