1
|
Frese AN, Mariossi A, Levine MS, Wühr M. Quantitative proteome dynamics across embryogenesis in a model chordate. iScience 2024; 27:109355. [PMID: 38510129 PMCID: PMC10951915 DOI: 10.1016/j.isci.2024.109355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/11/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
The evolution of gene expression programs underlying the development of vertebrates remains poorly characterized. Here, we present a comprehensive proteome atlas of the model chordate Ciona, covering eight developmental stages and ∼7,000 translated genes, accompanied by a multi-omics analysis of co-evolution with the vertebrate Xenopus. Quantitative proteome comparisons argue against the widely held hourglass model, based solely on transcriptomic profiles, whereby peak conservation is observed during mid-developmental stages. Our analysis reveals maximal divergence at these stages, particularly gastrulation and neurulation. Together, our work provides a valuable resource for evaluating conservation and divergence of multi-omics profiles underlying the diversification of vertebrates.
Collapse
Affiliation(s)
- Alexander N. Frese
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Andrea Mariossi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael S. Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Martin Wühr
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
2
|
Saito T. Mechanisms of self-incompatibility in ascidians. Genesis 2023; 61:e23556. [PMID: 37800311 DOI: 10.1002/dvg.23556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Affiliation(s)
- Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
3
|
Sawada H, Saito T. Mechanisms of Sperm-Egg Interactions: What Ascidian Fertilization Research Has Taught Us. Cells 2022; 11:2096. [PMID: 35805180 PMCID: PMC9265791 DOI: 10.3390/cells11132096] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Fertilization is an essential process in terrestrial organisms for creating a new organism with genetic diversity. Before gamete fusion, several steps are required to achieve successful fertilization. Animal spermatozoa are first activated and attracted to the eggs by egg-derived chemoattractants. During the sperm passage of the egg's extracellular matrix or upon the sperm binding to the proteinaceous egg coat, the sperm undergoes an acrosome reaction, an exocytosis of acrosome. In hermaphrodites such as ascidians, the self/nonself recognition process occurs when the sperm binds to the egg coat. The activated or acrosome-reacted spermatozoa penetrate through the proteinaceous egg coat. The extracellular ubiquitin-proteasome system, the astacin-like metalloproteases, and the trypsin-like proteases play key roles in this process in ascidians. In the present review, we summarize our current understanding and perspectives on gamete recognition and egg coat lysins in ascidians and consider the general mechanisms of fertilization in animals and plants.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Department of Nutritional Environment, College of Human Life and Environment, Kinjo Gakuin University, Nagoya 463-8521, Japan
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
- Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
4
|
Saito T, Sawada H. Fertilization of Ascidians: Gamete Interaction, Self/Nonself Recognition and Sperm Penetration of Egg Coat. Front Cell Dev Biol 2022; 9:827214. [PMID: 35186958 PMCID: PMC8849226 DOI: 10.3389/fcell.2021.827214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
Fertilization is one of the most important events in living organisms to generate a new life with a mixed genetic background. To achieve successful fertilization, sperm and eggs must undergo complex processes in a sequential order. Fertilization of marine invertebrate Ciona intestinalis type A (Ciona robusta) has been studied for more than a hundred years. Ascidian sperm are attracted by chemoattractants from eggs and bind to the vitelline coat. Subsequently, sperm penetrate through the vitelline coat proteolytically and finally fuse with the egg plasma membrane. Here, we summarize the fertilization mechanisms of ascidians, particularly from sperm-egg interactions to sperm penetration of the egg coat. Since ascidians are hermaphrodites, inbreeding depression is a serious problem. To avoid self-fertilization, ascidians possess a self-incompatibility system. In this review, we also describe the molecular mechanisms of the self-incompatibility system in C. intestinalis type A governed by three allelic gene pairs of s-Themis and v-Themis.
Collapse
Affiliation(s)
- Takako Saito
- Faculty of Agriculture Department of Applied Life Sciences, Shizuoka University, Shizuoka, Japan
| | - Hitoshi Sawada
- Depatment of Food and Nutritional Environment, College of Human Life and Environment, Kinjo Gakuin University, Nagoya, Japan
- Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Zou Y, Xu X, Hu Q, Wang Y, Yang H, Zhang Z. Identification and diversity of fibrinogen-related protein (FREP) gene family in Haliotis discus hannai, H. rufescens, and H. laevigata and their responses to Vibrio parahemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2021; 119:613-622. [PMID: 34740769 DOI: 10.1016/j.fsi.2021.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Fibrinogen-related proteins (FREPs) are distributed universally in vertebrates and invertebrates. These proteins contain fibrinogen-like (FBG) domains in their C-terminal region and involve in immune responses and other aspects of physiology in invertebrates. In this study, 54 proteins that contain FBG domains or a fibrinogen_c domain were identified in Haliotis discus hannai. Comparatively, 88 and 63 FREPs were identified from the genomes of H. rufescens and H. laevigata. Most FREPs of abalones had a conserved motif containing a bound calcium ion site and a second conserved motif containing a polymerization pocket site. By sequence analysis, 394 SNPs and 11 Indels were identified in 20 FREP genes of the whole genome of H. discus hannai; 992 SNPs and 42 Indels were found in 64 FREPs of H. rufescens, and 192 SNPs and 12 Indels were found in 21 FREPs of H. laevigata. Among these SNPs, 92 missense mutation sites were identified in 26 FREP genes of H. rufescens, and 12 were identified in 8 FREP genes of H. laevigata. Due to the poor genomic integrity, annotations of the SNPs or Indels in H. discus hannai did not yield missense mutant sites. FREP genes with polymorphisms were ubiquitously expressed in all the tested tissues; however, the expression is lowest in the hemolymph. In response to Vibrio parahemolyticus infection, expression of FREP genes was significantly upregulated at different exposure times in gills, hepatopancreas, and hemolymph in H. discus hannai. Overall, this study documented the FREP genes of abalones and shed light on the role of FREPs in the innate immune system of these aquaculture species for the prevention and control of diseases.
Collapse
Affiliation(s)
- Yuelian Zou
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin Xu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qilin Hu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yilei Wang
- College of Fisheries, Jimei University, Xiamen, 361021, China
| | - Huiping Yang
- School of Forest Resources and Conservation, IFAS, University of Florida, 7922 NW 71st Street, Gainesville, FL, 32615, USA
| | - Ziping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Kutomi O, Yamamoto R, Hirose K, Mizuno K, Nakagiri Y, Imai H, Noga A, Obbineni JM, Zimmermann N, Nakajima M, Shibata D, Shibata M, Shiba K, Kita M, Kigoshi H, Tanaka Y, Yamasaki Y, Asahina Y, Song C, Nomura M, Nomura M, Nakajima A, Nakachi M, Yamada L, Nakazawa S, Sawada H, Murata K, Mitsuoka K, Ishikawa T, Wakabayashi KI, Kon T, Inaba K. A dynein-associated photoreceptor protein prevents ciliary acclimation to blue light. SCIENCE ADVANCES 2021; 7:7/9/eabf3621. [PMID: 33637535 PMCID: PMC7909887 DOI: 10.1126/sciadv.abf3621] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/14/2021] [Indexed: 05/07/2023]
Abstract
Light-responsive regulation of ciliary motility is known to be conducted through modulation of dyneins, but the mechanism is not fully understood. Here, we report a novel subunit of the two-headed f/I1 inner arm dynein, named DYBLUP, in animal spermatozoa and a unicellular green alga. This subunit contains a BLUF (sensors of blue light using FAD) domain that appears to directly modulate dynein activity in response to light. DYBLUP (dynein-associated BLUF protein) mediates the connection between the f/I1 motor domain and the tether complex that links the motor to the doublet microtubule. Chlamydomonas lacking the DYBLUP ortholog shows both positive and negative phototaxis but becomes acclimated and attracted to high-intensity blue light. These results suggest a mechanism to avoid toxic strong light via direct photoregulation of dyneins.
Collapse
Affiliation(s)
- Osamu Kutomi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Ryosuke Yamamoto
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Keiko Hirose
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Katsutoshi Mizuno
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
- School of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Yuuhei Nakagiri
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroshi Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akira Noga
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Jagan Mohan Obbineni
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Vellore 632014, Tamil Nadu, India
| | - Noemi Zimmermann
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Masako Nakajima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Daisuke Shibata
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Misa Shibata
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Masaki Kita
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Hideo Kigoshi
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yui Tanaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuya Yamasaki
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuma Asahina
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Chihong Song
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Mami Nomura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Mamoru Nomura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Ayako Nakajima
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Mia Nakachi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Mie 517-0004, Japan
| | - Shiori Nakazawa
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Mie 517-0004, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Mie 517-0004, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Takashi Ishikawa
- Laboratory of Biomolecular Research, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Ken-Ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan.
| |
Collapse
|
7
|
Lu L, Loker ES, Adema CM, Zhang SM, Bu L. Genomic and transcriptional analysis of genes containing fibrinogen and IgSF domains in the schistosome vector Biomphalaria glabrata, with emphasis on the differential responses of snails susceptible or resistant to Schistosoma mansoni. PLoS Negl Trop Dis 2020; 14:e0008780. [PMID: 33052953 PMCID: PMC7588048 DOI: 10.1371/journal.pntd.0008780] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/26/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022] Open
Abstract
Achieving a deeper understanding of the factors controlling the defense responses of invertebrate vectors to the human-infecting pathogens they transmit will provide needed new leads to pursue for control. Consequently, we provide new genomic and transcriptomic insights regarding FReDs (containing a fibrinogen domain) and FREPs (fibrinogen domain and one or two IgSF domains) from the planorbid snail Biomphalaria glabrata, a Neotropical vector of Schistosoma mansoni, causative agent of human intestinal schistosomiasis. Using new bioinformatics approaches to improve annotation applied to both genome and RNA-Seq data, we identify 73 FReD genes, 39 of which are FREPs. We provide details of domain structure and consider relationships and homologies of B. glabrata FBG and IgSF domains. We note that schistosome-resistant (BS-90) snails mount complex FREP responses following exposure to S. mansoni infection whereas schistosome-susceptible (M line) snails do not. We also identify several coding differences between BS-90 and M line snails in three FREPs (2, 3.1 and 3.2) repeatedly implicated in other studies of anti-schistosome responses. In combination with other results, our study provides a strong impetus to pursue particular FREPs (2, 3.1, 3.2 and 4) as candidate resistance factors to be considered more broadly with respect to schistosome control efforts, including involving other Biomphalaria species vectoring S. mansoni in endemic areas in Africa.
Collapse
Affiliation(s)
- Lijun Lu
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Eric S. Loker
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Coen M. Adema
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Si-Ming Zhang
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lijing Bu
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
8
|
Chauhan C, Das De T, Kumari S, Rani J, Sharma P, Tevatiya S, Pandey KC, Pande V, Dixit R. Hemocyte-specific FREP13 abrogates the exogenous bacterial population in the hemolymph and promotes midgut endosymbionts in Anopheles stephensi. Immunol Cell Biol 2020; 98:757-769. [PMID: 32623757 DOI: 10.1111/imcb.12374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/12/2020] [Accepted: 07/02/2020] [Indexed: 02/05/2023]
Abstract
The immune blood cells "hemocytes" of mosquitoes impart a highly selective immune response against various microorganisms/pathogens. Among several immune effectors, fibrinogen-related proteins (FREPs) have been recognized as key modulators of cellular immune responses; however, their physiological relevance has not been investigated in detail. Our ongoing comparative RNA-sequencing analysis identified a total of 13 FREPs originating from naïve sugar-fed, blood-fed, bacterial challenged and Plasmodium vivax-infected hemocytes in Anopheles stephensi. Transcriptional profiling of the selected seven FREP transcripts showed distinct responses against different pathophysiological conditions, where an exclusive induction of FREP12 after 10 days of P. vivax infection was observed. This represents a possible role of FREP12 in immunity against free circulating sporozoites and needs to be explored in the future. When challenged with live bacterial injection in the thorax, we observed a higher affinity of FREP13 and FREP65 toward Gram-negative and Gram-positive bacteria in the mosquito hemocytes, respectively. Furthermore, we observed increased bacterial survival and proliferation, which is likely compromised by the downregulation of TEP1, in FREP13 messenger RNA-depleted mosquito hemolymph. In contrast, after blood-feeding, we also noticed a significant delay of 24 h in the enrichment of gut endosymbionts in the FREP13-silenced mosquitoes. Taken together, we conclude that hemocyte-specific FREP13 carries the unique ability of tissue-specific regulation, having an antagonistic antibacterial role in the hemolymph, and an agonistic role against gut endosymbionts.
Collapse
Affiliation(s)
- Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Kailash C Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077, India
| |
Collapse
|
9
|
Sawada H, Yamamoto K, Yamaguchi A, Yamada L, Higuchi A, Nukaya H, Fukuoka M, Sakuma T, Yamamoto T, Sasakura Y, Shirae-Kurabayashi M. Three multi-allelic gene pairs are responsible for self-sterility in the ascidian Ciona intestinalis. Sci Rep 2020; 10:2514. [PMID: 32054881 PMCID: PMC7018956 DOI: 10.1038/s41598-020-59147-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Many hermaphroditic organisms possess a self-incompatibility system to avoid inbreeding. Although the mechanisms of self-incompatibility in flowering plants are well known, little is known about the mechanisms of self-sterility in hermaphroditic marine invertebrates. Ascidians are hermaphroditic sessile marine invertebrates that release sperm and eggs into the surrounding seawater. Several species, including Ciona intestinalis type A (Ciona robusta), exhibit strict self-sterility. In a previous study, we found that the candidate genes responsible for self-sterility in Ciona reside in chromosome 2q (locus A) and chromosome 7q (locus B). Two pairs of multi-allelic genes, named s(sperm)-Themis-A and v(vitelline-coat)-Themis-A in locus A and s-Themis-B and v-Themis-B in locus B, are responsible for self-sterility. In this study, we identified a third multi-allelic gene pair, s-Themis-B2 and v-Themis-B2, within locus B that is also involved in this system. Genetic analysis revealed that the haplotypes of s/v-Themis-A, s/v-Themis-B and s/v-Themis-B2 play essential roles in self-sterility. When three haplotypes were matched between s-Themis and v-Themis, fertilization never occurred even in nonself crossing. Interestingly, gene targeting of either s/v-Themis-B/B2 or s/v-Themis-A by genome editing enabled self-fertilization. These results indicate that s/v-Themis-A, -B and -B2 are S-determinant genes responsible for self-sterility in the ascidian C. intestinalis type A.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517-0004, Japan.
| | - Kazunori Yamamoto
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517-0004, Japan
| | - Akira Yamaguchi
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517-0004, Japan
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517-0004, Japan
| | - Arata Higuchi
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517-0004, Japan
| | - Haruhiko Nukaya
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517-0004, Japan
| | - Masashi Fukuoka
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517-0004, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | - Maki Shirae-Kurabayashi
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517-0004, Japan
| |
Collapse
|
10
|
Zhao R, Takeuchi T, Luo YJ, Ishikawa A, Kobayashi T, Koyanagi R, Villar-Briones A, Yamada L, Sawada H, Iwanaga S, Nagai K, Satoh N, Endo K. Dual Gene Repertoires for Larval and Adult Shells Reveal Molecules Essential for Molluscan Shell Formation. Mol Biol Evol 2019; 35:2751-2761. [PMID: 30169718 PMCID: PMC6231486 DOI: 10.1093/molbev/msy172] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Molluscan shells, mainly composed of calcium carbonate, also contain organic components such as proteins and polysaccharides. Shell organic matrices construct frameworks of shell structures and regulate crystallization processes during shell formation. To date, a number of shell matrix proteins (SMPs) have been identified, and their functions in shell formation have been studied. However, previous studies focused only on SMPs extracted from adult shells, secreted after metamorphosis. Using proteomic analyses combined with genomic and transcriptomic analyses, we have identified 31 SMPs from larval shells of the pearl oyster, Pinctada fucata, and 111 from the Pacific oyster, Crassostrea gigas. Larval SMPs are almost entirely different from those of adults in both species. RNA-seq data also confirm that gene expression profiles for larval and adult shell formation are nearly completely different. Therefore, bivalves have two repertoires of SMP genes to construct larval and adult shells. Despite considerable differences in larval and adult SMPs, some functional domains are shared by both SMP repertoires. Conserved domains include von Willebrand factor type A (VWA), chitin-binding (CB), carbonic anhydrase (CA), and acidic domains. These conserved domains are thought to play crucial roles in shell formation. Furthermore, a comprehensive survey of animal genomes revealed that the CA and VWA-CB domain-containing protein families expanded in molluscs after their separation from other Lophotrochozoan linages such as the Brachiopoda. After gene expansion, some family members were co-opted for molluscan SMPs that may have triggered to develop mineralized shells from ancestral, nonmineralized chitinous exoskeletons.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Akito Ishikawa
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tatsushi Kobayashi
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Alejandro Villar-Briones
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Japan
| | | | - Kiyohito Nagai
- Pearl Research Institute, Mikimoto CO., LTD, Shima, Mie, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
11
|
Tanaka Y, Yamada S, Connop SL, Hashii N, Sawada H, Shih Y, Nishida H. Vitelline membrane proteins promote left-sided nodal expression after neurula rotation in the ascidian, Halocynthia roretzi. Dev Biol 2019; 449:52-61. [PMID: 30710513 DOI: 10.1016/j.ydbio.2019.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/19/2022]
Abstract
Stereotyped left-right asymmetry both in external and internal organization is found in various animals. Left-right symmetry is broken by the neurula rotation in the ascidian, Halocynthia roretzi. Neurula embryos rotate along the anterior-posterior axis in a counterclockwise direction, and the rotation stops when the left side of the embryo is oriented downwards, resulting in contact of the left-side epidermis with the vitelline membrane at the bottom of perivitelline space. Then, such contact induces the expression of nodal and its downstream Pitx2 gene in the left-side epidermis. Vitelline membrane is required for the promotion of nodal expression. Here, we showed that a chemical signal from the vitelline membrane promotes nodal gene expression, but mechanical stimulus at the point of contact is unnecessary since the treatment of devitellinated neurulae with an extract of the vitelline membrane promoted nodal expression on both sides. The signal molecules are already present in the vitelline membranes of unfertilized eggs. These signal molecules are proteins but not sugars. Specific fractions in gel filtration chromatography had the nodal promoting activity. By mass spectrometry, we selected 48 candidate proteins. Proteins that contain both a zona pellucida (ZP) domain and epidermal growth factor (EGF) repeats were enriched in the candidates of the nodal inducing molecules. Six of the ZP proteins had multiple EGF repeats that are only found in ascidian ZP proteins. These were considered to be the most viable candidates of the nodal-inducing molecules. Signal molecules are anchored to the entire vitelline membrane, and contact sites of signal-receiving cells are spatially and mechanically controlled by the neurula rotation. In this context, ascidians are unusual with respect to mechanisms for specification of the left-right axis. By suppressing formation of epidermis monocilia, we also showed that epidermal cilia drive the neurula rotation but are dispensable for sensing the signal from the vitelline membrane.
Collapse
Affiliation(s)
- Yuka Tanaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shiori Yamada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Samantha L Connop
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba 517-0004, Japan
| | - Yu Shih
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
12
|
Nakazawa S, Shirae-Kurabayashi M, Sawada H. The role of metalloproteases in fertilisation in the ascidian Ciona robusta. Sci Rep 2019; 9:1009. [PMID: 30700775 PMCID: PMC6353882 DOI: 10.1038/s41598-018-37721-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/12/2018] [Indexed: 11/29/2022] Open
Abstract
In the ascidian Ciona robusta (formerly C. intestinalis type A), the mechanism underlying sperm penetration through the egg investment remains unknown. We previously reported that proteins containing both an astacin metalloprotease domain and thrombospondin type 1 repeats are abundant in the sperm surface protein-enriched fraction of C. robusta. Here we investigated the involvement of those proteins in fertilisation. We refined the sequences of astacin metalloproteases, confirmed that five of them are present in the sperm, and labelled them as tunicate astacin and thrombospondin type 1 repeat-containing (Tast) proteins. Fertilisation of C. robusta eggs was potently inhibited by a metalloprotease inhibitor GM6001. The eggs cleaved normally when they were vitelline coat-free or the inhibitor was added after insemination. Furthermore, vitelline coat proteins were degraded after incubation with intact sperm. These results suggest that sperm metalloproteases are indispensable for fertilisation, probably owing to direct or indirect mediation of vitelline-coat digestion during sperm penetration. TALEN-mediated knockout of Tast genes and the presence of GM6001 impaired larval development at the metamorphic stage, suggesting that Tast gene products play a key role in late development.
Collapse
Affiliation(s)
- Shiori Nakazawa
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba, 517-0004, Mie, Japan. .,Hitachi, Ltd., Research & Development Group, Akanuma, Hatoyama, Hiki, Saitama, Japan.
| | - Maki Shirae-Kurabayashi
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba, 517-0004, Mie, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba, 517-0004, Mie, Japan.
| |
Collapse
|
13
|
Zhao R, Takeuchi T, Luo YJ, Ishikawa A, Kobayashi T, Koyanagi R, Villar-Briones A, Yamada L, Sawada H, Iwanaga S, Nagai K, Satoh N, Endo K. Dual Gene Repertoires for Larval and Adult Shells Reveal Molecules Essential for Molluscan Shell Formation. Mol Biol Evol 2018. [PMID: 30169718 DOI: 10.1093/molbev/msy1172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
Molluscan shells, mainly composed of calcium carbonate, also contain organic components such as proteins and polysaccharides. Shell organic matrices construct frameworks of shell structures and regulate crystallization processes during shell formation. To date, a number of shell matrix proteins (SMPs) have been identified, and their functions in shell formation have been studied. However, previous studies focused only on SMPs extracted from adult shells, secreted after metamorphosis. Using proteomic analyses combined with genomic and transcriptomic analyses, we have identified 31 SMPs from larval shells of the pearl oyster, Pinctada fucata, and 111 from the Pacific oyster, Crassostrea gigas. Larval SMPs are almost entirely different from those of adults in both species. RNA-seq data also confirm that gene expression profiles for larval and adult shell formation are nearly completely different. Therefore, bivalves have two repertoires of SMP genes to construct larval and adult shells. Despite considerable differences in larval and adult SMPs, some functional domains are shared by both SMP repertoires. Conserved domains include von Willebrand factor type A (VWA), chitin-binding (CB), carbonic anhydrase (CA), and acidic domains. These conserved domains are thought to play crucial roles in shell formation. Furthermore, a comprehensive survey of animal genomes revealed that the CA and VWA-CB domain-containing protein families expanded in molluscs after their separation from other Lophotrochozoan linages such as the Brachiopoda. After gene expansion, some family members were co-opted for molluscan SMPs that may have triggered to develop mineralized shells from ancestral, nonmineralized chitinous exoskeletons.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Akito Ishikawa
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tatsushi Kobayashi
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Alejandro Villar-Briones
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Japan
| | | | - Kiyohito Nagai
- Pearl Research Institute, Mikimoto CO., LTD, Shima, Mie, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
14
|
Chitin-based barrier immunity and its loss predated mucus-colonization by indigenous gut microbiota. Nat Commun 2018; 9:3402. [PMID: 30143642 PMCID: PMC6109156 DOI: 10.1038/s41467-018-05884-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/02/2018] [Indexed: 02/06/2023] Open
Abstract
Mammalian gut microbiota are integral to host health. However, how this association began remains unclear. We show that in basal chordates the gut space is radially compartmentalized into a luminal part where food microbes pass and an almost axenic peripheral part, defined by membranous delamination of the gut epithelium. While this membrane, framed with chitin nanofibers, structurally resembles invertebrate peritrophic membranes, proteome supports its affinity to mammalian mucus layers, where gut microbiota colonize. In ray-finned fish, intestines harbor indigenous microbes, but chitinous membranes segregate these luminal microbes from the surrounding mucus layer. These data suggest that chitin-based barrier immunity is an ancient system, the loss of which, at least in mammals, provided mucus layers as a novel niche for microbial colonization. These findings provide a missing link for intestinal immune systems in animals, revealing disparate mucosal environment in model organisms and highlighting the loss of a proven system as innovation. The coevolution of the animal gut mucosa and the gut microbiota is poorly understood. Here, Nakashima et al. identify intestinal chitinous membranes in basal chordates and ray-finned fish, and propose that the loss of this chitin barrier allowed mucus layers to become colonized by microbes in mammals.
Collapse
|
15
|
Abstract
All animal oocytes are surrounded by a glycoproteinaceous egg coat, a specialized extracellular matrix that serves both structural and species-specific roles during fertilization. Egg coat glycoproteins polymerize into the extracellular matrix of the egg coat using a conserved protein-protein interaction module-the zona pellucida (ZP) domain-common to both vertebrates and invertebrates, suggesting that the basic structural features of egg coats have been conserved across hundreds of millions of years of evolution. Egg coat proteins, as with other proteins involved in reproduction, are frequently found to be rapidly evolving. Given that gamete compatibility must be maintained for the fitness of sexually reproducing organisms, this finding is somewhat paradoxical and suggests a role for adaptive diversification in reproductive protein evolution. Here we review the structure and function of metazoan egg coat proteins, with an emphasis on the potential role their evolution has played in the creation and maintenance of species boundaries.
Collapse
Affiliation(s)
- Emily E Killingbeck
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| | - Willie J Swanson
- Department of Genome Sciences, University of Washington, Seattle, WA, United States.
| |
Collapse
|
16
|
Malfant M, Darras S, Viard F. Coupling molecular data and experimental crosses sheds light about species delineation: a case study with the genus Ciona. Sci Rep 2018; 8:1480. [PMID: 29367599 PMCID: PMC5784138 DOI: 10.1038/s41598-018-19811-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/19/2017] [Indexed: 01/03/2023] Open
Abstract
Molecular studies sometimes reveal evolutionary divergence within accepted species. Such findings can initiate taxonomic revision, as exemplified in the formerly recognized species Ciona intestinalis. While an increasing number of studies have examined the ecology, reproductive barriers and genetics of C. intestinalis and C. robusta, there are still much uncertainties regarding other species of this genus. Using experimental crosses and mitochondrial data, we investigated the evolutionary relationships among four native and introduced Ciona spp., found in sympatry in the Mediterranean Sea or English Channel. Outcome of 62 bi-parental reciprocal crosses between C. intestinalis, C. robusta, C. roulei and C. edwardsi showed that C. edwardsi is reproductively isolated from the other taxa, which is in agreement with its distinct location in the phylogenetic tree. Conversely, hybrids are easily obtained in both direction when crossing C. intestinalis and C. roulei, reinforcing the hypothesis of two genetically differentiated lineages but likely being from a same species. Altogether, this study sheds light on the evolutionary relationship in this complex genus. It also calls for further investigation notably based on genome-wide investigation to better describe the evolutionary history within the genus Ciona, a challenging task in a changing world where biological introductions are shuffling species distribution.
Collapse
Affiliation(s)
- Marine Malfant
- Sorbonne Universite, CNRS - UMR 7144 'AD2M' - Station Biologique, Roscoff, 29680, France.
| | - Sébastien Darras
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Frédérique Viard
- Sorbonne Universite, CNRS - UMR 7144 'AD2M' - Station Biologique, Roscoff, 29680, France.
| |
Collapse
|
17
|
Kosman ET, Hipp B, Levitan DR. Chemoattractant-Mediated Preference of Non-Self Eggs in Ciona robusta Sperm. THE BIOLOGICAL BULLETIN 2017; 233:183-189. [PMID: 29553818 DOI: 10.1086/696217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Self-fertilization in hermaphroditic species might or might not be advantageous based on the level of inbreeding or outbreeding depression and the opportunity to outcross. This study examined whether chemoattractants can influence selfing rates through changes in sperm swimming behavior in the hermaphroditic tunicate Ciona robusta. The first set of experiments tested sperm preference in a dichotomous choice chamber by allowing the sperm to choose between wells with no eggs and wells with eggs, while the second experiment gave sperm a choice between self eggs and non-self eggs from another C. robusta individual. We found that sperm were about 5 times more likely to be captured in wells with eggs than in empty wells (P < 0.001) and that they were about 1.6 times more likely to be captured in wells with non-self eggs than in those with self eggs (P = 0.002). Additionally, we found that although sperm were activated by water pretreated with eggs, there was no difference in sperm swimming speed and motility in water treated with pooled-egg water compared to self-egg-treated water (P = 0.636 and P = 0.854, respectively). Our results indicate that while chemoattractant identity does not affect the basic mechanics of sperm activation and thus fertilization ability, it can cause sperm to aggregate near non-self eggs in greater numbers. This may allow for sperm to fertilize non-self eggs in greater numbers when available while still retaining the ability to fertilize self eggs.
Collapse
|
18
|
Takeuchi T, Yamada L, Shinzato C, Sawada H, Satoh N. Stepwise Evolution of Coral Biomineralization Revealed with Genome-Wide Proteomics and Transcriptomics. PLoS One 2016; 11:e0156424. [PMID: 27253604 PMCID: PMC4890752 DOI: 10.1371/journal.pone.0156424] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/14/2016] [Indexed: 11/19/2022] Open
Abstract
Despite the importance of stony corals in many research fields related to global issues, such as marine ecology, climate change, paleoclimatogy, and metazoan evolution, very little is known about the evolutionary origin of coral skeleton formation. In order to investigate the evolution of coral biomineralization, we have identified skeletal organic matrix proteins (SOMPs) in the skeletal proteome of the scleractinian coral, Acropora digitifera, for which large genomic and transcriptomic datasets are available. Scrupulous gene annotation was conducted based on comparisons of functional domain structures among metazoans. We found that SOMPs include not only coral-specific proteins, but also protein families that are widely conserved among cnidarians and other metazoans. We also identified several conserved transmembrane proteins in the skeletal proteome. Gene expression analysis revealed that expression of these conserved genes continues throughout development. Therefore, these genes are involved not only skeleton formation, but also in basic cellular functions, such as cell-cell interaction and signaling. On the other hand, genes encoding coral-specific proteins, including extracellular matrix domain-containing proteins, galaxins, and acidic proteins, were prominently expressed in post-settlement stages, indicating their role in skeleton formation. Taken together, the process of coral skeleton formation is hypothesized as: 1) formation of initial extracellular matrix between epithelial cells and substrate, employing pre-existing transmembrane proteins; 2) additional extracellular matrix formation using novel proteins that have emerged by domain shuffling and rapid molecular evolution and; 3) calcification controlled by coral-specific SOMPs.
Collapse
Affiliation(s)
- Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904–0495, Japan
- * E-mail:
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517–0004, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904–0495, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, 517–0004, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904–0495, Japan
| |
Collapse
|
19
|
Okamoto M, Yamada L, Fujisaki Y, Bloomfield G, Yoshida K, Kuwayama H, Sawada H, Mori T, Urushihara H. Two HAP2-GCS1 homologs responsible for gamete interactions in the cellular slime mold with multiple mating types: Implication for common mechanisms of sexual reproduction shared by plants and protozoa and for male-female differentiation. Dev Biol 2016; 415:6-13. [PMID: 27189178 PMCID: PMC4910948 DOI: 10.1016/j.ydbio.2016.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/23/2016] [Accepted: 05/13/2016] [Indexed: 11/28/2022]
Abstract
Fertilization is a central event in sexual reproduction, and understanding its molecular mechanisms has both basic and applicative biological importance. Recent studies have uncovered the molecules that mediate this process in a variety of organisms, making it intriguing to consider conservation and evolution of the mechanisms of sexual reproduction across phyla. The social amoeba Dictyostelium discoideum undergoes sexual maturation and forms gametes under dark and humid conditions. It exhibits three mating types, type-I, -II, and -III, for the heterothallic mating system. Based on proteome analyses of the gamete membranes, we detected expression of two homologs of the plant fertilization protein HAP2-GCS1. When their coding genes were disrupted in type-I and type-II strains, sexual potency was completely lost, whereas disruption in the type-III strain did not affect mating behavior, suggesting that the latter acts as female in complex organisms. Our results demonstrate the highly conserved function of HAP2-GCS1 in gamete interactions and suggest the presence of additional allo-recognition mechanisms in D. discoideum gametes. Two HAP2-GCS1 homologs are expressed in Dictyostelium discoideum gametes. Both homologs are responsible for the sexual cell fusion. One mating type (III) out of 3 is HAP2-GCS1-independent, corresponding to female.
Collapse
Affiliation(s)
- Marina Okamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba, Mie 517-0004, Japan
| | - Yukie Fujisaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Gareth Bloomfield
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Kentaro Yoshida
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hidekazu Kuwayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 429-63 Sugashima, Toba, Mie 517-0004, Japan
| | - Toshiyuki Mori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideko Urushihara
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
20
|
Nakazawa S, Shirae-Kurabayashi M, Otsuka K, Sawada H. Proteomics of ionomycin-induced ascidian sperm reaction: Released and exposed sperm proteins in the ascidian Ciona intestinalis. Proteomics 2015. [DOI: 10.1002/pmic.201500162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shiori Nakazawa
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Maki Shirae-Kurabayashi
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Kei Otsuka
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| |
Collapse
|
21
|
Gordy MA, Pila EA, Hanington PC. The role of fibrinogen-related proteins in the gastropod immune response. FISH & SHELLFISH IMMUNOLOGY 2015; 46:39-49. [PMID: 25765166 DOI: 10.1016/j.fsi.2015.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 05/16/2023]
Abstract
Fibrinogen-related proteins or FREPs constitute a large family of molecules, defined by the presence of a fibrinogen-related domain (FReD). These molecules are found in all animals and are diverse in both form and function. Here, we review the current understanding of gastropod FREPs, which are characterized by the presence of a fibrinogen domain connected to one or two immunoglobulin superfamily domains by way of a short interceding region. We present a historical perspective on the discovery of FREPs in gastropods followed by a summary of advances made in the nearly two decades of research focused on the characterization of FREPs in Biomphalaria glabrata (BgFREPs). Topics covered include BgFREP genomic architecture, predicted structure and known functions, structural comparisons between BgFREPs, and evidence of somatic diversification. Also examined are the expression patterns of BgFREPs during snail development and immunological challenges. Recent functional characterization of the role BgFREPs play in the defence response against digenean trematodes is also presented, as well as new data investigating the nucleotide-level genomic conservation of FREPs among Pulmonate gastropods. Finally, we identify areas in need of further research. These include confirming and identifying the specific binding targets of BgFREPs and elucidating how they later engage snail haemocytes to elicit an immunological response, precise mechanisms and importance of BgFREP diversification, characterizing the tissue expression patterns of BgFREPs, as well as addressing whether gastropod FREPs retain immunological importance in alternative snail-trematode associations or more broadly in snail-pathogen interactions.
Collapse
Affiliation(s)
- Michelle A Gordy
- The School of Public Health, University of Alberta, Edmonton, AB T6G2G7, Canada.
| | - Emmanuel A Pila
- The School of Public Health, University of Alberta, Edmonton, AB T6G2G7, Canada.
| | - Patrick C Hanington
- The School of Public Health, University of Alberta, Edmonton, AB T6G2G7, Canada.
| |
Collapse
|
22
|
Shu L, Suter MJF, Räsänen K. Evolution of egg coats: linking molecular biology and ecology. Mol Ecol 2015; 24:4052-73. [DOI: 10.1111/mec.13283] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Longfei Shu
- Department of Aquatic Ecology; Swiss Federal Institute of Aquatic Science and Technology; Eawag; 8600 Duebendorf Switzerland
- Institute of Integrative Biology; ETH Zurich; 8092 Zurich Switzerland
| | - Marc J.-F. Suter
- Department of Environmental Toxicology; Swiss Federal Institute of Aquatic Science and Technology; Eawag; 8600 Duebendorf Switzerland
- Department of Environmental Systems Science; Swiss Federal Institute of Technology; ETH Zurich; 8092 Zurich Switzerland
| | - Katja Räsänen
- Department of Aquatic Ecology; Swiss Federal Institute of Aquatic Science and Technology; Eawag; 8600 Duebendorf Switzerland
- Institute of Integrative Biology; ETH Zurich; 8092 Zurich Switzerland
| |
Collapse
|
23
|
Evidence for participation of GCS1 in fertilization of the starlet sea anemone Nematostella vectensis: implication of a common mechanism of sperm-egg fusion in plants and animals. Biochem Biophys Res Commun 2014; 451:522-8. [PMID: 25111819 DOI: 10.1016/j.bbrc.2014.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 08/01/2014] [Indexed: 01/20/2023]
Abstract
It has been reported that GCS1 (Generative Cell Specific 1) is a transmembrane protein that is exclusively expressed in sperm cells and is essential for gamete fusion in flowering plants. The GCS1 gene is present not only in angiosperms but also in unicellular organisms and animals, implying the occurrence of a common or ancestral mechanism of GCS1-mediated gamete fusion. In order to elucidate the common mechanism, we investigated the role of GCS1 in animal fertilization using a sea anemone (Cnidaria), Nematostella vectensis. Although the existence of the GCS1 gene in N. vectensis has been reported, the expression of GCS1 in sperm and the role of GCS1 in fertilization are not known. In this study, we showed that the GCS1 gene is expressed in the testis and that GCS1 protein exists in sperm by in situ hybridization and proteomic analysis, respectively. Then we made four peptide antibodies against the N-terminal extracellular region of NvGCS1. These antibodies specifically reacted to NvGCS1 among sperm proteins on the basis of Western analysis and potently inhibited fertilization in a concentration-dependent manner. These results indicate that sperm GCS1 plays a pivotal role in fertilization, most probably in sperm-egg fusion, in a starlet sea anemone, suggesting a common gamete-fusion mechanism shared by eukaryotic organisms.
Collapse
|
24
|
Integrative omics analysis reveals differentially distributed proteins in dimorphic euspermatozoa of the squid, Loligo bleekeri. Biochem Biophys Res Commun 2014; 450:1218-24. [DOI: 10.1016/j.bbrc.2014.04.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/08/2014] [Indexed: 01/20/2023]
|
25
|
Edzuka T, Yamada L, Kanamaru K, Sawada H, Goshima G. Identification of the augmin complex in the filamentous fungus Aspergillus nidulans. PLoS One 2014; 9:e101471. [PMID: 25003582 PMCID: PMC4086812 DOI: 10.1371/journal.pone.0101471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/06/2014] [Indexed: 11/19/2022] Open
Abstract
Augmin is a protein complex that binds to spindle microtubules (MTs), recruits the potent MT nucleator, γ-tubulin, and thereby promotes the centrosome-independent MT generation within mitotic and meiotic spindles. Augmin is essential for acentrosomal spindle assembly, which is commonly observed during mitosis in plants and meiosis in female animals. In many animal somatic cells that possess centrosomes, the centrosome- and augmin-dependent mechanisms work cooperatively for efficient spindle assembly and cytokinesis. Yeasts have lost the augmin genes during evolution. It is hypothesized that their robust MT nucleation from the spindle pole body (SPB), the centrosome-equivalent structure in fungi, compensates for the lack of augmin. Intriguingly, however, a gene homologous to an augmin subunit (Aug6/AUGF) has been found in the genome of filamentous fungi, which has the SPB as a robust MT nucleation centre. Here, we aimed to clarify if the augmin complex is present in filamentous fungi and to identify its role in mitosis. By analysing the Aug6-like gene in the filamentous fungus Aspergillus nidulans, we found that it forms a large complex with several other proteins that share weak but significant homology to known augmin subunits. In A. nidulans, augmin was enriched at the SPB and also associated with spindle MTs during mitosis. However, the augmin gene disruptants did not exhibit growth defects under normal, checkpoint-deficient, or MT-destabilised conditions. Moreover, we obtained no evidence that A. nidulans augmin plays a role in γ-tubulin recruitment or in mitotic cell division. Our study uncovered the conservation of the augmin complex in the fungal species, and further suggests that augmin has several functions, besides mitotic spindle MT nucleation, that are yet to be identified.
Collapse
Affiliation(s)
- Tomoya Edzuka
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Japan
| | - Kyoko Kanamaru
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- * E-mail:
| |
Collapse
|
26
|
Otsuka K, Yamada L, Sawada H. cDNA cloning, localization, and candidate binding partners of acid-extractable vitelline-coat protein Ci-v-Themis-like in the ascidian Ciona intestinalis. Mol Reprod Dev 2013; 80:840-8. [DOI: 10.1002/mrd.22213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/10/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Kei Otsuka
- Sugashima Marine Biological Laboratory, Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science; Nagoya University; Sugashima Toba Japan
| |
Collapse
|
27
|
|
28
|
Jin Y, Yaguchi S, Shiba K, Yamada L, Yaguchi J, Shibata D, Sawada H, Inaba K. Glutathione transferase theta in apical ciliary tuft regulates mechanical reception and swimming behavior of Sea Urchin Embryos. Cytoskeleton (Hoboken) 2013; 70:453-70. [PMID: 23907936 PMCID: PMC3812683 DOI: 10.1002/cm.21127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 07/13/2013] [Accepted: 07/23/2013] [Indexed: 12/15/2022]
Abstract
An apical tuft, which is observed in a wide range of embryos/larvae of marine invertebrates, is composed of a group of cilia that are longer and less motile than the abundant lateral cilia covering the rest of the embryonic surface. Although the apical tuft has been thought to function as a sensory organ, its molecular composition and roles are poorly understood. Here, we identified a glutathione transferase theta (GSTT) as an abundant and specific component of the apical tuft in sea urchin embryos. The expression of GSTT mRNA increases and becomes limited to the animal plate of the mesenchyme blastula, gastrula, and prism larva. Electron microscopy and tandem mass spectrometry demonstrated that the apical tuft contains almost every axonemal component for ciliary motility. Low concentrations of an inhibitor of glutathione transferase bromosulphophthalein (BSP) induce bending of apical tuft, suggesting that GSTT regulates motility of apical tuft cilia. Embryos treated with BSP swim with normal velocity and trajectories but show less efficiency of changing direction when they collide with an object. These results suggest that GSTT in the apical tuft plays an important role in the mechanical reception for the motility regulation of lateral motile cilia in sea urchin embryos.
Collapse
Affiliation(s)
- Yinhua Jin
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Franco C, Soares R, Pires E, Koci K, Almeida AM, Santos R, Coelho AV. Understanding regeneration through proteomics. Proteomics 2013; 13:686-709. [DOI: 10.1002/pmic.201200397] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 12/29/2022]
Affiliation(s)
- Catarina Franco
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Renata Soares
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Elisabete Pires
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Kamila Koci
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - André M. Almeida
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
- Instituto de Investigação Científica Tropical; Lisboa Portugal
| | - Romana Santos
- Unidade de Investigação em Ciências Orais e Biomédicas, Faculdade de Medicina Dentária; Universidade de Lisboa; Portugal
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| |
Collapse
|
30
|
Xu Q, Li G, Cao L, Wang Z, Ye H, Chen X, Yang X, Wang Y, Chen L. Proteomic characterization and evolutionary analyses of zona pellucida domain-containing proteins in the egg coat of the cephalochordate, Branchiostoma belcheri. BMC Evol Biol 2012; 12:239. [PMID: 23216630 PMCID: PMC3543715 DOI: 10.1186/1471-2148-12-239] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/29/2012] [Indexed: 01/06/2023] Open
Abstract
Background Zona pellucida domain-containing proteins (ZP proteins) have been identified as the principle constituents of the egg coat (EC) of diverse metazoan taxa, including jawed vertebrates, urochordates and molluscs that span hundreds of millions of years of evolutionary divergence. Although ZP proteins generally contain the zona pellucida (ZP) structural modules to fulfill sperm recognition and EC polymerization functions during fertilization, the primary sequences of the ZP proteins from the above-mentioned animal classes are drastically different, which makes it difficult to assess the evolutionary relationships of ZP proteins. To understand the origin of vertebrate ZP proteins, we characterized the egg coat components of Branchiostoma belcheri, an invertebrate species that belongs to the chordate subphylum Cephalochordata. Results Five ZP proteins (BbZP1-5) were identified by mass spectrometry analyses using the egg coat extracts from both unfertilized and fertilized eggs. In addition to the C-terminal ZP module in each of the BbZPs, the majority contain a low-density lipoprotein receptor domain and a von Willebrand factor type A (vWFA) domain, but none possess an EGF-like domain that is frequently observed in the ZP proteins of urochordates. Fluorescence in situ hybridization and immuno-histochemical analyses of B. belcheri ovaries showed that the five BbZPs are synthesized predominantly in developing eggs and deposited around the extracellular space of the egg, which indicates that they are bona fide egg coat ZP proteins. BbZP1, BbZP3 and BbZP4 are significantly more abundant than BbZP2 and BbZP5 in terms of gene expression levels and the amount of mature proteins present on the egg coats. The major ZP proteins showed high polymorphism because multiple variants are present with different molecular weights. Sequence comparison and phylogenetic analysis between the ZP proteins from cephalochordates, urochordates and vertebrates showed that BbZP1-5 form a monophyletic group and share no significant sequence similarities with the ZP proteins of urochordates and the ZP3 subtype of jawed vertebrates. By contrast, small regions of homology were identifiable between the BbZP and ZP proteins of the non-jawed vertebrate, the sea lamprey Petromyzon marinus. The lamprey ZP proteins were highly similar to the ZP1 and ZP2 subtypes of the jawed vertebrates, which suggests that the ZP proteins of basal chordates most likely shared a recent common ancestor with vertebrate ZP1/2 subtypes and lamprey ZP proteins. Conclusions The results document the spectra of zona pellucida domain-containing proteins of the egg coat of basal chordates. Particularly, the study provides solid evidence for an invertebrate origin of vertebrate ZP proteins and indicates that there are diverse domain architectures in ZP proteins of various metazoan groups.
Collapse
Affiliation(s)
- Qianghua Xu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, People’s Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Harada Y, Sawada H. Self-incompatibilty in gamete recognition: single self-recognizing determinants and multiple, non-self-recognizing ones function in the same individual. Mol Reprod Dev 2012. [PMID: 23184500 DOI: 10.1002/mrd.22134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The frameworks (key mechanisms) of the self/non-self-discrimination systems that are found in various organisms have not been actively selected for, but have evolved by genetic drift such that the genetic frequency of random, advantageous mutations has increased within the genomes of these species by natural selection. The passive nature of this process leads to an important conclusion: in the self/non-self-discrimination system, the number of self-recognizing determinants becomes one compared to multiple non-self-recognizing determinants. Thus, the number of determinants is defined not by the character of the determinant, but by the system framework.
Collapse
Affiliation(s)
- Yoshito Harada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Japan.
| | | |
Collapse
|
32
|
Ngernsoungnern P, Ngernsoungnern A, Chaiseha Y, Sretarugsa P. Role of vitelline envelope during fertilization in the black tiger shrimp, Penaeus monodon. Acta Histochem 2012; 114:659-64. [PMID: 22178117 DOI: 10.1016/j.acthis.2011.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 12/12/2022]
Abstract
Animal eggs possess investments through which sperm must penetrate. The aim of the present study was to investigate the role of the egg coating, the vitelline envelope, during sperm-egg interactions in the black tiger shrimp, Penaeus monodon. The site(s) of primary binding between sperm and egg and the possible binding molecule(s) for sperm were identified. In vitro adsorption of the vitelline envelope protein onto the sperm surface showed that primary binding occurred between the sperm anterior spike of acrosome intact sperm and the vitelline envelope. Results from streptavidin blotting revealed that the component of the vitelline envelope that interacts with the sperm integral membrane protein is a 370kDa protein. In addition, it was shown that the vitelline envelope protein had no ability to induce acrosome reaction. These results suggest that the function of the vitelline envelope is as a primary binding site for sperm in shrimp, but not a sole trigger for the acrosome reaction.
Collapse
Affiliation(s)
- Piyada Ngernsoungnern
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | | | | | |
Collapse
|
33
|
Araki Y, Shimizu HD, Saeki K, Okamoto M, Yamada L, Ishida K, Sawada H, Urushihara H. A surface glycoprotein indispensable for gamete fusion in the social amoeba Dictyostelium discoideum. EUKARYOTIC CELL 2012; 11:638-44. [PMID: 22389384 PMCID: PMC3346428 DOI: 10.1128/ec.00028-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 02/18/2012] [Indexed: 11/20/2022]
Abstract
Sexual reproduction is essential for the maintenance of species in a wide variety of multicellular organisms, and even unicellular organisms that normally proliferate asexually possess a sexual cycle because of its contribution to increased genetic diversity. Information concerning the molecules involved in fertilization is accumulating for many species of the metazoan, plant, and fungal lineages, and the evolutionary consideration of sexual reproduction systems is now an interesting issue. Macrocyst formation in the social amoeba Dictyostelium discoideum is a sexual process in which cells become sexually mature under dark and submerged conditions and fuse with complementary mating-type cells. In the present study, we isolated D. discoideum insertional mutants defective in sexual cell fusion and identified the relevant gene, macA, which encodes a highly glycosylated, 2,041-amino-acid membrane protein (MacA). Although its overall similarity is restricted to proteins of unknown function within dictyostelids, it contains LamGL and discoidin domains, which are implicated in cell adhesion. The growth and development of macA-null mutants were indistinguishable from those of the parental strain. The overexpression of macA using the V18 promoter in a macA-null mutant completely restored its sexual defects. Although the macA gene encoded exactly the same protein in a complementary mating-type strain, it was expressed at a much lower level. These results suggest that MacA is indispensable for gamete interactions in D. discoideum, probably via cell adhesion. There is a possibility that it is controlled in a mating-type-dependent manner.
Collapse
Affiliation(s)
- Yoshinori Araki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Hideki D. Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Kentaro Saeki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Marina Okamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Mie, Japan
| | - Kentaro Ishida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Mie, Japan
| | - Hideko Urushihara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| |
Collapse
|
34
|
Saito T, Shiba K, Inaba K, Yamada L, Sawada H. Self-incompatibility response induced by calcium increase in sperm of the ascidian Ciona intestinalis. Proc Natl Acad Sci U S A 2012; 109:4158-62. [PMID: 22357759 PMCID: PMC3306710 DOI: 10.1073/pnas.1115086109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many hermaphroditic organisms possess a self-incompatibility system to avoid self-fertilization. Recently, we identified the genes responsible for self-sterility in a hermaphroditic primitive chordate (ascidian), Ciona intestinalis: sperm-side polycystin 1-like receptors s-Themis-A/B and egg-side fibrinogen-like ligands on the vitelline coat (VC) v-Themis-A/B. Here, we investigated the sperm behavior and intracellular Ca(2+) concentration ([Ca(2+)](i)) in response to self/nonself-recognition. We found that sperm motility markedly decreased within 5 min after attachment to the VC of self-eggs but not after attachment to the VC of nonself-eggs and that the apparent decrease in sperm motility was suppressed in low Ca(2+) seawater. High-speed video analysis revealed that sperm detached from the self-VC or stopped motility within 5 min after binding to the self-VC. Because s-Themis-B contains a cation channel domain in its C terminus, we monitored sperm [Ca(2+)](i) by real-time [Ca(2+)](i) imaging using Fluo-8H-AM (AAT Bioquest, Inc.). Interestingly, we found that sperm [Ca(2+)](i) rapidly and dramatically increased and was maintained at a high level in the head and flagellar regions when sperm interacted with the self-VC but not when the sperm interacted with the nonself-VC. The increase in [Ca(2+)](i) was also suppressed by low-Ca(2+) seawater. These results indicate that the sperm self-recognition signal triggers [Ca(2+)](i) increase and/or Ca(2+) influx, which elicits a self-incompatibility response to reject self-fertilization in C. intestinalis.
Collapse
Affiliation(s)
- Takako Saito
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Mie 517-0004, Japan; and
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Mie 517-0004, Japan; and
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba, Mie 517-0004, Japan; and
| |
Collapse
|
35
|
Hellberg ME, Dennis AB, Arbour-Reily P, Aagaard JE, Swanson WJ. The Tegula tango: a coevolutionary dance of interacting, positively selected sperm and egg proteins. Evolution 2012; 66:1681-94. [PMID: 22671539 DOI: 10.1111/j.1558-5646.2011.01530.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reproductive proteins commonly show signs of rapid divergence driven by positive selection. The mechanisms driving these changes have remained ambiguous in part because interacting male and female proteins have rarely been examined. We isolate an egg protein the vitelline envelope receptor for lysin (VERL) from Tegula, a genus of free-spawning marine snails. Like VERL from abalone, Tegula VERL is a major component of the VE surrounding the egg, includes a conserved zona pellucida (ZP) domain at its C-terminus, and possesses a unique, negatively charged domain of about 150 amino acids implicated in interactions with the positively charged lysin. Unlike for abalone VERL, where this unique VERL domain occurs in a tandem array of 22 repeats, Tegula VERL has just one such domain. Interspecific comparisons show that both lysin and the VERL domain diverge via positive selection, whereas the ZP domain evolves neutrally. Rates of nonsynonymous substitution are correlated between lysin and the VERL domain, consistent with sexual antagonism, although lineage-specific effects, perhaps owing to different ecologies, may alter the relative evolutionary rates of sperm- and egg-borne proteins.
Collapse
Affiliation(s)
- Michael E Hellberg
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | | | | | |
Collapse
|
36
|
Monné M, Jovine L. A structural view of egg coat architecture and function in fertilization. Biol Reprod 2011; 85:661-9. [PMID: 21715714 DOI: 10.1095/biolreprod.111.092098] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Species-restricted interaction between gametes at the beginning of fertilization is mediated by the extracellular coat of the egg, a matrix of cross-linked glycoprotein filaments called the zona pellucida (ZP) in mammals and the vitelline envelope in nonmammals. All egg coat subunits contain a conserved protein-protein interaction module-the "ZP domain"-that allows them to polymerize upon dissociation of a C-terminal propeptide containing an external hydrophobic patch (EHP). Recently, the first crystal structures of a ZP domain protein, sperm receptor ZP subunit zona pellucida glycoprotein 3 (ZP3), have been reported, giving a glimpse of the structural organization of the ZP at the atomic level and the molecular basis of gamete recognition in vertebrates. The ZP module is divided in two related immunoglobulin-like domains, ZP-N and ZP-C, that contain characteristic disulfide bond patterns and, in the case of ZP-C, also incorporate the EHP. This segment lies at the interface between the two domains, which are connected by a long loop carrying a conserved O-glycan important for binding to sperm in vitro. The structures explain several apparently contradictory observations by reconciling the variable disulfide bond patterns found in different homologues of ZP3 as well as the multiple ZP3 determinants alternatively involved in gamete interaction. These findings have implications for our understanding of ZP subunit biogenesis; egg coat assembly, architecture, and interaction with sperm; structural rearrangements leading to postfertilization hardening of the ZP and the block to sperm binding; and the evolutionary origin of egg coats.
Collapse
Affiliation(s)
- Magnus Monné
- Department of Biosciences and Nutrition and Center for Biosciences, Karolinska Institutet, Huddinge, Sweden
| | | |
Collapse
|
37
|
Nakachi M, Nakajima A, Nomura M, Yonezawa K, Ueno K, Endo T, Inaba K. Proteomic profiling reveals compartment-specific, novel functions of ascidian sperm proteins. Mol Reprod Dev 2011; 78:529-49. [DOI: 10.1002/mrd.21341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/18/2011] [Indexed: 11/11/2022]
|
38
|
Yamaguchi A, Saito T, Yamada L, Taniguchi H, Harada Y, Sawada H. Identification and localization of the sperm CRISP family protein CiUrabin involved in gamete interaction in the ascidian Ciona intestinalis. Mol Reprod Dev 2011; 78:488-97. [PMID: 21656869 DOI: 10.1002/mrd.21329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 05/04/2011] [Indexed: 01/02/2023]
Abstract
Ascidians are hermaphrodites, and most release sperm and eggs nearly simultaneously. Many species, including Halocynthia roretzi and Ciona intestinalis, are self-sterile. We previously reported that the interaction between a 12 EGF-like repeat-containing vitelline-coat (VC) protein, HrVC70, and a sperm GPI-anchored CRISP, HrUrabin, in lipid rafts plays a key role in self-/nonself-recognizable gamete interaction in H. roretzi. On the other hand, we recently identified two pairs of polymorphic genes responsible for self-incompatibility in C. intestinalis by positional cloning: The sperm polycystin 1-like receptors s-Themis-A/B and its fibrinogen-like ligand v-Themis-A/B on the VC. However, it is not known if the orthologs of HrVC70 and HrUrabin also participate in gamete interaction in C. intestinalis since they are from different orders. Here, we tested for a C. intestinalis ortholog (CiUrabin) of HrUrabin by searching the genome database and proteomes of sperm lipid rafts. The identified CiUrabin belongs to the CRISP family, with a PR domain and a GPI-anchor-attachment site. CiUrabin appears to be specifically expressed in the testis and localized at the surface of the sperm head, as revealed by Northern blotting and immunocytochemistry, respectively. The specific interaction between CiVC57, a C. intestinalis ortholog of HrVC70, and CiUrabin was confirmed by Far Western analysis, similarly to the interaction between HrVC70 and HrUrabin. The molecular interaction between CiVC57 and CiUrabin may be involved in the primary binding of sperm to the VC prior to the allorecognition process, mediated by v-Themis-A/B and s-Themis-A/B, during fertilization of C. intestinalis.
Collapse
Affiliation(s)
- Akira Yamaguchi
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Hanington PC, Zhang SM. The primary role of fibrinogen-related proteins in invertebrates is defense, not coagulation. J Innate Immun 2010; 3:17-27. [PMID: 21063081 DOI: 10.1159/000321882] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/08/2010] [Indexed: 12/15/2022] Open
Abstract
In vertebrates, the conversion of fibrinogen into fibrin is an essential process that underlies the establishment of the supporting protein framework required for coagulation. In invertebrates, fibrinogen-domain-containing proteins play a role in the defense response generated against pathogens; however, they do not function in coagulation, suggesting that this role has been recently acquired. Molecules containing fibrinogen motifs have been identified in numerous invertebrate organisms, and most of these molecules known to date have been linked to defense. Moreover, recent genome projects of invertebrate animals have revealed surprisingly high numbers of fibrinogen-like loci in their genomes, suggesting important and perhaps diverse functions of fibrinogen-like proteins in invertebrates. The ancestral role of molecules containing fibrinogen-related domains (FReDs) with immunity is the focus of this review, with emphasis on specific FReDs called fibrinogen-related proteins (FREPs) identified from the schistosome-transmitting mollusc Biomphalaria glabrata. Herein, we outline the range of invertebrate organisms FREPs can be found in, and detail the roles these molecules play in defense and protection against infection.
Collapse
Affiliation(s)
- Patrick C Hanington
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | | |
Collapse
|
40
|
Maternal factor-mediated epigenetic gene silencing in the ascidian Ciona intestinalis. Mol Genet Genomics 2009; 283:99-110. [PMID: 19946786 DOI: 10.1007/s00438-009-0500-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 11/14/2009] [Indexed: 10/20/2022]
Abstract
Epigenetic regulation of genes plays a critical role in achieving proper gene expression during development, and it has been reported that epigenetic modifications are associated with transposon silencing in many organisms. Here, we report a type of epigenetic gene silencing, maternal gfp/gene silencing (MGS), in the basal chordate Ciona intestinalis. A transgenic line of Ciona, Tg[MiTFr3dTPOG]45 (abbreviated as Tg45), which was created with the Minos transposon, has a tandemly arrayed insertion of gfp in the promoter region of Ci-CesA. Progeny of Tg45 showed a reduced level of GFP expression when eggs of Tg45 were fertilized with sperm of other gfp transgenic lines. Although the genotype is the same, animals developed from Tg45 sperm and the eggs of other transgenic lines did not exhibit this phenomenon, suggesting the involvement of a maternal cytoplasmic factor that influences GFP expression. The silencing starts during oogenesis and continues after fertilization without any tissue specificity. We found that post-transcriptional degradation of the gfp mRNA is involved in MGS.
Collapse
|