1
|
Tsilafakis K, Mavroidis M. Are the Head and Tail Domains of Intermediate Filaments Really Unstructured Regions? Genes (Basel) 2024; 15:633. [PMID: 38790262 PMCID: PMC11121635 DOI: 10.3390/genes15050633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Intermediate filaments (IFs) are integral components of the cytoskeleton which provide cells with tissue-specific mechanical properties and are involved in a plethora of cellular processes. Unfortunately, due to their intricate architecture, the 3D structure of the complete molecule of IFs has remained unresolved. Even though most of the rod domain structure has been revealed by means of crystallographic analyses, the flanked head and tail domains are still mostly unknown. Only recently have studies shed light on head or tail domains of IFs, revealing certainsecondary structures and conformational changes during IF assembly. Thus, a deeper understanding of their structure could provide insights into their function.
Collapse
Affiliation(s)
- Konstantinos Tsilafakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
2
|
Vlachakis D, Tsilafakis K, Kostavasili I, Kossida S, Mavroidis M. Unraveling Desmin's Head Domain Structure and Function. Cells 2024; 13:603. [PMID: 38607042 PMCID: PMC11012097 DOI: 10.3390/cells13070603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Understanding the structure and function of intermediate filaments (IFs) is necessary in order to explain why more than 70 related IF genes have evolved in vertebrates while maintaining such dramatically tissue-specific expression. Desmin is a member of the large multigene family of IF proteins and is specifically expressed in myocytes. In an effort to elucidate its muscle-specific behavior, we have used a yeast two-hybrid system in order to identify desmin's head binding partners. We described a mitochondrial and a lysosomal protein, NADH ubiquinone oxidoreductase core subunit S2 (NDUFS2), and saposin D, respectively, as direct desmin binding partners. In silico analysis indicated that both interactions at the atomic level occur in a very similar way, by the formation of a three-helix bundle with hydrophobic interactions in the interdomain space and hydrogen bonds at R16 and S32 of the desmin head domain. The interactions, confirmed also by GST pull-down assays, indicating the necessity of the desmin head domain and, furthermore, point out its role in function of mitochondria and lysosomes, organelles which are disrupted in myopathies due to desmin head domain mutations.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Biotechnology Department, Agricultural University of Athens, 11855 Athens, Greece;
| | - Konstantinos Tsilafakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527 Athens, Greece; (K.T.); (I.K.)
- Biochemistry & Biotechnology Department, University of Thessaly, 41500 Larisa, Greece
| | - Ioanna Kostavasili
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527 Athens, Greece; (K.T.); (I.K.)
| | - Sophia Kossida
- IMGT, The International ImMunoGeneTics Information System, National Center for Scientific Research (CNRS), Institute of Human Genetics (IGH), University of Montpellier (UM), 34090 Montpellier, France;
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephesiou, 11527 Athens, Greece; (K.T.); (I.K.)
| |
Collapse
|
3
|
Lilina AV, Leekens S, Hashim HM, Vermeire P, Harvey JN, Strelkov SV. Stability profile of vimentin rod domain. Protein Sci 2022; 31:e4505. [PMID: 36369679 PMCID: PMC9703591 DOI: 10.1002/pro.4505] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/14/2022]
Abstract
Intermediate filaments (IFs) form an essential part of the metazoan cytoskeleton. Despite a long history of research, a proper understanding of their molecular architecture and assembly process is still lacking. IFs self-assemble from elongated dimers, which are defined by their central "rod" domain. This domain forms an α-helical coiled coil consisting of three segments called coil1A, coil1B, and coil2. It has been hypothesized that the structural plasticity of the dimer, including the unraveling of some coiled-coil regions, is essential for the assembly process. To systematically explore this possibility, we have studied six 50-residue fragments covering the entire rod domain of human vimentin, a model IF protein. After creating in silico models of these fragments, their evaluation using molecular dynamics was performed. Large differences were seen across the six fragments with respect to their structural variability during a 100 ns simulation. Next, the fragments were prepared recombinantly, whereby their correct dimerization was promoted by adding short N- or C-terminal capping motifs. The capped fragments were subjected to circular dichroism measurements at varying temperatures. The obtained melting temperatures reveal the relative stabilities of individual fragments, which correlate well with in silico results. We show that the least stable regions of vimentin rod are coil1A and the first third of coil2, while the structures of coil1B and the rest of coil2 are significantly more robust. These observations are in line with the data obtained using other experimental approaches, and contribute to a better understanding of the molecular mechanisms driving IF assembly.
Collapse
Affiliation(s)
| | - Simon Leekens
- Laboratory for BiocrystallographyKU LeuvenLeuvenBelgium
| | - Hani M. Hashim
- Laboratory for BiocrystallographyKU LeuvenLeuvenBelgium
- Department of ChemistryKU LeuvenLeuvenBelgium
| | | | | | | |
Collapse
|
4
|
Lois-Bermejo I, González-Jiménez P, Duarte S, Pajares MA, Pérez-Sala D. Vimentin Tail Segments Are Differentially Exposed at Distinct Cellular Locations and in Response to Stress. Front Cell Dev Biol 2022; 10:908263. [PMID: 35769261 PMCID: PMC9235546 DOI: 10.3389/fcell.2022.908263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/17/2022] [Indexed: 01/13/2023] Open
Abstract
The intermediate filament protein vimentin plays a key role in cell signaling and stress sensing, as well as an integrator of cytoskeletal dynamics. The vimentin monomer consists of a central rod-like domain and intrinsically disordered head and tail domains. Although the organization of vimentin oligomers in filaments is beginning to be understood, the precise disposition of the tail region remains to be elucidated. Here we observed that electrophilic stress-induced condensation shielded vimentin from recognition by antibodies against specific segments of the tail domain. A detailed characterization revealed that vimentin tail segments are differentially exposed at distinct subcellular locations, both in basal and stress conditions. The 411–423 segment appeared accessible in all cell areas, correlating with vimentin abundance. In contrast, the 419–438 segment was more scantily recognized in perinuclear vimentin and lipoxidative stress-induced bundles, and better detected in peripheral filaments, where it appeared to protrude further from the filament core. These differences persisted in mitotic cells. Interestingly, both tail segments showed closer accessibility in calyculin A-treated cells and phosphomimetic mutants of the C-terminal region. Our results lead us to hypothesize the presence of at least two distinct arrangements of vimentin tail in cells: an “extended” conformation (accessible 419–438 segment), preferentially detected in peripheral areas with looser filaments, and a “packed” conformation (shielded 419–438 segment), preferentially detected at the cell center in robust filaments and lipoxidative stress-induced bundles. These different arrangements could be putatively interconverted by posttranslational modifications, contributing to the versatility of vimentin functions and/or interactions.
Collapse
|
5
|
Usman S, Aldehlawi H, Nguyen TKN, Teh MT, Waseem A. Impact of N-Terminal Tags on De Novo Vimentin Intermediate Filament Assembly. Int J Mol Sci 2022; 23:ijms23116349. [PMID: 35683030 PMCID: PMC9181571 DOI: 10.3390/ijms23116349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023] Open
Abstract
Vimentin, a type III intermediate filament protein, is found in most cells along with microfilaments and microtubules. It has been shown that the head domain folds back to associate with the rod domain and this association is essential for filament assembly. The N-terminally tagged vimentin has been widely used to label the cytoskeleton in live cell imaging. Although there is previous evidence that EGFP tagged vimentin fails to form filaments but is able to integrate into a pre-existing network, no study has systematically investigated or established a molecular basis for this observation. To determine whether a tag would affect de novo filament assembly, we used vimentin fused at the N-terminus with two different sized tags, AcGFP (239 residues, 27 kDa) and 3 × FLAG (22 residues; 2.4 kDa) to assemble into filaments in two vimentin-deficient epithelial cells, MCF-7 and A431. We showed that regardless of tag size, N-terminally tagged vimentin aggregated into globules with a significant proportion co-aligning with β-catenin at cell–cell junctions. However, the tagged vimentin aggregates could form filaments upon adding untagged vimentin at a ratio of 1:1 or when introduced into cells containing pre-existing filaments. The resultant filament network containing a mixture of tagged and untagged vimentin was less stable compared to that formed by only untagged vimentin. The data suggest that placing a tag at the N-terminus may create steric hinderance in case of a large tag (AcGFP) or electrostatic repulsion in case of highly charged tag (3 × FLAG) perhaps inducing a conformational change, which deleteriously affects the association between head and rod domains. Taken together our results shows that a free N-terminus is essential for filament assembly as N-terminally tagged vimentin is not only incapable of forming filaments, but it also destabilises when integrated into a pre-existing network.
Collapse
Affiliation(s)
- Saima Usman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK; (S.U.); (T.K.N.N.); (M.-T.T.)
| | - Hebah Aldehlawi
- Department of Oral Diagnostic Sciences, Division of Oral Pathology and Medicine, Faculty of Dentistry, King Abdul Aziz University, Jeddah 21589, Saudi Arabia;
| | - Thuan Khanh Ngoc Nguyen
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK; (S.U.); (T.K.N.N.); (M.-T.T.)
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK; (S.U.); (T.K.N.N.); (M.-T.T.)
| | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK; (S.U.); (T.K.N.N.); (M.-T.T.)
- Centre for Immunobiology and Regenerative Medicine, Blizard Institute, 4 Newark Street, London E1 2AT, UK
- Correspondence: ; Tel.: +44-207-882-2387; Fax: +44-207-882-7137
| |
Collapse
|
6
|
Vermeire PJ, Stalmans G, Lilina AV, Fiala J, Novak P, Herrmann H, Strelkov SV. Molecular Interactions Driving Intermediate Filament Assembly. Cells 2021; 10:cells10092457. [PMID: 34572105 PMCID: PMC8466517 DOI: 10.3390/cells10092457] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
Given the role of intermediate filaments (IFs) in normal cell physiology and scores of IF-linked diseases, the importance of understanding their molecular structure is beyond doubt. Research into the IF structure was initiated more than 30 years ago, and some important advances have been made. Using crystallography and other methods, the central coiled-coil domain of the elementary dimer and also the structural basis of the soluble tetramer formation have been studied to atomic precision. However, the molecular interactions driving later stages of the filament assembly are still not fully understood. For cytoplasmic IFs, much of the currently available insight is due to chemical cross-linking experiments that date back to the 1990s. This technique has since been radically improved, and several groups have utilized it recently to obtain data on lamin filament assembly. Here, we will summarize these findings and reflect on the remaining open questions and challenges of IF structure. We argue that, in addition to X-ray crystallography, chemical cross-linking and cryoelectron microscopy are the techniques that should enable major new advances in the field in the near future.
Collapse
Affiliation(s)
- Pieter-Jan Vermeire
- Laboratory for Biocrystallography, KU Leuven, 3000 Leuven, Belgium; (P.-J.V.); (G.S.); (A.V.L.)
| | - Giel Stalmans
- Laboratory for Biocrystallography, KU Leuven, 3000 Leuven, Belgium; (P.-J.V.); (G.S.); (A.V.L.)
| | - Anastasia V. Lilina
- Laboratory for Biocrystallography, KU Leuven, 3000 Leuven, Belgium; (P.-J.V.); (G.S.); (A.V.L.)
| | - Jan Fiala
- Department of Biochemistry, Charles University, 12800 Prague, Czech Republic; (J.F.); (P.N.)
- Institute of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Petr Novak
- Department of Biochemistry, Charles University, 12800 Prague, Czech Republic; (J.F.); (P.N.)
- Institute of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Harald Herrmann
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, KU Leuven, 3000 Leuven, Belgium; (P.-J.V.); (G.S.); (A.V.L.)
- Correspondence: ; Tel.: +32-1633-0845
| |
Collapse
|
7
|
Molecular Insight into the Regulation of Vimentin by Cysteine Modifications and Zinc Binding. Antioxidants (Basel) 2021; 10:antiox10071039. [PMID: 34203497 PMCID: PMC8300659 DOI: 10.3390/antiox10071039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 01/11/2023] Open
Abstract
The intermediate filament protein vimentin is involved in essential cellular processes, including cell division and stress responses, as well as in the pathophysiology of cancer, pathogen infection, and autoimmunity. The vimentin network undergoes marked reorganizations in response to oxidative stress, in which modifications of vimentin single cysteine residue, Cys328, play an important role, and is modulated by zinc availability. However, the molecular basis for this regulation is not fully understood. Here, we show that Cys328 displays a low pKa, supporting its reactivity, and is readily alkylated and oxidized in vitro. Moreover, combined oxidation and crosslinking assays and molecular dynamics simulations support that zinc ions interact with Cys328 in its thiolate form, whereas Glu329 and Asp331 stabilize zinc coordination. Vimentin oxidation can induce disulfide crosslinking, implying the close proximity of Cys328 from neighboring dimers in certain vimentin conformations, supported by our computational models. Notably, micromolar zinc concentrations prevent Cys328 alkylation, lipoxidation, and disulfide formation. Moreover, zinc selectively protects vimentin from crosslinking using short-spacer cysteine-reactive but not amine-reactive agents. These effects are not mimicked by magnesium, consistent with a lower number of magnesium ions hosted at the cysteine region, according to molecular dynamics simulations. Importantly, the region surrounding Cys328 is involved in interaction with several drugs targeting vimentin and is conserved in type III intermediate filaments, which include glial fibrillary acidic protein and desmin. Altogether, our results identify this region as a hot spot for zinc binding, which modulates Cys328 reactivity. Moreover, they provide a molecular standpoint for vimentin regulation through the interplay between cysteine modifications and zinc availability.
Collapse
|
8
|
Romano R, Calcagnile M, Margiotta A, Franci L, Chiariello M, Alifano P, Bucci C. RAB7A Regulates Vimentin Phosphorylation through AKT and PAK. Cancers (Basel) 2021; 13:cancers13092220. [PMID: 34066419 PMCID: PMC8125308 DOI: 10.3390/cancers13092220] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary RAB7A (RAs-related in Brain 7A) is a master regulator of intracellular traffic controlling transport to late endosomes and lysosomes, two organelles of the endocytic pathway important for degradation. Thanks to this function, RAB7A is also involved in cellular processes linked to cancer, such as apoptosis, cytoskeletal reorganization, and cell migration. Therefore, the interest in the role of RAB7A in cancer progression is increasing. Previously, we demonstrated that RAB7A regulates phosphorylation and assembly of vimentin, a cytoskeletal intermediate filament protein, which is also an important mesenchymal marker of cancer cells. The aim of the present study is the identification of the kinases responsible for vimentin phosphorylation whose activity is affected by the modulation of RAB7A expression. We found that RAB7A is able to regulate AKT (also called protein kinase B or PKB) and PAK1 (P21-Activated Kinase 1) and several of their downstream effectors, which control proliferation, apoptosis, survival, migration, and invasion. These data suggest that RAB7A could have a key role in cancer development. Abstract RAB7A is a small GTPase that controls the late endocytic pathway but also cell migration through RAC1 (Ras-related C3 botulinum toxin substrate 1) and vimentin. In fact, RAB7A regulates vimentin phosphorylation at different sites and vimentin assembly, and, in this study, we identified vimentin domains interacting with RAB7A. As several kinases could be responsible for vimentin phosphorylation, we investigated whether modulation of RAB7A expression affects the activity of these kinases. We discovered that RAB7A regulates AKT and PAK1, and we demonstrated that increased vimentin phosphorylation at Ser38 (Serine 38), observed upon RAB7A overexpression, is due to AKT activity. As AKT and PAK1 are key regulators of several cellular events, we investigated if RAB7A could have a role in these processes by modulating AKT and PAK1 activity. We found that RAB7A protein levels affected beta-catenin and caspase 9 expression. We also observed the downregulation of cofilin-1 and decreased matrix metalloproteinase 2 (MMP2) activity upon RAB7A silencing. Altogether these results demonstrate that RAB7A regulates AKT and PAK1 kinases, affecting their downstream effectors and the processes they regulate, suggesting that RAB7A could have a role in a number of cancer hallmarks.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
| | - Azzurra Margiotta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
| | - Lorenzo Franci
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), 53100 Siena, Italy; (L.F.); (M.C.)
- Core Research Laboratory (CRL), Istituto per lo Studio, La Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Mario Chiariello
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), 53100 Siena, Italy; (L.F.); (M.C.)
- Core Research Laboratory (CRL), Istituto per lo Studio, La Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
- Correspondence: ; Tel.: +39-0832-298900
| |
Collapse
|
9
|
Insulin-Like Growth Factor Binding Protein-3 Exerts Its Anti-Metastatic Effect in Aerodigestive Tract Cancers by Disrupting the Protein Stability of Vimentin. Cancers (Basel) 2021; 13:cancers13051041. [PMID: 33801272 PMCID: PMC7958122 DOI: 10.3390/cancers13051041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Local invasion and distal metastasis are the main causes of cancer-related death and the poor prognosis of patients with aerodigestive tract cancers. Therefore, understanding the biology of invasion and metastasis is important for the development of effective therapeutic strategies. The present study shows that insulin-like growth factor binding protein-3 (IGFBP-3) inhibits the migration and invasion of non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC) cells in vitro and the development of metastasized tumors in vivo. Mechanistic studies suggest vimentin as a cellular target for the antimetastatic effect of IGFBP-3. These results contribute to a better understanding on the regulation of metastasis of cancer cells, providing the rationale to utilize IGFBP-3 as an effective therapeutic strategy targeting migration and metastasis of aerodigestive tract cancers. Abstract The proapoptotic, antiangiogenic, and antimetastatic activities of insulin-like growth factor binding protein-3 (IGFBP-3) through IGF-dependent or -independent mechanisms have been suggested in various types of human cancers. However, a mechanistic explanation of and downstream targets involved in the antimetastatic effect of IGFBP-3 is still lacking. In this study, by applying various in vitro and in vivo models, we show that IGFBP-3 suppresses migration and invasion of human head and neck squamous carcinoma (HNSCC) and non-small cell lung cancer (NSCLC) cells. Silencing IGFBP-3 expression elevated the migration and invasion of NSCLC and HNSCC cells in vitro and their local invasion and metastasis in vivo, whereas overexpression of IGFBP-3 decreased such prometastatic changes. Local invasion of 4-nitroquinoline-1-oxide (4-NQO)-induced HNSCC tumors was consistently significantly potentiated in Igfbp3 knockout mice compared with that in wild-type mice. Mechanistically, IGFBP-3 disrupted the protein stability of vimentin via direct binding and promoting its association with the E3 ligase FBXL14, causing proteasomal degradation. The C-terminal domain of IGFBP-3 and the head domain of vimentin are essential for their interaction. These results provide a molecular framework for IGFBP-3′s IGF-independent antimetastatic and antitumor activities.
Collapse
|
10
|
Yamamoto A, Matsunaga KI, Anai T, Kawano H, Ueda T, Matsumoto T, Ando S. Characterization of an Intermediate Filament Protein from the Platyhelminth, Dugesia japonica. Protein Pept Lett 2020; 27:432-446. [PMID: 31652112 DOI: 10.2174/0929866526666191025102902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Intermediate Filaments (IFs) are major constituents of the cytoskeletal systems in animal cells. OBJECTIVE To gain insights into the structure-function relationship of invertebrate cytoplasmic IF proteins, we characterized an IF protein from the platyhelminth, Dugesia japonica, termed Dif-1. METHODS cDNA cloning, in situ hybridization, immunohistochemical analysis, and IF assembly experiments in vitro using recombinant Dif-1, were performed for protein characterization. RESULTS The structure deduced from the cDNA sequence showed that Djf-1 comprises 568 amino acids and has a tripartite domain structure (N-terminal head, central rod, and C-terminal tail) that is characteristic of IF proteins. Similar to nuclear IF lamins, Djf-1 contains an extra 42 residues in the coil 1b subdomain of the rod domain that is absent from vertebrate cytoplasmic IF proteins and a nuclear lamin-homology segment of approximately 105 residues in the tail domain; however, it contains no nuclear localization signal. In situ hybridization analysis showed that Djf-1 mRNA is specifically expressed in cells located within the marginal region encircling the worm body. Immunohistochemical analysis showed that Djf-1 protein forms cytoplasmic IFs located close to the microvilli of the cells. In vitro IF assembly experiments using recombinant proteins showed that Djf-1 alone polymerizes into IFs. Deletion of the extra 42 residues in the coil 1b subdomain resulted in the failure of IF formation. CONCLUSION Together with data from other histological studies, our results suggest that Djf- 1 is expressed specifically in anchor cells within the glandular adhesive organs of the worm and that Djf-1 IFs may play a role in protecting the cells from mechanical stress.
Collapse
Affiliation(s)
- Akiko Yamamoto
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Saga Prefecture 849-8501, Japan
| | - Ken-Ichiro Matsunaga
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Saga Prefecture 849-8501, Japan
| | - Toyoaki Anai
- Faculty of Agriculture, Saga University, 1 Honjo-cho, Saga, Saga Prefecture 840-8502, Japan
| | - Hitoshi Kawano
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Saga Prefecture 849-8501, Japan
| | - Toshihisa Ueda
- Faculty of Agriculture, Saga University, 1 Honjo-cho, Saga, Saga Prefecture 840-8502, Japan
| | - Toshihiko Matsumoto
- Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Kumamoto Prefecture 860-0082, Japan
| | - Shoji Ando
- Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, Saga Prefecture 849-8501, Japan.,Faculty of Biotechnology and Life Science, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Kumamoto Prefecture 860-0082, Japan
| |
Collapse
|
11
|
The Role of Carcinogenesis-Related Biomarkers in the Wnt Pathway and Their Effects on Epithelial-Mesenchymal Transition (EMT) in Oral Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12030555. [PMID: 32121061 PMCID: PMC7139589 DOI: 10.3390/cancers12030555] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/27/2022] Open
Abstract
As oral squamous cell carcinoma (OSCC) can develop from potentially malignant disorders (PMDs), it is critical to develop methods for early detection to improve the prognosis of patients. Epithelial-mesenchymal transition (EMT) plays an important role during tumor progression and metastasis. The Wnt signaling pathway is an intercellular pathway in animals that also plays a fundamental role in cell proliferation and regeneration, and in the function of many cell or tissue types. Specific components of master regulators such as epithelial cadherin (E-cadherin), Vimentin, adenomatous polyposis coli (APC), Snail, and neural cadherin (N-cadherin), which are known to control the EMT process, have also been implicated in the Wnt cascade. Here, we review recent findings on the Wnt signaling pathway and the expression mechanism. These regulators are known to play roles in EMT and tumor progression, especially in OSCC. Characterizing the mechanisms through which both EMT and the Wnt pathway play a role in these cellular pathways could increase our understanding of the tumor genesis process and may allow for the development of improved therapeutics for OSCC.
Collapse
|
12
|
Gae DD, Budamagunta MS, Hess JF, McCarrick RM, Lorigan GA, FitzGerald PG, Voss JC. Completion of the Vimentin Rod Domain Structure Using Experimental Restraints: A New Tool for Exploring Intermediate Filament Assembly and Mutations. Structure 2019; 27:1547-1560.e4. [PMID: 31402219 PMCID: PMC6774864 DOI: 10.1016/j.str.2019.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/23/2019] [Accepted: 07/22/2019] [Indexed: 11/28/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy of full-length vimentin and X-ray crystallography of vimentin peptides has provided concordant structural data for nearly the entire central rod domain of the protein. In this report, we use a combination of EPR spectroscopy and molecular modeling to determine the structure and dynamics of the missing region and unite the separate elements into a single structure. Validation of the linker 1-2 (L1-2) modeling approach is demonstrated by the close correlation between EPR and X-ray data in the previously solved regions. Importantly, molecular dynamic (MD) simulation of the constructed model agrees with spin label motion as determined by EPR. Furthermore, MD simulation shows L1-2 heterogeneity, with a concerted switching of states among the dimer chains. These data provide the first ever experimentally driven model of a complete intermediate filament rod domain, providing research tools for further modeling and assembly studies.
Collapse
Affiliation(s)
- David D Gae
- Department of Surgery, School of Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Madhu S Budamagunta
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - John F Hess
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Paul G FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, CA 95616, USA.
| | - John C Voss
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
13
|
Structural basis for lamin assembly at the molecular level. Nat Commun 2019; 10:3757. [PMID: 31434876 PMCID: PMC6704074 DOI: 10.1038/s41467-019-11684-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/26/2019] [Indexed: 12/02/2022] Open
Abstract
Nuclear structure and function are governed by lamins, which are intermediate filaments that mostly consist of α-helices. Different lamin assembly models have been proposed based on low resolution and fragmented structures. However, their assembly mechanisms are still poorly understood at the molecular level. Here, we present the crystal structure of a long human lamin fragment at 3.2 Å resolution that allows the visualization of the features of the full-length protein. The structure shows an anti-parallel arrangement of the two coiled-coil dimers, which is important for the assembly process. We further discover an interaction between the lamin dimers by using chemical cross-linking and mass spectrometry analysis. Based on these two interactions, we propose a molecular mechanism for lamin assembly that is in agreement with a recent model representing the native state and could explain pathological mutations. Our findings also provide the molecular basis for assembly mechanisms of other intermediate filaments. Lamins are intermediate filaments and the major component of the nuclear lamina. Here the authors determine the crystal structure of a construct comprising the N-terminal half of human lamin A/C and use their structure and cross-linking and biochemical experiments to discuss lamin assembly.
Collapse
|
14
|
Makarov AA, Zou J, Houston DR, Spanos C, Solovyova AS, Cardenal-Peralta C, Rappsilber J, Schirmer EC. Lamin A molecular compression and sliding as mechanisms behind nucleoskeleton elasticity. Nat Commun 2019; 10:3056. [PMID: 31296869 PMCID: PMC6624373 DOI: 10.1038/s41467-019-11063-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 06/20/2019] [Indexed: 11/16/2022] Open
Abstract
Lamin A is a nuclear intermediate filament protein critical for nuclear architecture and mechanics and mutated in a wide range of human diseases. Yet little is known about the molecular architecture of lamins and mechanisms of their assembly. Here we use SILAC cross-linking mass spectrometry to determine interactions within lamin dimers and between dimers in higher-order polymers. We find evidence for a compression mechanism where coiled coils in the lamin A rod can slide onto each other to contract rod length, likely driven by a wide range of electrostatic interactions with the flexible linkers between coiled coils. Similar interactions occur with unstructured regions flanking the rod domain during oligomeric assembly. Mutations linked to human disease block these interactions, suggesting that this spring-like contraction can explain in part the dynamic mechanical stretch and flexibility properties of the lamin polymer and other intermediate filament networks.
Collapse
Affiliation(s)
- Alex A Makarov
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Juan Zou
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Douglas R Houston
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Alexandra S Solovyova
- Institute for Cell and Molecular Biosciences/NUPPA, The Medical School, University of Newcastle, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Cristina Cardenal-Peralta
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK.
- Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, 13355, Germany.
| | - Eric C Schirmer
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
15
|
Danielsson F, Peterson MK, Caldeira Araújo H, Lautenschläger F, Gad AKB. Vimentin Diversity in Health and Disease. Cells 2018; 7:E147. [PMID: 30248895 PMCID: PMC6210396 DOI: 10.3390/cells7100147] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Vimentin is a protein that has been linked to a large variety of pathophysiological conditions, including cataracts, Crohn's disease, rheumatoid arthritis, HIV and cancer. Vimentin has also been shown to regulate a wide spectrum of basic cellular functions. In cells, vimentin assembles into a network of filaments that spans the cytoplasm. It can also be found in smaller, non-filamentous forms that can localise both within cells and within the extracellular microenvironment. The vimentin structure can be altered by subunit exchange, cleavage into different sizes, re-annealing, post-translational modifications and interacting proteins. Together with the observation that different domains of vimentin might have evolved under different selection pressures that defined distinct biological functions for different parts of the protein, the many diverse variants of vimentin might be the cause of its functional diversity. A number of review articles have focussed on the biology and medical aspects of intermediate filament proteins without particular commitment to vimentin, and other reviews have focussed on intermediate filaments in an in vitro context. In contrast, the present review focusses almost exclusively on vimentin, and covers both ex vivo and in vivo data from tissue culture and from living organisms, including a summary of the many phenotypes of vimentin knockout animals. Our aim is to provide a comprehensive overview of the current understanding of the many diverse aspects of vimentin, from biochemical, mechanical, cellular, systems biology and medical perspectives.
Collapse
Affiliation(s)
- Frida Danielsson
- Science for Life Laboratory, Royal Institute of Technology, 17165 Stockholm, Sweden.
| | | | | | - Franziska Lautenschläger
- Campus D2 2, Leibniz-Institut für Neue Materialien gGmbH (INM) and Experimental Physics, NT Faculty, E 2 6, Saarland University, 66123 Saarbrücken, Germany.
| | - Annica Karin Britt Gad
- Centro de Química da Madeira, Universidade da Madeira, 9020105 Funchal, Portugal.
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237 Uppsala, Sweden.
| |
Collapse
|
16
|
Brodehl A, Gaertner-Rommel A, Milting H. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophys Rev 2018; 10:983-1006. [PMID: 29926427 DOI: 10.1007/s12551-018-0429-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Increasing usage of next-generation sequencing techniques pushed during the last decade cardiogenetic diagnostics leading to the identification of a huge number of genetic variants in about 170 genes associated with cardiomyopathies, channelopathies, or syndromes with cardiac involvement. Because of the biochemical and cellular complexity, it is challenging to understand the clinical meaning or even the relevant pathomechanisms of the majority of genetic sequence variants. However, detailed knowledge about the associated molecular pathomechanism is essential for the development of efficient therapeutic strategies in future and genetic counseling. Mutations in DES, encoding the muscle-specific intermediate filament protein desmin, have been identified in different kinds of cardiac and skeletal myopathies. Here, we review the functions of desmin in health and disease with a focus on cardiomyopathies. In addition, we will summarize the genetic and clinical literature about DES mutations and will explain relevant cell and animal models. Moreover, we discuss upcoming perspectives and consequences of novel experimental approaches like genome editing technology, which might open a novel research field contributing to the development of efficient and mutation-specific treatment options.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| | - Anna Gaertner-Rommel
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
17
|
Abstract
For years intermediate filaments (IF), belonging to the third class of filamentous cytoskeletal proteins alongside microtubules and actin filaments, were thought to be exclusive to metazoan cells. Structurally these eukaryote IFs are very well defined, consisting of globular head and tail domains, which flank the central rod-domain. This central domain is dominated by an α-helical secondary structure predisposed to form the characteristic coiled-coil, parallel homo-dimer. These elementary dimers can further associate, both laterally and longitudinally, generating a variety of filament-networks built from filaments in the range of 10 nm in diameter. The general role of these filaments with their characteristic mechano-elastic properties both in the cytoplasm and in the nucleus of eukaryote cells is to provide mechanical strength and a scaffold supporting diverse shapes and cellular functions.Since 2003, after the first bacterial IF-like protein, crescentin was identified, it has been evident that bacteria also employ filamentous networks, other than those built from bacterial tubulin or actin homologues, in order to support their cell shape, growth and, in some cases, division. Intriguingly, compared to their eukaryote counterparts, the group of bacterial IF-like proteins shows much wider structural diversity. The sizes of both the head and tail domains are markedly reduced and there is great variation in the length of the central rod-domain. Furthermore, bacterial rod-domains often lack the sub-domain organisation of eukaryote IFs that is the defining feature of the IF-family. However, the fascinating display of filamentous assemblies, including rope, striated cables and hexagonal laces together with the conditions required for their formation both in vitro and in vivo strongly resemble that of eukaryote IFs suggesting that these bacterial proteins are deservedly classified as part of the IF-family and that the current definition should be relaxed slightly to allow their inclusion. The lack of extensive head and tail domains may well make the bacterial proteins more amenable for structural characterisation, which will be essential for establishing the mechanism for their association into filaments. What is more, the well-developed tools for bacterial manipulations provide an excellent opportunity of studying the bacterial systems with the prospect of making significant progress in our understanding of the general underlying principles of intermediate filament assemblies.
Collapse
Affiliation(s)
- Gabriella H Kelemen
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
18
|
Chernyatina AA, Hess JF, Guzenko D, Voss JC, Strelkov SV. How to Study Intermediate Filaments in Atomic Detail. Methods Enzymol 2015; 568:3-33. [PMID: 26795465 DOI: 10.1016/bs.mie.2015.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Studies of the intermediate filament (IF) structure are a prerequisite of understanding their function. In addition, the structural information is indispensable if one wishes to gain a mechanistic view on the disease-related mutations in the IFs. Over the years, considerable progress has been made on the atomic structure of the elementary building block of all IFs, the coiled-coil dimer. Here, we discuss the approaches, methods and practices that have contributed to this advance. With abundant genetic information on hand, bioinformatics approaches give important insights into the dimer structure, including the head and tail regions poorly assessable experimentally. At the same time, the most important contribution has been provided by X-ray crystallography. Following the "divide-and-conquer" approach, many fragments from several IF proteins could be crystallized and resolved to atomic resolution. We will systematically cover the main procedures of these crystallographic studies, suggest ways to maximize their efficiency, and also discuss the possible pitfalls and limitations. In addition, electron paramagnetic resonance with site-directed spin labeling was another method providing a major impact toward the understanding of the IF structure. Upon placing the spin labels into specific positions within the full-length protein, one can evaluate the proximity of the labels and their mobility. This makes it possible to make conclusions about the dimer structure in the coiled-coil region and beyond, as well as to explore the dimer-dimer contacts.
Collapse
Affiliation(s)
| | - John F Hess
- Department of Cell Biology and Human Anatomy, University of California, Davis, California, USA
| | - Dmytro Guzenko
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - John C Voss
- Department of Cell Biology and Human Anatomy, University of California, Davis, California, USA
| | - Sergei V Strelkov
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
19
|
Order and disorder in intermediate filament proteins. FEBS Lett 2015; 589:2464-76. [PMID: 26231765 DOI: 10.1016/j.febslet.2015.07.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 11/20/2022]
Abstract
Intermediate filaments (IFs), important components of the cytoskeleton, provide a versatile, tunable network of self-assembled proteins. IF proteins contain three distinct domains: an α-helical structured rod domain, flanked by intrinsically disordered head and tail domains. Recent studies demonstrated the functional importance of the disordered domains, which differ in length and amino-acid sequence among the 70 different human IF genes. Here, we investigate the biophysical properties of the disordered domains, and review recent findings on the interactions between them. Our analysis highlights key components governing IF functional roles in the cytoskeleton, where the intrinsically disordered domains dictate protein-protein interactions, supramolecular assembly, and macro-scale order.
Collapse
|
20
|
Chernyatina AA, Guzenko D, Strelkov SV. Intermediate filament structure: the bottom-up approach. Curr Opin Cell Biol 2015; 32:65-72. [DOI: 10.1016/j.ceb.2014.12.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/05/2014] [Accepted: 12/19/2014] [Indexed: 11/24/2022]
|
21
|
Hess JF, Budamagunta MS, Aziz A, FitzGerald PG, Voss JC. Electron paramagnetic resonance analysis of the vimentin tail domain reveals points of order in a largely disordered region and conformational adaptation upon filament assembly. Protein Sci 2014; 22:47-55. [PMID: 23109052 DOI: 10.1002/pro.2182] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/15/2012] [Indexed: 01/27/2023]
Abstract
Very little data have been reported that describe the structure of the tail domain of any cytoplasmic intermediate filament (IF) protein. We report here the results of studies using site directed spin labeling and electron paramagnetic resonance (SDSL-EPR) to explore the structure and dynamics of the tail domain of human vimentin in tetramers (protofilaments) and filaments. The data demonstrate that in contrast to the vimentin head and rod domains, the tail domains are not closely apposed in protofilaments. However, upon assembly into intact IFs, several sites, including positions 445, 446, 451, and 452, the conserved "beta-site," become closely apposed, indicating dynamic changes in tail domain structure that accompany filament elongation. No evidence is seen for coiled-coil structure within the region studied, in either protofilaments or assembled filaments. EPR analysis also establishes that more than half of the tail domain is very flexible in both the assembly intermediate and the intact IF. However, by positioning the spin label at distinct sites, EPR is able to identify both the rod proximal region and sites flanking the beta-site motif as rigid locations within the tail. The rod proximal region is well assembled at the tetramer stage with only slight changes occurring during filament elongation. In contrast, at the beta site, the polypeptide backbone transitions from flexible in the assembly intermediate to much more rigid in the intact IF. These data support a model in which the distal tail domain structure undergoes significant conformational change during filament elongation and final assembly.
Collapse
Affiliation(s)
- John F Hess
- Department of Cell Biology and Human Anatomy, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
22
|
Wang J, Budamagunta MS, Voss JC, Kurth MJ, Lam KS, Lu L, Kenny TP, Bowlus C, Kikuchi K, Coppel RL, Ansari AA, Gershwin ME, Leung PSC. Antimitochondrial antibody recognition and structural integrity of the inner lipoyl domain of the E2 subunit of pyruvate dehydrogenase complex. THE JOURNAL OF IMMUNOLOGY 2013; 191:2126-33. [PMID: 23894195 DOI: 10.4049/jimmunol.1301092] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antimitochondrial autoantibodies (AMAs), the serological hallmark of primary biliary cirrhosis, are directed against the lipoyl domain of the E2 subunit of pyruvate dehydrogenase (PDC-E2). However, comprehensive analysis of the amino acid residues of PDC-E2 lipoyl β-sheet with AMA specificity is lacking. In this study, we postulated that specific residues within the lipoyl domain are critical to AMA recognition by maintaining conformational integrity. We systematically replaced each of 19 residue peptides of the inner lipoyl domain with alanine and analyzed these mutants for reactivities against 60 primary biliary cirrhosis and 103 control sera. Based on these data, we then constructed mutants with two, three, or four replacements and, in addition, probed the structure of the substituted domains using thiol-specific spin labeling and electron paramagnetic resonance (EPR) of a (5)Ile→Ala and (12)Ile→Ala double mutant. Single alanine replacement at (5)Ile, (12)Ile, and (15)Glu significantly reduced AMA recognition. In addition, mutants with two, three, or four replacements at (5)Ile, (12)Ile, and (15)Glu reduced AMA reactivity even further. Indeed, EPR reveals a highly flexible structure within the (5)Ile and (12)Ile double-alanine mutant. Autoreactivity is largely focused on specific residues in the PDC-E2 lipoyl domain critical in maintaining the lipoyl loop conformation necessary for AMA recognition. Collectively, the AMA binding studies and EPR analysis demonstrate the necessity of the lipoyl β-sheet structural conformation in anti-PDC-E2 recognition.
Collapse
Affiliation(s)
- Jinjun Wang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Atomic structure of the vimentin central α-helical domain and its implications for intermediate filament assembly. Proc Natl Acad Sci U S A 2012; 109:13620-5. [PMID: 22869704 DOI: 10.1073/pnas.1206836109] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Together with actin filaments and microtubules, intermediate filaments (IFs) are the basic cytoskeletal components of metazoan cells. Over 80 human diseases have been linked to mutations in various IF proteins to date. However, the filament structure is far from being resolved at the atomic level, which hampers rational understanding of IF pathologies. The elementary building block of all IF proteins is a dimer consisting of an α-helical coiled-coil (CC) "rod" domain flanked by the flexible head and tail domains. Here we present three crystal structures of overlapping human vimentin fragments that comprise the first half of its rod domain. Given the previously solved fragments, a nearly complete atomic structure of the vimentin rod has become available. It consists of three α-helical segments (coils 1A, 1B, and 2) interconnected by linkers (L1 and L12). Most of the CC structure has a left-handed twist with heptad repeats, but both coil 1B and coil 2 also exhibit untwisted, parallel stretches with hendecad repeats. In the crystal structure, linker L1 was found to be α-helical without being involved in the CC formation. The available data allow us to construct an atomic model of the antiparallel tetramer representing the second level of vimentin assembly. Although the presence of the nonhelical head domains is essential for proper tetramer stabilization, the precise alignment of the dimers forming the tetramer appears to depend on the complementarity of their surface charge distribution patterns, while the structural plasticity of linker L1 and coil 1A plays a role in the subsequent IF assembly process.
Collapse
|
24
|
Aziz A, Hess JF, Budamagunta MS, Voss JC, Kuzin AP, Huang YJ, Xiao R, Montelione GT, FitzGerald PG, Hunt JF. The structure of vimentin linker 1 and rod 1B domains characterized by site-directed spin-labeling electron paramagnetic resonance (SDSL-EPR) and X-ray crystallography. J Biol Chem 2012; 287:28349-61. [PMID: 22740688 DOI: 10.1074/jbc.m111.334011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the passage of ∼30 years since the complete primary sequence of the intermediate filament (IF) protein vimentin was reported, the structure remains unknown for both an individual protomer and the assembled filament. In this report, we present data describing the structure of vimentin linker 1 (L1) and rod 1B. Electron paramagnetic resonance spectra collected from samples bearing site-directed spin labels demonstrate that L1 is not a flexible segment between coiled-coils (CCs) but instead forms a rigid, tightly packed structure. An x-ray crystal structure of a construct containing L1 and rod 1B shows that it forms a tetramer comprising two equivalent parallel CC dimers that interact with one another in the form of a symmetrical anti-parallel dimer. Remarkably, the parallel CC dimers are themselves asymmetrical, which enables them to tetramerize rather than undergoing higher order oligomerization. This functionally vital asymmetry in the CC structure, encoded in the primary sequence of rod 1B, provides a striking example of evolutionary exploitation of the structural plasticity of proteins. EPR and crystallographic data consistently suggest that a very short region within L1 represents a minor local distortion in what is likely to be a continuous CC from the end of rod 1A through the entirety of rod 1B. The concordance of this structural model with previously published cross-linking and spectral data supports the conclusion that the crystallographic oligomer represents a native biological structure.
Collapse
Affiliation(s)
- Atya Aziz
- Department of Cell Biology and Human Anatomy, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Aziz A, Hess JF, Budamagunta MS, Voss JC, FitzGerald PG. Site-directed spin labeling and electron paramagnetic resonance determination of vimentin head domain structure. J Biol Chem 2010; 285:15278-15285. [PMID: 20231271 DOI: 10.1074/jbc.m109.075598] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intermediate filament (IF) proteins have been predicted to have a conserved tripartite domain structure consisting of a largely alpha-helical central rod domain, flanked by head and tail domains. However, crystal structures have not been reported for any IF or IF protein. Although progress has been made in determining central rod domain structure, no structural data have been reported for either the head or tail domains. We used site-directed spin labeling and electron paramagnetic resonance to analyze 45 different spin labeled mutants spanning the head domain of vimentin. The data, combined with results from a previous study, provide strong evidence that the polypeptide backbones of the head domains form a symmetric dimer of closely apposed backbones that fold back onto the rod domain, imparting an asymmetry to the dimer. By following the behavior of spin labels during the process of in vitro assembly, we show that head domain structure is dynamic, changing as a result of filament assembly. Finally, because the vimentin head domain is the major site of the phosphorylation that induces disassembly at mitosis, we studied the effects of phosphorylation on head domain structure and demonstrate that phosphorylation drives specific head domain regions apart. These data provide the first evidence-based model of IF head domain structure.
Collapse
Affiliation(s)
- Atya Aziz
- Departments of Cell Biology and Human Anatomy, University of California, Davis, California 95616
| | - John F Hess
- Departments of Cell Biology and Human Anatomy, University of California, Davis, California 95616
| | - Madhu S Budamagunta
- Departments of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California 95616
| | - John C Voss
- Departments of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California 95616
| | - Paul G FitzGerald
- Departments of Cell Biology and Human Anatomy, University of California, Davis, California 95616.
| |
Collapse
|
26
|
Hojo-Nakashima I, Sato R, Nakashima K, Hagiwara T, Yamada M. Dynamic Expression of Peptidylarginine Deiminase 2 in Human Monocytic Leukaemia THP-1 Cells During Macrophage Differentiation. J Biochem 2009; 146:471-9. [DOI: 10.1093/jb/mvp097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|