1
|
Pu M, Zheng W, Zhang H, Wan W, Peng C, Chen X, Liu X, Xu Z, Zhou T, Sun Q, Neculai D, Liu W. ORP8 acts as a lipophagy receptor to mediate lipid droplet turnover. Protein Cell 2023; 14:653-667. [PMID: 37707322 PMCID: PMC10501187 DOI: 10.1093/procel/pwac063] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/22/2022] [Indexed: 09/15/2023] Open
Abstract
Lipophagy, the selective engulfment of lipid droplets (LDs) by autophagosomes for lysosomal degradation, is critical to lipid and energy homeostasis. Here we show that the lipid transfer protein ORP8 is located on LDs and mediates the encapsulation of LDs by autophagosomal membranes. This function of ORP8 is independent of its lipid transporter activity and is achieved through direct interaction with phagophore-anchored LC3/GABARAPs. Upon lipophagy induction, ORP8 has increased localization on LDs and is phosphorylated by AMPK, thereby enhancing its affinity for LC3/GABARAPs. Deletion of ORP8 or interruption of ORP8-LC3/GABARAP interaction results in accumulation of LDs and increased intracellular triglyceride. Overexpression of ORP8 alleviates LD and triglyceride deposition in the liver of ob/ob mice, and Osbpl8-/- mice exhibit liver lipid clearance defects. Our results suggest that ORP8 is a lipophagy receptor that plays a key role in cellular lipid metabolism.
Collapse
Affiliation(s)
- Maomao Pu
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Wenhui Zheng
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Hongtao Zhang
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Wei Wan
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Chao Peng
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuebo Chen
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xinchang Liu
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zizhen Xu
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Tianhua Zhou
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Qiming Sun
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Dante Neculai
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
| | - Wei Liu
- Metabolic Medicine Center, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China
- Joint Institute of Genetics and Genomics Medicine between Zhejiang University and University of Toronto, Hangzhou 310058, China
| |
Collapse
|
2
|
Protein Targeting to Glycogen (PTG): A Promising Player in Glucose and Lipid Metabolism. Biomolecules 2022; 12:biom12121755. [PMID: 36551183 PMCID: PMC9775135 DOI: 10.3390/biom12121755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Protein phosphorylation and dephosphorylation are widely considered to be the key regulatory factors of cell function, and are often referred to as "molecular switches" in the regulation of cell metabolic processes. A large number of studies have shown that the phosphorylation/dephosphorylation of related signal molecules plays a key role in the regulation of liver glucose and lipid metabolism. As a new therapeutic strategy for metabolic diseases, the potential of using inhibitor-based therapies to fight diabetes has gained scientific momentum. PTG, a protein phosphatase, also known as glycogen targeting protein, is a member of the protein phosphatase 1 (PP1) family. It can play a role by catalyzing the dephosphorylation of phosphorylated protein molecules, especially regulating many aspects of glucose and lipid metabolism. In this review, we briefly summarize the role of PTG in glucose and lipid metabolism, and update its role in metabolic regulation, with special attention to glucose homeostasis and lipid metabolism.
Collapse
|
3
|
An empirical pipeline for personalized diagnosis of Lafora disease mutations. iScience 2021; 24:103276. [PMID: 34755096 PMCID: PMC8564118 DOI: 10.1016/j.isci.2021.103276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
Lafora disease (LD) is a fatal childhood dementia characterized by progressive myoclonic epilepsy manifesting in the teenage years, rapid neurological decline, and death typically within ten years of onset. Mutations in either EPM2A, encoding the glycogen phosphatase laforin, or EPM2B, encoding the E3 ligase malin, cause LD. Whole exome sequencing has revealed many EPM2A variants associated with late-onset or slower disease progression. We established an empirical pipeline for characterizing the functional consequences of laforin missense mutations in vitro using complementary biochemical approaches. Analysis of 26 mutations revealed distinct functional classes associated with different outcomes that were supported by clinical cases. For example, F321C and G279C mutations have attenuated functional defects and are associated with slow progression. This pipeline enabled rapid characterization and classification of newly identified EPM2A mutations, providing clinicians and researchers genetic information to guide treatment of LD patients. Lafora disease (LD) patients present with varying clinical progression LD missense mutations differentially affect laforin function An empirical in vitro pipeline is used to classify laforin missense mutations Patient progression can be predicted based on mutation class
Collapse
|
4
|
Mitra S, Gumusgoz E, Minassian BA. Lafora disease: Current biology and therapeutic approaches. Rev Neurol (Paris) 2021; 178:315-325. [PMID: 34301405 DOI: 10.1016/j.neurol.2021.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/21/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022]
Abstract
The ubiquitin system impacts most cellular processes and is altered in numerous neurodegenerative diseases. However, little is known about its role in neurodegenerative diseases due to disturbances of glycogen metabolism such as Lafora disease (LD). In LD, insufficiently branched and long-chained glycogen forms and precipitates into insoluble polyglucosan bodies (Lafora bodies), which drive neuroinflammation, neurodegeneration and epilepsy. LD is caused by mutations in the gene encoding the glycogen phosphatase laforin or the gene coding for the laforin interacting partner ubiquitin E3 ligase malin. The role of the malin-laforin complex in regulating glycogen structure remains with full of gaps. In this review we bring together the disparate body of data on these two proteins and propose a mechanistic hypothesis of the disease in which malin-laforin's role to monitor and prevent over-elongation of glycogen branch chains, which drive glycogen molecules to precipitate and accumulate into Lafora bodies. We also review proposed connections between Lafora bodies and the ensuing neuroinflammation, neurodegeneration and intractable epilepsy. Finally, we review the exciting activities in developing therapies for Lafora disease based on replacing the missing genes, slowing the enzyme - glycogen synthase - that over-elongates glycogen branches, and introducing enzymes that can digest Lafora bodies. Much more work is needed to fill the gaps in glycogen metabolism in which laforin and malin operate. However, knowledge appears already adequate to advance disease course altering therapies for this catastrophic fatal disease.
Collapse
Affiliation(s)
- S Mitra
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - E Gumusgoz
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - B A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
5
|
Mollá B, Heredia M, Sanz P. Modulators of Neuroinflammation Have a Beneficial Effect in a Lafora Disease Mouse Model. Mol Neurobiol 2021; 58:2508-2522. [PMID: 33447969 PMCID: PMC8167455 DOI: 10.1007/s12035-021-02285-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022]
Abstract
Lafora disease (LD; OMIM#274780) is a fatal rare neurodegenerative disorder characterized by generalized epileptic seizures and the presence of polyglucosan inclusions (PGs), called Lafora bodies (LBs), typically in the brain. LD is caused by mutations in two genes EPM2A or EPM2B, which encode respectively laforin, a glucan phosphatase, and malin, an E3-ubiquitin ligase. Much remains unknown about the molecular bases of LD and, unfortunately, appropriate treatment is still missing; therefore patients die within 10 years from the onset of the disease. Recently, we have identified neuroinflammation as one of the initial determinants in LD. In this work, we have investigated anti-inflammatory treatments as potential therapies in LD. With this aim, we have performed a preclinical study in an Epm2b-/- mouse model with propranolol, a β-adrenergic antagonist, and epigallocatechin gallate (EGCG), an antioxidant from green tea extract, both of which displaying additional anti-inflammatory properties. In vivo motor and cognitive behavioral tests and ex vivo histopathological brain analyses were used as parameters to assess the therapeutic potential of propranolol and EGCG. After 2 months of treatment, we observed an improvement not only in attention defects but also in neuronal disorganization, astrogliosis, and microgliosis present in the hippocampus of Epm2b-/- mice. In general, propranolol intervention was more effective than EGCG in preventing the appearance of astrocyte and microglia reactivity. In summary, our results confirm the potential therapeutic effectiveness of the modulators of inflammation as novel treatments in Lafora disease.
Collapse
Affiliation(s)
- Belén Mollá
- Laboratory of Nutrient Signaling, Institute of Biomedicine of Valencia (CSIC), Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010, Valencia, Spain.
| | - Miguel Heredia
- Laboratory of Nutrient Signaling, Institute of Biomedicine of Valencia (CSIC), Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010, Valencia, Spain
| | - Pascual Sanz
- Laboratory of Nutrient Signaling, Institute of Biomedicine of Valencia (CSIC), Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010, Valencia, Spain
| |
Collapse
|
6
|
Russell FM, Hardie DG. AMP-Activated Protein Kinase: Do We Need Activators or Inhibitors to Treat or Prevent Cancer? Int J Mol Sci 2020; 22:E186. [PMID: 33375416 PMCID: PMC7795930 DOI: 10.3390/ijms22010186] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of cellular energy balance. In response to metabolic stress, it acts to redress energy imbalance through promotion of ATP-generating catabolic processes and inhibition of ATP-consuming processes, including cell growth and proliferation. While findings that AMPK was a downstream effector of the tumour suppressor LKB1 indicated that it might act to repress tumourigenesis, more recent evidence suggests that AMPK can either suppress or promote cancer, depending on the context. Prior to tumourigenesis AMPK may indeed restrain aberrant growth, but once a cancer has arisen, AMPK may instead support survival of the cancer cells by adjusting their rate of growth to match their energy supply, as well as promoting genome stability. The two isoforms of the AMPK catalytic subunit may have distinct functions in human cancers, with the AMPK-α1 gene often being amplified, while the AMPK-α2 gene is more often mutated. The prevalence of metabolic disorders, such as obesity and Type 2 diabetes, has led to the development of a wide range of AMPK-activating drugs. While these might be useful as preventative therapeutics in individuals predisposed to cancer, it seems more likely that AMPK inhibitors, whose development has lagged behind that of activators, would be efficacious for the treatment of pre-existing cancers.
Collapse
Affiliation(s)
| | - David Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dow Street, Dundee, Scotland DD1 5EH, UK;
| |
Collapse
|
7
|
Taneja K, Ganesh S. Dendritic spine abnormalities correlate with behavioral and cognitive deficits in mouse models of Lafora disease. J Comp Neurol 2020; 529:1099-1120. [DOI: 10.1002/cne.25006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/20/2020] [Accepted: 08/04/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Komal Taneja
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur Uttar Pradesh India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering Indian Institute of Technology Kanpur Kanpur Uttar Pradesh India
- The Mehta Family Centre for Engineering in Medicine Indian Institute of Technology Kanpur Kanpur Uttar Pradesh India
| |
Collapse
|
8
|
Abstract
Mammalian AMPK is known to be activated by falling cellular energy status, signaled by rising AMP/ATP and ADP/ATP ratios. We review recent information about how this occurs but also discuss new studies suggesting that AMPK is able to sense glucose availability independently of changes in adenine nucleotides. The glycolytic intermediate fructose-1,6-bisphosphate (FBP) is sensed by aldolase, which binds to the v-ATPase on the lysosomal surface. In the absence of FBP, interactions between aldolase and the v-ATPase are altered, allowing formation of an AXIN-based AMPK-activation complex containing the v-ATPase, Ragulator, AXIN, LKB1, and AMPK, causing increased Thr172 phosphorylation and AMPK activation. This nutrient-sensing mechanism activates AMPK but also primes it for further activation if cellular energy status subsequently falls. Glucose sensing at the lysosome, in which AMPK and other components of the activation complex act antagonistically with another key nutrient sensor, mTORC1, may have been one of the ancestral roles of AMPK.
Collapse
Affiliation(s)
- Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiang'an Campus, Xiamen, Fujian 361102, China.
| | - D Grahame Hardie
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
9
|
Abstract
Mammalian AMP-activated protein kinase (AMPK) is a Ser/Thr protein kinase that acts as a crucial energy sensor in the cell. Since AMPK plays a key role in a multitude of different pathways in the cell, major efforts have been concentrated to elucidate its signaling network, mainly by the identification of AMPK downstream targets. In this chapter we describe a yeast two-hybrid method for the direct evaluation of the interaction between an AMPK subunit and putative substrates.
Collapse
Affiliation(s)
- Pascual Sanz
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.
| | - Rosa Viana
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Maria Adelaida Garcia-Gimeno
- Department of Biotecnología, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), University of Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
10
|
Hughey CC, James FD, Bracy DP, Donahue EP, Young JD, Viollet B, Foretz M, Wasserman DH. Loss of hepatic AMP-activated protein kinase impedes the rate of glycogenolysis but not gluconeogenic fluxes in exercising mice. J Biol Chem 2017; 292:20125-20140. [PMID: 29038293 PMCID: PMC5724001 DOI: 10.1074/jbc.m117.811547] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/10/2017] [Indexed: 11/06/2022] Open
Abstract
Pathologies including diabetes and conditions such as exercise place an unusual demand on liver energy metabolism, and this demand induces a state of energy discharge. Hepatic AMP-activated protein kinase (AMPK) has been proposed to inhibit anabolic processes such as gluconeogenesis in response to cellular energy stress. However, both AMPK activation and glucose release from the liver are increased during exercise. Here, we sought to test the role of hepatic AMPK in the regulation of in vivo glucose-producing and citric acid cycle-related fluxes during an acute bout of muscular work. We used 2H/13C metabolic flux analysis to quantify intermediary metabolism fluxes in both sedentary and treadmill-running mice. Additionally, liver-specific AMPK α1 and α2 subunit KO and WT mice were utilized. Exercise caused an increase in endogenous glucose production, glycogenolysis, and gluconeogenesis from phosphoenolpyruvate. Citric acid cycle fluxes, pyruvate cycling, anaplerosis, and cataplerosis were also elevated during this exercise. Sedentary nutrient fluxes in the postabsorptive state were comparable for the WT and KO mice. However, the increment in the endogenous rate of glucose appearance during exercise was blunted in the KO mice because of a diminished glycogenolytic flux. This lower rate of glycogenolysis was associated with lower hepatic glycogen content before the onset of exercise and prompted a reduction in arterial glucose during exercise. These results indicate that liver AMPKα1α2 is required for maintaining glucose homeostasis during an acute bout of exercise.
Collapse
Affiliation(s)
- Curtis C Hughey
- Department of Molecular Physiology and Biophysics, Nashville, Tennessee 37232
| | - Freyja D James
- Department of Molecular Physiology and Biophysics, Nashville, Tennessee 37232; Mouse Metabolic Phenotyping Center, Nashville, Tennessee 37232
| | - Deanna P Bracy
- Department of Molecular Physiology and Biophysics, Nashville, Tennessee 37232; Mouse Metabolic Phenotyping Center, Nashville, Tennessee 37232
| | - E Patrick Donahue
- Department of Molecular Physiology and Biophysics, Nashville, Tennessee 37232
| | - Jamey D Young
- Department of Molecular Physiology and Biophysics, Nashville, Tennessee 37232; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37232
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, 75014 Paris, France; CNRS, UMR 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Nashville, Tennessee 37232; Mouse Metabolic Phenotyping Center, Nashville, Tennessee 37232.
| |
Collapse
|
11
|
Biophysical characterization of laforin–carbohydrate interaction. Biochem J 2016; 473:335-45. [DOI: 10.1042/bj20141555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 11/17/2015] [Indexed: 11/17/2022]
Abstract
Laforin, a key regulator of glycogen metabolism, is a low-affinity glycan binder. In the present work, we thoroughly biophysically characterized its glycan interaction.
Collapse
|
12
|
Loss of protein targeting to glycogen sensitizes human hepatocellular carcinoma cells towards glucose deprivation mediated oxidative stress and cell death. Biosci Rep 2015; 35:BSR20150090. [PMID: 26182369 PMCID: PMC4613675 DOI: 10.1042/bsr20150090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/01/2015] [Indexed: 01/01/2023] Open
Abstract
PTG is a protein that is critical for glycogen accumulation in various tissues such as the liver. Our present study shows that its loss sensitizes liver cancer cells towards metabolic and oxidative stress. Protein targeting to glycogen (PTG) is a ubiquitously expressed scaffolding protein that critically regulates glycogen levels in many tissues, including the liver, muscle and brain. However, its importance in transformed cells has yet to be explored in detail. Since recent studies have demonstrated an important role for glycogen metabolism in cancer cells, we decided to assess the effect of PTG levels on the ability of human hepatocellular carcinoma (HepG2) cells to respond to metabolic stress. Although PTG expression did not significantly affect the proliferation of HepG2 cells under normal culture conditions, we determined that PTG plays an important role during glucose deprivation. Overexpression of PTG protected cells from cell death in the absence of glucose, whereas knocking down PTG further promoted cytotoxicity, as measured by the release of lactate dehydrogenase (LDH) into the media. Additionally, we demonstrated that PTG attenuates glucose deprivation induced haeme oxygenase-1 (HO-1) expression, suggesting that PTG protects against glucose deprivation-induced oxidative stress. Indeed, treating cells with the antioxidant N-acetyl cysteine (NAC) rescued cells from cytotoxicity caused by glucose deprivation. Finally, we showed that loss of PTG resulted in enhanced autophagy. In control cells, glucose deprivation suppressed autophagy as determined by the increase in the levels of p62, an autophagy substrate. However, in knockdown cells, this suppression was relieved. Blockade of autophagy also attenuated cytotoxicity from glucose deprivation in PTG knockdown cells. Taken together, our findings identify a novel role for PTG in protecting hepatocellular carcinoma cells from metabolic stress, in part by regulating oxidative stress and autophagy.
Collapse
|
13
|
The effect of high glucose levels on the hypermethylation of protein phosphatase 1 regulatory subunit 3C (PPP1R3C) gene in colorectal cancer. J Genet 2015; 94:75-85. [DOI: 10.1007/s12041-015-0492-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Oligschlaeger Y, Miglianico M, Chanda D, Scholz R, Thali RF, Tuerk R, Stapleton DI, Gooley PR, Neumann D. The recruitment of AMP-activated protein kinase to glycogen is regulated by autophosphorylation. J Biol Chem 2015; 290:11715-28. [PMID: 25792737 PMCID: PMC4416872 DOI: 10.1074/jbc.m114.633271] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 12/17/2022] Open
Abstract
The mammalian AMP-activated protein kinase (AMPK) is an obligatory αβγ heterotrimeric complex carrying a carbohydrate-binding module (CBM) in the β-subunit (AMPKβ) capable of attaching AMPK to glycogen. Nonetheless, AMPK localizes at many different cellular compartments, implying the existence of mechanisms that prevent AMPK from glycogen binding. Cell-free carbohydrate binding assays revealed that AMPK autophosphorylation abolished its carbohydrate-binding capacity. X-ray structural data of the CBM displays the central positioning of threonine 148 within the binding pocket. Substitution of Thr-148 for a phospho-mimicking aspartate (T148D) prevents AMPK from binding to carbohydrate. Overexpression of isolated CBM or β1-containing AMPK in cellular models revealed that wild type (WT) localizes to glycogen particles, whereas T148D shows a diffuse pattern. Pharmacological AMPK activation and glycogen degradation by glucose deprivation but not forskolin enhanced cellular Thr-148 phosphorylation. Cellular glycogen content was higher if pharmacological AMPK activation was combined with overexpression of T148D mutant relative to WT AMPK. In summary, these data show that glycogen-binding capacity of AMPKβ is regulated by Thr-148 autophosphorylation with likely implications in the regulation of glycogen turnover. The findings further raise the possibility of regulated carbohydrate-binding function in a wider variety of CBM-containing proteins.
Collapse
Affiliation(s)
- Yvonne Oligschlaeger
- From the Department of Molecular Genetics, CARIM School of Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Marie Miglianico
- From the Department of Molecular Genetics, CARIM School of Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Dipanjan Chanda
- From the Department of Molecular Genetics, CARIM School of Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Roland Scholz
- the Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland, and
| | - Ramon F Thali
- the Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland, and
| | - Roland Tuerk
- the Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland, and
| | | | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia
| | - Dietbert Neumann
- From the Department of Molecular Genetics, CARIM School of Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands, the Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland, and
| |
Collapse
|
15
|
Ronnebaum SM, Patterson C, Schisler JC. Minireview: hey U(PS): metabolic and proteolytic homeostasis linked via AMPK and the ubiquitin proteasome system. Mol Endocrinol 2014; 28:1602-15. [PMID: 25099013 DOI: 10.1210/me.2014-1180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One of the master regulators of both glucose and lipid cellular metabolism is 5'-AMP-activated protein kinase (AMPK). As a metabolic pivot that dynamically responds to shifts in nutrient availability and stress, AMPK dysregulation is implicated in the underlying molecular pathology of a variety of diseases, including cardiovascular diseases, diabetes, cancer, neurological diseases, and aging. Although the regulation of AMPK enzymatic activity by upstream kinases is an active area of research, less is known about regulation of AMPK protein stability and activity by components of the ubiquitin-proteasome system (UPS), the cellular machinery responsible for both the recognition and degradation of proteins. Furthermore, there is growing evidence that AMPK regulates overall proteasome activity and individual components of the UPS. This review serves to identify the current understanding of the interplay between AMPK and the UPS and to promote further exploration of the relationship between these regulators of energy use and amino acid availability within the cell.
Collapse
Affiliation(s)
- Sarah M Ronnebaum
- McAllister Heart Institute (S.M.R., J.C.S.) and Department of Pharmacology (J.C.S.), The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; and Presbyterian Hospital/Weill-Cornell Medical Center (C.P.), New York, New York 10065
| | | | | |
Collapse
|
16
|
Garyali P, Segvich DM, DePaoli-Roach AA, Roach PJ. Protein degradation and quality control in cells from laforin and malin knockout mice. J Biol Chem 2014; 289:20606-14. [PMID: 24914213 PMCID: PMC4110273 DOI: 10.1074/jbc.m114.580167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/03/2014] [Indexed: 12/21/2022] Open
Abstract
Lafora disease is a progressive myoclonus epilepsy caused by mutations in the EPM2A or EPM2B genes that encode a glycogen phosphatase, laforin, and an E3 ubiquitin ligase, malin, respectively. Lafora disease is characterized by accumulation of insoluble, poorly branched, hyperphosphorylated glycogen in brain, muscle, heart, and liver. The laforinmalin complex has been proposed to play a role in the regulation of glycogen metabolism and protein quality control. We evaluated three arms of the protein degradation/ quality control process (the autophago-lysosomal pathway, the ubiquitin-proteasomal pathway, and the endoplasmic reticulum (ER) stress response) in mouse embryonic fibroblasts from Epm2a(-/-), Epm2b(-/-), and Epm2a(-/-) Epm2b(-/-) mice. The levels of LC3-II, a marker of autophagy, were decreased in all knock-out cells as compared with wild type even though they still showed a slight response to starvation and rapamycin. Furthermore, ribosomal protein S6 kinase and S6 phosphorylation were increased. Under basal conditions there was no effect on the levels of ubiquitinated proteins in the knock-out cells, but ubiquitinated protein degradation was decreased during starvation or stress. Lack of malin (Epm2b(-/-) and Epm2a(-/-) Epm2b(-/-) cells) but not laforin (Epm2a(-/-) cells) decreased LAMP1, a lysosomal marker. CHOP expression was similar in wild type and knock-out cells under basal conditions or with ER stress-inducing agents. In conclusion, both laforin and malin knock-out cells display mTOR-dependent autophagy defects and reduced proteasomal activity but no defects in the ER stress response. We speculate that these defects may be secondary to glycogen overaccumulation. This study also suggests a malin function independent of laforin, possibly in lysosomal biogenesis and/or lysosomal glycogen disposal.
Collapse
Affiliation(s)
- Punitee Garyali
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Dyann M. Segvich
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Anna A. DePaoli-Roach
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Peter J. Roach
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
17
|
Laforin-malin complex degrades polyglucosan bodies in concert with glycogen debranching enzyme and brain isoform glycogen phosphorylase. Mol Neurobiol 2013; 49:645-57. [PMID: 24068615 DOI: 10.1007/s12035-013-8546-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/27/2013] [Indexed: 10/26/2022]
Abstract
In Lafora disease (LD), the deficiency of either EPM2A or NHLRC1, the genes encoding the phosphatase laforin and E3 ligase, respectively, causes massive accumulation of less-branched glycogen inclusions, known as Lafora bodies, also called polyglucosan bodies (PBs), in several types of cells including neurons. The biochemical mechanism underlying the PB accumulation, however, remains undefined. We recently demonstrated that laforin is a phosphatase of muscle glycogen synthase (GS1) in PBs, and that laforin recruits malin, together reducing PBs. We show here that accomplishment of PB degradation requires a protein assembly consisting of at least four key enzymes: laforin and malin in a complex, and the glycogenolytic enzymes, glycogen debranching enzyme 1 (AGL1) and brain isoform glycogen phosphorylase (GPBB). Once GS1-synthesized polyglucosan accumulates into PBs, laforin recruits malin to the PBs where laforin dephosphorylates, and malin degrades the GS1 in concert with GPBB and AGL1, resulting in a breakdown of polyglucosan. Without fountional laforin-malin complex assembled on PBs, GPBB and AGL1 together are unable to efficiently breakdown polyglucosan. All these events take place on PBs and in cytoplasm. Deficiency of each of the four enzymes causes PB accumulation in the cytoplasm of affected cells. Demonstration of the molecular mechanisms underlying PB degradation lays a substantial biochemical foundation that may lead to understanding how PB metabolizes and why mutations of either EPM2A or NHLRC1 in humans cause LD. Mutations in AGL1 or GPBB may cause diseases related to PB accumulation.
Collapse
|
18
|
Dimerization of the glucan phosphatase laforin requires the participation of cysteine 329. PLoS One 2013; 8:e69523. [PMID: 23922729 PMCID: PMC3724922 DOI: 10.1371/journal.pone.0069523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/11/2013] [Indexed: 01/08/2023] Open
Abstract
Laforin, encoded by a gene that is mutated in Lafora Disease (LD, OMIM 254780), is a modular protein composed of a carbohydrate-binding module and a dual-specificity phosphatase domain. Laforin is the founding member of the glucan-phosphatase family and regulates the levels of phosphate present in glycogen. Multiple reports have described the capability of laforin to form dimers, although the function of these dimers and their relationship with LD remains unclear. Recent evidence suggests that laforin dimerization depends on redox conditions, suggesting that disulfide bonds are involved in laforin dimerization. Using site-directed mutagenesis we constructed laforin mutants in which individual cysteine residues were replaced by serine and then tested the ability of each protein to dimerize using recombinant protein as well as a mammalian cell culture assay. Laforin-Cys329Ser was the only Cys/Ser mutant unable to form dimers in both assays. We also generated a laforin truncation lacking the last three amino acids, laforin-Cys329X, and this truncation also failed to dimerize. Interestingly, laforin-Cys329Ser and laforin-Cys329X were able to bind glucans, and maintained wild type phosphatase activity against both exogenous and biologically relevant substrates. Furthermore, laforin-Cys329Ser was fully capable of participating in the ubiquitination process driven by a laforin-malin complex. These results suggest that dimerization is not required for laforin phosphatase activity, glucan binding, or for the formation of a functional laforin-malin complex. Cumulatively, these results suggest that cysteine 329 is specifically involved in the dimerization process of laforin. Therefore, the C329S mutant constitutes a valuable tool to analyze the physiological implications of laforin’s oligomerization.
Collapse
|
19
|
Zhou X, Wang H, Burg MB, Ferraris JD. High NaCl-induced inhibition of PTG contributes to activation of NFAT5 through attenuation of the negative effect of SHP-1. Am J Physiol Renal Physiol 2013; 305:F362-9. [PMID: 23720348 DOI: 10.1152/ajprenal.00218.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the transcription factor NFAT5 by high NaCl involves changes in phosphorylation. By siRNA screening, we previously found that protein targeting to glycogen (PTG), a regulatory subunit of protein phosphatase1 (PP1), contributes to regulation of high NaCl-induced NFAT5 transcriptional activity. The present study addresses the mechanism involved. We find that high NaCl-induced inhibition of PTG elevates NFAT5 activity by increasing NFAT5 transactivating activity, protein abundance, and nuclear localization. PTG acts via a catalytic subunit PP1γ. PTG associates physically with PP1γ, and NaCl reduces both this association and remaining PTG-associated PP1γ activity. High NaCl-induced phosphorylation of p38, ERK, and SHP-1 contributes to activation of NFAT5. Knockdown of PTG does not affect phosphorylation of p38 or ERK. However, PTG and PP1γ bind to SHP-1, and knockdown of either PTG or PP1γ increases high NaCl-induced phosphorylation of SHP-1-S591, which inhibits SHP-1. Mutation of SHP-1-S591 to alanine, which cannot be phosphorylated, increases inhibition of NFAT5 by SHP-1. Thus high NaCl reduces the stimulatory effect of PTG and PP1γ on SHP-1, which in turn reduces the inhibitory effect of SHP-1 on NFAT5. Our findings add to the known functions of PTG, which was previously recognized only for its glycogenic activity.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Department of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA.
| | | | | | | |
Collapse
|
20
|
Glycogenic activity of R6, a protein phosphatase 1 regulatory subunit, is modulated by the laforin-malin complex. Int J Biochem Cell Biol 2013; 45:1479-88. [PMID: 23624058 DOI: 10.1016/j.biocel.2013.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 01/17/2023]
Abstract
Protein phosphatase type 1 (PP1) plays a major role in the regulation of glycogen biosynthesis. PP1 is recruited to sites of glycogen formation by its binding to specific targeting subunits. There, it dephosphorylates different enzymes involved in glycogen homeostasis leading to an activation of glycogen biosynthesis. Regulation of these targeting subunits is crucial, as excess of them leads to an enhancement of the action of PP1, which results in glycogen accumulation. In this work we present evidence that PPP1R3D (R6), one of the PP1 glycogenic targeting subunits, interacts physically with laforin, a glucan phosphatase involved in Lafora disease, a fatal type of progressive myoclonus epilepsy. Binding of R6 to laforin allows the ubiquitination of R6 by the E3-ubiquitin ligase malin, what targets R6 for autophagic degradation. As a result of the action of the laforin-malin complex on R6, its glycogenic activity is downregulated. Since R6 is expressed in brain, our results suggest that the laforin-malin complex downregulates the glycogenic activity of R6 present in neuron cells to prevent glycogen accumulation.
Collapse
|
21
|
Singh S, Singh PK, Bhadauriya P, Ganesh S. Lafora disease E3 ubiquitin ligase malin is recruited to the processing bodies and regulates the microRNA-mediated gene silencing process via the decapping enzyme Dcp1a. RNA Biol 2012; 9:1440-9. [PMID: 23131811 DOI: 10.4161/rna.22708] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Intracellular transport, processing and stability of mRNA play critical roles in the functional physiology of the cell and defects in these processes are thought to underlie the pathogenesis in a number of neurodegenerative disorders. One of the cellular sites that regulate the mRNA half-life is the processing bodies, the dynamic cytoplasmic structures that represent the non-translating mRNA and the ribonucleoprotein complex that also control the decapping and translation of mRNA. In the present study we explored the possible role of malin E3 ubiquitin ligase in the mRNA decay pathway via the processing bodies. Defects in malin are associated with Lafora disease (LD)-a neurodegenerative disorder characterized by myoclonus seizures. We show here that malin is recruited to the processing bodies and that malin regulates the recruitment of mRNA decapping enzyme Dcp1a by promoting its degradation via the ubiquitin proteasome system. Depletion of malin results in elevated levels of Dcp1a and an altered microRNA-mediated gene silencing activity. Our study suggests that malin is one of the critical regulators of processing bodies and that defects in the mRNA processing might underlie some of the disease symptoms in LD.
Collapse
Affiliation(s)
- Sweta Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | | | | | | |
Collapse
|
22
|
Romá-Mateo C, Sanz P, Gentry MS. Deciphering the role of malin in the lafora progressive myoclonus epilepsy. IUBMB Life 2012; 64:801-8. [PMID: 22815132 DOI: 10.1002/iub.1072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/15/2012] [Indexed: 12/21/2022]
Abstract
Lafora disease (LD) is a fatal, autosomal recessive neurodegenerative disorder that results in progressive myoclonus epilepsy. A hallmark of LD is the accumulation of insoluble, aberrant glycogen-like structures called Lafora bodies. LD is caused by mutations in the gene encoding the E3 ubiquitin ligase malin or the glucan phosphatase laforin. Although LD was first described in 1911, its symptoms are still lacking a consistent molecular explanation and, consequently, a cure is far from being achieved. Some data suggest that malin forms a functional complex with laforin. This complex promotes the ubiquitination of proteins involved in glycogen metabolism and misregulation of pathways involved in this process results in Lafora body formation. In addition, recent results obtained from both cell culture and LD mouse models have highlighted a role of the laforin-malin complex in the regulation of endoplasmic reticulum-stress and protein clearance pathways. These results suggest that LD should be considered as a novel member of the group of protein clearance diseases such as Parkinson's, Huntington's, or Alzheimer's, in addition to being a glycogen metabolism disease. Herein, we review the latest results concerning the role of malin in LD and attempt to decipher its function. © 2012 IUBMB IUBMB Life, 64(10): 801-808, 2012.
Collapse
Affiliation(s)
- Carlos Romá-Mateo
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | | | | |
Collapse
|
23
|
Zeng L, Wang Y, Baba O, Zheng P, Liu Y, Liu Y. Laforin is required for the functional activation of malin in endoplasmic reticulum stress resistance in neuronal cells. FEBS J 2012; 279:2467-78. [PMID: 22578008 DOI: 10.1111/j.1742-4658.2012.08627.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mutations in either EPM2A, the gene encoding a dual-specificity phosphatase named laforin, or NHLRC1, the gene encoding an E3 ubiquitin ligase named malin, cause Lafora disease in humans. Lafora disease is a fatal neurological disorder characterized by progressive myoclonus epilepsy, severe neurological deterioration and accumulation of poorly branched glycogen inclusions, called Lafora bodies or polyglucosan bodies, within the cell cytoplasm. The molecular mechanism underlying the neuropathogenesis of Lafora disease remains unknown. Here, we present data demonstrating that in the cells expressing low levels of laforin protein, overexpressed malin and its Lafora disease-causing missense mutants are stably polyubiquitinated. Malin and malin mutants form ubiquitin-positive aggregates in or around the nuclei of the cells in which they are expressed. Neither wild-type malin nor its mutants elicit endoplasmic reticulum stress, although the mutants exaggerate the response to endoplasmic reticulum stress. Overexpressed laforin impairs the polyubiquitination of malin while it recruits malin to polyglucosan bodies. The recruitment and activities of laforin and malin are both required for the polyglucosan body disruption. Consistently, targeted deletion of laforin in brain cells from Epm2a knockout mice increases polyubiquitinated proteins. Knockdown of Epm2a or Nhlrc1 in neuronal Neuro2a cells shows that they cooperate to allow cells to resist ER stress and apoptosis. These results reveal that a functional laforin-malin complex plays a critical role in disrupting Lafora bodies and relieving ER stress, implying that a causative pathogenic mechanism underlies their deficiency in Lafora disease.
Collapse
Affiliation(s)
- Li Zeng
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
24
|
Tiberia E, Turnbull J, Wang T, Ruggieri A, Zhao XC, Pencea N, Israelian J, Wang Y, Ackerley CA, Wang P, Liu Y, Minassian BA. Increased laforin and laforin binding to glycogen underlie Lafora body formation in malin-deficient Lafora disease. J Biol Chem 2012; 287:25650-9. [PMID: 22669944 DOI: 10.1074/jbc.m111.331611] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The solubility of glycogen, essential to its metabolism, is a property of its shape, a sphere generated through extensive branching during synthesis. Lafora disease (LD) is a severe teenage-onset neurodegenerative epilepsy and results from multiorgan accumulations, termed Lafora bodies (LB), of abnormally structured aggregation-prone and digestion-resistant glycogen. LD is caused by loss-of-function mutations in the EPM2A or EPM2B gene, encoding the interacting laforin phosphatase and malin E3 ubiquitin ligase enzymes, respectively. The substrate and function of malin are unknown; an early counterintuitive observation in cell culture experiments that it targets laforin to proteasomal degradation was not pursued until now. The substrate and function of laforin have recently been elucidated. Laforin dephosphorylates glycogen during synthesis, without which phosphate ions interfere with and distort glycogen construction, leading to LB. We hypothesized that laforin in excess or not removed following its action on glycogen also interferes with glycogen formation. We show in malin-deficient mice that the absence of malin results in massively increased laforin preceding the appearance of LB and that laforin gradually accumulates in glycogen, which corresponds to progressive LB generation. We show that increasing the amounts of laforin in cell culture causes LB formation and that this occurs only with glycogen binding-competent laforin. In summary, malin deficiency causes increased laforin, increased laforin binding to glycogen, and LB formation. Furthermore, increased levels of laforin, when it can bind glycogen, causes LB. We conclude that malin functions to regulate laforin and that malin deficiency at least in part causes LB and LD through increased laforin binding to glycogen.
Collapse
Affiliation(s)
- Erica Tiberia
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase. Biochem J 2012; 443:193-203. [PMID: 22233421 DOI: 10.1042/bj20112026] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recombinant muscle GYS1 (glycogen synthase 1) and recombinant liver GYS2 were phosphorylated by recombinant AMPK (AMP-activated protein kinase) in a time-dependent manner and to a similar stoichiometry. The phosphorylation site in GYS2 was identified as Ser7, which lies in a favourable consensus for phosphorylation by AMPK. Phosphorylation of GYS1 or GYS2 by AMPK led to enzyme inactivation by decreasing the affinity for both UDP-Glc (UDP-glucose) [assayed in the absence of Glc-6-P (glucose-6-phosphate)] and Glc-6-P (assayed at low UDP-Glc concentrations). Incubation of freshly isolated rat hepatocytes with the pharmacological AMPK activators AICA riboside (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) or A769662 led to persistent GYS inactivation and Ser7 phosphorylation, whereas inactivation by glucagon treatment was transient. In hepatocytes from mice harbouring a liver-specific deletion of the AMPK catalytic α1/α2 subunits, GYS2 inactivation by AICA riboside and A769662 was blunted, whereas inactivation by glucagon was unaffected. The results suggest that GYS inactivation by AMPK activators in hepatocytes is due to GYS2 Ser7 phosphorylation.
Collapse
|
26
|
Klaus A, Polge C, Zorman S, Auchli Y, Brunisholz R, Schlattner U. A two-dimensional screen for AMPK substrates identifies tumor suppressor fumarate hydratase as a preferential AMPKα2 substrate. J Proteomics 2012; 75:3304-13. [PMID: 22507198 DOI: 10.1016/j.jprot.2012.03.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/26/2012] [Accepted: 03/25/2012] [Indexed: 12/17/2022]
Abstract
AMP-activated protein kinase (AMPK) is emerging as a central cellular signaling hub involved in energy homeostasis and proliferation. The kinase is considered as a suitable target for pharmacological intervention in several energy-related pathologies like diabetes type II and cancer, although its signaling network is still incompletely understood. Here we apply an original two-dimensional in vitro screening approach for AMPK substrates that combines biophysical interaction based on surface plasmon resonance with in vitro phosphorylation. By enriching for proteins that interact with a specific AMPK isoform, we aimed to identify substrates that are also preferentially phosphorylated by this specific AMPK isoform. Application of this screen to full-length AMPK α2β2γ1 and soluble rat liver proteins identified the tumor suppressor fumarate hydratase (FH). FH was confirmed to interact with and to be preferentially phosphorylated by the AMPKα2 isoform by using yeast-two-hybrid and in vitro phosphorylation assays. AMPK-mediated phosphorylation of FH significantly increased enzyme activity in vitro and in vivo, suggesting that it is a bona fide AMPK substrate. In vivo, AMPKα2 is supposed to target the cytosolic/nuclear pools of FH, whose tumor suppressor function relies on DNA damage repair and inhibition of HIF-1α-signaling.
Collapse
Affiliation(s)
- Anna Klaus
- Laboratory of Fundamental and Applied Bioenergetics, University Joseph Fourier, Grenoble Cedex 9, France
| | | | | | | | | | | |
Collapse
|
27
|
Gentry MS, Romá-Mateo C, Sanz P. Laforin, a protein with many faces: glucan phosphatase, adapter protein, et alii. FEBS J 2012; 280:525-37. [PMID: 22364389 DOI: 10.1111/j.1742-4658.2012.08549.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lafora disease (LD) is a rare, fatal neurodegenerative disorder characterized by the accumulation of glycogen-like inclusions in the cytoplasm of cells from most tissues of affected patients. One hundred years after the first description of these inclusions, the molecular bases underlying the processes involved in LD physiopathology are finally being elucidated. The main cause of the disease is related to the activity of two proteins, the dual-specificity phosphatase laforin and the E3-ubiquitin ligase malin, which form a functional complex. Laforin is unique in humans, as it is composed of a carbohydrate-binding module attached to a cysteine-based catalytic dual-specificity phosphatase domain. Laforin directly dephosphorylates glycogen, but other proteinaceous substrates, if they exist, have remained elusive. Recently, an emerging set of laforin-binding partners apart from malin have been described, suggestive of laforin roles unrelated to its catalytic activity. Further investigations based on different transgenic mouse models have shown that the laforin-malin complex is also involved in other cellular processes, such as response to endoplasmic reticulum stress and misfolded protein clearance by the lysosomal pathway. However, controversial data and some missing links still make it difficult to assess the concrete relationship between glycogen deregulation and neuronal damage leading to the fatal symptoms observed in LD patients, such as myoclonic seizures and epilepsy. Consequently, clinical treatments are far from being achieved. In the present review, we focus on the knowledge of laforin biology, not only as a glucan phosphatase, but also as an adaptor protein involved in several physiological pathways.
Collapse
Affiliation(s)
- Matthew S Gentry
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY, USA
| | | | | |
Collapse
|
28
|
Abstract
Glycogen is a branched polymer of glucose that acts as a store of energy in times of nutritional sufficiency for utilization in times of need. Its metabolism has been the subject of extensive investigation and much is known about its regulation by hormones such as insulin, glucagon and adrenaline (epinephrine). There has been debate over the relative importance of allosteric compared with covalent control of the key biosynthetic enzyme, glycogen synthase, as well as the relative importance of glucose entry into cells compared with glycogen synthase regulation in determining glycogen accumulation. Significant new developments in eukaryotic glycogen metabolism over the last decade or so include: (i) three-dimensional structures of the biosynthetic enzymes glycogenin and glycogen synthase, with associated implications for mechanism and control; (ii) analyses of several genetically engineered mice with altered glycogen metabolism that shed light on the mechanism of control; (iii) greater appreciation of the spatial aspects of glycogen metabolism, including more focus on the lysosomal degradation of glycogen; and (iv) glycogen phosphorylation and advances in the study of Lafora disease, which is emerging as a glycogen storage disease.
Collapse
|
29
|
Obel LF, Müller MS, Walls AB, Sickmann HM, Bak LK, Waagepetersen HS, Schousboe A. Brain glycogen-new perspectives on its metabolic function and regulation at the subcellular level. FRONTIERS IN NEUROENERGETICS 2012; 4:3. [PMID: 22403540 PMCID: PMC3291878 DOI: 10.3389/fnene.2012.00003] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 02/13/2012] [Indexed: 11/14/2022]
Abstract
Glycogen is a complex glucose polymer found in a variety of tissues, including brain, where it is localized primarily in astrocytes. The small quantity found in brain compared to e.g., liver has led to the understanding that brain glycogen is merely used during hypoglycemia or ischemia. In this review evidence is brought forward highlighting what has been an emerging understanding in brain energy metabolism: that glycogen is more than just a convenient way to store energy for use in emergencies—it is a highly dynamic molecule with versatile implications in brain function, i.e., synaptic activity and memory formation. In line with the great spatiotemporal complexity of the brain and thereof derived focus on the basis for ensuring the availability of the right amount of energy at the right time and place, we here encourage a closer look into the molecular and subcellular mechanisms underlying glycogen metabolism. Based on (1) the compartmentation of the interconnected second messenger pathways controlling glycogen metabolism (calcium and cAMP), (2) alterations in the subcellular location of glycogen-associated enzymes and proteins induced by the metabolic status and (3) a sequential component in the intermolecular mechanisms of glycogen metabolism, we suggest that glycogen metabolism in astrocytes is compartmentalized at the subcellular level. As a consequence, the meaning and importance of conventional terms used to describe glycogen metabolism (e.g., turnover) is challenged. Overall, this review represents an overview of contemporary knowledge about brain glycogen and its metabolism and function. However, it also has a sharp focus on what we do not know, which is perhaps even more important for the future quest of uncovering the roles of glycogen in brain physiology and pathology.
Collapse
Affiliation(s)
- Linea F Obel
- Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology, University of Copenhagen Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
30
|
The laforin-malin complex negatively regulates glycogen synthesis by modulating cellular glucose uptake via glucose transporters. Mol Cell Biol 2011; 32:652-63. [PMID: 22124153 DOI: 10.1128/mcb.06353-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Lafora disease (LD), an inherited and fatal neurodegenerative disorder, is characterized by increased cellular glycogen content and the formation of abnormally branched glycogen inclusions, called Lafora bodies, in the affected tissues, including neurons. Therefore, laforin phosphatase and malin ubiquitin E3 ligase, the two proteins that are defective in LD, are thought to regulate glycogen synthesis through an unknown mechanism, the defects in which are likely to underlie some of the symptoms of LD. We show here that laforin's subcellular localization is dependent on the cellular glycogen content and that the stability of laforin is determined by the cellular ATP level, the activity of 5'-AMP-activated protein kinase, and the affinity of malin toward laforin. By using cell and animal models, we further show that the laforin-malin complex regulates cellular glucose uptake by modulating the subcellular localization of glucose transporters; loss of malin or laforin resulted in an increased abundance of glucose transporters in the plasma membrane and therefore excessive glucose uptake. Loss of laforin or malin, however, did not affect glycogen catabolism. Thus, the excessive cellular glucose level appears to be the primary trigger for the abnormally higher levels of cellular glycogen seen in LD.
Collapse
|
31
|
Romá-Mateo C, Moreno D, Vernia S, Rubio T, Bridges TM, Gentry MS, Sanz P. Lafora disease E3-ubiquitin ligase malin is related to TRIM32 at both the phylogenetic and functional level. BMC Evol Biol 2011; 11:225. [PMID: 21798009 PMCID: PMC3160408 DOI: 10.1186/1471-2148-11-225] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/28/2011] [Indexed: 12/15/2022] Open
Abstract
Background Malin is an E3-ubiquitin ligase that is mutated in Lafora disease, a fatal form of progressive myoclonus epilepsy. In order to perform its function, malin forms a functional complex with laforin, a glucan phosphatase that facilitates targeting of malin to its corresponding substrates. While laforin phylogeny has been studied, there are no data on the evolutionary lineage of malin. Results After an extensive search for malin orthologs, we found that malin is present in all vertebrate species and a cephalochordate, in contrast with the broader species distribution previously reported for laforin. These data suggest that in addition to forming a functional complex, laforin and perhaps malin may also have independent functions. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32, which belongs to the tripartite-motif containing family of proteins. We present experimental evidence that both malin and TRIM32 share some substrates for ubiquitination, although they produce ubiquitin chains with different topologies. However, TRIM32-specific substrates were not reciprocally ubiquitinated by the laforin-malin complex. Conclusions We found that malin and laforin are not conserved in the same genomes. In addition, we found that malin shares significant identity with the E3-ubiquitin ligase TRIM32. The latter result suggests a common origin for malin and TRIM32 and provides insights into possible functional relationships between both proteins.
Collapse
Affiliation(s)
- Carlos Romá-Mateo
- Instituto de Biomedicina de Valencia, CSIC and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
AMP-activated protein kinase: also regulated by ADP? Trends Biochem Sci 2011; 36:470-7. [PMID: 21782450 DOI: 10.1016/j.tibs.2011.06.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/18/2011] [Accepted: 06/23/2011] [Indexed: 12/11/2022]
Abstract
AMPK is a ubiquitous sensor of cellular energy status in eukaryotic cells. It is activated by stresses causing ATP depletion and, once activated, maintains energy homeostasis by phosphorylating targets that activate catabolism and inhibit energy-consuming processes. Evidence derived from non-mammalian orthologs suggests that its ancestral role was in the response to starvation for a carbon source. We review recent findings showing that AMPK is activated by ADP as well as AMP, and discuss the mechanism by which binding of these nucleotides prevent its dephosphorylation and inactivation. We also discuss the role of the carbohydrate-binding module on the β subunit and the mechanisms by which it is activated by drugs and xenobiotics such as metformin and resveratrol.
Collapse
|
33
|
Guerrero R, Vernia S, Sanz R, Abreu-Rodríguez I, Almaraz C, García-Hoyos M, Michelucci R, Tassinari CA, Riguzzi P, Nobile C, Sanz P, Serratosa JM, Gómez-Garre P. A PTG variant contributes to a milder phenotype in Lafora disease. PLoS One 2011; 6:e21294. [PMID: 21738631 PMCID: PMC3127956 DOI: 10.1371/journal.pone.0021294] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 05/25/2011] [Indexed: 11/18/2022] Open
Abstract
Lafora disease is an autosomal recessive form of progressive myoclonus epilepsy with no effective therapy. Although the outcome is always unfavorable, onset of symptoms and progression of the disease may vary. We aimed to identify modifier genes that may contribute to the clinical course of Lafora disease patients with EPM2A or EPM2B mutations. We established a list of 43 genes coding for proteins related to laforin/malin function and/or glycogen metabolism and tested common polymorphisms for possible associations with phenotypic differences using a collection of Lafora disease families. Genotype and haplotype analysis showed that PPP1R3C may be associated with a slow progression of the disease. The PPP1R3C gene encodes protein targeting to glycogen (PTG). Glycogen targeting subunits play a major role in recruiting type 1 protein phosphatase (PP1) to glycogen-enriched cell compartments and in increasing the specific activity of PP1 toward specific glycogenic substrates (glycogen synthase and glycogen phosphorylase). Here, we report a new mutation (c.746A>G, N249S) in the PPP1R3C gene that results in a decreased capacity to induce glycogen synthesis and a reduced interaction with glycogen phosphorylase and laforin, supporting a key role of this mutation in the glycogenic activity of PTG. This variant was found in one of two affected siblings of a Lafora disease family characterized by a remarkable mild course. Our findings suggest that variations in PTG may condition the course of Lafora disease and establish PTG as a potential target for pharmacogenetic and therapeutic approaches.
Collapse
Affiliation(s)
- Rosa Guerrero
- Laboratorio de Neurología-Unidad de Epilepsia, Servicio de Neurología, Instituto Investigación Sanitaria Fundación Jiménez Díaz, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Santiago Vernia
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Raúl Sanz
- Laboratorio de Neurología-Unidad de Epilepsia, Servicio de Neurología, Instituto Investigación Sanitaria Fundación Jiménez Díaz, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Irene Abreu-Rodríguez
- Laboratorio de Investigaciones Biomédicas, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Carmen Almaraz
- Laboratorio de Neurología-Unidad de Epilepsia, Servicio de Neurología, Instituto Investigación Sanitaria Fundación Jiménez Díaz, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - María García-Hoyos
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Roberto Michelucci
- Unit of Neurology, Department of Neurosciences, Bellaria Hospital, Bologna, Italy
| | | | - Patrizia Riguzzi
- Unit of Neurology, Department of Neurosciences, Bellaria Hospital, Bologna, Italy
| | - Carlo Nobile
- Section of Padua, CNR-Institute of Neurosciences, Padua, Italy
| | - Pascual Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - José M. Serratosa
- Laboratorio de Neurología-Unidad de Epilepsia, Servicio de Neurología, Instituto Investigación Sanitaria Fundación Jiménez Díaz, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- * E-mail: (JMS); (PG-G)
| | - Pilar Gómez-Garre
- Laboratorio de Neurología-Unidad de Epilepsia, Servicio de Neurología, Instituto Investigación Sanitaria Fundación Jiménez Díaz, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
- * E-mail: (JMS); (PG-G)
| |
Collapse
|
34
|
Couarch P, Vernia S, Gourfinkel-An I, Lesca G, Gataullina S, Fedirko E, Trouillard O, Depienne C, Dulac O, Steschenko D, Leguern E, Sanz P, Baulac S. Lafora progressive myoclonus epilepsy: NHLRC1 mutations affect glycogen metabolism. J Mol Med (Berl) 2011; 89:915-25. [PMID: 21505799 PMCID: PMC3154284 DOI: 10.1007/s00109-011-0758-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/29/2011] [Accepted: 03/29/2011] [Indexed: 11/26/2022]
Abstract
Lafora disease is a fatal autosomal recessive form of progressive myoclonus epilepsy. Patients manifest myoclonus and tonic–clonic seizures, visual hallucinations, intellectual, and progressive neurologic deterioration beginning in adolescence. The two genes known to be involved in Lafora disease are EPM2A and NHLRC1 (EPM2B). The EPM2A gene encodes laforin, a dual-specificity protein phosphatase, and the NHLRC1 gene encodes malin, an E3-ubiquitin ligase. The two proteins interact with each other and, as a complex, are thought to regulate glycogen synthesis. Here, we report three Lafora families with two novel pathogenic mutations (C46Y and L261P) and two recurrent mutations (P69A and D146N) in NHLRC1. Investigation of their functional consequences in cultured mammalian cells revealed that malinC46Y, malinP69A, malinD146N, and malinL261P mutants failed to downregulate the level of R5/PTG, a regulatory subunit of protein phosphatase 1 involved in glycogen synthesis. Abnormal accumulation of intracellular glycogen was observed with all malin mutants, reminiscent of the polyglucosan inclusions (Lafora bodies) present in patients with Lafora disease.
Collapse
Affiliation(s)
- Philippe Couarch
- Inserm UMRS_975, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
- Université Pierre and Marie Curie-Paris 6 (UPMC), Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
- CNRS UMR7225, 75013 Paris, France
- AP-HP, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Santiago Vernia
- Instituto de Biomedicina de Valencia (CSIC) and Centro de Investigación Biomedica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Isabelle Gourfinkel-An
- Epileptology unit, Reference Center for Rare Epilepsies, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Gaëtan Lesca
- Service de génétique, Hospices civils de Lyon et Université Claude Bernard Lyon I, Lyon, France
| | - Svetlana Gataullina
- Département de Neuropédiatrie, AP-HP, Hôpital Necker-Enfants malades, Inserm U663, 75015 Paris, France
| | - Estelle Fedirko
- AP-HP, Département de Génétique et Cytogénétique, Fédération de Génétique, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Oriane Trouillard
- AP-HP, Département de Génétique et Cytogénétique, Fédération de Génétique, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Christel Depienne
- Inserm UMRS_975, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
- Université Pierre and Marie Curie-Paris 6 (UPMC), Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
- CNRS UMR7225, 75013 Paris, France
- AP-HP, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
- AP-HP, Département de Génétique et Cytogénétique, Fédération de Génétique, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Olivier Dulac
- Département de Neuropédiatrie, AP-HP, Hôpital Necker-Enfants malades, Inserm U663, 75015 Paris, France
| | | | - Eric Leguern
- Inserm UMRS_975, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
- Université Pierre and Marie Curie-Paris 6 (UPMC), Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
- CNRS UMR7225, 75013 Paris, France
- AP-HP, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
- AP-HP, Département de Génétique et Cytogénétique, Fédération de Génétique, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Pascual Sanz
- Instituto de Biomedicina de Valencia (CSIC) and Centro de Investigación Biomedica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Stéphanie Baulac
- CRICM U975, Institut du Cerveau et de la Moelle, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l’Hôpital, 75651 Paris CEDEX 13, France
- Inserm UMRS_975, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
- Université Pierre and Marie Curie-Paris 6 (UPMC), Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
- CNRS UMR7225, 75013 Paris, France
- AP-HP, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
35
|
Turnbull J, Wang P, Girard JM, Ruggieri A, Wang TJ, Draginov AG, Kameka AP, Pencea N, Zhao X, Ackerley CA, Minassian BA. Glycogen hyperphosphorylation underlies lafora body formation. Ann Neurol 2011; 68:925-33. [PMID: 21077101 DOI: 10.1002/ana.22156] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Glycogen, the largest cytosolic macromolecule, acquires solubility, essential to its function, through extreme branching. Lafora bodies are aggregates of polyglucosan, a long, linear, poorly branched, and insoluble form of glycogen. Lafora bodies occupy vast numbers of neuronal dendrites and perikarya in Lafora disease in time-dependent fashion, leading to intractable and fatal progressive myoclonus epilepsy. Lafora disease is caused by deficiency of either the laforin glycogen phosphatase or the malin E3 ubiquitin ligase. The 2 leading hypotheses of Lafora body formation are: (1) increased glycogen synthase activity extends glycogen strands too rapidly to allow adequate branching, resulting in polyglucosans; and (2) increased glycogen phosphate leads to glycogen conformational change, unfolding, precipitation, and conversion to polyglucosan. Recently, it was shown that in the laforin phosphatase-deficient form of Lafora disease, there is no increase in glycogen synthase, but there is a dramatic increase in glycogen phosphate, with subsequent conversion of glycogen to polyglucosan. Here, we determine whether Lafora bodies in the malin ubiquitin ligase-deficient form of the disease are due to increased glycogen synthase or increased glycogen phosphate. METHODS We generated malin-deficient mice and tested the 2 hypotheses. RESULTS Malin-deficient mice precisely replicate the pathology of Lafora disease with Lafora body formation in skeletal muscle, liver, and brain, and in the latter in the pathognomonic perikaryal and dendritic locations. Glycogen synthase quantity and activity are unchanged. There is a highly significant increase in glycogen phosphate. INTERPRETATION We identify a single common modification, glycogen hyperphosphorylation, as the root cause of Lafora body pathogenesis.
Collapse
Affiliation(s)
- Julie Turnbull
- Department of Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Garcia-Haro L, Garcia-Gimeno MA, Neumann D, Beullens M, Bollen M, Sanz P. The PP1‐R6 protein phosphatase holoenzyme is involved in the glucose‐induced dephosphorylation and inactivation of AMP‐activated protein kinase, a key regulator of insulin secretion, in MIN6 β cells. FASEB J 2010. [DOI: 10.1096/fj.10.166306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Luisa Garcia-Haro
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Cientificas and Centro de Investigación en Red de Enfermecedes Raras Valencia Spain
| | - Maria Adelaida Garcia-Gimeno
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Cientificas and Centro de Investigación en Red de Enfermecedes Raras Valencia Spain
| | | | - Monique Beullens
- Laboratory of Biosignaling and TherapeuticsDepartment of Molecular Cell BiologyUniversity of Leuven Leuven Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling and TherapeuticsDepartment of Molecular Cell BiologyUniversity of Leuven Leuven Belgium
| | - Pascual Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Cientificas and Centro de Investigación en Red de Enfermecedes Raras Valencia Spain
| |
Collapse
|
37
|
Rivera N, Ramnanan CJ, An Z, Farmer T, Smith M, Farmer B, Irimia JM, Snead W, Lautz M, Roach PJ, Cherrington AD. Insulin-induced hypoglycemia increases hepatic sensitivity to glucagon in dogs. J Clin Invest 2010; 120:4425-35. [PMID: 21084754 DOI: 10.1172/jci40919] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 09/29/2010] [Indexed: 02/01/2023] Open
Abstract
In individuals with type 1 diabetes, hypoglycemia is a common consequence of overinsulinization. Under conditions of insulin-induced hypoglycemia, glucagon is the most important stimulus for hepatic glucose production. In contrast, during euglycemia, insulin potently inhibits glucagon's effect on the liver. The first aim of the present study was to determine whether low blood sugar augments glucagon's ability to increase glucose production. Using a conscious catheterized dog model, we found that hypoglycemia increased glucagon's ability to overcome the inhibitory effect of insulin on hepatic glucose production by almost 3-fold, an effect exclusively attributable to marked enhancement of the effect of glucagon on net glycogen breakdown. To investigate the molecular mechanism by which this effect comes about, we analyzed hepatic biopsies from the same animals, and found that hypoglycemia resulted in a decrease in insulin signaling. Furthermore, hypoglycemia and glucagon had an additive effect on the activation of AMPK, which was associated with altered activity of the enzymes of glycogen metabolism.
Collapse
Affiliation(s)
- Noelia Rivera
- Department of Molecular Physiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rao SN, Maity R, Sharma J, Dey P, Shankar SK, Satishchandra P, Jana NR. Sequestration of chaperones and proteasome into Lafora bodies and proteasomal dysfunction induced by Lafora disease-associated mutations of malin. Hum Mol Genet 2010; 19:4726-34. [DOI: 10.1093/hmg/ddq407] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
39
|
Garcia-Haro L, Garcia-Gimeno MA, Neumann D, Beullens M, Bollen M, Sanz P. The PP1-R6 protein phosphatase holoenzyme is involved in the glucose-induced dephosphorylation and inactivation of AMP-activated protein kinase, a key regulator of insulin secretion, in MIN6 beta cells. FASEB J 2010; 24:5080-91. [PMID: 20724523 DOI: 10.1096/fj.10-166306] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mammalian AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that acts as a sensor of cellular energy status. It is activated by phosphorylation of the catalytic subunit on Thr172. The main objective of this study was the identification of a phosphatase involved in the regulation of AMPK activity. Mouse MIN6 β cells were used to study the glucose-induced regulation of the phosphorylation of AMPK. Small interfering RNA (siRNA) technology was used to deplete putative phosphatase candidate genes that could affect AMPK regulation. The effect of the siRNAs used in the study was compared with the effect observed using a negative control siRNA. A protein phosphatase complex composed of the catalytic subunit of protein phosphatase-1 (PP1) and the regulatory subunit R6 participates in the glucose-induced dephosphorylation of AMPK. R6 interacts physically with the β-subunit of the AMPK complex and recruits PP1 to dephosphorylate the catalytic α-subunit on Thr172. siRNA depletion of R6 decreases glucose-induced insulin secretion due to the presence of a constitutively active AMPK complex. The characterization of the PP1-R6 complex identifies this holoenzyme as a possible target for therapeutic intervention with the aim of regulating the activity of AMPK in pancreatic β cells.
Collapse
Affiliation(s)
- Luisa Garcia-Haro
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Cientificas and Centro de Investigación en Red de Enfermecedes Raras, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Graham TE, Yuan Z, Hill AK, Wilson RJ. The regulation of muscle glycogen: the granule and its proteins. Acta Physiol (Oxf) 2010; 199:489-98. [PMID: 20353490 DOI: 10.1111/j.1748-1716.2010.02131.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite decades of studying muscle glycogen in many metabolic situations, surprisingly little is known regarding its regulation. Glycogen is a dynamic and vital metabolic fuel that has very limited energetic capacity. Thus its regulation is highly complex and multifaceted. The stores in muscle are not homogeneous and there appear to be various metabolic pools. Each granule is capable of independent regulation and fundamental aspects of the regulation appear to be associated with a complex set of proteins (some are enzymes and others serve scaffolding roles) that associate both with the granule and with each other in a dynamic fashion. The regulation includes altered phosphorylation status and often translocation as well. The understanding of the roles and the regulation of glycogenin, protein phosphatase 1, glycogen targeting proteins, laforin and malin are in their infancy. These various processes appear to be the mechanisms that give the glycogen granule precise, yet dynamic regulation.
Collapse
Affiliation(s)
- T E Graham
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| | | | | | | |
Collapse
|
41
|
DePaoli-Roach AA, Tagliabracci VS, Segvich DM, Meyer CM, Irimia JM, Roach PJ. Genetic depletion of the malin E3 ubiquitin ligase in mice leads to lafora bodies and the accumulation of insoluble laforin. J Biol Chem 2010; 285:25372-81. [PMID: 20538597 DOI: 10.1074/jbc.m110.148668] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Approximately 90% of cases of Lafora disease, a fatal teenage-onset progressive myoclonus epilepsy, are caused by mutations in either the EPM2A or the EPM2B genes that encode, respectively, a glycogen phosphatase called laforin and an E3 ubiquitin ligase called malin. Lafora disease is characterized by the formation of Lafora bodies, insoluble deposits containing poorly branched glycogen or polyglucosan, in many tissues including skeletal muscle, liver, and brain. Disruption of the Epm2b gene in mice resulted in viable animals that, by 3 months of age, accumulated Lafora bodies in the brain and to a lesser extent in heart and skeletal muscle. Analysis of muscle and brain of the Epm2b(-/-) mice by Western blotting indicated no effect on the levels of glycogen synthase, PTG (type 1 phosphatase-targeting subunit), or debranching enzyme, making it unlikely that these proteins are targeted for destruction by malin, as has been proposed. Total laforin protein was increased in the brain of Epm2b(-/-) mice and, most notably, was redistributed from the soluble, low speed supernatant to the insoluble low speed pellet, which now contained 90% of the total laforin. This result correlated with elevated insolubility of glycogen and glycogen synthase. Because up-regulation of laforin cannot explain Lafora body formation, we conclude that malin functions to maintain laforin associated with soluble glycogen and that its absence causes sequestration of laforin to an insoluble polysaccharide fraction where it is functionally inert.
Collapse
Affiliation(s)
- Anna A DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Bollen M, Peti W, Ragusa MJ, Beullens M. The extended PP1 toolkit: designed to create specificity. Trends Biochem Sci 2010; 35:450-8. [PMID: 20399103 DOI: 10.1016/j.tibs.2010.03.002] [Citation(s) in RCA: 383] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/03/2010] [Accepted: 03/04/2010] [Indexed: 01/03/2023]
Abstract
Protein Ser/Thr phosphatase-1 (PP1) catalyzes the majority of eukaryotic protein dephosphorylation reactions in a highly regulated and selective manner. Recent studies have identified an unusually diversified PP1 interactome with the properties of a regulatory toolkit. PP1-interacting proteins (PIPs) function as targeting subunits, substrates and/or inhibitors. As targeting subunits, PIPs contribute to substrate selection by bringing PP1 into the vicinity of specific substrates and by modulating substrate specificity via additional substrate docking sites or blocking substrate-binding channels. Many of the nearly 200 established mammalian PIPs are predicted to be intrinsically disordered, a property that facilitates their binding to a large surface area of PP1 via multiple docking motifs. These novel insights offer perspectives for the therapeutic targeting of PP1 by interfering with the binding of PIPs or substrates.
Collapse
Affiliation(s)
- Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, Department of Molecular Cell Biology, University of Leuven, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
43
|
Hejazi M, Fettke J, Kötting O, Zeeman SC, Steup M. The Laforin-like dual-specificity phosphatase SEX4 from Arabidopsis hydrolyzes both C6- and C3-phosphate esters introduced by starch-related dikinases and thereby affects phase transition of alpha-glucans. PLANT PHYSIOLOGY 2010; 152:711-22. [PMID: 20018599 PMCID: PMC2815871 DOI: 10.1104/pp.109.149914] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 12/11/2009] [Indexed: 05/18/2023]
Abstract
The biochemical function of the Laforin-like dual-specific phosphatase AtSEX4 (EC 3.1.3.48) has been studied. Crystalline maltodextrins representing the A- or the B-type allomorph were prephosphorylated using recombinant glucan, water dikinase (StGWD) or the successive action of both plastidial dikinases (StGWD and AtPWD). AtSEX4 hydrolyzed carbon 6-phosphate esters from both the prephosphorylated A- and B-type allomorphs and the kinetic constants are similar. The phosphatase also acted on prelabeled carbon-3 esters from both crystalline maltodextrins. Similarly, native starch granules prelabeled in either the carbon-6 or carbon-3 position were also dephosphorylated by AtSEX4. The phosphatase did also hydrolyze phosphate esters of both prephosphorylated maltodextrins when the (phospho)glucans had been solubilized by heat treatment. Submillimolar concentrations of nonphosphorylated maltodextrins inhibited AtSEX4 provided they possessed a minimum of length and had been solubilized. As opposed to the soluble phosphomaltodextrins, the AtSEX4-mediated dephosphorylation of the insoluble substrates was incomplete and at least 50% of the phosphate esters were retained in the pelletable (phospho)glucans. The partial dephosphorylation of the insoluble glucans also strongly reduced the release of nonphosphorylated chains into solution. Presumably, this effect reflects fast structural changes that following dephosphorylation occur near the surface of the maltodextrin particles. A model is proposed defining distinct stages within the phosphorylation/dephosphorylation-dependent transition of alpha-glucans from the insoluble to the soluble state.
Collapse
|
44
|
Rao SNR, Sharma J, Maity R, Jana NR. Co-chaperone CHIP stabilizes aggregate-prone malin, a ubiquitin ligase mutated in Lafora disease. J Biol Chem 2010; 285:1404-13. [PMID: 19892702 PMCID: PMC2801266 DOI: 10.1074/jbc.m109.006312] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 11/04/2009] [Indexed: 01/21/2023] Open
Abstract
Lafora disease (LD) is an autosomal recessive neurodegenerative disorder caused by mutation in either the dual specificity phosphatase laforin or ubiquitin ligase malin. A pathological hallmark of LD is the accumulation of cytoplasmic polyglucosan inclusions commonly known as Lafora bodies in both neuronal and non-neuronal tissues. How mutations in these two proteins cause disease pathogenesis is not well understood. Malin interacts with laforin and recruits to aggresomes upon proteasome inhibition and was shown to degrade misfolded proteins. Here we report that malin is spontaneously misfolded and tends to be aggregated, degraded by proteasomes, and forms not only aggresomes but also other cytoplasmic and nuclear aggregates in all transfected cells upon proteasomal inhibition. Malin also interacts with Hsp70. Several disease-causing mutants of malin are comparatively more unstable than wild type and form aggregates in most transfected cells even without the inhibition of proteasome function. These cytoplasmic and nuclear aggregates are immunoreactive to ubiquitin and 20 S proteasome. Interestingly, progressive proteasomal dysfunction and cell death is also most frequently observed in the mutant malin-overexpressed cells compared with the wild-type counterpart. Finally, we demonstrate that the co-chaperone carboxyl terminus of the Hsc70-interacting protein (CHIP) stabilizes malin by modulating the activity of Hsp70. All together, our results suggest that malin is unstable, and the aggregate-prone protein and co-chaperone CHIP can modulate its stability.
Collapse
Affiliation(s)
- Sudheendra N. R. Rao
- From the Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon-122 050, India
| | - Jaiprakash Sharma
- From the Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon-122 050, India
| | - Ranjan Maity
- From the Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon-122 050, India
| | - Nihar Ranjan Jana
- From the Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon-122 050, India
| |
Collapse
|
45
|
Two-hybrid analysis identifies PSMD11, a non-ATPase subunit of the proteasome, as a novel interaction partner of AMP-activated protein kinase. Int J Biochem Cell Biol 2009; 41:2431-9. [DOI: 10.1016/j.biocel.2009.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/29/2009] [Accepted: 07/06/2009] [Indexed: 12/18/2022]
|
46
|
Gentry MS, Dixon JE, Worby CA. Lafora disease: insights into neurodegeneration from plant metabolism. Trends Biochem Sci 2009; 34:628-39. [PMID: 19818631 DOI: 10.1016/j.tibs.2009.08.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/30/2009] [Accepted: 08/04/2009] [Indexed: 12/30/2022]
Abstract
Reversible phosphorylation modulates nearly every step of glycogenesis and glycogenolysis. Multiple metabolic disorders are the result of defective enzymes that control these phosphorylation events, enzymes that were identified biochemically before the advent of the molecular biology era. Lafora disease is a metabolic disorder resulting in accumulation of water-insoluble glucan in the cytoplasm, and manifests as a debilitating neurodegeneration that ends with the death of the patient. Unlike most metabolic disorders, the link between Lafora disease and metabolism has not been defined in almost 100 years. The results of recent studies with mammalian cells, mouse models, eukaryotic algae, and plants have begun to define the molecular mechanisms that cause Lafora disease. The emerging theme identifies a new phosphorylation substrate in glycogen metabolism, the glucan itself.
Collapse
Affiliation(s)
- Matthew S Gentry
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536-0509, USA.
| | | | | |
Collapse
|
47
|
Graham TE. Glycogen: an overview of possible regulatory roles of the proteins associated with the granule. Appl Physiol Nutr Metab 2009; 34:488-92. [PMID: 19448719 DOI: 10.1139/h09-048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While scientists have routinely measured muscle glycogen in many metabolic situations for over 4 decades, there is surprisingly little known regarding its regulation. In the past decade, considerable evidence has illustrated that the carbohydrate stores in muscle are not homogeneous, and it is very likely that metabolic pools exist or that each granule has independent regulation. The fundamental aspects appear to be associated with a complex set of proteins that associate with both the granule and each other in a dynamic fashion. Some of the proteins are enzymes and others play scaffolding roles. A number of the proteins can translocate, depending on the metabolic stimulus. These various processes appear to be the mechanisms that give the glycogen granule precise yet dynamic regulation. This may also allow the stores to serve as an important metabolic regulator of other metabolic events.
Collapse
Affiliation(s)
- Terry E Graham
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|