1
|
Lehmann MM, Schuler P, Werner RA, Saurer M, Wiesenberg GLB, Cormier MA. Biochemical and biophysical drivers of the hydrogen isotopic composition of carbohydrates and acetogenic lipids. SCIENCE ADVANCES 2024; 10:eadl3591. [PMID: 38985863 PMCID: PMC11235168 DOI: 10.1126/sciadv.adl3591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/05/2024] [Indexed: 07/12/2024]
Abstract
The hydrogen isotopic composition (δ2H) of plant compounds is increasingly used as a hydroclimatic proxy; however, the interpretation of δ2H values is hampered by potential coeffecting biochemical and biophysical processes. Here, we studied δ2H values of water and carbohydrates in leaves and roots, and of leaf n-alkanes, in two distinct tobacco (Nicotiana sylvestris) experiments. Large differences in plant performance and biochemistry resulted from (a) soil fertilization with varying nitrogen (N) species ratios and (b) knockout-induced starch deficiency. We observed a strong 2H-enrichment in sugars and starch with a decreasing performance induced by increasing NO3-/NH4+ ratios and starch deficiency, as well as from leaves to roots. However, δ2H values of cellulose and n-alkanes were less affected. We show that relative concentrations of sugars and starch, interlinked with leaf gas exchange, shape δ2H values of carbohydrates. We thus provide insights into drivers of hydrogen isotopic composition of plant compounds and into the mechanistic modeling of plant cellulose δ2H values.
Collapse
Affiliation(s)
- Marco M Lehmann
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Philipp Schuler
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Roland A Werner
- D-USYS-Department of Environmental Systems Science, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Guido L B Wiesenberg
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Marc-André Cormier
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| |
Collapse
|
2
|
Torres-Romero I, Zhang H, Wijker RS, Clark AJ, McLeod RE, Jaggi M, Stoll HM. Hydrogen isotope fractionation is controlled by CO 2 in coccolithophore lipids. Proc Natl Acad Sci U S A 2024; 121:e2318570121. [PMID: 38905238 PMCID: PMC11214045 DOI: 10.1073/pnas.2318570121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/21/2024] [Indexed: 06/23/2024] Open
Abstract
Hydrogen isotope ratios (δ2H) represent an important natural tracer of metabolic processes, but quantitative models of processes controlling H-fractionation in aquatic photosynthetic organisms are lacking. Here, we elucidate the underlying physiological controls of 2H/1H fractionation in algal lipids by systematically manipulating temperature, light, and CO2(aq) in continuous cultures of the haptophyte Gephyrocapsa oceanica. We analyze the hydrogen isotope fractionation in alkenones (αalkenone), a class of acyl lipids specific to this species and other haptophyte algae. We find a strong decrease in the αalkenone with increasing CO2(aq) and confirm αalkenone correlates with temperature and light. Based on the known biosynthesis pathways, we develop a cellular model of the δ2H of algal acyl lipids to evaluate processes contributing to these controls on fractionation. Simulations show that longer residence times of NADPH in the chloroplast favor a greater exchange of NADPH with 2H-richer intracellular water, increasing αalkenone. Higher chloroplast CO2(aq) and temperature shorten NADPH residence time by enhancing the carbon fixation and lipid synthesis rates. The inverse correlation of αalkenone to CO2(aq) in our cultures suggests that carbon concentrating mechanisms (CCM) do not achieve a constant saturation of CO2 at the Rubisco site, but rather that chloroplast CO2 varies with external CO2(aq). The pervasive inverse correlation of αalkenone with CO2(aq) in the modern and preindustrial ocean also suggests that natural populations may not attain a constant saturation of Rubisco with the CCM. Rather than reconstructing growth water, αalkenone may be a powerful tool to elucidate the carbon limitation of photosynthesis.
Collapse
Affiliation(s)
- Ismael Torres-Romero
- Climate Geology, Department of Earth Sciences, ETH Zürich, Zurich8092, Switzerland
| | - Hongrui Zhang
- Climate Geology, Department of Earth Sciences, ETH Zürich, Zurich8092, Switzerland
| | - Reto S. Wijker
- Climate Geology, Department of Earth Sciences, ETH Zürich, Zurich8092, Switzerland
| | - Alexander J. Clark
- Climate Geology, Department of Earth Sciences, ETH Zürich, Zurich8092, Switzerland
| | - Rachel E. McLeod
- Climate Geology, Department of Earth Sciences, ETH Zürich, Zurich8092, Switzerland
| | - Madalina Jaggi
- Climate Geology, Department of Earth Sciences, ETH Zürich, Zurich8092, Switzerland
| | - Heather M. Stoll
- Climate Geology, Department of Earth Sciences, ETH Zürich, Zurich8092, Switzerland
| |
Collapse
|
3
|
Baan J, Holloway-Phillips M, Nelson DB, Kahmen A. The metabolic sensitivity of hydrogen isotope fractionation differs between plant compounds. PHYTOCHEMISTRY 2023; 207:113563. [PMID: 36528118 DOI: 10.1016/j.phytochem.2022.113563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen stable isotope analyses (δ2H) of plant derived organic compounds are a useful tool for ecological, environmental, and palaeoclimatological research. However, during organic compound synthesis, variable biosynthetic 2H-fractionation has been suggested to occur as a result of changes in plant carbon fluxes. So far, inference has been based on examining the δ2H patterns of plant compounds along environmental gradients, among plant species, and between plant organs. In an alternative approach, we used four plant species with four different types of mutations that cause impaired starch synthesis to assess whether variability in carbon metabolism affects the biosynthetic 2H-fractionation during cellulose, phytol, and acetogenic lipid synthesis. We found that mutants with impaired starch synthesis always had higher cellulose and phytol δ2H values compared to the wild type. By contrast, 2H-fractionation during acetogenic lipid biosynthesis generally did not show strong metabolic sensitivity. We rationalise these differences by considering the biosynthetic pathway of each compound and the likely source of the variable isotope fractionation. In different organic compounds, the sensitivity of variable biosynthetic 2H-fractionation to changes in C-metabolism depends on incorporation of specific H atoms from precursor molecules. As such, we determined that the similar increase in cellulose and phytol δ2H values as an effect of impaired starch synthesis most likely originates in triose-phosphates.
Collapse
Affiliation(s)
- Jochem Baan
- University of Basel, Department of Environmental Sciences - Botany, Schönbeinstrasse 6, 4056, Basel, Switzerland.
| | - Meisha Holloway-Phillips
- University of Basel, Department of Environmental Sciences - Botany, Schönbeinstrasse 6, 4056, Basel, Switzerland
| | - Daniel B Nelson
- University of Basel, Department of Environmental Sciences - Botany, Schönbeinstrasse 6, 4056, Basel, Switzerland
| | - Ansgar Kahmen
- University of Basel, Department of Environmental Sciences - Botany, Schönbeinstrasse 6, 4056, Basel, Switzerland
| |
Collapse
|
4
|
Aroulanda C, Lesot P. Molecular enantiodiscrimination by NMR spectroscopy in chiral oriented systems: Concept, tools, and applications. Chirality 2021; 34:182-244. [PMID: 34936130 DOI: 10.1002/chir.23386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 11/06/2022]
Abstract
The study of enantiodiscriminations in relation to various facets of enantiomorphism (chirality/prochirality) and/or molecular symmetry is an exciting area of modern organic chemistry and an ongoing challenge for nuclear magnetic resonance (NMR) spectroscopists who have developed many useful analytical approaches to solve stereochemical problems. Among them, the anisotropic NMR using chiral aligning solvents has provided a set of new and original tools by making accessible all intramolecular, order-dependent NMR interactions (anisotropic interactions), such as residual chemical shift anisotropy (RCSA), residual dipolar coupling (RDC), and residual quadrupolar coupling (RQC) for spin I > 1/2, while preserving high spectral resolution. The force of NMR in enantiopure, oriented solvents lies on its ability to orient differently in average on the NMR timescale enantiomers of chiral molecules and enantiotopic elements of prochiral ones, leading distinct NMR spectra or signals to be detected. In this compendium mainly written for all chemists playing with (pro)chirality, we overview various key aspects of NMR in weakly aligning chiral solvents as the lyotropic liquid crystals (LLCs), in particular those developed in France to study (pro)chiral compounds in relation with chemists needs: study of enantiopurity of mixture, stereochemistry, natural isotopic fractionation, as well as molecular conformation and configuration. Key representative examples covering the diversity of enantiomorphism concept, and the main and most recent applications illustrating the analytical potential of this NMR in polypeptide-based chiral liquid crystals (CLCs) are examined. The latest analytical strategy developed to determine in-solution conformational distribution of flexibles solutes using NMR in polypeptide-based aligned solvents is also proposed.
Collapse
Affiliation(s)
- Christie Aroulanda
- RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Université Paris-Saclay, Orsay cedex, France
| | - Philippe Lesot
- RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Université Paris-Saclay, Orsay cedex, France
| |
Collapse
|
5
|
Pilecky M, Kämmer SK, Mathieu‐Resuge M, Wassenaar LI, Taipale SJ, Martin‐Creuzburg D, Kainz MJ. Hydrogen isotopes (δ
2
H) of polyunsaturated fatty acids track bioconversion by zooplankton. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13981] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthias Pilecky
- WasserCluster Lunz—Biologische Station Lunz am See Austria
- Department for Biomedical Research Danube University Krems Krems Austria
| | | | | | | | - Sami J. Taipale
- Department of Biological and Environmental Science University of Jyväskylä Survontie Finland
| | | | - Martin J. Kainz
- WasserCluster Lunz—Biologische Station Lunz am See Austria
- Department for Biomedical Research Danube University Krems Krems Austria
| |
Collapse
|
6
|
Lesot P, Aroulanda C, Berdagué P, Meddour A, Merlet D, Farjon J, Giraud N, Lafon O. Multinuclear NMR in polypeptide liquid crystals: Three fertile decades of methodological developments and analytical challenges. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:85-154. [PMID: 32130960 DOI: 10.1016/j.pnmrs.2019.10.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
NMR spectroscopy of oriented samples makes accessible residual anisotropic intramolecular NMR interactions, such as chemical shift anisotropy (RCSA), dipolar coupling (RDC), and quadrupolar coupling (RQC), while preserving high spectral resolution. In addition, in a chiral aligned environment, enantiomers of chiral molecules or enantiopic elements of prochiral compounds adopt different average orientations on the NMR timescale, and hence produce distinct NMR spectra or signals. NMR spectroscopy in chiral aligned media is a powerful analytical tool, and notably provides unique information on (pro)chirality analysis, natural isotopic fractionation, stereochemistry, as well as molecular conformation and configuration. Significant progress has been made in this area over the three last decades, particularly using polypeptide-based chiral liquid crystals (CLCs) made of organic solutions of helically chiral polymers (as PBLG) in organic solvents. This review presents an overview of NMR in polymeric LCs. In particular, we describe the theoretical tools and the major NMR methods that have been developed and applied to study (pro)chiral molecules dissolved in such oriented solvents. We also discuss the representative applications illustrating the analytical potential of this original NMR tool. This overview article is dedicated to thirty years of original contributions to the development of NMR spectroscopy in polypeptide-based chiral liquid crystals.
Collapse
Affiliation(s)
- Philippe Lesot
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France; Centre National de la Recherche Scientifique (CNRS), France.
| | - Christie Aroulanda
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Philippe Berdagué
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Abdelkrim Meddour
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Denis Merlet
- Université Paris Sud/Université Paris-Saclay, UMR CNRS 8182, Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO, Equipe RMN en Milieu Orienté, Bât. 410, 15 rue du Doyen Georges Poitou, F-91405 Orsay cedex, France
| | - Jonathan Farjon
- Centre National de la Recherche Scientifique (CNRS), France; Faculté des Sciences et Techniques de Nantes, UMR CNRS 6230, Chimie et Interdisciplinarité, Synthèse, Analyse, Modélisation, CEISAM, Equipe EBSI, BP 92208, 2 rue de la Houssinière, F-44322 Nantes cedex 3, France
| | - Nicolas Giraud
- Université Paris Descartes, Sorbonne Paris Cité, UMR CNRS 8601, Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, LPTCB, 45 rue des Saints Pères, F-75006 Paris, France
| | - Olivier Lafon
- Universite de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR CNRS 8181, Unité de Catalyse et Chimie du Solide, UCCS, F-59000 Lille, France; Institut Universitaire de France (IUF), France
| |
Collapse
|
7
|
Cormier MA, Werner RA, Sauer PE, Gröcke DR, Leuenberger MC, Wieloch T, Schleucher J, Kahmen A. 2 H-fractionations during the biosynthesis of carbohydrates and lipids imprint a metabolic signal on the δ 2 H values of plant organic compounds. THE NEW PHYTOLOGIST 2018; 218:479-491. [PMID: 29460486 DOI: 10.1111/nph.15016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/23/2017] [Indexed: 06/08/2023]
Abstract
Hydrogen (H) isotope ratio (δ2 H) analyses of plant organic compounds have been applied to assess ecohydrological processes in the environment despite a large part of the δ2 H variability observed in plant compounds not being fully elucidated. We present a conceptual biochemical model based on empirical H isotope data that we generated in two complementary experiments that clarifies a large part of the unexplained variability in the δ2 H values of plant organic compounds. The experiments demonstrate that information recorded in the δ2 H values of plant organic compounds goes beyond hydrological signals and can also contain important information on the carbon and energy metabolism of plants. Our model explains where 2 H-fractionations occur in the biosynthesis of plant organic compounds and how these 2 H-fractionations are tightly coupled to a plant's carbon and energy metabolism. Our model also provides a mechanistic basis to introduce H isotopes in plant organic compounds as a new metabolic proxy for the carbon and energy metabolism of plants and ecosystems. Such a new metabolic proxy has the potential to be applied in a broad range of disciplines, including plant and ecosystem physiology, biogeochemistry and palaeoecology.
Collapse
Affiliation(s)
- Marc-André Cormier
- Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, 4056, Basel, Switzerland
| | - Roland A Werner
- Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - Peter E Sauer
- Department of Geological Sciences, Indiana University, Bloomington, IN, 47405-1405, USA
| | - Darren R Gröcke
- Stable Isotope Biogeochemistry Laboratory, Science Laboratories, Durham University, South Road, Durham, DH1 3LE, UK
| | - Markus C Leuenberger
- Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Thomas Wieloch
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Jürgen Schleucher
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87, Umeå, Sweden
| | - Ansgar Kahmen
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, 4056, Basel, Switzerland
| |
Collapse
|
8
|
Texier-Bonniot T, Berdagué P, Robins RJ, Remaud G, Lesot P. Analytical contribution of deuterium 2D-NMR in oriented media to2H/1H isotopic characterization: the case of vanillin. FLAVOUR FRAG J 2018. [DOI: 10.1002/ffj.3441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tristan Texier-Bonniot
- RMN en Milieu Orienté; ICMMO; UMR CNRS 8182; Université Paris-Sud; Université Paris-Saclay; Bâtiment 410, 15 rue du Doyen Georges Poitou F-91405 Orsay France
| | - Philippe Berdagué
- RMN en Milieu Orienté; ICMMO; UMR CNRS 8182; Université Paris-Sud; Université Paris-Saclay; Bâtiment 410, 15 rue du Doyen Georges Poitou F-91405 Orsay France
| | - Richard J. Robins
- Elucidation of Biosynthesis by Isotopic Spectrometry Group; CEISAM; University of Nantes-CNRS UMR6230; F-44322 Nantes France
| | - Gérald Remaud
- Elucidation of Biosynthesis by Isotopic Spectrometry Group; CEISAM; University of Nantes-CNRS UMR6230; F-44322 Nantes France
| | - Philippe Lesot
- RMN en Milieu Orienté; ICMMO; UMR CNRS 8182; Université Paris-Sud; Université Paris-Saclay; Bâtiment 410, 15 rue du Doyen Georges Poitou F-91405 Orsay France
| |
Collapse
|
9
|
Navarro-Vázquez A, Berdagué P, Lesot P. Integrated Computational Protocol for the Analysis of Quadrupolar Splittings from Natural-Abundance Deuterium NMR Spectra in (Chiral) Oriented Media. Chemphyschem 2017; 18:1252-1266. [DOI: 10.1002/cphc.201601423] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Armando Navarro-Vázquez
- Departamento de Química Fundamental; Universidade Federal de Pernambuco Cidade Universitária; CEP: 50 740-540 Recife PE Brazil
- Institute of Organic Chemistry and Institute for Biological Interfaces; Karlsruhe Institute of Technology (KIT); Fritz-Haber-Weg 6 76131 Karlsruhe German
| | - Philippe Berdagué
- RMN en Milieu Orienté; ICMMO; UMR CNRS 8182; Université Paris-Sud/Université Paris-Saclay; Bât. 410 91405 Orsay cedex France
| | - Philippe Lesot
- RMN en Milieu Orienté; ICMMO; UMR CNRS 8182; Université Paris-Sud/Université Paris-Saclay; Bât. 410 91405 Orsay cedex France
| |
Collapse
|
10
|
Zhou Y, Grice K, Stuart-Williams H, Hocart CH, Gessler A, Farquhar GD. Hydrogen isotopic differences between C 3 and C 4 land plant lipids: consequences of compartmentation in C 4 photosynthetic chemistry and C 3 photorespiration. PLANT, CELL & ENVIRONMENT 2016; 39:2676-2690. [PMID: 27566133 DOI: 10.1111/pce.12821] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
The 2 H/1 H ratio of carbon-bound H in biolipids holds potential for probing plant lipid biosynthesis and metabolism. The biochemical mechanism underlying the isotopic differences between lipids from C3 and C4 plants is still poorly understood. GC-pyrolysis-IRMS (gas chromatography-pyrolysis-isotope ratio mass spectrometry) measurement of the 2 H/1 H ratio of leaf lipids from controlled and field grown plants indicates that the biochemical isotopic fractionation (ε2 Hlipid_biochem ) differed between C3 and C4 plants in a pathway-dependent manner: ε2 HC4 > ε2 HC3 for the acetogenic pathway, ε2 HC4 < ε2 HC3 for the mevalonic acid pathway and the 1-deoxy-D-xylulose 5-phosphate pathway across all species examined. It is proposed that compartmentation of photosynthetic CO2 fixation into C4 mesophyll (M) and bundle sheath (BS) cells and suppression of photorespiration in C4 M and BS cells both result in C4 M chloroplastic pyruvate - the precursor for acetogenic pathway - being more depleted in 2 H relative to pyruvate in C3 cells. In addition, compartmentation in C4 plants also results in (i) the transferable H of NADPH being enriched in 2 H in C4 M chloroplasts compared with that in C3 chloroplasts for the 1-deoxy-D-xylulose 5-phosphate pathway pathway and (ii) pyruvate relatively 2 H-enriched being used for the mevalonic acid pathway in the cytosol of BS cells in comparison with that in C3 cells.
Collapse
Affiliation(s)
- Youping Zhou
- School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
- WA-Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, Curtin University, Perth, 6845, Australia
- Institute for Landscape Biogeochemistry, ZALF, Müncheberg, 15374, Germany
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Kliti Grice
- WA-Organic and Isotope Geochemistry Centre, The Institute for Geoscience Research, Curtin University, Perth, 6845, Australia
| | | | - Charles H Hocart
- Research School of Biology, Australian National University, Canberra, 2601, Australia
| | - Arthur Gessler
- Institute for Landscape Biogeochemistry, ZALF, Müncheberg, 15374, Germany
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, 8903, Switzerland
| | - Graham D Farquhar
- Research School of Biology, Australian National University, Canberra, 2601, Australia
| |
Collapse
|
11
|
Lesot P, Berdagué P, Giraudeau P. Detection of quadrupolar nuclei by ultrafast 2D NMR: exploring the case of deuterated analytes aligned in chiral oriented solvents. Chem Commun (Camb) 2016; 52:2122-2125. [DOI: 10.1039/c5cc09409g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Anisotropic 2H ultrafast (ADUF) 2D NMR spectroscopy for studying deuterated analytes dissolved in chiral liquid crystals is investigated and its analytical possibilities are evaluated.
Collapse
Affiliation(s)
- Philippe Lesot
- Equipe RMN en Milieu Orienté
- ICMMO
- UMR-CNRS 8182
- Université de Paris-Sud
- Université Paris-Saclay
| | - Philippe Berdagué
- Equipe RMN en Milieu Orienté
- ICMMO
- UMR-CNRS 8182
- Université de Paris-Sud
- Université Paris-Saclay
| | | |
Collapse
|
12
|
Lesot P, Aroulanda C, Zimmermann H, Luz Z. Enantiotopic discrimination in the NMR spectrum of prochiral solutes in chiral liquid crystals. Chem Soc Rev 2015; 44:2330-75. [DOI: 10.1039/c4cs00260a] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theory and applications to stereo- and bio-chemistry of the discrimination of enantiotopic elements observed in the NMR spectra of prochiral solutes dissolved in chiral liquid crystals are comprehensively discussed.
Collapse
Affiliation(s)
- Philippe Lesot
- Laboratoire de RMN en Milieu Orienté CNRS UMR 8182
- ICMMO
- 91405 Orsay cedex
- France
| | - Christie Aroulanda
- Laboratoire de RMN en Milieu Orienté CNRS UMR 8182
- ICMMO
- 91405 Orsay cedex
- France
| | - Herbert Zimmermann
- Abteilung Biophysik
- Max-Planck-Institut für Medizinische Forschung
- 69120 Heidelberg
- Germany
| | - Zeev Luz
- Weizmann Institute of Science
- Department of Chemical Physics
- Rehovot 76100
- Israel
| |
Collapse
|
13
|
Lee SG, Hyun SH, Sung GH, Choi HK. Simple and Rapid Determination of Cordycepin in Cordyceps militarisFruiting Bodies by Quantitative Nuclear Magnetic Resonance Spectroscopy. ANAL LETT 2014. [DOI: 10.1080/00032719.2013.862625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Kazimierczuk K, Lafon O, Lesot P. Criteria for sensitivity enhancement by compressed sensing: practical application to anisotropic NAD 2D-NMR spectroscopy. Analyst 2014; 139:2702-13. [DOI: 10.1039/c4an00381k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Lesot P, Serhan Z, Aroulanda C, Billault I. Analytical contribution of NAD 2D-NMR spectroscopy in polypeptide mesophases to the investigation of triglycerides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2012; 50 Suppl 1:S2-S11. [PMID: 23280656 DOI: 10.1002/mrc.3855] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/02/2012] [Accepted: 07/09/2012] [Indexed: 06/01/2023]
Abstract
In this work, we report and discuss on the use and limitations of the natural abundance deuterium two-dimensional NMR spectroscopy in polypeptide chiral and achiral aligning media in the studies of homogenous triglycerides at 14.1 T. As illustrative examples, two triglycerides with short and long alkyl chains were investigated: the 1,3-di(butanoyloxy)propan-2-yl butanoate or tributyrin (TB) and the 1,3-di(tetradecanoyloxy)propan-2-yl tetradecanoate or trimyristin (TM). If both flexible compounds are theoretically of C(s) symmetry on average, according to the Altmann's definition (Proc. Roy. Soc., 1967, A298, 184.), the analysis of spectral data in terms of enantiotopic and diastereotopic discriminations shows noticeable differences related to their orientational ordering behavior inside the mesophases. Although from NMR analysis viewpoint, TB behaves as a C(s) symmetry molecule as expected, the NMR results obtained for TM suggest a behavior that could be formally predicted for a C(3v) symmetry molecule on average. This conclusion was nicely supported by the comparison with the tri-n-propylorthoformate, a real C(3v) symmetry solute on average on the NMR timescale. This difference of effective orientational behavior could originate from the difference of size and shape between lateral and central alkyl chains of the solute molecule.
Collapse
Affiliation(s)
- Philippe Lesot
- RMN en Milieu Orienté, ICMMO, UMR CNRS 8182, Université de Paris-Sud, 15 rue Georges Clémenceau, 91405 Orsay cedex, France.
| | | | | | | |
Collapse
|
16
|
Ding L, Peschel G, Hertweck C. Biosynthesis of archetypal plant self-defensive oxylipins by an endophytic fungus residing in mangrove embryos. Chembiochem 2012; 13:2661-4. [PMID: 23165938 DOI: 10.1002/cbic.201200544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Indexed: 02/05/2023]
Abstract
A tree's travel companion: a fungal endophyte (Fusarium incarnatum) isolated from a viviparous propagule (embryo) of a mangrove tree produces typical plant defense oxylipins. Stable-isotope labeling experiments revealed that the endophyte biosynthesizes coriolic acid, didehydrocoriolic acid, and an epoxy fatty acid derived from linoleic acid by a process involving Δ(15)-desaturation and 13-lipoxygenation.
Collapse
Affiliation(s)
- Ling Ding
- Dept. Biomolecular Chemistry, HKI, Jena, Germany
| | | | | |
Collapse
|
17
|
Chivall D, Berstan R, Bull ID, Evershed RP. Isotope effects associated with the preparation and methylation of fatty acids by boron trifluoride in methanol for compound-specific stable hydrogen isotope analysis via gas chromatography/thermal conversion/isotope ratio mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1232-1240. [PMID: 22499199 DOI: 10.1002/rcm.6188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
RATIONALE Compound-specific stable hydrogen isotope analysis of fatty acids is being used increasingly as a means of deriving information from a diverse range of materials of archaeological, geological and environmental interest. Preparative steps required prior to isotope ratio mass spectrometry (IRMS) analysis have the potential to alter determined δD values and hence must be accounted for if accurate δD values for target compounds are to be obtained. METHODS Myristic, palmitic, stearic, arachidic and behenic saturated fatty acids were derivatised to their respective fatty acid methyl esters (FAMEs), using 14% (w/v) boron trifluoride in methanol then analysed by gas chromatography/thermal conversion/IRMS (GC/TC/IRMS). FAMEs generated from fatty acid sodium salts of unknown δD values were then used to test a correction factor determined for this method of derivatisation. RESULTS Derivatisation was found to alter the hydrogen isotopic composition of FAMEs although this effect was reproducible and can be accounted for. The difference between the mean corrected and mean bulk δD values was always less than 6.7 ‰. Extraction of saturated fatty acids and acyl lipids from samples, subsequent hydrolysis, then separation on a solid-phase extraction cartridge, was found to alter the determined δD values by less than one standard deviation. CONCLUSIONS Overall, it has been shown that for natural abundance hydrogen isotope determinations, the isolation and derivatisation of extracted fatty acids alters the determined δD values only by a numerical increment comparable with the experimental error. This supports the use of the described analytical protocol as an effective means of determining fatty acid δD values by GC/TC/IRMS.
Collapse
Affiliation(s)
- David Chivall
- Bristol Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
18
|
Lesot P, Lafon O. Experimental Detection of Achiral and Chiral Naturally Abundant 13C–2H Isotopomers by 2D-NMR in Liquids and Chiral Oriented Solvents. Anal Chem 2012; 84:4569-73. [DOI: 10.1021/ac300667n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Philippe Lesot
- RMN en Milieu Orienté,
ICMMO, UMR-CNRS 8182, Université de Paris-Sud 11, Orsay, F-91405 Orsay Cedex, France
| | - Olivier Lafon
- Unité de Catalyse et
de Chimie du Solide, UMR-CNRS 8181, Université de Lille Nord de France, Univ Lille 1, ENSCL, Cité
Scientifique, Bât. C7, F-59652, Villeneuve d’Ascq Cedex,
France
| |
Collapse
|
19
|
Probing substrate–product relationships by natural abundance deuterium 2D NMR spectroscopy in liquid-crystalline solvents: epoxidation of linoleate to vernoleate by two different plant enzymes. Anal Bioanal Chem 2012; 402:2985-98. [DOI: 10.1007/s00216-012-5748-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 11/25/2022]
|
20
|
Serhan Z, Borgogno A, Billault I, Ferrarini A, Lesot P. Analysis of NAD 2D-NMR spectra of saturated fatty acids in polypeptide aligning media by experimental and modeling approaches. Chemistry 2011; 18:117-26. [PMID: 22162274 DOI: 10.1002/chem.201102775] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Indexed: 11/11/2022]
Abstract
The overall and detailed elucidation (including the stereochemical aspects) of enzymatic mechanisms requires the access to all reliable information related to the natural isotopic fractionation of both precursors and products. Natural abundance deuterium (NAD) 2D-NMR experiments in polypeptide liquid-crystalline solutions are a new, suitable tool for analyzing site-specific deuterium isotopic distribution profiles. Here this method is utilized for analyzing saturated C14 to C18 fatty acid methyl esters (FAMEs), which are challenging because of the crowding of signals in a narrow spectral region. Experiments in achiral and chiral oriented solutions were performed. The spectral analysis is supplemented by the theoretical prediction of quadrupolar splittings as a function of the geometry and flexibility of FAMEs, based on a novel computational methodology. This allows us to confirm the spectral assignments, while providing insights into the mechanism of solute ordering in liquid-crystalline polypeptide solutions. This is found to be dominated by steric repulsions between FAMEs and polypeptides.
Collapse
Affiliation(s)
- Zeinab Serhan
- RMN en Milieu Orienté, ICMMO, UMR-CNRS 8182, Université de Paris Sud 11, 91405 Orsay Cedex, France
| | | | | | | | | |
Collapse
|
21
|
Lafon O, Hu B, Amoureux JP, Lesot P. Fast and High-Resolution Stereochemical Analysis by Nonuniform Sampling and Covariance Processing of Anisotropic Natural Abundance 2D 2H NMR Datasets. Chemistry 2011; 17:6716-24. [DOI: 10.1002/chem.201100461] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Indexed: 11/09/2022]
|
22
|
Recent advances in the analysis of the site-specific isotopic fractionation of metabolites such as fatty acids using anisotropic natural-abundance 2H NMR spectroscopy: application to conjugated linolenic methyl esters. Anal Bioanal Chem 2010; 399:1187-200. [DOI: 10.1007/s00216-010-4394-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/26/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
|
23
|
Zhou Y, Grice K, Stuart-Williams H, Farquhar GD, Hocart CH, Lu H, Liu W. Biosynthetic origin of the saw-toothed profile in delta(13)C and delta(2)H of n-alkanes and systematic isotopic differences between n-, iso- and anteiso-alkanes in leaf waxes of land plants. PHYTOCHEMISTRY 2010; 71:388-403. [PMID: 20056262 DOI: 10.1016/j.phytochem.2009.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 11/19/2009] [Accepted: 11/19/2009] [Indexed: 05/28/2023]
Abstract
The n-fatty acids containing an even number of carbons (ECN-n-FAs) in higher plants are biosynthesised by repetitive addition of a two carbon unit from malonyl-ACP. The n-alkanes containing an odd number of carbon atoms (OCN-n-alkanes) are generally formed by the decarboxylation of ECN-n-FAs, but it is unknown how the less abundant even-carbon-numbered alkanes (ECN-n-alkanes) are biosynthesised in higher plants. There is a distinctive compositional pattern of incorporation of stable carbon ((13)C) and hydrogen ((2)H) isotopes in co-existing ECN- and OCN-n-alkanes in leaves of higher plants, such that the OCN n-alkanes are relatively enriched in (13)C but relatively depleted in (2)H against the ECN-n-alkanes. This is consistent with the OCN-n-fatty acids having a propionate precursor which is derived from reduction of pyruvate. A tentative pathway is presented with propionate produced by enzymatic reduction of pyruvate which is then thio-esterified with CoSH (coenzyme A thiol) in the chloroplast to form the terminal precursor molecule propionyl-CoA. This is then repetitively extended/elongated with the 2-carbon unit from malonyl-ACP to form the long chain OCN-n-fatty acids. The anteiso- and iso-alkanes in Nicotiana tabacum leaf waxes have previously been found to be systematically enriched in (13)C compared with the n-alkanes by Grice et al. (2008). This is consistent with the isotopic composition of their putative respective precursors (pyruvate as precursor for n-alkanes, valine for iso-alkanes and isoleucine for anteiso-alkanes). The current study complements that of Grice et al. (2008) and looks at the distribution of hydrogen isotopes. The n-alkanes were found to be more enriched in deuterium ((2)H) than the iso-alkanes which in turn were more enriched than the anteiso-alkanes. We propose therefore that the depletion of (2)H in the iso-alkanes, relative to the n-alkanes is the consequence of accepting highly (2)H-depleted hydrogen atoms from NADPH during their biosynthesis. The anteiso-alkanes are further depleted again because there are three NADPH-derived hydrogen atoms in their precursor isoleucine, as compared with only one NADPH-derived hydrogen in valine, the precursor of the iso-alkanes.
Collapse
Affiliation(s)
- Youping Zhou
- RSB, Australian National University, Canberra, ACT 2601, Australia.
| | | | | | | | | | | | | |
Collapse
|
24
|
Serhan Z, Martel L, Billault I, Lesot P. Complete determination of natural site-specific enantio-isotopomeric excesses in linoleic acid using natural abundance deuterium 2D NMR in polypeptide mesophases. Chem Commun (Camb) 2010; 46:6599-601. [DOI: 10.1039/c0cc01486a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Observation and characterization of NMR signals in spin-1 system based on intermolecular multiple-quantum coherences. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Botosoa EP, Blumenstein C, MacKenzie DA, Silvestre V, Remaud GS, Kwiecień RA, Robins RJ. Quantitative isotopic 13C nuclear magnetic resonance at natural abundance to probe enzyme reaction mechanisms via site-specific isotope fractionation: The case of the chain-shortening reaction for the bioconversion of ferulic acid to vanillin. Anal Biochem 2009; 393:182-8. [DOI: 10.1016/j.ab.2009.06.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/18/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
|