1
|
Farley A, Gao Y, Sun Y, Zohrabian S, Pu WT, Lin Z. Activation of VGLL4 Suppresses Cardiomyocyte Maturational Hypertrophic Growth. Cells 2024; 13:1342. [PMID: 39195232 DOI: 10.3390/cells13161342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
From birth to adulthood, the mammalian heart grows primarily through increasing cardiomyocyte (CM) size, which is known as maturational hypertrophic growth. The Hippo-YAP signaling pathway is well known for regulating heart development and regeneration, but its roles in CM maturational hypertrophy have not been clearly addressed. Vestigial-like 4 (VGLL4) is a crucial component of the Hippo-YAP pathway, and it functions as a suppressor of YAP/TAZ, the terminal transcriptional effectors of this signaling pathway. To develop an in vitro model for studying CM maturational hypertrophy, we compared the biological effects of T3 (triiodothyronine), Dex (dexamethasone), and T3/Dex in cultured neonatal rat ventricular myocytes (NRVMs). The T3/Dex combination treatment stimulated greater maturational hypertrophy than either the T3 or Dex single treatment. Using T3/Dex treatment of NRVMs as an in vitro model, we found that activation of VGLL4 suppressed CM maturational hypertrophy. In the postnatal heart, activation of VGLL4 suppressed heart growth, impaired heart function, and decreased CM size. On the molecular level, activation of VGLL4 inhibited the PI3K-AKT pathway, and disrupting VGLL4 and TEAD interaction abolished this inhibition. In conclusion, our data suggest that VGLL4 suppresses CM maturational hypertrophy by inhibiting the YAP/TAZ-TEAD complex and its downstream activation of the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Aaron Farley
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
| | - Yunan Gao
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin 150001, China
| | - Yan Sun
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
| | - Sylvia Zohrabian
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Zhiqiang Lin
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
| |
Collapse
|
2
|
Marston S. Recent studies of the molecular mechanism of lusitropy due to phosphorylation of cardiac troponin I by protein kinase A. J Muscle Res Cell Motil 2023; 44:201-208. [PMID: 36131171 PMCID: PMC10541847 DOI: 10.1007/s10974-022-09630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
Ca2+ acts on troponin and tropomyosin to switch the thin filament on and off, however in cardiac muscle a more graded form of regulation is essential to tailor cardiac output to the body's needs. This is achieved by the action of adrenaline on β1 receptors of heart muscle cells leading to enhanced contractility, faster heart rate and faster relaxation (lusitropy) via activation of the cyclic AMP-dependent protein kinase, PKA. PKA phosphorylates serines 22 and 23 in the N-terminal peptide of cardiac troponin I. As a consequence the rate of Ca2+release from troponin is increased. This is the key determinant of lusitropy. The molecular mechanism of this process has remained unknown long after the mechanism of the troponin Ca2+ switch itself was defined. Investigation of this subtle process at the atomic level poses a challenge, since the change in Ca2+-sensitivity is only about twofold and key parts of the troponin modulation and regulation system are disordered and cannot be fully resolved by conventional structural approaches. We will review recent studies using molecular dynamics simulations together with functional, cryo-em and NMR techniques that have started to give us a precise picture of how phosphorylation of troponin I modulates the dynamics of troponin to produce the lusitropic effect.
Collapse
|
3
|
Morris EP, Knupp C, Luther PK. Obituary: Professor John Michael Squire. J Muscle Res Cell Motil 2023; 44:125-132. [PMID: 37665489 DOI: 10.1007/s10974-023-09656-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Affiliation(s)
- Edward P Morris
- School of Molecular Biosciences, University of Glasgow, Garscube Campus, Jarrett Building, 351, Bearsden Road, Glasgow, G61 1QH, UK
| | - Carlo Knupp
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF10 3AT, UK
| | - Pradeep K Luther
- Cardiac Function Section NHLI, Imperial College London, Hammersmith Campus ICTEM Building, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
4
|
Li N, Xie J, Chu YM. Degradation and evaluation of myofibril proteins induced by endogenous protease in aquatic products during storage: a review. Food Sci Biotechnol 2023; 32:1005-1018. [PMID: 37215253 PMCID: PMC10195969 DOI: 10.1007/s10068-023-01291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Myofibril proteins degradation constitutes an important factor in quality deterioration, procedural activation or inhibition of endogenous protease potential regulates autolytic proteolysis-induced softening of post mortem fish muscle. Based on the brief introduction of myofibril proteins degradation in fish skeletal muscle, a detailed description of the main myofibril degradation properties and the distinct role played by endogenous proteases were proposed, which reflects the limitations and challenges of the current research on myofibril hydrolysis mechanisms based on the varied surrounding conditions. In addition, the latest researches on the evaluation method of myofibril proteins degradation were comprehensively reviewed. The potential use of label-free proteomics combined with bioinformatics was also emphasized and has become an important means to in-depth understand protein degradation mechanism.
Collapse
Affiliation(s)
- Na Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306 China
- College of Food and Tourism, Shanghai Urban Construction Vocational College, Shanghai, 201415 China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306 China
- National Experimental Teaching Demonstration Center for Food Science and
Engineering, Shanghai Ocean University, Shanghai, 201306 China
- Shanghai Engineering Research Center of Aquatic Product Processing and
Preservation, Shanghai, 201306 China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment
Performance and Energy Saving Evaluation, Shanghai, 201306 China
| | - Yuan Ming Chu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306 China
- National Experimental Teaching Demonstration Center for Food Science and
Engineering, Shanghai Ocean University, Shanghai, 201306 China
| |
Collapse
|
5
|
Sparrow AJ, Sievert K, Patel S, Chang YF, Broyles CN, Brook FA, Watkins H, Geeves MA, Redwood CS, Robinson P, Daniels MJ. Measurement of Myofilament-Localized Calcium Dynamics in Adult Cardiomyocytes and the Effect of Hypertrophic Cardiomyopathy Mutations. Circ Res 2020; 124:1228-1239. [PMID: 30732532 PMCID: PMC6485313 DOI: 10.1161/circresaha.118.314600] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: Subcellular Ca2+ indicators have yet to be developed for the myofilament where disease mutation or small molecules may alter contractility through myofilament Ca2+ sensitivity. Here, we develop and characterize genetically encoded Ca2+ indicators restricted to the myofilament to directly visualize Ca2+ changes in the sarcomere. Objective: To produce and validate myofilament-restricted Ca2+ imaging probes in an adenoviral transduction adult cardiomyocyte model using drugs that alter myofilament function (MYK-461, omecamtiv mecarbil, and levosimendan) or following cotransduction of 2 established hypertrophic cardiomyopathy disease-causing mutants (cTnT [Troponin T] R92Q and cTnI [Troponin I] R145G) that alter myofilament Ca2+ handling. Methods and Results: When expressed in adult ventricular cardiomyocytes RGECO-TnT (Troponin T)/TnI (Troponin I) sensors localize correctly to the sarcomere without contractile impairment. Both sensors report cyclical changes in fluorescence in paced cardiomyocytes with reduced Ca2+ on and increased Ca2+ off rates compared with unconjugated RGECO. RGECO-TnT/TnI revealed changes to localized Ca2+ handling conferred by MYK-461 and levosimendan, including an increase in Ca2+ binding rates with both levosimendan and MYK-461 not detected by an unrestricted protein sensor. Coadenoviral transduction of RGECO-TnT/TnI with hypertrophic cardiomyopathy causing thin filament mutants showed that the mutations increase myofilament [Ca2+] in systole, lengthen time to peak systolic [Ca2+], and delay [Ca2+] release. This contrasts with the effect of the same mutations on cytoplasmic Ca2+, when measured using unrestricted RGECO where changes to peak systolic Ca2+ are inconsistent between the 2 mutations. These data contrast with previous findings using chemical dyes that show no alteration of [Ca2+] transient amplitude or time to peak Ca2+. Conclusions: RGECO-TnT/TnI are functionally equivalent. They visualize Ca2+ within the myofilament and reveal unrecognized aspects of small molecule and disease-associated mutations in living cells.
Collapse
Affiliation(s)
- Alexander J Sparrow
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Kolja Sievert
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Suketu Patel
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Yu-Fen Chang
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Connor N Broyles
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Frances A Brook
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Hugh Watkins
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,Department of Cardiology, Oxford University NHS Hospitals Trust, United Kingdom (H.W., M.J.D.)
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Canterbury, United Kingdom (M.A.G.)
| | - Charles S Redwood
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Paul Robinson
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom
| | - Matthew J Daniels
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine (A.J.S., K.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Research Excellence (A.J.S., S.P., Y.-F.C., C.N.B., F.A.B., H.W., C.S.R., P.R., M.J.D.), University of Oxford, United Kingdom.,BHF Centre of Regenerative Medicine (M.J.D.), University of Oxford, United Kingdom.,Department of Cardiology, Oxford University NHS Hospitals Trust, United Kingdom (H.W., M.J.D.).,Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan (M.J.D.)
| |
Collapse
|
6
|
van der Velden J, Stienen GJM. Cardiac Disorders and Pathophysiology of Sarcomeric Proteins. Physiol Rev 2019; 99:381-426. [PMID: 30379622 DOI: 10.1152/physrev.00040.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sarcomeric proteins represent the structural building blocks of heart muscle, which are essential for contraction and relaxation. During recent years, it has become evident that posttranslational modifications of sarcomeric proteins, in particular phosphorylation, tune cardiac pump function at rest and during exercise. This delicate, orchestrated interaction is also influenced by mutations, predominantly in sarcomeric proteins, which cause hypertrophic or dilated cardiomyopathy. In this review, we follow a bottom-up approach starting from a description of the basic components of cardiac muscle at the molecular level up to the various forms of cardiac disorders at the organ level. An overview is given of sarcomere changes in acquired and inherited forms of cardiac disease and the underlying disease mechanisms with particular reference to human tissue. A distinction will be made between the primary defect and maladaptive/adaptive secondary changes. Techniques used to unravel functional consequences of disease-induced protein changes are described, and an overview of current and future treatments targeted at sarcomeric proteins is given. The current evidence presented suggests that sarcomeres not only form the basis of cardiac muscle function but also represent a therapeutic target to combat cardiac disease.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Ger J M Stienen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
7
|
Ly T, Pappas CT, Johnson D, Schlecht W, Colpan M, Galkin VE, Gregorio CC, Dong WJ, Kostyukova AS. Effects of cardiomyopathy-linked mutations K15N and R21H in tropomyosin on thin-filament regulation and pointed-end dynamics. Mol Biol Cell 2018; 30:268-281. [PMID: 30462572 PMCID: PMC6589558 DOI: 10.1091/mbc.e18-06-0406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Missense mutations K15N and R21H in striated muscle tropomyosin are linked to dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM), respectively. Tropomyosin, together with the troponin complex, regulates muscle contraction and, along with tropomodulin and leiomodin, controls the uniform thin-filament lengths crucial for normal sarcomere structure and function. We used Förster resonance energy transfer to study effects of the tropomyosin mutations on the structure and kinetics of the cardiac troponin core domain associated with the Ca2+-dependent regulation of cardiac thin filaments. We found that the K15N mutation desensitizes thin filaments to Ca2+ and slows the kinetics of structural changes in troponin induced by Ca2+ dissociation from troponin, while the R21H mutation has almost no effect on these parameters. Expression of the K15N mutant in cardiomyocytes decreases leiomodin’s thin-filament pointed-end assembly but does not affect tropomodulin’s assembly at the pointed end. Our in vitro assays show that the R21H mutation causes a twofold decrease in tropomyosin’s affinity for F-actin and affects leiomodin’s function. We suggest that the K15N mutation causes DCM by altering Ca2+-dependent thin-filament regulation and that one of the possible HCM-causing mechanisms by the R21H mutation is through alteration of leiomodin’s function.
Collapse
Affiliation(s)
- Thu Ly
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164
| | - Christopher T Pappas
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721
| | - Dylan Johnson
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834
| | - William Schlecht
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164
| | - Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ 85721
| | - Wen-Ji Dong
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164.,Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164
| | - Alla S Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164
| |
Collapse
|
8
|
Farman GP, Rynkiewicz MJ, Orzechowski M, Lehman W, Moore JR. HCM and DCM cardiomyopathy-linked α-tropomyosin mutations influence off-state stability and crossbridge interaction on thin filaments. Arch Biochem Biophys 2018; 647:84-92. [PMID: 29626422 DOI: 10.1016/j.abb.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022]
Abstract
Calcium regulation of cardiac muscle contraction is controlled by the thin-filament proteins troponin and tropomyosin bound to actin. In the absence of calcium, troponin-tropomyosin inhibits myosin-interactions on actin and induces muscle relaxation, whereas the addition of calcium relieves the inhibitory constraint to initiate contraction. Many mutations in thin filament proteins linked to cardiomyopathy appear to disrupt this regulatory switching. Here, we tested perturbations caused by mutant tropomyosins (E40K, DCM; and E62Q, HCM) on intra-filament interactions affecting acto-myosin interactions including those induced further by myosin association. Comparison of wild-type and mutant human α-tropomyosin (Tpm1.1) behavior was carried out using in vitro motility assays and molecular dynamics simulations. Our results show that E62Q tropomyosin destabilizes thin filament off-state function by increasing calcium-sensitivity, but without apparent affect on global tropomyosin structure by modifying coiled-coil rigidity. In contrast, the E40K mutant tropomyosin appears to stabilize the off-state, demonstrates increased tropomyosin flexibility, while also decreasing calcium-sensitivity. In addition, the E40K mutation reduces thin filament velocity at low myosin concentration while the E62Q mutant tropomyosin increases velocity. Corresponding molecular dynamics simulations indicate specific residue interactions that are likely to redefine underlying molecular regulatory mechanisms, which we propose explain the altered contractility evoked by the disease-causing mutations.
Collapse
Affiliation(s)
- Gerrie P Farman
- Department of Biological Sciences, University of Massachusetts-Lowell, One University Avenue, Lowell, MA 01854, USA; Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA.
| | - Michael J Rynkiewicz
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA.
| | - Marek Orzechowski
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA.
| | - William Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA.
| | - Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts-Lowell, One University Avenue, Lowell, MA 01854, USA.
| |
Collapse
|
9
|
Paul DM, Squire JM, Morris EP. Relaxed and active thin filament structures; a new structural basis for the regulatory mechanism. J Struct Biol 2017; 197:365-371. [PMID: 28161413 PMCID: PMC5367448 DOI: 10.1016/j.jsb.2017.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 12/21/2022]
Abstract
The structures of muscle thin filaments reconstituted using skeletal actin and cardiac troponin and tropomyosin have been determined with and without bound Ca2+ using electron microscopy and reference-free single particle analysis. The resulting density maps have been fitted with atomic models of actin, tropomyosin and troponin showing that: (i) the polarity of the troponin complex is consistent with our 2009 findings, with large shape changes in troponin between the two states; (ii) without Ca2+ the tropomyosin pseudo-repeats all lie at almost equivalent positions in the 'blocked' position on actin (over subdomains 1 and 2); (iii) in the active state the tropomyosin pseudo-repeats are all displaced towards subdomains 3 and 4 of actin, but the extent of displacement varies within the regulatory unit depending upon the axial location of the pseudo-repeats with respect to troponin. Individual pseudo-repeats with Ca2+ bound to troponin can be assigned either to the 'closed' state, a partly activated conformation, or the 'M-state', a fully activated conformation which has previously been thought to occur only when myosin heads bind. These results lead to a modified view of the steric blocking model of thin filament regulation in which cooperative activation is governed by troponin-mediated local interactions of the pseudo-repeats of tropomyosin with actin.
Collapse
Affiliation(s)
- Danielle M Paul
- Muscle Contraction Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK.
| | - John M Squire
- Muscle Contraction Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Edward P Morris
- Division of Structural Biology, The Institute of Cancer Research, London SW3 6JB, UK
| |
Collapse
|
10
|
O’Donohoe TJ, Ketheesan N, Schrale RG. Anti-troponin antibodies following myocardial infarction. J Cardiol 2017; 69:38-45. [DOI: 10.1016/j.jjcc.2016.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/09/2016] [Accepted: 07/22/2016] [Indexed: 12/22/2022]
|
11
|
Marques MDA, de Oliveira GAP. Cardiac Troponin and Tropomyosin: Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype. Front Physiol 2016; 7:429. [PMID: 27721798 PMCID: PMC5033975 DOI: 10.3389/fphys.2016.00429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022] Open
Abstract
Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM) was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the “disease of the sarcomere.” The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53), seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We highlight the importance of a better understanding of allosteric communications within these thin-filament proteins to decipher the HCM pathological state.
Collapse
Affiliation(s)
- Mayra de A Marques
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Abstract
By interacting with the troponin-tropomyosin complex on myofibrillar thin filaments, Ca2+ and myosin govern the regulatory switching processes influencing contractile activity of mammalian cardiac and skeletal muscles. A possible explanation of the roles played by Ca2+ and myosin emerged in the early 1970s when a compelling "steric model" began to gain traction as a likely mechanism accounting for muscle regulation. In its most simple form, the model holds that, under the control of Ca2+ binding to troponin and myosin binding to actin, tropomyosin strands running along thin filaments either block myosin-binding sites on actin when muscles are relaxed or move away from them when muscles are activated. Evidence for the steric model was initially based on interpretation of subtle changes observed in X-ray fiber diffraction patterns of intact skeletal muscle preparations. Over the past 25 years, electron microscopy coupled with three-dimensional reconstruction directly resolved thin filament organization under many experimental conditions and at increasingly higher resolution. At low-Ca2+, tropomyosin was shown to occupy a "blocked-state" position on the filament, and switched-on in a two-step process, involving first a movement of tropomyosin away from the majority of the myosin-binding site as Ca2+ binds to troponin and then a further movement to fully expose the site when small numbers of myosin heads bind to actin. In this contribution, basic information on Ca2+-regulation of muscle contraction is provided. A description is then given relating the voyage of discovery taken to arrive at the present understanding of the steric regulatory model.
Collapse
Affiliation(s)
- William Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, U.S.A
| |
Collapse
|
13
|
Sequeira V, van der Velden J. Historical perspective on heart function: the Frank-Starling Law. Biophys Rev 2015; 7:421-447. [PMID: 28510104 DOI: 10.1007/s12551-015-0184-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 12/18/2022] Open
Abstract
More than a century of research on the Frank-Starling Law has significantly advanced our knowledge about the working heart. The Frank-Starling Law mandates that the heart is able to match cardiac ejection to the dynamic changes occurring in ventricular filling and thereby regulates ventricular contraction and ejection. Significant efforts have been attempted to identify a common fundamental basis for the Frank-Starling heart and, although a unifying idea has still to come forth, there is mounting evidence of a direct relationship between length changes in individual constituents (cardiomyocytes) and their sensitivity to Ca2+ ions. As the Frank-Starling Law is a vital event for the healthy heart, it is of utmost importance to understand its mechanical basis in order to optimize and organize therapeutic strategies to rescue the failing human heart. The present review is a historic perspective on cardiac muscle function. We "revive" a century of scientific research on the heart's fundamental protein constituents (contractile proteins), to their assemblies in the muscle (the sarcomeres), culminating in a thorough overview of the several synergistically events that compose the Frank-Starling mechanism. It is the authors' personal beliefs that much can be gained by understanding the Frank-Starling relationship at the cellular and whole organ level, so that we can finally, in this century, tackle the pathophysiologic mechanisms underlying heart failure.
Collapse
Affiliation(s)
- Vasco Sequeira
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.,ICIN- Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
14
|
Yang S, Barbu-Tudoran L, Orzechowski M, Craig R, Trinick J, White H, Lehman W. Three-dimensional organization of troponin on cardiac muscle thin filaments in the relaxed state. Biophys J 2014; 106:855-64. [PMID: 24559988 DOI: 10.1016/j.bpj.2014.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/02/2013] [Accepted: 01/07/2014] [Indexed: 01/03/2023] Open
Abstract
Muscle contraction is regulated by troponin-tropomyosin, which blocks and unblocks myosin binding sites on actin. To elucidate this regulatory mechanism, the three-dimensional organization of troponin and tropomyosin on the thin filament must be determined. Although tropomyosin is well defined in electron microscopy helical reconstructions of thin filaments, troponin density is mostly lost. Here, we determined troponin organization on native relaxed cardiac muscle thin filaments by applying single particle reconstruction procedures to negatively stained specimens. Multiple reference models led to the same final structure, indicating absence of model bias in the procedure. The new reconstructions clearly showed F-actin, tropomyosin, and troponin densities. At the 25 Å resolution achieved, troponin was considerably better defined than in previous reconstructions. The troponin density closely resembled the shape of troponin crystallographic structures, facilitating detailed interpretation of the electron microscopy density map. The orientation of troponin-T and the troponin core domain established troponin polarity. Density attributable to the troponin-I mobile regulatory domain was positioned where it could hold tropomyosin in its blocking position on actin, thus suggesting the underlying structural basis of thin filament regulation. Our previous understanding of thin filament regulation had been limited to known movements of tropomyosin that sterically block and unblock myosin binding sites on actin. We now show how troponin, the Ca(2+) sensor, may control these movements, ultimately determining whether muscle contracts or relaxes.
Collapse
Affiliation(s)
- Shixin Yang
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | | | - Marek Orzechowski
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - Roger Craig
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - John Trinick
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Howard White
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
15
|
Sevrieva I, Knowles AC, Kampourakis T, Sun YB. Regulatory domain of troponin moves dynamically during activation of cardiac muscle. J Mol Cell Cardiol 2014; 75:181-7. [PMID: 25101951 PMCID: PMC4169182 DOI: 10.1016/j.yjmcc.2014.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/09/2014] [Accepted: 07/26/2014] [Indexed: 11/24/2022]
Abstract
Heart muscle is activated by Ca2+ to generate force and shortening, and the signaling pathway involves allosteric mechanisms in the thin filament. Knowledge about the structure-function relationship among proteins in the thin filament is critical in understanding the physiology and pathology of the cardiac function, but remains obscure. We investigate the conformation of the cardiac troponin (Tn) on the thin filament and its response to Ca2+ activation and propose a molecular mechanism for the regulation of cardiac muscle contraction by Tn based uniquely on information from in situ protein domain orientation. Polarized fluorescence from bifunctional rhodamine is used to determine the orientation of the major component of Tn core domain on the thin filaments of cardiac muscle. We show that the C-terminal lobe of TnC (CTnC) does not move during activation, suggesting that CTnC, together with the coiled coil formed by the TnI and TnT chains (IT arm), acts as a scaffold that holds N-terminal lobe of TnC (NTnC) and the actin binding regions of troponin I. The NTnC, on the other hand, exhibits multiple orientations during both diastole and systole. By combining the in situ orientation data with published in vitro measurements of intermolecular distances, we construct a model for the in situ structure of the thin filament. The conformational dynamics of NTnC plays an important role in the regulation of cardiac muscle contraction by moving the C-terminal region of TnI from its actin-binding inhibitory location and enhancing the movement of tropomyosin away from its inhibitory position. In situ conformational changes of troponin in myocardium were investigated. A model for the cardiac thin filament was constructed based on the in situ data. The IT arm of cardiac troponin acts as a scaffold that holds the regulatory domain. The regulatory domain of cardiac troponin moves dynamically during activation. The dynamics of regulatory domain is important in cardiac muscle regulation.
Collapse
Affiliation(s)
- Ivanka Sevrieva
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Andrea C Knowles
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Thomas Kampourakis
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK
| | - Yin-Biao Sun
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
16
|
Instability in the central region of tropomyosin modulates the function of its overlapping ends. Biophys J 2014; 105:2104-13. [PMID: 24209855 DOI: 10.1016/j.bpj.2013.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/20/2013] [Accepted: 09/17/2013] [Indexed: 12/14/2022] Open
Abstract
The causal link between disparate tropomyosin (Tm) functions and the structural instability in Tm is unknown. To test the hypothesis that the structural instability in the central region of Tm modulates the function of the overlapping ends of contiguous Tm dimers, we used transgenic mice (Tm(DM)) that expressed a mutant α-Tm in the heart; S229E and H276N substitutions induce structural instability in the central region and the overlapping ends of Tm, respectively. In addition, two mouse cardiac troponin T mutants (TnT(1-44Δ) and TnT(45-74Δ)) that have a divergent effect on the overlapping ends of Tm were employed. The S229E-induced instability in the central region of Tm(DM) altered the overlapping ends of Tm(DM), thereby it negated the attenuating effect of H276N on Ca(2+)-activated maximal tension. The rate of cross-bridge detachment (g) decreased in Tm(DM)+TnT(WT) and Tm(H276N)+TnT(WT) fibers but increased in Tm(DM)+TnT(45-74Δ) fibers; however, TnT(45-74Δ) did not alter g, demonstrating that S229E in Tm(DM) had divergent effects on g. The S229E substitution in Tm(DM) ablated the H276N-induced desensitization of myofilament Ca(2+) sensitivity in Tm(DM)+TnT(1-44Δ) fibers. To our knowledge, novel findings from this study show that the structural instability in the central region of Tm modifies cardiac contractile function via its effect on the overlapping ends of contiguous Tm.
Collapse
|
17
|
Sequeira V, Wijnker PJM, Nijenkamp LLAM, Kuster DWD, Najafi A, Witjas-Paalberends ER, Regan JA, Boontje N, Ten Cate FJ, Germans T, Carrier L, Sadayappan S, van Slegtenhorst MA, Zaremba R, Foster DB, Murphy AM, Poggesi C, Dos Remedios C, Stienen GJM, Ho CY, Michels M, van der Velden J. Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations. Circ Res 2013; 112:1491-505. [PMID: 23508784 DOI: 10.1161/circresaha.111.300436] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE High-myofilament Ca(2+) sensitivity has been proposed as a trigger of disease pathogenesis in familial hypertrophic cardiomyopathy (HCM) on the basis of in vitro and transgenic mice studies. However, myofilament Ca(2+) sensitivity depends on protein phosphorylation and muscle length, and at present, data in humans are scarce. OBJECTIVE To investigate whether high myofilament Ca(2+) sensitivity and perturbed length-dependent activation are characteristics for human HCM with mutations in thick and thin filament proteins. METHODS AND RESULTS Cardiac samples from patients with HCM harboring mutations in genes encoding thick (MYH7, MYBPC3) and thin (TNNT2, TNNI3, TPM1) filament proteins were compared with sarcomere mutation-negative HCM and nonfailing donors. Cardiomyocyte force measurements showed higher myofilament Ca(2+) sensitivity in all HCM samples and low phosphorylation of protein kinase A (PKA) targets compared with donors. After exogenous PKA treatment, myofilament Ca(2+) sensitivity was similar (MYBPC3mut, TPM1mut, sarcomere mutation-negative HCM), higher (MYH7mut, TNNT2mut), or even significantly lower (TNNI3mut) compared with donors. Length-dependent activation was significantly smaller in all HCM than in donor samples. PKA treatment increased phosphorylation of PKA-targets in HCM myocardium and normalized length-dependent activation to donor values in sarcomere mutation-negative HCM and HCM with truncating MYBPC3 mutations but not in HCM with missense mutations. Replacement of mutant by wild-type troponin in TNNT2mut and TNNI3mut corrected length-dependent activation to donor values. CONCLUSIONS High-myofilament Ca(2+) sensitivity is a common characteristic of human HCM and partly reflects hypophosphorylation of PKA targets compared with donors. Length-dependent sarcomere activation is perturbed by missense mutations, possibly via posttranslational modifications other than PKA hypophosphorylation or altered protein-protein interactions, and represents a common pathomechanism in HCM.
Collapse
Affiliation(s)
- Vasco Sequeira
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Genchev GZ, Kobayashi T, Lu H. Calcium induced regulation of skeletal troponin--computational insights from molecular dynamics simulations. PLoS One 2013; 8:e58313. [PMID: 23554884 PMCID: PMC3598806 DOI: 10.1371/journal.pone.0058313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/01/2013] [Indexed: 01/11/2023] Open
Abstract
The interaction between calcium and the regulatory site(s) of striated muscle regulatory protein troponin switches on and off muscle contraction. In skeletal troponin binding of calcium to sites I and II of the TnC subunit results in a set of structural changes in the troponin complex, displaces tropomyosin along the actin filament and allows myosin-actin interaction to produce mechanical force. In this study, we used molecular dynamics simulations to characterize the calcium dependent dynamics of the fast skeletal troponin molecule and its TnC subunit in the calcium saturated and depleted states. We focused on the N-lobe and on describing the atomic level events that take place subsequent to removal of the calcium ion from the regulatory sites I and II. A main structural event - a closure of the A/B helix hydrophobic pocket results from the integrated effect of the following conformational changes: the breakage of H-bond interactions between the backbone nitrogen atoms of the residues at positions 2, 9 and sidechain oxygen atoms of the residue at position 12 (N2-OE12/N9-OE12) in sites I and II; expansion of sites I and II and increased site II N-terminal end-segment flexibility; strengthening of the β-sheet scaffold; and the subsequent re-packing of the N-lobe hydrophobic residues. Additionally, the calcium release allows the N-lobe to rotate relative to the rest of the Tn molecule. Based on the findings presented herein we propose a novel model of skeletal thin filament regulation.
Collapse
Affiliation(s)
- Georgi Z. Genchev
- Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Tomoyoshi Kobayashi
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (HL); (TK)
| | - Hui Lu
- Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Shanghai Institute of Medical Genetics, Children’s Hospital of Shanghai, Shanghai, China
- Key Lab of Embryo Molecular Biology, Ministry of Health, Shanghai, China
- Shanghai Lab of Embryo and Reproduction Engineering, Shanghai, China
- * E-mail: (HL); (TK)
| |
Collapse
|
19
|
Knowles AC, Irving M, Sun YB. Conformation of the troponin core complex in the thin filaments of skeletal muscle during relaxation and active contraction. J Mol Biol 2012; 421:125-37. [PMID: 22579625 DOI: 10.1016/j.jmb.2012.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/25/2012] [Accepted: 05/03/2012] [Indexed: 01/13/2023]
Abstract
Contraction of skeletal and cardiac muscles is regulated by Ca(2+) binding to troponin in the actin-containing thin filaments, leading to an azimuthal movement of tropomyosin around the filament that uncovers the myosin binding sites on actin. Here, we use polarized fluorescence to determine the orientation of the C-terminal lobe of troponin C (TnC) in skeletal muscle cells as a step toward elucidating the molecular mechanism of troponin-mediated regulation. Assuming, as shown by X-ray crystallography, that this lobe of TnC is part of a well-defined troponin domain called the IT arm, we show that the coiled coil formed by troponin components I and T makes an angle of about 55° with the thin filament axis in relaxed muscle, in contrast with previous models based on electron microscopy in which this angle is close to 0°. The E helix of TnC makes an angle of about 45° with the thin filament axis. Both the IT coiled coil and the TnC E helix tilt by about 10° on muscle activation. By combining in situ measurements of the orientation of the IT arm and regulatory domain of troponin, which together form the troponin core complex, with published intermolecular distances between thin filament components, we derive models of thin filament structure in which the IT arm of troponin holds its regulatory domain close to the actin surface. Although the structure and function of troponin regions outside the core complex remain to be characterized, the present results provide useful constraints for molecular models of the mechanism of muscle regulation.
Collapse
Affiliation(s)
- Andrea C Knowles
- Randall Division of Cell and Molecular Biophysics and British Heart Foundation Centre of Research Excellence, King's College London, London SE1 1UL, UK
| | | | | |
Collapse
|
20
|
A three-dimensional FRET analysis to construct an atomic model of the actin-tropomyosin-troponin core domain complex on a muscle thin filament. J Mol Biol 2012; 420:40-55. [PMID: 22484177 DOI: 10.1016/j.jmb.2012.03.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/20/2012] [Accepted: 03/28/2012] [Indexed: 11/22/2022]
Abstract
It is essential to know the detailed structure of the thin filament to understand the regulation mechanism of striated muscle contraction. Fluorescence resonance energy transfer (FRET) was used to construct an atomic model of the actin-tropomyosin (Tm)-troponin (Tn) core domain complex. We generated single-cysteine mutants in the 167-195 region of Tm and in TnC, TnI, and the β-TnT 25-kDa fragment, and each was attached with an energy donor probe. An energy acceptor probe was located at actin Gln41, actin Cys374, or the actin nucleotide-binding site. From these donor-acceptor pairs, FRET efficiencies were determined with and without Ca(2+). Using the atomic coordinates for F-actin, Tm, and the Tn core domain, we searched all possible arrangements for Tm or the Tn core domain on F-actin to calculate the FRET efficiency for each donor-acceptor pair in each arrangement. By minimizing the squared sum of deviations for the calculated FRET efficiencies from the observed FRET efficiencies, we determined the location of Tm segment 167-195 and the Tn core domain on F-actin with and without Ca(2+). The bulk of the Tn core domain is located near actin subdomains 3 and 4. The central helix of TnC is nearly perpendicular to the F-actin axis, directing the N-terminal domain of TnC toward the actin outer domain. The C-terminal region in the I-T arm forms a four-helix-bundle structure with the Tm 175-185 region. After Ca(2+) release, the Tn core domain moves toward the actin outer domain and closer to the center of the F-actin axis.
Collapse
|
21
|
Ding F, Chu W, Cui P, Tao M, Zhou R, Zhao F, Hu S, Zhang J. EST-based identification of genes expressed in skeletal muscle of the mandarin fish (Siniperca chuatsi). GENOMICS PROTEOMICS & BIOINFORMATICS 2011; 9:30-6. [PMID: 21641560 PMCID: PMC5054145 DOI: 10.1016/s1672-0229(11)60005-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 10/22/2010] [Indexed: 11/25/2022]
Abstract
To enrich the genomic information of the commercially important fish species, we obtained 5,063 high-quality expressed sequence tags (ESTs) from the muscle cDNA database of the mandarin fish (Siniperca chuatsi). Clustering analysis yielded 1,625 unique sequences including 443 contigs (from 3,881 EST sequences) and 1,182 singletons. BLASTX searches showed that 959 unique sequences shared homology to proteins in the NCBI non-redundant database. A total of 740 unique sequences were functionally annotated using Gene Ontology. The 1,625 unique sequences were assigned to Kyoto Encyclopedia of Genes and Genomes reference pathways, and the results indicated that transcripts participating in nucleotide metabolism and amino acid metabolism are relatively abundant in S. chuatsi. Meanwhile, we identified 15 genes to be abundantly expressed in muscle of the mandarin fish. These genes are involved in muscle structural formation and regulation of muscle differentiation and development. The most remarkable gene in S. chuatsi is nuclease diphosphate kinase B, which is represented by 449 EST sequences accounting for 8.86% of the total EST sequences. Our work provides a transcript profile expressed in the white muscle of the mandarin fish, laying down a foundation in better understanding of fish genomics.
Collapse
Affiliation(s)
- Feng Ding
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Manning EP, Tardiff JC, Schwartz SD. A model of calcium activation of the cardiac thin filament. Biochemistry 2011; 50:7405-13. [PMID: 21797264 DOI: 10.1021/bi200506k] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cardiac thin filament regulates actomyosin interactions through calcium-dependent alterations in the dynamics of cardiac troponin and tropomyosin. Over the past several decades, many details of the structure and function of the cardiac thin filament and its components have been elucidated. We propose a dynamic, complete model of the thin filament that encompasses known structures of cardiac troponin, tropomyosin, and actin and show that it is able to capture key experimental findings. By performing molecular dynamics simulations under two conditions, one with calcium bound and the other without calcium bound to site II of cardiac troponin C (cTnC), we found that subtle changes in structure and protein contacts within cardiac troponin resulted in sweeping changes throughout the complex that alter tropomyosin (Tm) dynamics and cardiac troponin--actin interactions. Significant calcium-dependent changes in dynamics occur throughout the cardiac troponin complex, resulting from the combination of the following: structural changes in the N-lobe of cTnC at and adjacent to sites I and II and the link between them; secondary structural changes of the cardiac troponin I (cTnI) switch peptide, of the mobile domain, and in the vicinity of residue 25 of the N-terminus; secondary structural changes in the cardiac troponin T (cTnT) linker and Tm-binding regions; and small changes in cTnC-cTnI and cTnT-Tm contacts. As a result of these changes, we observe large changes in the dynamics of the following regions: the N-lobe of cTnC, the mobile domain of cTnI, the I-T arm, the cTnT linker, and overlapping Tm. Our model demonstrates a comprehensive mechanism for calcium activation of the cardiac thin filament consistent with previous, independent experimental findings. This model provides a valuable tool for research into the normal physiology of cardiac myofilaments and a template for studying cardiac thin filament mutations that cause human cardiomyopathies.
Collapse
Affiliation(s)
- Edward P Manning
- Department of Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | | | | |
Collapse
|
23
|
Huang RYC, Rempel DL, Gross ML. HD exchange and PLIMSTEX determine the affinities and order of binding of Ca2+ with troponin C. Biochemistry 2011; 50:5426-35. [PMID: 21574565 PMCID: PMC3115450 DOI: 10.1021/bi200377c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Troponin C (TnC), present in all striated muscle, is the Ca(2+)-activated trigger that initiates myocyte contraction. The binding of Ca(2+) to TnC initiates a cascade of conformational changes involving the constituent proteins of the thin filament. The functional properties of TnC and its ability to bind Ca(2+) have significant regulatory influence on the contractile reaction of muscle. Changes in TnC may also correlate with cardiac and various other muscle-related diseases. We report here the implementation of the PLIMSTEX strategy (protein ligand interaction by mass spectrometry, titration, and H/D exchange) to elucidate the binding affinity of TnC with Ca(2+) and, more importantly, to determine the order of Ca(2+) binding of the four EF hands of the protein. The four equilibrium constants, K(1) = (5 ± 5) × 10(7) M(-1), K(2) = (1.8 ± 0.8) × 10(7) M(-1), K(3) = (4.2 ± 0.9) × 10(6) M(-1), and K(4) = (1.6 ± 0.6) × 10(6) M(-1), agree well with determinations by other methods and serve to increase our confidence in the PLIMSTEX approach. We determined the order of binding to the four EF hands to be III, IV, II, and I by extracting from the H/DX results the deuterium patterns for each EF hand for each state of the protein (apo through fully Ca(2+) bound). This approach, demonstrated for the first time, may be general for determining binding orders of metal ions and other ligands to proteins.
Collapse
Affiliation(s)
- Richard Y-C. Huang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Don L. Rempel
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
24
|
Zhang G, Chu W, Hu S, Meng T, Pan L, Zhou R, Liu Z, Zhang J. Identification and analysis of muscle-related protein isoforms expressed in the white muscle of the mandarin fish (Siniperca chuatsi). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:151-162. [PMID: 20354749 DOI: 10.1007/s10126-010-9275-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 01/19/2010] [Indexed: 05/29/2023]
Abstract
To identify muscle-related protein isoforms expressed in the white muscle of the mandarin fish Siniperca chuatsi, we analyzed 5,063 high-quality expressed sequence tags (ESTs) from white muscle cDNA library and predicted the integrity of the clusters annotated to these genes and the physiochemical properties of the putative polypeptides with full length. Up to about 33% of total ESTs were annotated to muscle-related proteins: myosin, actin, tropomyosin/troponin complex, parvalbumin, and Sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCa). Thirty-two isoforms were identified and more than one isoform existed in each of these proteins. Among these isoforms, 14 putative polypeptides were with full length. In addition, about 2% of total ESTs were significantly homologous to "glue" molecules such as alpha-actinins, myosin-binding proteins, myomesin, tropomodulin, cofilin, profilin, twinfilins, coronin-1, and nebulin, which were required for the integrity and maintenance of the muscle sarcomere. The results demonstrated that multiple isoforms of major muscle-related proteins were expressed in S. chuatsi white muscle. The analysis on these isoforms and other proteins sequences will greatly aid our systematic understanding of the high flexibility of mandarin fish white muscle at molecular level and expand the utility of fish systems as models for the muscle genetic control and function.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Key Laboratory of Genome Information and Sciences, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Frye J, Klenchin VA, Rayment I. Structure of the tropomyosin overlap complex from chicken smooth muscle: insight into the diversity of N-terminal recognition. Biochemistry 2010; 49:4908-20. [PMID: 20465283 DOI: 10.1021/bi100349a] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tropomyosin is a stereotypical alpha-helical coiled coil that polymerizes to form a filamentous macromolecular assembly that lies on the surface of F-actin. The interaction between the C-terminal and N-terminal segments on adjacent molecules is known as the overlap region. We report here two X-ray structures of the chicken smooth muscle tropomyosin overlap complex. A novel approach was used to stabilize the C-terminal and N-terminal fragments. Globular domains from both the human DNA ligase binding protein XRCC4 and bacteriophage varphi29 scaffolding protein Gp7 were fused to 37 and 28 C-terminal amino acid residues of tropomyosin, respectively, whereas the 29 N-terminal amino acids of tropomyosin were fused to the C-terminal helix bundle of microtubule binding protein EB1. The structures of both the XRCC4 and Gp7 fusion proteins complexed with the N-terminal EB1 fusion contain a very similar helix bundle in the overlap region that encompasses approximately 15 residues. The C-terminal coiled coil opens to allow formation of the helix bundle, which is stabilized by hydrophobic interactions. These structures are similar to that observed in the NMR structure of the rat skeletal overlap complex [Greenfield, N. J., et al. (2006) J. Mol. Biol. 364, 80-96]. The interactions between the N- and C-terminal coiled coils of smooth muscle tropomyosin show significant curvature, which differs somewhat between the two structures and implies flexibility in the overlap complex, at least in solution. This is likely an important attribute that allows tropomyosin to assemble around the actin filaments. These structures provide a molecular explanation for the role of N-acetylation in the assembly of native tropomyosin.
Collapse
Affiliation(s)
- Jeremiah Frye
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
26
|
Matsuo T, Ueno Y, Takezawa Y, Sugimoto Y, Oda T, Wakabayashi K. X-ray fiber diffraction modeling of structural changes of the thin filament upon activation of live vertebrate skeletal muscles. Biophysics (Nagoya-shi) 2010; 6:13-26. [PMID: 27857582 PMCID: PMC5036664 DOI: 10.2142/biophysics.6.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 01/29/2010] [Indexed: 12/01/2022] Open
Abstract
In order to clarify the structural changes of the thin filaments related to the regulation mechanism in skeletal muscle contraction, the intensities of thin filament-based reflections in the X-ray fiber diffraction patterns from live frog skeletal muscles at non-filament overlap length were investigated in the relaxed state and upon activation. Modeling the structural changes of the whole thin filament due to Ca2+-activation was systematically performed using the crystallographic data of constituent molecules (actin, tropomyosin and troponin core domain) as starting points in order to determine the structural changes of the regulatory proteins and actin. The results showed that the globular core domain of troponin moved toward the filament axis by ∼6 Å and rotated by ∼16° anticlockwise (viewed from the pointed end) around the filament axis by Ca2+-binding to troponin C, and that tropomyosin together with the tail of troponin T moved azimuthally toward the inner domains of actin by ∼12° and radially by ∼7 Å from the relaxed position possibly to partially open the myosin binding region of actin. The domain structure of the actin molecule in F-actin we obtained for frog muscle thin filament was slightly different from that of the Holmes F-actin model in the relaxed state, and upon activation, all subdomains of actin moved in the direction to closing the nucleotide-binding pocket, making the actin molecule more compact. We suggest that the troponin movements and the structural changes within actin molecule upon activation are also crucial components of the regulation mechanism in addition to the steric blocking movement of tropomyosin.
Collapse
Affiliation(s)
- Tatsuhito Matsuo
- Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yutaka Ueno
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Yasunori Takezawa
- Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Yasunobu Sugimoto
- Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Toshiro Oda
- RIKEN, SPring-8 Center, RIKEN Harima Institute, Sayo, Hyogo 679-5146, Japan
| | - Katsuzo Wakabayashi
- Division of Biophysical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
27
|
Wang CLA, Coluccio LM. New insights into the regulation of the actin cytoskeleton by tropomyosin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 281:91-128. [PMID: 20460184 DOI: 10.1016/s1937-6448(10)81003-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The actin cytoskeleton is regulated by a variety of actin-binding proteins including those constituting the tropomyosin family. Tropomyosins are coiled-coil dimers that bind along the length of actin filaments. In muscles, tropomyosin regulates the interaction of actin-containing thin filaments with myosin-containing thick filaments to allow contraction. In nonmuscle cells where multiple tropomyosin isoforms are expressed, tropomyosins participate in a number of cellular events involving the cytoskeleton. This chapter reviews the current state of the literature regarding tropomyosin structure and function and discusses the evidence that tropomyosins play a role in regulating actin assembly.
Collapse
|
28
|
Paul DM, Squire JM, Morris EP. A novel approach to the structural analysis of partially decorated actin based filaments. J Struct Biol 2009; 170:278-85. [PMID: 20025974 PMCID: PMC2862299 DOI: 10.1016/j.jsb.2009.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/11/2009] [Accepted: 12/11/2009] [Indexed: 11/14/2022]
Abstract
We describe a novel set of single particle based procedures for the structural analysis of electron microscope images of muscle thin filaments and other partially decorated actin based filaments. The thin filament comprises actin and the regulatory proteins tropomyosin and troponin in a 7:1:1 M ratio. Prior to our work, structure analysis from electron microscope images of the thin filament has largely involved either helical averaging defined by the underlying actin helix or the use of single particle analysis but using a starting model as a reference structure. Our single particle based approach yields an accurate structure for the complete thin filament by avoiding the loss of information from troponin and tropomyosin associated with helical averaging and also removing the potential reference bias associated with the use of a starting model. The approach is more widely applicable to sub-stoichiometric complexes of F-actin and actin-binding proteins.
Collapse
Affiliation(s)
- Danielle M Paul
- Institute of Cancer Research, Chester Beatty Laboratories, 237, Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|