1
|
Enyong EN, Gurley JM, De Ieso ML, Stamer WD, Elliott MH. Caveolar and non-Caveolar Caveolin-1 in ocular homeostasis and disease. Prog Retin Eye Res 2022; 91:101094. [PMID: 35729002 PMCID: PMC9669151 DOI: 10.1016/j.preteyeres.2022.101094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Caveolae, specialized plasma membrane invaginations present in most cell types, play important roles in multiple cellular processes including cell signaling, lipid uptake and metabolism, endocytosis and mechanotransduction. They are found in almost all cell types but most abundant in endothelial cells, adipocytes and fibroblasts. Caveolin-1 (Cav1), the signature structural protein of caveolae was the first protein associated with caveolae, and in association with Cavin1/PTRF is required for caveolae formation. Genetic ablation of either Cav1 or Cavin1/PTRF downregulates expression of the other resulting in loss of caveolae. Studies using Cav1-deficient mouse models have implicated caveolae with human diseases such as cardiomyopathies, lipodystrophies, diabetes and muscular dystrophies. While caveolins and caveolae are extensively studied in extra-ocular settings, their contributions to ocular function and disease pathogenesis are just beginning to be appreciated. Several putative caveolin/caveolae functions are relevant to the eye and Cav1 is highly expressed in retinal vascular and choroidal endothelium, Müller glia, the retinal pigment epithelium (RPE), and the Schlemm's canal endothelium and trabecular meshwork cells. Variants at the CAV1/2 gene locus are associated with risk of primary open angle glaucoma and the high risk HTRA1 variant for age-related macular degeneration is thought to exert its effect through regulation of Cav1 expression. Caveolins also play important roles in modulating retinal neuroinflammation and blood retinal barrier permeability. In this article, we describe the current state of caveolin/caveolae research in the context of ocular function and pathophysiology. Finally, we discuss new evidence showing that retinal Cav1 exists and functions outside caveolae.
Collapse
Affiliation(s)
- Eric N Enyong
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jami M Gurley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael L De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Michael H Elliott
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
TurboID Screening of the OmpP2 Protein Reveals Host Proteins Involved in Recognition and Phagocytosis of Glaesserella parasuis by iPAM Cells. Microbiol Spectr 2022; 10:e0230722. [PMID: 36094311 PMCID: PMC9603499 DOI: 10.1128/spectrum.02307-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glaesserella parasuis is a common bacterium in the porcine upper respiratory tract that causes severe Glasser's disease, which is characterized by polyarthritis, meningitis, and fibrinous polyserositis. TurboID is an enzyme that mediates the biotinylation of endogenous proteins that can fuse with proteins of interest to label protein interactors and local proteomes. To reveal the host proteins that interact with outer membrane protein P2 (OmpP2) by TurboID-mediated proximity labeling in immortalized porcine alveolar macrophage iPAM cells, 0.1 and 2.58 mg/mL His-tagged TurboID-OmpP2 and TurboID recombinant proteins were expressed and purified. By mass spectrometry, we identified 948 and 758 iPAM cell proteins that interacted with His-TurboID-OmpP2 and His-TurboID, respectively. After removal of background proteins through comparison with the TurboID-treated group, 240 unique interacting proteins were identified in the TurboID-OmpP2-treated group. Ultimately, only four membrane proteins were identified, CAV1, ARF6, PPP2R1A, and AP2M1, from these 240 host proteins. Our data indicated that CAV1, ARF6, and PPP2R1A could interact with OmpP2 of G. parasuis, as confirmed by coimmunoprecipitation assay. Finally, we found that CAV1, ARF6, and PPP2R1A were involved in the recognition and phagocytosis of G. parasuis serotype 5 by iPAM cells by using overexpression and RNA interference assays. This study provides first-hand information regarding the interaction of the iPAM cell proteomes with G. parasuis OmpP2 protein by using the TurboID proximity labeling system and identifies three novel host membrane proteins involved in the recognition and phagocytosis of G. parasuis by iPAM cells. These results provide new insight for a better understanding of Glasser's disease pathogenesis. IMPORTANCE G. parasuis can cause serious Glasser's disease, which is characterized by polyarthritis, meningitis, and fibrinous polyserositis in pigs. It can cause high morbidity and mortality in swine herds and major economic losses to the global pig industry. Understanding the mechanism of interactions between alveolar macrophages and pathogenic G. parasuis is essential for developing effective vaccines and targeted drugs against G. parasuis. To reveal the host proteins interacting with OmpP2 by TurboID-mediated proximity labeling in immortalized porcine alveolar macrophage (iPAM) cells, we identified 240 unique proteins from iPAM cells that could interact with G. parasuis OmpP2. Among them, only four membrane proteins, CAV1, ARF6, PPP2R1A, and AP2M1, were identified, and further study showed that CAV1, ARF6, and PPP2R1A are involved in the recognition and phagocytosis of G. parasuis serotype 5 by iPAM cells. This study provides new insight into proteomic interactions between hosts and pathogenic microorganisms.
Collapse
|
3
|
De Gaetano GV, Lentini G, Galbo R, Coppolino F, Famà A, Teti G, Beninati C. Invasion and trafficking of hypervirulent group B streptococci in polarized enterocytes. PLoS One 2021; 16:e0253242. [PMID: 34129624 PMCID: PMC8205152 DOI: 10.1371/journal.pone.0253242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022] Open
Abstract
Streptococcus agalactiae (group B streptococcus or GBS) is a commensal bacterium that can frequently behave as a pathogen, particularly in the neonatal period and in the elderly. The gut is a primary site of GBS colonization and a potential port of entry during neonatal infections caused by hypervirulent clonal complex 17 (CC17) strains. Here we studied the interactions between the prototypical CC17 BM110 strain and polarized enterocytes using the Caco-2 cell line. GBS could adhere to and invade these cells through their apical or basolateral surfaces. Basolateral invasion was considerably more efficient than apical invasion and predominated under conditions resulting in weakening of cell-to-cell junctions. Bacterial internalization occurred by a mechanism involving caveolae- and lipid raft-dependent endocytosis and actin re-organization, but not clathrin-dependent endocytosis. In the first steps of Caco-2 invasion, GBS colocalized with the early endocytic marker EEA-1, to later reside in acidic vacuoles. Taken together, these data suggest that CC17 GBS selectively adheres to the lateral surface of enterocytes from which it enters through caveolar lipid rafts using a classical, actin-dependent endocytic pathway. These data may be useful to develop alternative preventive strategies aimed at blocking GBS invasion of the intestinal barrier.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Roberta Galbo
- Department of Chemical, Biological and Pharmaceutical Sciences, University of Messina, Messina, Italy
| | | | - Agata Famà
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy
- Scylla Biotech Srl, Messina, Italy
- * E-mail:
| |
Collapse
|
4
|
Jeansonne D, Jeyaseelan S. Gain-of-Function Polymorphisms in Human Inflammasomes: Implications for Cystic Fibrosis. Am J Respir Cell Mol Biol 2021; 65:126-127. [PMID: 34033526 PMCID: PMC8399577 DOI: 10.1165/rcmb.2021-0183ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Duane Jeansonne
- Center for Lung Biology and Disease.,Department of Pathobiological Sciences Louisiana State University School of Veterinary Medicine Baton Rouge, Louisiana
| | - Samithamby Jeyaseelan
- Center for Lung Biology and Disease.,Department of Pathobiological Sciences Louisiana State University School of Veterinary Medicine Baton Rouge, Louisiana.,Department of Medicine Louisiana State University Health Sciences Center New Orleans, Louisiana
| |
Collapse
|
5
|
Graustein AD, Berrington WR, Buckingham KJ, Nguyen FK, Joudeh LL, Rosenfeld M, Bamshad MJ, Gibson RL, Hawn TR, Emond MJ. Inflammasome Genetic Variants, Macrophage Function, and Clinical Outcomes in Cystic Fibrosis. Am J Respir Cell Mol Biol 2021; 65:157-166. [PMID: 33848452 DOI: 10.1165/rcmb.2020-0257oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cystic fibrosis (CF) is characterized by chronic airway infection, inflammation, and tissue damage that lead to progressive respiratory failure. NLRP3 and NLRC4 are cytoplasmic pattern recognition receptors that activate the inflammasome, initiating a caspase-1-mediated response. We hypothesized that gain-of-function inflammasome responses are associated with worse outcomes in children with CF. We genotyped nonsynonymous variants in NLRP3 and the NLRC4 pathway from individuals in the EPIC (Early Pseudomonas Infection Control) Observational Study cohort and tested for association with CF outcomes. We generated knockouts of NLRP3 and NLRC4 in human macrophage-like cells and rescued knockouts with wild-type or variant forms of NLRP3 and NLRC4. We identified a SNP in NLRP3, p.(Q705K), that was associated with a higher rate of P. aeruginosa colonization (N = 609; P = 0.01; hazard ratio, 2.3 [Cox model]) and worsened lung function over time as measured by forced expiratory volume in 1 second (N = 445; P = 0.001 [generalized estimating equation]). We identified a SNP in NLRC4, p.(A929S), that was associated with a lower rate of P. aeruginosa colonization as part of a composite of rare variants (N = 405; P = 0.045; hazard ratio, 0.68 [Cox model]) and that was individually associated with protection from lung function decline (P < 0.001 [generalized estimating equation]). Rescue of the NLRP3 knockout with the p.(Q705K) variant produced significantly more IL-1β in response to NLRP3 stimulation than rescue with the wild type (P = 0.020 [Student's t test]). We identified a subset of children with CF at higher risk of early lung disease progression. Knowledge of these genetic modifiers could guide therapies targeting inflammasome pathways.
Collapse
Affiliation(s)
| | | | | | | | | | - Margaret Rosenfeld
- Department of Pediatrics, School of Medicine.,Division of Pulmonary and Sleep Medicine and
| | - Michael J Bamshad
- Department of Pediatrics, School of Medicine.,Department of Genome Sciences, and.,Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington
| | - Ronald L Gibson
- Department of Pediatrics, School of Medicine.,Division of Pulmonary and Sleep Medicine and
| | | | - Mary J Emond
- Department of Biostatistics, University of Washington, Seattle, Washington; and
| |
Collapse
|
6
|
The Polyaminoisoprenyl Potentiator NV716 Revives Old Disused Antibiotics against Intracellular Forms of Infection by Pseudomonas aeruginosa. Antimicrob Agents Chemother 2021; 65:AAC.02028-20. [PMID: 33318000 DOI: 10.1128/aac.02028-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/05/2020] [Indexed: 12/24/2022] Open
Abstract
Active efflux confers intrinsic resistance to multiple antibiotics in Pseudomonas aeruginosa, including old disused molecules. Beside resistance, intracellular survival is another reason for failure to eradicate bacteria with antibiotics. We evaluated the capacity of polyaminoisoprenyl potentiators (designed as efflux pump inhibitors [EPIs]) NV716 and NV731 compared to PAβN to restore the activity of disused antibiotics (doxycycline, chloramphenicol [substrates for efflux], and rifampin [nonsubstrate]) in comparison with ciprofloxacin against intracellular P. aeruginosa (strains with variable efflux levels) in THP-1 monocytes exposed over 24 h to antibiotics alone (0.003 to 100× MIC) or combined with EPIs. Pharmacodynamic parameters (apparent static concentrations [C s] and maximal relative efficacy [E max]) were calculated using the Hill equation of concentration-response curves. PAβN and NV731 moderately reduced (0 to 4 doubling dilutions) antibiotic MICs but did not affect their intracellular activity. NV716 markedly reduced (1 to 16 doubling dilutions) the MIC of all antibiotics (substrates or not for efflux; strains expressing efflux or not); it also improved their relative potency and maximal efficacy (i.e., lower C s; more negative E max) intracellularly. In parallel, NV716 reduced the persister fraction in stationary cultures when combined with ciprofloxacin. In contrast to PAβN and NV731, which act only as EPIs against extracellular bacteria, NV716 can resensitize P. aeruginosa to antibiotics whether they are substrates or not for efflux, both extracellularly and intracellularly. This suggests a complex mode of action that goes beyond a simple inhibition of efflux to reduce bacterial persistence. NV716 appears to be a useful adjuvant, including to disused antibiotics with low antipseudomonal activity, to improve their activity, including against intracellular P. aeruginosa.
Collapse
|
7
|
Dudãu M, Codrici E, Tanase C, Gherghiceanu M, Enciu AM, Hinescu ME. Caveolae as Potential Hijackable Gates in Cell Communication. Front Cell Dev Biol 2020; 8:581732. [PMID: 33195223 PMCID: PMC7652756 DOI: 10.3389/fcell.2020.581732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Caveolae are membrane microdomains described in many cell types involved in endocytocis, transcytosis, cell signaling, mechanotransduction, and aging. They are found at the interface with the extracellular environment and are structured by caveolin and cavin proteins. Caveolae and caveolins mediate transduction of chemical messages via signaling pathways, as well as non-chemical messages, such as stretching or shear stress. Various pathogens or signals can hijack these gates, leading to infectious, oncogenic and even caveolin-related diseases named caveolinopathies. By contrast, preclinical and clinical research have fallen behind in their attempts to hijack caveolae and caveolins for therapeutic purposes. Caveolae involvement in human disease is not yet fully explored or understood and, of all their scaffold proteins, only caveolin-1 is being considered in clinical trials as a possible biomarker of disease. This review briefly summarizes current knowledge about caveolae cell signaling and raises the hypothesis whether these microdomains could serve as hijackable “gatekeepers” or “gateways” in cell communication. Furthermore, because cell signaling is one of the most dynamic domains in translating data from basic to clinical research, we pay special attention to translation of caveolae, caveolin, and cavin research into clinical practice.
Collapse
Affiliation(s)
- Maria Dudãu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Cristiana Tanase
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Clinical Biochemistry Department, Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail E Hinescu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
8
|
Strug LJ, Stephenson AL, Panjwani N, Harris A. Recent advances in developing therapeutics for cystic fibrosis. Hum Mol Genet 2018; 27:R173-R186. [PMID: 30060192 PMCID: PMC6061831 DOI: 10.1093/hmg/ddy188] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/23/2022] Open
Abstract
Despite hope that a cure was imminent when the causative gene was cloned nearly 30 years ago, cystic fibrosis (CF [MIM: 219700]) remains a life-shortening disease affecting more than 70 000 individuals worldwide. However, within the last 6 years the Food and Drug Administration's approval of Ivacaftor, the first drug that corrects the defective cystic fibrosis transmembrane conductance regulator protein [CFTR (MIM: 602421)] in patients with the G551D mutation, marks a watershed in the development of novel therapeutics for this devastating disease. Here we review recent progress in diverse research areas, which all focus on curing CF at the genetic, biochemical or physiological level. In the near future it seems probable that development of mutation-specific therapies will be the focus, since it is unlikely that any one approach will be efficient in correcting the more than 2000 disease-associated variants. We discuss the new drugs and combinations of drugs that either enhance delivery of misfolded CFTR protein to the cell membrane, where it functions as an ion channel, or that activate channel opening. Next we consider approaches to correct the causative genetic lesion at the DNA or RNA level, through repressing stop mutations and nonsense-mediated decay, modulating splice mutations, fixing errors by gene editing or using novel routes to gene replacement. Finally, we explore how modifier genes, loci elsewhere in the genome that modify CF disease severity, may be used to restore a normal phenotype. Progress in all of these areas has been dramatic, generating enthusiasm that CF may soon become a broadly treatable disease.
Collapse
Affiliation(s)
- Lisa J Strug
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anne L Stephenson
- Department of Respirology, Adult Cystic Fibrosis Program, St. Michael’s Hospital, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Naim Panjwani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
9
|
Curran CS, Bolig T, Torabi-Parizi P. Mechanisms and Targeted Therapies for Pseudomonas aeruginosa Lung Infection. Am J Respir Crit Care Med 2018; 197:708-727. [PMID: 29087211 PMCID: PMC5855068 DOI: 10.1164/rccm.201705-1043so] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a complex gram-negative facultative anaerobe replete with a variety of arsenals to activate, modify, and destroy host defense mechanisms. The microbe is a common cause of nosocomial infections and an antibiotic-resistant priority pathogen. In the lung, P. aeruginosa disrupts upper and lower airway homeostasis by damaging the epithelium and evading innate and adaptive immune responses. The biology of these interactions is essential to understand P. aeruginosa pathogenesis. P. aeruginosa interacts directly with host cells via flagella, pili, lipoproteins, lipopolysaccharides, and the type III secretion system localized in the outer membrane. P. aeruginosa quorum-sensing molecules regulate the release of soluble factors that enhance the spread of infection. These characteristics of P. aeruginosa differentially affect lung epithelial, innate, and adaptive immune cells involved in the production of mediators and the recruitment of additional immune cell subsets. Pathogen interactions with individual host cells and in the context of host acute lung infection are discussed to reveal pathways that may be targeted therapeutically.
Collapse
Affiliation(s)
- Colleen S Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Thomas Bolig
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Parizad Torabi-Parizi
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Golovkine G, Reboud E, Huber P. Pseudomonas aeruginosa Takes a Multi-Target Approach to Achieve Junction Breach. Front Cell Infect Microbiol 2018; 7:532. [PMID: 29379773 PMCID: PMC5770805 DOI: 10.3389/fcimb.2017.00532] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/20/2017] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen which uses a number of strategies to cross epithelial and endothelial barriers at cell–cell junctions. In this review, we describe how the coordinated actions of P. aeruginosa's virulence factors trigger various molecular mechanisms to disarm the junctional gate responsible for tissue integrity.
Collapse
Affiliation(s)
- Guillaume Golovkine
- Centre National de la Recherche Scientifique ERL5261, CEA BIG-BCI, Institut National de la Santé et de la Recherche Médicale UMR1036, Université Grenoble Alpes, Grenoble, France
| | - Emeline Reboud
- Centre National de la Recherche Scientifique ERL5261, CEA BIG-BCI, Institut National de la Santé et de la Recherche Médicale UMR1036, Université Grenoble Alpes, Grenoble, France
| | - Philippe Huber
- Centre National de la Recherche Scientifique ERL5261, CEA BIG-BCI, Institut National de la Santé et de la Recherche Médicale UMR1036, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
11
|
de Almeida CJG. Caveolin-1 and Caveolin-2 Can Be Antagonistic Partners in Inflammation and Beyond. Front Immunol 2017; 8:1530. [PMID: 29250058 PMCID: PMC5715436 DOI: 10.3389/fimmu.2017.01530] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/27/2017] [Indexed: 12/26/2022] Open
Abstract
Caveolins, encoded by the CAV gene family, are the main protein components of caveolae. In most tissues, caveolin-1 (Cav-1) and caveolin-2 (Cav-2) are co-expressed, and Cav-2 targeting to caveolae depends on the formation of heterooligomers with Cav-1. Notwithstanding, Cav-2 has unpredictable activities, opposing Cav-1 in the regulation of some cellular processes. While the major roles of Cav-1 as a modulator of cell signaling in inflammatory processes and in immune responses have been extensively discussed elsewhere, the aim of this review is to focus on data revealing the distinct activity of Cav-1 and Cav-2, which suggest that these proteins act antagonistically to fine-tune a variety of cellular processes relevant to inflammation.
Collapse
|
12
|
Gabor KA, Fessler MB. Roles of the Mevalonate Pathway and Cholesterol Trafficking in Pulmonary Host Defense. Curr Mol Pharmacol 2017; 10:27-45. [PMID: 26758950 PMCID: PMC6026538 DOI: 10.2174/1874467209666160112123603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/01/2015] [Accepted: 12/23/2015] [Indexed: 01/17/2023]
Abstract
The mevalonic acid synthesis pathway, cholesterol, and lipoproteins play fundamental roles in lung physiology and the innate immune response. Recent literature investigating roles for cholesterol synthesis and trafficking in host defense against respiratory infection was critically reviewed. The innate immune response and the cholesterol biosynthesis/trafficking network regulate one another, with important implications for pathogen invasion and host defense in the lung. The activation of pathogen recognition receptors and downstream cellular host defense functions are critically sensitive to cellular cholesterol. Conversely, microorganisms can co-opt the sterol/lipoprotein network in order to facilitate replication and evade immunity. Emerging literature suggests the potential for harnessing these insights towards therapeutic development. Given that >50% of adults in the U.S. have serum cholesterol abnormalities and pneumonia remains a leading cause of death, the potential impact of cholesterol on pulmonary host defense is of tremendous public health significance and warrants further mechanistic and translational investigation.
Collapse
Affiliation(s)
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, P.O. Box 12233, Maildrop D2-01, Research Triangle Park, NC 27709, United States
| |
Collapse
|
13
|
Capasso D, Pepe MV, Rossello J, Lepanto P, Arias P, Salzman V, Kierbel A. Elimination of Pseudomonas aeruginosa through Efferocytosis upon Binding to Apoptotic Cells. PLoS Pathog 2016; 12:e1006068. [PMID: 27977793 PMCID: PMC5158079 DOI: 10.1371/journal.ppat.1006068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/15/2016] [Indexed: 02/03/2023] Open
Abstract
For opportunistic pathogens such as Pseudomonas aeruginosa, the mucosal barrier represents a formidable challenge. Infections develop only in patients with altered epithelial barriers. Here, we showed that P. aeruginosa interacts with a polarized epithelium, adhering almost exclusively at sites of multi-cellular junctions. In these sites, numerous bacteria attach to an extruded apoptotic cell or apoptotic body. This dead cell tropism is independent of the type of cell death, as P. aeruginosa also binds to necrotic cells. We further showed that P. aeruginosa is internalized through efferocytosis, a process in which surrounding epithelial cells engulf and dispose of extruded apoptotic cells. Intracellularly, along with apoptotic cell debris, P. aeruginosa inhabits an efferocytic phagosome that acquires lysosomal features, and is finally killed. We propose that elimination of P. aeruginosa through efferocytosis is part of a host defense mechanism. Our findings could be relevant for the study of cystic fibrosis, which is characterized by an exacerbated number of apoptotic cells and ineffective efferocytosis. Pseudomonas aeruginosa is an opportunistic pathogen that infects vulnerable patients, such as those with cystic fibrosis or hospitalized in intensive care units. An advance towards understanding infections caused by P. aeruginosa would be to fully elucidate the mechanisms that operate in the bacteria-epithelial barrier interplay. Here, we showed that P. aeruginosa exhibits a remarkable tropism towards dead cells. As bacteria interact with a polarized epithelium, they attach and aggregate almost exclusively on apoptotic cells extruded from the epithelium, while the rest of the surface seems reluctant to bacterial adhesion. We further showed that P. aeruginosa is internalized by epithelial cells surrounding the infected apoptotic cell through efferocytosis, a process in which apoptotic cells are engulfed and disposed of by other cells. Bacteria are eliminated intracellularly. Our findings may help to understand why contexts such as cystic fibrosis, where apoptotic cells are unusually produced and efferocytosis fails, favor P. aeruginosa colonization.
Collapse
Affiliation(s)
- Darío Capasso
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Buenos Aires, Argentina
| | - María Victoria Pepe
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Buenos Aires, Argentina
| | | | | | - Paula Arias
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Buenos Aires, Argentina
| | - Valentina Salzman
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Buenos Aires, Argentina
| | - Arlinet Kierbel
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
14
|
Exome Sequencing of Phenotypic Extremes Identifies CAV2 and TMC6 as Interacting Modifiers of Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis. PLoS Genet 2015; 11:e1005273. [PMID: 26047157 PMCID: PMC4457883 DOI: 10.1371/journal.pgen.1005273] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/12/2015] [Indexed: 12/22/2022] Open
Abstract
Discovery of rare or low frequency variants in exome or genome data that are associated with complex traits often will require use of very large sample sizes to achieve adequate statistical power. For a fixed sample size, sequencing of individuals sampled from the tails of a phenotype distribution (i.e., extreme phenotypes design) maximizes power and this approach was recently validated empirically with the discovery of variants in DCTN4 that influence the natural history of P. aeruginosa airway infection in persons with cystic fibrosis (CF; MIM219700). The increasing availability of large exome/genome sequence datasets that serve as proxies for population-based controls affords the opportunity to test an alternative, potentially more powerful and generalizable strategy, in which the frequency of rare variants in a single extreme phenotypic group is compared to a control group (i.e., extreme phenotype vs. control population design). As proof-of-principle, we applied this approach to search for variants associated with risk for age-of-onset of chronic P. aeruginosa airway infection among individuals with CF and identified variants in CAV2 and TMC6 that were significantly associated with group status. These results were validated using a large, prospective, longitudinal CF cohort and confirmed a significant association of a variant in CAV2 with increased age-of-onset of P. aeruginosa airway infection (hazard ratio = 0.48, 95% CI=[0.32, 0.88]) and variants in TMC6 with diminished age-of-onset of P. aeruginosa airway infection (HR = 5.4, 95% CI=[2.2, 13.5]) A strong interaction between CAV2 and TMC6 variants was observed (HR=12.1, 95% CI=[3.8, 39]) for children with the deleterious TMC6 variant and without the CAV2 protective variant. Neither gene showed a significant association using an extreme phenotypes design, and conditions for which the power of an extreme phenotype vs. control population design was greater than that for the extreme phenotypes design were explored. Whole exome and whole genome sequencing provide the opportunity to test for associations between expressed traits and genetic variants that cannot be tested with chip technology, particularly variants that are too rare to be included on chips designed for genome-wide association analysis. We used exome sequencing to identify variants in CAV2 and TMC6 that modify the age-of-onset of chronic Pseudomonas aeruginosa infection among children with cystic fibrosis, and validated our findings in a large cohort of children with cystic fibrosis. For a fixed number of study participants, it is known that the extreme phenotypes design provides greater statistical power than a random sampling design. In the extreme phenotypes design, one compares the frequency of a given set of genetic variants in one extreme of age-of-onset (early onset) to that in the other extreme (late onset). Here, we employed an alternative design that compares genetic frequencies in exomes sampled from one extreme to that among exomes from a large set of controls. We show that this design confers substantially greater statistical power for discovery of CAV2 and TMC6 and provide general conditions under which this single extreme versus control design is more powerful than the extreme phenotypes design.
Collapse
|
15
|
Lovewell RR, Patankar YR, Berwin B. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2014; 306:L591-603. [PMID: 24464809 DOI: 10.1152/ajplung.00335.2013] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity.
Collapse
Affiliation(s)
- Rustin R Lovewell
- Dept. of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr., Lebanon, NH 03756.
| | | | | |
Collapse
|
16
|
Audia JP, Lindsey AS, Housley NA, Ochoa CR, Zhou C, Toba M, Oka M, Annamdevula NS, Fitzgerald MS, Frank DW, Alvarez DF. In the absence of effector proteins, the Pseudomonas aeruginosa type three secretion system needle tip complex contributes to lung injury and systemic inflammatory responses. PLoS One 2013; 8:e81792. [PMID: 24312357 PMCID: PMC3842252 DOI: 10.1371/journal.pone.0081792] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/16/2013] [Indexed: 01/06/2023] Open
Abstract
Herein we describe a pathogenic role for the Pseudomonas aeruginosa type three secretion system (T3SS) needle tip complex protein, PcrV, in causing lung endothelial injury. We first established a model in which P. aeruginosa wild type strain PA103 caused pneumonia-induced sepsis and distal organ dysfunction. Interestingly, a PA103 derivative strain lacking its two known secreted effectors, ExoU and ExoT [denoted PA103 (ΔU/ΔT)], also caused sepsis and modest distal organ injury whereas an isogenic PA103 strain lacking the T3SS needle tip complex assembly protein [denoted PA103 (ΔPcrV)] did not. PA103 (ΔU/ΔT) infection caused neutrophil influx into the lung parenchyma, lung endothelial injury, and distal organ injury (reminiscent of sepsis). In contrast, PA103 (ΔPcrV) infection caused nominal neutrophil infiltration and lung endothelial injury, but no distal organ injury. We further examined pathogenic mechanisms of the T3SS needle tip complex using cultured rat pulmonary microvascular endothelial cells (PMVECs) and revealed a two-phase, temporal nature of infection. At 5-hours post-inoculation (early phase infection), PA103 (ΔU/ΔT) elicited PMVEC barrier disruption via perturbation of the actin cytoskeleton and did so in a cell death-independent manner. Conversely, PA103 (ΔPcrV) infection did not elicit early phase PMVEC barrier disruption. At 24-hours post-inoculation (late phase infection), PA103 (ΔU/ΔT) induced PMVEC damage and death that displayed an apoptotic component. Although PA103 (ΔPcrV) infection induced late phase PMVEC damage and death, it did so to an attenuated extent. The PA103 (ΔU/ΔT) and PA103 (ΔPcrV) mutants grew at similar rates and were able to adhere equally to PMVECs post-inoculation indicating that the observed differences in damage and barrier disruption are likely attributable to T3SS needle tip complex-mediated pathogenic differences post host cell attachment. Together, these infection data suggest that the T3SS needle tip complex and/or another undefined secreted effector(s) are important determinants of P. aeruginosa pneumonia-induced lung endothelial barrier disruption.
Collapse
Affiliation(s)
- Jonathon P. Audia
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail: (JPA); (DFA)
| | - Ashley S. Lindsey
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Nicole A. Housley
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Courtney R. Ochoa
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Chun Zhou
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Michie Toba
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Masahiko Oka
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Naga S. Annamdevula
- Department of Chemical and Biomolecular Engineering, University of South Alabama, Mobile, Alabama, United States of America
| | - Meshann S. Fitzgerald
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Dara W. Frank
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Diego F. Alvarez
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States of America
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail: (JPA); (DFA)
| |
Collapse
|
17
|
Intestinal Salmonella typhimurium infection leads to miR-29a induced caveolin 2 regulation. PLoS One 2013; 8:e67300. [PMID: 23826261 PMCID: PMC3691122 DOI: 10.1371/journal.pone.0067300] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/17/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Salmonella are able to modulate host cell functions facilitating both uptake and resistance to cellular host defence mechanisms. While interactions between bacterial modulators and cellular proteins have been the main focus of Salmonella research, relatively little is known about mammalian gene regulation in response to Salmonella infection. A major class of mammalian gene modulators consists of microRNAs. For our study we examined interactions of microRNAs and regulated mRNAs in mammalian intestinal Salmonella infections using a piglet model. METHODOLOGY/PRINCIPAL FINDINGS After performing microRNA as well as mRNA specific microarray analysis of ileal samples from Salmonella infected as well as control piglets, we integrated expression analysis with target prediction identifying microRNAs that mainly regulate focal adhesion as well as actin cytoskeleton pathways. Particular attention was given to miR-29a, which was involved in most interactions including Caveolin 2. RT-qPCR experiments verified up-regulation of miR-29a after infection while its predicted target Caveolin 2 was significantly down-regulated as examined by transcript and protein detection. Reporter gene assays as well as RNAi experiments confirmed Caveolin 2 to be a miR-29a target. Knock-down of Caveolin 2 in intestinal epithelial cells resulted in retarded proliferation as well as increased bacterial uptake. In addition, our experiments showed that Caveolin 2 regulates the activation of the small Rho GTPase CDC42 but apparently not RAC1 in human intestinal cells. CONCLUSIONS/SIGNIFICANCE Our study outlines for the first time important regulation pathways in intestinal Salmonella infection pointing out that focal adhesion and organisation of actin cytoskeleton are regulated by microRNAs. Functional relevance is shown by miR-29a mediated Caveolin 2 regulation, modulating the activation state of CDC42. Further analysis of examined interactions may support the discovery of novel strategies impairing the uptake of intracellular pathogens.
Collapse
|
18
|
Fine-Coulson K, Reaves BJ, Karls RK, Quinn FD. The role of lipid raft aggregation in the infection of type II pneumocytes by Mycobacterium tuberculosis. PLoS One 2012; 7:e45028. [PMID: 23024786 PMCID: PMC3443240 DOI: 10.1371/journal.pone.0045028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/11/2012] [Indexed: 11/18/2022] Open
Abstract
Dynamic, cholesterol-dense regions of the plasma membrane, known as lipid rafts (LR), have been observed to develop during and may be directly involved in infection of host cells by various pathogens. This study focuses on LR aggregation induced in alveolar epithelial cells during infection with Mycobacterium tuberculosis (Mtb) bacilli. We report dose- and time-dependent increases in LR aggregation after infection with three different strains at multiplicities of infection of 1, 10 and 100 from 2-24 hr post infection (hpi). Specific strain-dependent variations were noted among H37Rv, HN878 and CDC1551 with H37Rv producing the most significant increase from 15 aggregates per cell (APC) to 27 APC at MOI 100 during the 24 hour infection period. Treatment of epithelial cells with Culture Filtrate Protein, Total Lipids and gamma-irradiated whole cells from each strain failed to induce the level of LR aggregation observed during infection with any of the live strains. However, filtered supernatants from infected epithelial cells did produce comparable LR aggregation, suggesting a secreted mycobacterial product produced during infection of host cells is responsible for LR aggregation. Disruption of lipid raft formation prior to infection indicates that Mtb bacilli utilize LR aggregates for internalization and survival in epithelial cells. Treatment of host cells with the LR-disruption agent Filipin III produced a nearly 22% reduction in viable bacteria for strains H37Rv and HN878, and a 7% reduction for strain CDC1551 after 6 hpi. This study provides evidence for significant mycobacterial-induced changes in the plasma membrane of alveolar epithelial cells and that Mtb strains vary in their ability to facilitate aggregation and utilization of LR.
Collapse
Affiliation(s)
- Kari Fine-Coulson
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Barbara J. Reaves
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Russell K. Karls
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Frederick D. Quinn
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
19
|
Guo Q, Shen N, Yuan K, Li J, Wu H, Zeng Y, Fox J, Bansal AK, Singh BB, Gao H, Wu M. Caveolin-1 plays a critical role in host immunity against Klebsiella pneumoniae by regulating STAT5 and Akt activity. Eur J Immunol 2012; 42:1500-11. [PMID: 22678904 DOI: 10.1002/eji.201142051] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Caveolin-1 (Cav1) is a structural protein of caveolae. Although Cav1 is associated with certain bacterial infections, it is unknown whether Cav1 is involved in host immunity against Klebsiella pneumoniae, the third most commonly isolated microorganism from bacterial sepsis patients. Here, we showed that cav1 knockout mice succumbed to K. pneumoniae infection with markedly decreased survival rates, increased bacterial burdens, intensified tissue injury, hyperactive proinflammatory cytokines, and systemic bacterial dissemination as compared with WT mice. Knocking down Cav1 by a dominant negative approach in lung epithelial MLE-12 cells resulted in similar outcomes (decreased bacterial clearance and increased proinflammatory cytokine production). Furthermore, we revealed that STAT5 influences the GSK3β-β-catenin-Akt pathway, which contributes to the intensive inflammatory response and rapid infection dissemination seen in Cav1 deficiency. Collectively, our findings indicate that Cav1 may offer resistance to K. pneumoniae infection, by affecting both systemic and local production of proinflammatory cytokines via the actions of STAT5 and the GSK3β-β-catenin-Akt pathway.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Biochemistry and Molecular Biology, University of North Dakota, Grand Forks, North Dakota 58203, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Despite the progress in medical treatment sepsis remains one of the major causes of death in pediatric and elderly patients. Understanding signaling pathways associated with sepsis may be of key significance for designing more efficient therapeutic approaches which could alleviate sepsis outcome. Earlier studies suggested that cholesteroland sphingolipid-rich lipid rafts and their morphologically distinct subset, caveolaecan be utilized by certain bacterial pathogens to enter and invade host cells. Moreover, there is also evidence that the expression levels of the major caveolar coat proteincaveolin-1 can be regulated by the major component of the outer membrane of Gram-negative bacteria,lipopolysaccharide (LPS) in various cell types involved in sepsis. In particular recent studies using caveolin-1 knockout mice and cells have revealed that caveolin-1 is directly involved in regulating numerous signalingpathways and functions in various cell types of the immune system and other cell types involved in sepsis. Moreover, the most recent report implies that in addition to extensively studied caveolin-1, caveolin-2 is also important in regulating LPS-induced sepsis and might possibly play an opposite role to caveolin-1 in regulating certain pro-inflammatory signaling pathways. The purpose of this review is to discuss these new exciting discoveries relatedto the specific role of caveolin-1 and the less studiedcaveolin-2in regulating signaling and outcome associated with sepsis induced by LPS and pathogenic bacteria at molecular, cellular and systemic levels.
Collapse
Affiliation(s)
- Grzegorz Sowa
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia,USA
| |
Collapse
|
21
|
Novel insights into the role of caveolin-2 in cell- and tissue-specific signaling and function. Biochem Res Int 2011; 2011:809259. [PMID: 22229094 PMCID: PMC3249596 DOI: 10.1155/2011/809259] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/13/2011] [Indexed: 11/28/2022] Open
Abstract
Caveolin-2 is one of the major protein components of cholesterol- and glycosphingolipid-rich flask-shaped invaginations of plasma membrane caveolae. A new body of evidence suggests that caveolin-2 plays an important, and often more direct, role than caveolin-1 in regulating signaling and function in a cell- and tissue type-specific manner. The purpose of this paper is to primarily focus on discussing how these recent discoveries may help better understand the specific contribution of caveolin-2 to lipid raft- and caveolae-regulated cell/tissue-specific signaling and functions.
Collapse
|
22
|
Byfield FJ, Kowalski M, Cruz K, Leszczyńska K, Namiot A, Savage PB, Bucki R, Janmey PA. Cathelicidin LL-37 Increases Lung Epithelial Cell Stiffness, Decreases Transepithelial Permeability, and Prevents Epithelial Invasion byPseudomonas aeruginosa. THE JOURNAL OF IMMUNOLOGY 2011; 187:6402-9. [DOI: 10.4049/jimmunol.1102185] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Xie L, Vo-Ransdell C, Abel B, Willoughby C, Jang S, Sowa G. Caveolin-2 is a negative regulator of anti-proliferative function and signaling of transforming growth factor-β in endothelial cells. Am J Physiol Cell Physiol 2011; 301:C1161-74. [PMID: 21832243 DOI: 10.1152/ajpcell.00486.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Using a combination of wild-type (WT) and caveolin-2 (Cav-2) knockout along with retroviral reexpression approaches, we provide the evidence for the negative role of Cav-2 in regulating anti-proliferative function and signaling of transforming growth factor β (TGF-β) in endothelial cells (ECs). Although, TGF-β had a modest inhibitory effect on WT ECs, it profoundly inhibited proliferation of Cav-2 knockout ECs. To confirm the specificity of the observed difference in response to TGF-β, we have stably reexpressed Cav-2 in Cav-2 knockout ECs using a retroviral approach. Similar to WT ECs, the anti-proliferative effect of TGF-β was dramatically reduced in the Cav-2 reexpressing ECs. The reduced anti-proliferative effect of TGF-β in Cav-2-positive cells was evidenced by three independent proliferation assays: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell count, and bromodeoxyuridine incorporation and correlated with a loss of TGF-β-mediated upregulation of cell cycle inhibitor p27 and subsequent reduction of the levels of hyperphosphorylated (inactive) form of the retinoblastoma protein in Cav-2 reexpressing ECs. Mechanistically, Cav-2 inhibits anti-proliferative action of TGF-β by suppressing Alk5-Smad2/3 pathway manifested by reduced magnitude and length of TGF-β-induced Smad2/3 phosphorylation as well as activation of activin receptor-like kinase-5 (Alk5)-Smad2/3 target genes plasminogen activator inhibitor-1 and collagen type I in Cav-2-positive ECs. Expression of Cav-2 does not appear to significantly change targeting of TGF-β receptors I and Smad2/3 to caveolar and lipid raft microdomains as determined by sucrose fractionation gradient. Overall, the negative regulation of TGF-β signaling and function by Cav-2 is independent of Cav-1 expression levels and is not because of changing targeting of Cav-1 protein to plasma membrane lipid raft/caveolar domains.
Collapse
Affiliation(s)
- Leike Xie
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | | | | | | | | | | |
Collapse
|
24
|
Mattila P, Joenväärä S, Renkonen J, Toppila-Salmi S, Renkonen R. Allergy as an epithelial barrier disease. Clin Transl Allergy 2011; 1:5. [PMID: 22410284 PMCID: PMC3294629 DOI: 10.1186/2045-7022-1-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/10/2011] [Indexed: 02/06/2023] Open
Abstract
The objective of this review is to focus on putative modified epithelial functions related to allergy. The dysregulation of the epithelial barrier might result in the allergen uptake, which could be the primary defect in the pathogenesis of allergic reaction. We review the literature of the role of respiratory epithelium as an active barrier, how allergens are transported through it and how it senses the hostile environmental allergens and other dangerous stimuli.
Collapse
Affiliation(s)
- Pirkko Mattila
- Transplantation Laboratory & Infection Biology Research Program, Haartman Institute, University of Helsinki & Helsinki University Central Hospital, HUSLAB, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
25
|
Hoffmann C, Ohlsen K, Hauck CR. Integrin-mediated uptake of fibronectin-binding bacteria. Eur J Cell Biol 2011; 90:891-6. [PMID: 21561684 DOI: 10.1016/j.ejcb.2011.03.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/23/2011] [Accepted: 03/08/2011] [Indexed: 10/18/2022] Open
Abstract
Invasion of mammalian cells via cell adhesion molecules of the integrin family is a common theme in bacterial pathogenesis. Whereas some microorganisms directly bind to integrins, other pathogens such as Staphylococcus aureus indirectly engage these receptors via fibronectin-binding proteins (FnBPs). In this review, we summarize the structure-function relationship of FnBPs and the current view of the role of these proteins during pathogenesis in vivo. A major focus will be on recent findings on the role of cholesterol- and sphingolipid-rich membrane microdomains for integrin-initiated uptake of fibronectin-binding bacteria and the surprising inhibitory function of caveolin-1 in this process. The detailed mechanistic understanding of host cell invasion by fibronectin-binding S. aureus can not only serve as a paradigm for other fibronectin-binding pathogenic bacteria, but might also reveal the physiological regulation of endocytosis of ligand-occupied integrins.
Collapse
|
26
|
Yuan K, Huang C, Fox J, Gaid M, Weaver A, Li G, Singh BB, Gao H, Wu M. Elevated inflammatory response in caveolin-1-deficient mice with Pseudomonas aeruginosa infection is mediated by STAT3 protein and nuclear factor kappaB (NF-kappaB). J Biol Chem 2011; 286:21814-25. [PMID: 21515682 DOI: 10.1074/jbc.m111.237628] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Caveolin-1 (Cav-1), an important composition protein within the flask-shaped membrane invaginations termed caveolae, may play a role in host defense against infections. However, the phenotype in Pseudomonas aeruginosa-infected cav1 knock-out (KO) mice is still unresolved, and the mechanism involved is almost entirely unknown. Using a respiratory infection model, we confirmed a crucial role played by Cav-1 in host defense against this pathogen because Cav-1 KO mice showed increased mortality, severe lung injury, and systemic dissemination as compared with wild-type (WT) littermates. In addition, cav1 KO mice exhibited elevated inflammatory cytokines (IL-6, TNF-α, and IL-12a), decreased phagocytic ability of macrophages, and increased superoxide release in the lung, liver, and kidney. We further studied relevant cellular signaling processes and found that STAT3 and NF-κB are markedly activated. Our data revealed that the Cav-1/STAT3/NF-κB axis is responsible for a dysregulated cytokine response, which contributes to increased mortality and disease progression. Moreover, down-regulating Cav-1 in cell culture with a dominant negative strategy demonstrated that STAT3 activation was essential for the translocation of NF-κB into the nucleus, confirming the observations from cav1 KO mice. Collectively, our studies indicate that Cav-1 is critical for inflammatory responses regulating the STAT3/NF-κB pathway and thereby impacting P. aeruginosa infection.
Collapse
Affiliation(s)
- Kefei Yuan
- State Key Laboratory for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Invasion of eukaryotic cells by Borrelia burgdorferi requires β(1) integrins and Src kinase activity. Infect Immun 2010; 79:1338-48. [PMID: 21173306 DOI: 10.1128/iai.01188-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lyme disease, caused by the bacterium Borrelia burgdorferi, is the most widespread tick-borne infection in the northern hemisphere that results in a multistage disorder with concomitant pathology, including arthritis. During late-stage experimental infection in mice, B. burgdorferi evades the adaptive immune response despite the presence of borrelia-specific bactericidal antibodies. In this study we asked whether B. burgdorferi could invade fibroblasts or endothelial cells as a mechanism to model the avoidance from humorally based clearance. A variation of the gentamicin protection assay, coupled with the detection of borrelial transcripts following gentamicin treatment, indicated that a portion of B. burgdorferi cells were protected in the short term from antibiotic killing due to their ability to invade cultured mammalian cells. Long-term coculture of B. burgdorferi with primary human fibroblasts provided additional support for intracellular protection. Furthermore, decreased invasion of B. burgdorferi in murine fibroblasts that do not synthesize the β(1) integrin subunit was observed, indicating that β(1)-containing integrins are required for optimal borrelial invasion. However, β(1)-dependent invasion did not require either the α(5)β(1) integrin or the borrelial fibronectin-binding protein BBK32. The internalization of B. burgdorferi was inhibited by cytochalasin D and PP2, suggesting that B. burgdorferi invasion required the reorganization of actin filaments and Src family kinases (SFK), respectively. Taken together, these results suggest that B. burgdorferi can invade and retain viability in nonphagocytic cells in a process that may, in part, help to explain the phenotype observed in untreated experimental infection.
Collapse
|
29
|
Jin Y, Lee SJ, Minshall RD, Choi AMK. Caveolin-1: a critical regulator of lung injury. Am J Physiol Lung Cell Mol Physiol 2010; 300:L151-60. [PMID: 21097526 DOI: 10.1152/ajplung.00170.2010] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Caveolin-1 (cav-1), a 22-kDa transmembrane scaffolding protein, is the principal structural component of caveolae. Cav-1 regulates critical cell functions including proliferation, apoptosis, cell differentiation, and transcytosis via diverse signaling pathways. Abundant in almost every cell type in the lung, including type I epithelial cells, endothelial cells, smooth muscle cells, fibroblasts, macrophages, and neutrophils, cav-1 plays a crucial role in the pathogenesis of acute lung injury (ALI). ALI and its severe form, acute respiratory distress syndrome (ARDS), are responsible for significant morbidity and mortality in intensive care units, despite improvement in ventilation strategies. The pathogenesis of ARDS is still poorly understood, and therapeutic options remain limited. In this article, we summarize recent data regarding the regulation and function of cav-1 in lung biology and pathology, in particular as it relates to ALI. We further discuss the potential molecular and cellular mechanisms by which cav-1 expression contributes to ALI. Investigating the cellular functions of cav-1 may provide new insights for understanding the pathogenesis of ALI and provide novel targets for therapeutic interventions in the future.
Collapse
Affiliation(s)
- Yang Jin
- Division of Pulmonary and Critical Care Medicine, Dept. of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
30
|
Abstract
Caveolin-2, a protein about 20 kD, is a major component of the inner surface of caveolae, small invaginations of the plasma membrane. Similar with caveolin-1 and caveolin-3, it serves as a protein marker of caveolae. Caveolin-1 and -2 are located next to each other at 7q31.1 on human chromosome, the proteins encoded are co-localized and form a stable hetero-oligomeric complex, distributing similarly in tissue and cultured cells. Caveolin-3 is located on different chromosomes but confirmed to interact with caveolin-2. Caveolin-2 is similar to caveolin-1 in many respects but differs from the latter in functional domains, especially in G-protein binding domain and caveolin scaffolding domain. The mRNAs of both caveolin-1 and caveolin-2 are most abundantly expressed in white adipose tissue and are induced during differentiation of 3T3-L1 cells to adipocytes. Caveolin-2-deficient mice demonstrate clear pulmonary defects, with little or no change in caveolin-1 expression and caveolae formation, suggesting that caveolin-2 plays a selective role in lung functions. Caveolin-2 is also involved in lipid metabolism and human cancers.
Collapse
Affiliation(s)
- Liu-luan Zhu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | | | | | | |
Collapse
|
31
|
Lin AEJ, Guttman JA. Hijacking the endocytic machinery by microbial pathogens. PROTOPLASMA 2010; 244:75-90. [PMID: 20574860 DOI: 10.1007/s00709-010-0164-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 05/19/2010] [Indexed: 05/24/2023]
Abstract
Understanding the mechanisms that microbes exploit to invade host cells and cause disease is crucial if we are to eliminate their threat. Although pathogens use a variety of microbial factors to trigger entry into non-phagocytic cells, their targeting of the host cell process of endocytosis has emerged as a common theme. To accomplish this, microbes often rewire the normal course of particle internalization, frequently usurping theoretical maximal sizes to permit entry and reconfiguring molecular components that were once thought to be required for vesicle formation. Here, we discuss recent advances in our understanding of how toxins, viruses, bacteria, and fungi manipulate the host cell endocytic machinery to generate diseases. Additionally, we will reveal the advantages of using these organisms to expand our general knowledge of endocytic mechanisms in eukaryotic cells.
Collapse
Affiliation(s)
- Ann En-Ju Lin
- Department of Biological Sciences, Shrum Science Centre, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | | |
Collapse
|
32
|
Zaas DW, Swan Z, Brown BJ, Wright JR, Abraham SN. The expanding roles of caveolin proteins in microbial pathogenesis. Commun Integr Biol 2010; 2:535-7. [PMID: 20195460 DOI: 10.4161/cib.2.6.9259] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 06/15/2009] [Indexed: 11/19/2022] Open
Abstract
Caveolin proteins have been implicated in a wide range of cellular functions including lipid raft mediated endocytosis and regulation of cell signaling cascades. Recent discoveries have shown that these proteins are involved not only in regulating these homeostatic cellular functions, but also in the host response to a wide range of different infections. Both caveolin-1 and 2 have been shown to play important roles in pathogen uptake. While caveolin-1 is the most well studied member of this family, a growing body of evidence has now recognized the role of caveolin-2 in these host pathogen interactions and novel host defense mechanisms.
Collapse
Affiliation(s)
- David W Zaas
- Duke University Medical Center; Durham, NC, USA.
| | | | | | | | | |
Collapse
|
33
|
Current Opinion in Clinical Nutrition and Metabolic Care. Current world literature. Curr Opin Clin Nutr Metab Care 2010; 13:215-21. [PMID: 20145440 DOI: 10.1097/mco.0b013e32833643b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc Natl Acad Sci U S A 2010; 107:2343-8. [PMID: 20133878 DOI: 10.1073/pnas.0913320107] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Remorin proteins have been hypothesized to play important roles during cellular signal transduction processes. Induction of some members of this multigene family has been reported during biotic interactions. However, no roles during host-bacteria interactions have been assigned to remorin proteins until now. We used root nodule symbiosis between Medicago truncatula and Sinorhizobium meliloti to study the roles of a remorin that is specifically induced during nodulation. Here we show that this oligomeric remorin protein attaches to the host plasma membrane surrounding the bacteria and controls infection and release of rhizobia into the host cytoplasm. It interacts with the core set of symbiotic receptors that are essential for perception of bacterial signaling molecules, and thus might represent a plant-specific scaffolding protein.
Collapse
|
35
|
Xie L, Frank PG, Lisanti MP, Sowa G. Endothelial cells isolated from caveolin-2 knockout mice display higher proliferation rate and cell cycle progression relative to their wild-type counterparts. Am J Physiol Cell Physiol 2009; 298:C693-701. [PMID: 20007452 DOI: 10.1152/ajpcell.00401.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The goal of this study was to determine whether caveolin-2 (Cav-2) is capable of controlling endothelial cell (EC) proliferation in vitro. To realize this goal, we have directly compared proliferation rates and cell cycle-associated signaling proteins between lung ECs isolated from wild-type (WT) and Cav-2 knockout (KO) mice. Using three independent proliferation assays, we have determined that Cav-2 KO ECs proliferate by ca. 2-fold faster than their WT counterparts. Cell cycle analysis by flow cytometry of propidium iodide-stained cells showed a relatively higher percentage of Cav-2 KO ECs in S and G(2)/M and lower percentage in G(o)/G(1) phases of cell cycle relative to their WT counterparts. Furthermore, an over 2-fold increase in the percentage of S phase-associated Cav-2 KO relative to WT ECs was independently determined with bromodeoxyuridine incorporation assay. Mechanistically, the increase in proliferation/cell cycle progression of Cav-2 KO ECs correlated well with elevated expression levels of predominantly S phase- and G(2)/M phase-associated cyclin A and B1, respectively. Further mechanistic analysis of molecular events controlling cell cycle progression revealed increased level of hyperphosphorylated (inactive) form of G(1) to S phase transition inhibitor, the retinoblastoma protein in hyperproliferating Cav-2 KO ECs. Conversely, the expression level of the two cyclin-dependent kinase inhibitors p16(INK4) and p27(Kip1) was reduced in Cav-2 KO ECs. Finally, increased phosphorylation (activation) of proproliferative extracellular signal-regulated kinase 1/2 was observed in hyperproliferating Cav-2 KO ECs. Overall, our data suggest that Cav-2 negatively regulates lung EC proliferation and cell cycle progression.
Collapse
Affiliation(s)
- Leike Xie
- Dept. of Medical Pharmacology and Physiology, Univ. of Missouri, 1 Hospital Drive, Rm. MA 415, Columbia, MO 65212, USA
| | | | | | | |
Collapse
|
36
|
Gadjeva M, Paradis-Bleau C, Priebe GP, Fichorova R, Pier GB. Caveolin-1 modifies the immunity to Pseudomonas aeruginosa. THE JOURNAL OF IMMUNOLOGY 2009; 184:296-302. [PMID: 19949109 DOI: 10.4049/jimmunol.0900604] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The inflammatory response to Pseudomonas aeruginosa is not properly regulated in the lungs of patients with cystic fibrosis (CF). In the lung epithelium of individuals with wild-type CF transmembrane conductance regulator, lipid rafts containing CF transmembrane conductance regulator are rapidly formed in response to P. aeruginosa infection, and this response is closely linked to resistance to infection and disease. We found these rafts also contained high levels of caveolin-1 and thus examined the sensitivity of cav1 knockout (KO) mice to P. aeruginosa challenge in both acute and chronic P. aeruginosa infection models. We found that cav1 KO mice had increased sensitivity to P. aeruginosa infection, as represented by an increased mortality rate, elevated bacterial burdens recovered from lungs and spleens, and elevated inflammatory responses. These findings correlated with the decreased ability of cav1-deficient neutrophils to phagocytose P. aeruginosa. In addition, P. aeruginosa colonized cav1 KO mice much better compared with the wild-type controls in a model of chronic infection, indicting an important contribution of Cav-1 to innate host immunity to P. aeruginosa infection in the setting of both acute pneumonia and chronic infection typical of CF.
Collapse
Affiliation(s)
- Mihaela Gadjeva
- Department of Medicine, Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
37
|
Zeitlin PL. Pseudomonas aeruginosa: can studies in engineered cells tell us why is it such a problem in people with cystic fibrosis? Focus on “Cystic fibrosis transmembrane conductance regulator and caveolin-1 regulate epithelial cell internalization of Pseudomonas aeruginosa”. Am J Physiol Cell Physiol 2009; 297:C235-7. [DOI: 10.1152/ajpcell.00257.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|