1
|
Watanabe M, Sasaki N. Mechanisms and Future Research Perspectives on Mitochondrial Diseases Associated with Isoleucyl-tRNA Synthetase Gene Mutations. Genes (Basel) 2024; 15:894. [PMID: 39062673 PMCID: PMC11276352 DOI: 10.3390/genes15070894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Aminoacyl-tRNA synthetases are essential enzymes for the accurate translation of genetic information. IARS1 and IARS2 are isoleucyl-tRNA synthetases functioning in the cytoplasm and mitochondria, respectively, with genetic mutations in these enzymes causing diverse clinical phenotypes in specific organs and tissues. Mutations in IARS1 and IARS2 have recently been linked to mitochondrial diseases. This review aims to explore the relationship between IARS1 and IARS2 and these diseases, providing a comprehensive overview of their association with mitochondrial diseases. Mutations in IARS1 cause weak calf syndrome in cattle and mitochondrial diseases in humans, leading to growth retardation and liver dysfunction. Mutations in IARS2 are associated with Leigh syndrome, craniosynostosis and abnormal genitalia syndrome. Future research is expected to involve genetic analysis of a larger number of patients, identifying new mutations in IARS1 and IARS2, and elucidating their impact on mitochondrial function. Additionally, genetically modified mice and the corresponding phenotypic analysis will serve as powerful tools for understanding the functions of these gene products and unraveling disease mechanisms. This will likely promote the development of new therapies and preventive measures.
Collapse
Affiliation(s)
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, Kitasato University, 35-1, Higashi-23, Towada 034-8628, Aomori, Japan
| |
Collapse
|
2
|
Khan D, Ramachandiran I, Vasu K, China A, Khan K, Cumbo F, Halawani D, Terenzi F, Zin I, Long B, Costain G, Blaser S, Carnevale A, Gogonea V, Dutta R, Blankenberg D, Yoon G, Fox PL. Homozygous EPRS1 missense variant causing hypomyelinating leukodystrophy-15 alters variant-distal mRNA m 6A site accessibility. Nat Commun 2024; 15:4284. [PMID: 38769304 PMCID: PMC11106242 DOI: 10.1038/s41467-024-48549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Hypomyelinating leukodystrophy (HLD) is an autosomal recessive disorder characterized by defective central nervous system myelination. Exome sequencing of two siblings with severe cognitive and motor impairment and progressive hypomyelination characteristic of HLD revealed homozygosity for a missense single-nucleotide variant (SNV) in EPRS1 (c.4444 C > A; p.Pro1482Thr), encoding glutamyl-prolyl-tRNA synthetase, consistent with HLD15. Patient lymphoblastoid cell lines express markedly reduced EPRS1 protein due to dual defects in nuclear export and cytoplasmic translation of variant EPRS1 mRNA. Variant mRNA exhibits reduced METTL3 methyltransferase-mediated writing of N6-methyladenosine (m6A) and reduced reading by YTHDC1 and YTHDF1/3 required for efficient mRNA nuclear export and translation, respectively. In contrast to current models, the variant does not alter the sequence of m6A target sites, but instead reduces their accessibility for modification. The defect was rescued by antisense morpholinos predicted to expose m6A sites on target EPRS1 mRNA, or by m6A modification of the mRNA by METTL3-dCas13b, a targeted RNA methylation editor. Our bioinformatic analysis predicts widespread occurrence of SNVs associated with human health and disease that similarly alter accessibility of distal mRNA m6A sites. These results reveal a new RNA-dependent etiologic mechanism by which SNVs can influence gene expression and disease, consequently generating opportunities for personalized, RNA-based therapeutics targeting these disorders.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Kommireddy Vasu
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Arnab China
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Fabio Cumbo
- Genomic Medicine Institute, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Dalia Halawani
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Fulvia Terenzi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Isaac Zin
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Briana Long
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Gregory Costain
- Department of Paediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Susan Blaser
- Department of Diagnostic Imaging, Division of Neuroradiology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Amanda Carnevale
- Department of Paediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Ranjan Dutta
- Department of Neuroscience, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Daniel Blankenberg
- Genomic Medicine Institute, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Grace Yoon
- Department of Paediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
- Department of Paediatrics, Division of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
3
|
Ermanoska B, Asselbergh B, Morant L, Petrovic-Erfurth ML, Hosseinibarkooie S, Leitão-Gonçalves R, Almeida-Souza L, Bervoets S, Sun L, Lee L, Atkinson D, Khanghahi A, Tournev I, Callaerts P, Verstreken P, Yang XL, Wirth B, Rodal AA, Timmerman V, Goode BL, Godenschwege TA, Jordanova A. Tyrosyl-tRNA synthetase has a noncanonical function in actin bundling. Nat Commun 2023; 14:999. [PMID: 36890170 PMCID: PMC9995517 DOI: 10.1038/s41467-023-35908-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 01/06/2023] [Indexed: 03/10/2023] Open
Abstract
Dominant mutations in tyrosyl-tRNA synthetase (YARS1) and six other tRNA ligases cause Charcot-Marie-Tooth peripheral neuropathy (CMT). Loss of aminoacylation is not required for their pathogenicity, suggesting a gain-of-function disease mechanism. By an unbiased genetic screen in Drosophila, we link YARS1 dysfunction to actin cytoskeleton organization. Biochemical studies uncover yet unknown actin-bundling property of YARS1 to be enhanced by a CMT mutation, leading to actin disorganization in the Drosophila nervous system, human SH-SY5Y neuroblastoma cells, and patient-derived fibroblasts. Genetic modulation of F-actin organization improves hallmark electrophysiological and morphological features in neurons of flies expressing CMT-causing YARS1 mutations. Similar beneficial effects are observed in flies expressing a neuropathy-causing glycyl-tRNA synthetase. Hence, in this work, we show that YARS1 is an evolutionary-conserved F-actin organizer which links the actin cytoskeleton to tRNA-synthetase-induced neurodegeneration.
Collapse
Affiliation(s)
- Biljana Ermanoska
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Laura Morant
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Maria-Luise Petrovic-Erfurth
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics; Center for Molecular Medicine Cologne; Center for Rare Diseases Cologne, University Hospital of Cologne; University of Cologne, 50931, Cologne, Germany
- Division of Endocrinology and Metabolism and Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Ricardo Leitão-Gonçalves
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Frontiers Media SA, Lausanne, Switzerland
| | - Leonardo Almeida-Souza
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Helsinki Institute of Life Science, Institute of Biotechnology & Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sven Bervoets
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Litao Sun
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangdong, China
| | - LaTasha Lee
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, 33458, USA
- Center for Social and Clinical Research, National Minority Quality Forum, Washington, DC, USA
| | - Derek Atkinson
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Akram Khanghahi
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Ivaylo Tournev
- Department of Neurology, Medical University-Sofia, 1431, Sofia, Bulgaria
- Department of Cognitive Science and Psychology, New Bulgarian University, 1618, Sofia, Bulgaria
| | | | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Brunhilde Wirth
- Institute of Human Genetics; Center for Molecular Medicine Cologne; Center for Rare Diseases Cologne, University Hospital of Cologne; University of Cologne, 50931, Cologne, Germany
| | - Avital A Rodal
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Vincent Timmerman
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Tanja A Godenschwege
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Albena Jordanova
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium.
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium.
- Department of Medical Chemistry and Biochemistry, Medical University-Sofia, 1431, Sofia, Bulgaria.
| |
Collapse
|
4
|
Multimodal cotranslational interactions direct assembly of the human multi-tRNA synthetase complex. Proc Natl Acad Sci U S A 2022; 119:e2205669119. [PMID: 36037331 PMCID: PMC9457175 DOI: 10.1073/pnas.2205669119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amino acid ligation to cognate transfer RNAs (tRNAs) is catalyzed by aminoacyl-tRNA synthetases (aaRSs)-essential interpreters of the genetic code during translation. Mammalian cells harbor 20 cytoplasmic aaRSs, out of which 9 (in 8 proteins), with 3 non-aaRS proteins, AIMPs 1 to 3, form the ∼1.25-MDa multi-tRNA synthetase complex (MSC). The function of MSC remains uncertain, as does its mechanism of assembly. Constituents of multiprotein complexes encounter obstacles during assembly, including inappropriate interactions, topological constraints, premature degradation of unassembled subunits, and suboptimal stoichiometry. To facilitate orderly and efficient complex formation, some complexes are assembled cotranslationally by a mechanism in which a fully formed, mature protein binds a nascent partner as it emerges from the translating ribosome. Here, we show out of the 121 possible interaction events between the 11 MSC constituents, 15 are cotranslational. AIMPs are involved in the majority of these cotranslational interactions, suggesting they are not only critical for MSC structure but also for assembly. Unexpectedly, several cotranslational events involve more than the usual dyad of interacting proteins. We show two modes of cotranslational interaction, namely a "multisite" mechanism in which two or more mature proteins bind the same nascent peptide at distinct sites and a second "piggy-back" mechanism in which a mature protein carries a second fully formed protein and binds to a single site on an emerging peptide. Multimodal mechanisms of cotranslational interaction offer a diversity of pathways for ordered, piecewise assembly of small subcomplexes into larger heteromultimeric complexes such as the mammalian MSC.
Collapse
|
5
|
Westhof E, Thornlow B, Chan PP, Lowe TM. Eukaryotic tRNA sequences present conserved and amino acid-specific structural signatures. Nucleic Acids Res 2022; 50:4100-4112. [PMID: 35380696 PMCID: PMC9023262 DOI: 10.1093/nar/gkac222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
Metazoan organisms have many tRNA genes responsible for decoding amino acids. The set of all tRNA genes can be grouped in sets of common amino acids and isoacceptor tRNAs that are aminoacylated by corresponding aminoacyl-tRNA synthetases. Analysis of tRNA alignments shows that, despite the high number of tRNA genes, specific tRNA sequence motifs are highly conserved across multicellular eukaryotes. The conservation often extends throughout the isoacceptors and isodecoders with, in some cases, two sets of conserved isodecoders. This study is focused on non-Watson–Crick base pairs in the helical stems, especially GoU pairs. Each of the four helical stems may contain one or more conserved GoU pairs. Some are amino acid specific and could represent identity elements for the cognate aminoacyl tRNA synthetases. Other GoU pairs are found in more than a single amino acid and could be critical for native folding of the tRNAs. Interestingly, some GoU pairs are anticodon-specific, and others are found in phylogenetically-specific clades. Although the distribution of conservation likely reflects a balance between accommodating isotype-specific functions as well as those shared by all tRNAs essential for ribosomal translation, such conservations may indicate the existence of specialized tRNAs for specific translation targets, cellular conditions, or alternative functions.
Collapse
Affiliation(s)
- Eric Westhof
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, CNRS UPR 9002, 2, allée Konrad Roentgen, F-67084 Strasbourg, France
| | - Bryan Thornlow
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Patricia P Chan
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Todd M Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA.,UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
6
|
Kim MH, Kang BS. Structure and Dynamics of the Human Multi-tRNA Synthetase Complex. Subcell Biochem 2022; 99:199-233. [PMID: 36151377 DOI: 10.1007/978-3-031-00793-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that ligate amino acids to their cognate tRNAs during protein synthesis. A growing body of scientific evidence acknowledges that ubiquitously expressed ARSs act as crossover mediators of biological processes, such as immunity and metabolism, beyond translation. In particular, a cytoplasmic multi-tRNA synthetase complex (MSC), which consists of eight ARSs and three ARS-interacting multifunctional proteins in humans, is recognized to be a central player that controls the complexity of biological systems. Although the role of the MSC in biological processes including protein synthesis is still unclear, maintaining the structural integrity of MSC is essential for life. This chapter deals with current knowledge on the structural aspects of the human MSC and its protein components. The main focus is on the regulatory functions of MSC beyond its catalytic activity.
Collapse
Affiliation(s)
- Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.
| | - Beom Sik Kang
- School of Life Sciences, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
7
|
tRNA Synthetases Are Recruited to Yeast Ribosomes by rRNA Expansion Segment 7L but Do Not Require Association for Functionality. Noncoding RNA 2021; 7:ncrna7040073. [PMID: 34842814 PMCID: PMC8628890 DOI: 10.3390/ncrna7040073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 12/03/2022] Open
Abstract
Protein biosynthesis is essential for any organism, yet how this process is regulated is not fully understood at the molecular level. During evolution, ribosomal RNA expanded in specific regions, referred to as rRNA expansion segments (ES). First functional roles of these expansions have only recently been discovered. Here we address the role of ES7La located in the large ribosomal subunit for factor recruitment to the yeast ribosome and the potential consequences for translation. Truncation of ES7La has only minor effects on ribosome biogenesis, translation efficiency and cell doubling. Using yeast rRNA deletion strains coupled with ribosome-specific mass spectrometry we analyzed the interactome of ribosomes lacking ES7La. Three aminoacyl-tRNA synthetases showed reduced ribosome association. Synthetase activities however remained unaltered suggesting that the pool of aminoacylated tRNAs is unaffected by the ES deletion. These results demonstrated that aminoacylation activities of tRNA synthetases per se do not rely on ribosome association. These findings suggest a role of ribosome-associated aminoacyl-tRNA synthetase beyond their core enzymatic functions.
Collapse
|
8
|
Cui H, Kapur M, Diedrich JK, Yates JR, Ackerman SL, Schimmel P. Regulation of ex-translational activities is the primary function of the multi-tRNA synthetase complex. Nucleic Acids Res 2021; 49:3603-3616. [PMID: 33341895 PMCID: PMC8053116 DOI: 10.1093/nar/gkaa1183] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
During mRNA translation, tRNAs are charged by aminoacyl-tRNA synthetases and subsequently used by ribosomes. A multi-enzyme aminoacyl-tRNA synthetase complex (MSC) has been proposed to increase protein synthesis efficiency by passing charged tRNAs to ribosomes. An alternative function is that the MSC repurposes specific synthetases that are released from the MSC upon cues for functions independent of translation. To explore this, we generated mammalian cells in which arginyl-tRNA synthetase and/or glutaminyl-tRNA synthetase were absent from the MSC. Protein synthesis, under a variety of stress conditions, was unchanged. Most strikingly, levels of charged tRNAArg and tRNAGln remained unchanged and no ribosome pausing was observed at codons for arginine and glutamine. Thus, increasing or regulating protein synthesis efficiency is not dependent on arginyl-tRNA synthetase and glutaminyl-tRNA synthetase in the MSC. Alternatively, and consistent with previously reported ex-translational roles requiring changes in synthetase cellular localizations, our manipulations of the MSC visibly changed localization.
Collapse
Affiliation(s)
- Haissi Cui
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mridu Kapur
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
9
|
Bandyopadhyay AK, Ul Islam RN, Hazra N. Salt-bridges in the microenvironment of stable protein structures. Bioinformation 2020; 16:900-909. [PMID: 34803266 PMCID: PMC8573455 DOI: 10.6026/97320630016900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 11/29/2022] Open
Abstract
Salt-bridges (sb) play an important role in the folding and stability of proteins. This is deduced from the evaluation of net energy in the microenvironments (ME, residues that are 4 Å away from positive and negative partners of salt-bridge and interact with them). MEs act as a determinant of net-energy due to the intrinsic features in the sequence. The stability of extremophilic proteins is due to the presence of favorable residues at the ME without any unfavorable residues. We studied a dataset of four structures from the protein data bank (PDB) and a homology model (1HM5) to gain insights on this issue. Data shows that the presence of isolated charges and polar residues in the core of extremophilic proteins helps in the formation of stable salt-bridges with reduced desolvation. Thus, site-specific mutations with favorable residues at the ME will help to develop thermo stable proteins with strong salt bridges.
Collapse
Affiliation(s)
| | | | - Niladri Hazra
- Department of Zoology, University of Burdwan, West Bengal, India
| |
Collapse
|
10
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
11
|
Khan K, Baleanu-Gogonea C, Willard B, Gogonea V, Fox PL. 3-Dimensional architecture of the human multi-tRNA synthetase complex. Nucleic Acids Res 2020; 48:8740-8754. [PMID: 32644155 PMCID: PMC7470956 DOI: 10.1093/nar/gkaa569] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 11/24/2022] Open
Abstract
In mammalian cells, eight cytoplasmic aminoacyl-tRNA synthetases (AARS), and three non-synthetase proteins, reside in a large multi-tRNA synthetase complex (MSC). AARSs have critical roles in interpretation of the genetic code during protein synthesis, and in non-canonical functions unrelated to translation. Nonetheless, the structure and function of the MSC remain unclear. Partial or complete crystal structures of all MSC constituents have been reported; however, the structure of the holo-MSC has not been resolved. We have taken advantage of cross-linking mass spectrometry (XL-MS) and molecular docking to interrogate the three-dimensional architecture of the MSC in human HEK293T cells. The XL-MS approach uniquely provides structural information on flexibly appended domains, characteristic of nearly all MSC constituents. Using the MS-cleavable cross-linker, disuccinimidyl sulfoxide, inter-protein cross-links spanning all MSC constituents were observed, including cross-links between eight protein pairs not previously known to interact. Intra-protein cross-links defined new structural relationships between domains in several constituents. Unexpectedly, an asymmetric AARS distribution was observed featuring a clustering of tRNA anti-codon binding domains on one MSC face. Possibly, the non-uniform localization improves efficiency of delivery of charged tRNA’s to an interacting ribosome during translation. In summary, we show a highly compact, 3D structural model of the human holo-MSC.
Collapse
Affiliation(s)
- Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | - Belinda Willard
- Lerner Research Institute Proteomics and Metabolomics Core, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
12
|
Kong J, Kim S. Cell-based analysis of pairwise interactions between the components of the multi-tRNA synthetase complex. FASEB J 2020; 34:10476-10488. [PMID: 32539228 DOI: 10.1096/fj.202000418r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/10/2020] [Accepted: 05/25/2020] [Indexed: 11/11/2022]
Abstract
Cytoplasmic aminoacyl-tRNA synthetases (ARSs) are organized into multi-tRNA synthetase complexes (MSCs), from Archaea to mammals. An evolutionary conserved role of the MSCs is enhancement of aminoacylation by forming stable associations of the ARSs and tRNAs. In mammals, a single macromolecular MSC exists, which is composed of eight cytoplasmic ARSs, for nine amino acids, and three scaffold proteins. Consequently, nearly half of aminoacyl-tRNA efflux becomes concentrated at the MSC. Stable supply of aminoacyl-tRNA to the ribosome is, therefore, considered to be a major role of the mammalian MSC. Furthermore, the mammalian MSC also serves as a reservoir for releasable components with noncanonical functions. In this study, a split-luciferase complementation system was applied to investigate the configuration of the MSC in live mammalian cells. Multiplex interconnections between the components were simplified into binary protein-protein interactions, and pairwise comparison of the interactions reconstituted a framework consistent with previous in vitro studies. Reversibility of the split-luciferase reporter binding demonstrated convertible organization of the mammalian MSC, including interferon gamma (IFNγ)-stimulated glutamyl-prolyl-tRNA synthetase 1 (EPRS1) release, as well as the cooperation with the ribosome bridged by the tRNAs. The cell-based analysis provided an improved understanding of the flexible framework of the mammalian MSC in physiological conditions.
Collapse
Affiliation(s)
- Jiwon Kong
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
13
|
Yeast as a Model to Understand Actin-Mediated Cellular Functions in Mammals-Illustrated with Four Actin Cytoskeleton Proteins. Cells 2020; 9:cells9030672. [PMID: 32164332 PMCID: PMC7140605 DOI: 10.3390/cells9030672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has an actin cytoskeleton that comprises a set of protein components analogous to those found in the actin cytoskeletons of higher eukaryotes. Furthermore, the actin cytoskeletons of S. cerevisiae and of higher eukaryotes have some similar physiological roles. The genetic tractability of budding yeast and the availability of a stable haploid cell type facilitates the application of molecular genetic approaches to assign functions to the various actin cytoskeleton components. This has provided information that is in general complementary to that provided by studies of the equivalent proteins of higher eukaryotes and hence has enabled a more complete view of the role of these proteins. Several human functional homologues of yeast actin effectors are implicated in diseases. A better understanding of the molecular mechanisms underpinning the functions of these proteins is critical to develop improved therapeutic strategies. In this article we chose as examples four evolutionarily conserved proteins that associate with the actin cytoskeleton: (1) yeast Hof1p/mammalian PSTPIP1, (2) yeast Rvs167p/mammalian BIN1, (3) yeast eEF1A/eEF1A1 and eEF1A2 and (4) yeast Yih1p/mammalian IMPACT. We compare the knowledge on the functions of these actin cytoskeleton-associated proteins that has arisen from studies of their homologues in yeast with information that has been obtained from in vivo studies using live animals or in vitro studies using cultured animal cell lines.
Collapse
|
14
|
Yewdell JW, Dersh D, Fåhraeus R. Peptide Channeling: The Key to MHC Class I Immunosurveillance? Trends Cell Biol 2019; 29:929-939. [PMID: 31662235 DOI: 10.1016/j.tcb.2019.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
MHC class I presentation of short peptides enables CD8+ T cell (TCD8+) immunosurveillance of tumors and intracellular pathogens. A key feature of the class I pathway is that the immunopeptidome is highly skewed from the cellular degradome, indicating high selectivity of the access of protease-generated peptides to class I molecules. Similarly, in professional antigen-presenting cells, peptides from minute amounts of proteins introduced into the cytosol outcompete an overwhelming supply of constitutively generated peptides. Here, we propose that antigen processing is based on substrate channeling and review recent studies from the antigen processing and cell biology fields that provide a starting point for testing this hypothesis.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD 20892, USA.
| | - Devin Dersh
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD 20892, USA
| | - Robin Fåhraeus
- Inserm, 27 rue Juliette Dodu, 750 10 Paris, France; International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland; Department of Medical Biosciences, Umeå University, 90187 Umeå, Sweden; RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
| |
Collapse
|
15
|
Fission Yeast Asc1 Stabilizes the Interaction between Eukaryotic Initiation Factor 3a and Rps0A/uS2 for Protein Synthesis. Mol Cell Biol 2019; 39:MCB.00161-19. [PMID: 31285271 DOI: 10.1128/mcb.00161-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/29/2019] [Indexed: 12/17/2022] Open
Abstract
Aminoacyl-tRNA synthetase cofactors play important roles in coordinating aminoacylation and translation. In this study, we describe an additional function of the fission yeast aminoacyl-tRNA synthetase cofactor 1 (Asc1) in translation. We found that Asc1 directly binds and stabilizes the interaction between small ribosomal protein Rps0A/uS2 and eukaryotic initiation factor 3a (eIF3a). In the absence of Asc1, the interaction between eIF3a and Rps0A/uS2 was compromised. The interaction between Rps0A/uS2 and eIF3a mediated the 40S ribosomal subunit binding of eIF3 in 43S preinitiation complex formation to stimulate translation initiation. Keeping with this idea, in an asc1 mutant, the association of mRNA with the 40S ribosomal subunit was defective and protein synthesis was compromised. To show that Asc1 is directly involved in translation, we demonstrate that the addition of recombinant Asc1 is able to rescue the translation defect of the asc1 mutant in a cell-free system. Furthermore, this function of Asc1 is likely to be evolutionarily conserved, as a similar interaction with eIF3a and Rps0A/uS2 could be identified in the budding yeast Saccharomyces cerevisiae and human aminoacyl-tRNA synthetase cofactors. Together, these results identify a function of aminoacyl-tRNA synthetase cofactors in translation preinitiation complex formation, which adds significantly to the expanded functions associated with aminoacyl-tRNA synthetases and their cofactors.
Collapse
|
16
|
Sharaf A, Gruber A, Jiroutová K, Oborník M. Characterization of Aminoacyl-tRNA Synthetases in Chromerids. Genes (Basel) 2019; 10:E582. [PMID: 31370303 PMCID: PMC6723311 DOI: 10.3390/genes10080582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/28/2019] [Indexed: 01/24/2023] Open
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are enzymes that catalyze the ligation of tRNAs to amino acids. There are AaRSs specific for each amino acid in the cell. Each cellular compartment in which translation takes place (the cytosol, mitochondria, and plastids in most cases), needs the full set of AaRSs; however, individual AaRSs can function in multiple compartments due to dual (or even multiple) targeting of nuclear-encoded proteins to various destinations in the cell. We searched the genomes of the chromerids, Chromera velia and Vitrella brassicaformis, for AaRS genes: 48 genes encoding AaRSs were identified in C. velia, while only 39 AaRS genes were found in V. brassicaformis. In the latter alga, ArgRS and GluRS were each encoded by a single gene occurring in a single copy; only PheRS was found in three genes, while the remaining AaRSs were encoded by two genes. In contrast, there were nine cases for which C. velia contained three genes of a given AaRS (45% of the AaRSs), all of them representing duplicated genes, except AsnRS and PheRS, which are more likely pseudoparalogs (acquired via horizontal or endosymbiotic gene transfer). Targeting predictions indicated that AaRSs are not (or not exclusively), in most cases, used in the cellular compartment from which their gene originates. The molecular phylogenies of the AaRSs are variable between the specific types, and similar between the two investigated chromerids. While genes with eukaryotic origin are more frequently retained, there is no clear pattern of orthologous pairs between C. velia and V. brassicaformis.
Collapse
Affiliation(s)
- Abdoallah Sharaf
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Ansgar Gruber
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Kateřina Jiroutová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
17
|
Hyeon DY, Kim JH, Ahn TJ, Cho Y, Hwang D, Kim S. Evolution of the multi-tRNA synthetase complex and its role in cancer. J Biol Chem 2019; 294:5340-5351. [PMID: 30782841 PMCID: PMC6462501 DOI: 10.1074/jbc.rev118.002958] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are enzymes that ligate their cognate amino acids to tRNAs for protein synthesis. However, recent studies have shown that their functions are expanded beyond protein synthesis through the interactions with diverse cellular factors. In this review, we discuss how ARSs have evolved to expand and control their functions by forming protein assemblies. We particularly focus on a macromolecular ARS complex in eukaryotes, named multi-tRNA synthetase complex (MSC), which is proposed to provide a channel through which tRNAs reach bound ARSs to receive their cognate amino acid and transit further to the translation machinery. Approximately half of the ARSs assemble into the MSC through cis-acting noncatalytic domains attached to their catalytic domains and trans-acting factors. Evolution of the MSC included its functional expansion, during which the MSC interaction network was augmented by additional cellular pathways present in higher eukaryotes. We also discuss MSC components that could be functionally involved in the pathophysiology of tumorigenesis. For example, the activities of some trans-acting factors have tumor-suppressing effects or maintain DNA integrity and are functionally compromised in cancer. On the basis of Gene Ontology analyses, we propose that the regulatory activities of the MSC-associated ARSs mainly converge on five biological processes, including mammalian target of rapamycin (mTOR) and DNA repair pathways. Future studies are needed to investigate how the MSC-associated and free-ARSs interact with each other and other factors in the control of multiple cellular pathways, and how aberrant or disrupted interactions in the MSC can cause disease.
Collapse
Affiliation(s)
- Do Young Hyeon
- From the Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873
| | - Jong Hyun Kim
- the Medicinal Bioconvergence Research Center and
- Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy and Graduate School of Convergence Technologies, Seoul National University, Seoul 151-742
| | - Tae Jin Ahn
- the Handong Global University, Nehemiah 316, Handong-ro 558, Pohang, and
| | - Yeshin Cho
- the Handong Global University, Nehemiah 316, Handong-ro 558, Pohang, and
| | - Daehee Hwang
- From the Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873,
- the Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Republic of Korea
| | - Sunghoon Kim
- the Medicinal Bioconvergence Research Center and
- Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy and Graduate School of Convergence Technologies, Seoul National University, Seoul 151-742
| |
Collapse
|
18
|
Ruzzenente B, Assouline Z, Barcia G, Rio M, Boddaert N, Munnich A, Rötig A, Metodiev MD. Inhibition of mitochondrial translation in fibroblasts from a patient expressing the KARS p.(Pro228Leu) variant and presenting with sensorineural deafness, developmental delay, and lactic acidosis. Hum Mutat 2018; 39:2047-2059. [PMID: 30252186 DOI: 10.1002/humu.23657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 09/03/2018] [Accepted: 09/22/2018] [Indexed: 01/12/2023]
Abstract
Aminoacyl-tRNA synthetases are ubiquitous enzymes, which universally charge tRNAs with their cognate amino acids for use in cytosolic or organellar translation. In humans, mutations in mitochondrial tRNA synthetases have been linked to different tissue-specific pathologies. Mutations in the KARS gene, which encodes both the cytosolic and mitochondrial isoform of lysyl-tRNA synthetase, cause predominantly neurological diseases that often involve deafness, but have also been linked to cardiomyopathy, developmental delay, and lactic acidosis. Using whole exome sequencing, we identified two compound heterozygous mutations, NM_001130089.1:c.683C>T p.(Pro228Leu) and NM_001130089.1:c.1438del p.(Leu480TrpfsX3), in a patient presenting with sensorineural deafness, developmental delay, hypotonia, and lactic acidosis. Nonsense-mediated mRNA decay eliminated the truncated mRNA transcript, rendering the patient hemizygous for the missense mutation. The c.683C>T mutation was previously described, but its pathogenicity remained unexamined. Molecular characterization of patient fibroblasts revealed a multiple oxidative phosphorylation deficiency due to impaired mitochondrial translation, but no evidence of inhibition of cytosolic translation. Reintroduction of wild-type mitochondrial KARS, but not the cytosolic isoform, rescued this phenotype confirming the disease-causing nature of p.(Pro228Leu) exchange and demonstrating the mitochondrial etiology of the disease. We propose that mitochondrial translation deficiency is the probable disease culprit in this and possibly other patients with mutations in KARS.
Collapse
Affiliation(s)
- Benedetta Ruzzenente
- INSERM UMR1163, Université Paris Descartes - Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Zahra Assouline
- Departments of Pediatrics, Neurology and Genetics, Hôpital Necker-Enfants-Malades, Paris, France
| | - Giulia Barcia
- Departments of Pediatrics, Neurology and Genetics, Hôpital Necker-Enfants-Malades, Paris, France
| | - Marlène Rio
- Departments of Pediatrics, Neurology and Genetics, Hôpital Necker-Enfants-Malades, Paris, France
| | - Nathalie Boddaert
- Department of pediatric radiology, INSERM 1000 and INSERM UMR1136, Hôpital Necker-Enfants-Malades AP-HP, Université Paris Descartes - Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Arnold Munnich
- INSERM UMR1163, Université Paris Descartes - Sorbonne Paris Cité, Institut Imagine, Paris, France.,Departments of Pediatrics, Neurology and Genetics, Hôpital Necker-Enfants-Malades, Paris, France
| | - Agnès Rötig
- INSERM UMR1163, Université Paris Descartes - Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Metodi D Metodiev
- INSERM UMR1163, Université Paris Descartes - Sorbonne Paris Cité, Institut Imagine, Paris, France
| |
Collapse
|
19
|
Abstract
The pool of transfer RNA (tRNA) molecules in cells allows the ribosome to decode genetic information. This repertoire of molecular decoders is positioned in the crossroad of the genome, the transcriptome, and the proteome. Omics and systems biology now allow scientists to explore the entire repertoire of tRNAs of many organisms, revealing basic exciting biology. The tRNA gene set of hundreds of species is now characterized, in addition to the tRNA genes of organelles and viruses. Genes encoding tRNAs for certain anticodon types appear in dozens of copies in a genome, while others are universally absent from any genome. Transcriptome measurement of tRNAs is challenging, but in recent years new technologies have allowed researchers to determine the dynamic expression patterns of tRNAs. These advances reveal that availability of ready-to-translate tRNA molecules is highly controlled by several transcriptional and posttranscriptional regulatory processes. This regulation shapes the proteome according to the cellular state. The tRNA pool profoundly impacts many aspects of cellular and organismal life, including protein expression level, translation accuracy, adequacy of folding, and even mRNA stability. As a result, the shape of the tRNA pool affects organismal health and may participate in causing conditions such as cancer and neurological conditions.
Collapse
Affiliation(s)
- Roni Rak
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100 Israel;
| | - Orna Dahan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100 Israel;
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100 Israel;
| |
Collapse
|
20
|
A heterogeneous tRNA granule structure exhibiting rapid, bi-directional neuritic transport. Eur J Cell Biol 2018; 97:168-179. [PMID: 29482850 DOI: 10.1016/j.ejcb.2018.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 11/23/2022] Open
Abstract
mRNA translation is regulated by diverse mechanisms that converge at the initiation and elongation steps to determine the rate, profile, and localization of proteins synthesized. A consistently relevant feature of these mechanisms is the spatial re-distribution of translation machinery, a process of particular importance in neural cells. This process has, however, been largely overlooked with respect to its potential role in regulating the local concentration of cytoplasmic tRNAs, even as a multitude of data suggest that spatial regulation of the tRNA pool may help explain the remarkably high rates of peptide elongation. Here, we report that Cy3/Cy5-labeled bulk tRNAs transfected into neural cells distribute into granule-like structures - "tRNA granules" - that exhibit dynamic mixing of tRNAs between granules and rapid, bi-directional vectorial movement within neurites. Imaging of endogenous tRNAgly and tRNAlys by fluorescent in situ hybridization revealed a similar granular distribution of tRNAs in somata and neurites; this distribution was highly overlapping with granules imaged by introduction of exogenous Cy5-tRNAthr and Cy3-tRNAval. A subset of tRNA granules located in the cell body, neurite branch points and growth cones displayed fluorescence resonance energy transfer (FRET) between Cy3 and Cy5-labeled tRNAs indicative of translation, and co-localization with elongation machinery. A population of smaller, rapidly trafficked granules in neurites lacked FRET and showed poor colocalization with translation initiation and elongation factors, suggesting that they are a translationally inactive tRNA transport particle. Our data suggest that tRNAs are packaged into granules that are rapidly transported to loci where translation is needed, where they may greatly increase the local concentration of tRNAs in support of efficient elongation. The potential implications of this newly described structure for channeling of elongation, local translation, and diseases associated with altered tRNA levels or function are discussed.
Collapse
|
21
|
Wan Makhtar WR, Browne G, Karountzos A, Stevens C, Alghamdi Y, Bottrill AR, Mistry S, Smith E, Bushel M, Pringle JH, Sayan AE, Tulchinsky E. Short stretches of rare codons regulate translation of the transcription factor ZEB2 in cancer cells. Oncogene 2017; 36:6640-6648. [PMID: 28783176 PMCID: PMC5681250 DOI: 10.1038/onc.2017.273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/16/2017] [Accepted: 07/03/2017] [Indexed: 01/14/2023]
Abstract
Two proteins comprising the ZEB family of zinc finger transcription factors, ZEB1 and ZEB2, execute EMT programs in embryonic development and cancer. By studying regulation of their expression, we describe a novel mechanism that limits ZEB2 protein synthesis. A protein motif located at the border of the SMAD-binding domain of ZEB2 protein induces ribosomal pausing and compromises protein synthesis. The function of this protein motif is dependent on stretches of rare codons, Leu(UUA)-Gly(GGU)-Val(GUA). Incorporation of these triplets in the homologous region of ZEB1 does not affect protein translation. Our data suggest that rare codons have a regulatory role only if they are present within appropriate protein structures. We speculate that pools of transfer RNA available for protein translation impact on the configuration of epithelial mesenchymal transition pathways in tumor cells.
Collapse
Affiliation(s)
- W R Wan Makhtar
- Department of Cancer Studies, University of Leicester, Leicester, UK
- MRC Toxicology Unit, Leicester, UK
| | - G Browne
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - A Karountzos
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - C Stevens
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - Y Alghamdi
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - A R Bottrill
- Protein and Nucleic Acid Chemistry Laboratory (PNACL), University of Leicester, Leicester, UK
| | - S Mistry
- Protein and Nucleic Acid Chemistry Laboratory (PNACL), University of Leicester, Leicester, UK
| | - E Smith
- MRC Toxicology Unit, Leicester, UK
| | - M Bushel
- MRC Toxicology Unit, Leicester, UK
| | - J H Pringle
- Department of Cancer Studies, University of Leicester, Leicester, UK
| | - A E Sayan
- Cancer Sciences Division, University of Southampton, Southampton, UK
| | - E Tulchinsky
- Department of Cancer Studies, University of Leicester, Leicester, UK
| |
Collapse
|
22
|
Yakobov N, Debard S, Fischer F, Senger B, Becker HD. Cytosolic aminoacyl-tRNA synthetases: Unanticipated relocations for unexpected functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:387-400. [PMID: 29155070 DOI: 10.1016/j.bbagrm.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Prokaryotic and eukaryotic cytosolic aminoacyl-tRNA synthetases (aaRSs) are essentially known for their conventional function of generating the full set of aminoacyl-tRNA species that are needed to incorporate each organism's repertoire of genetically-encoded amino acids during ribosomal translation of messenger RNAs. However, bacterial and eukaryotic cytosolic aaRSs have been shown to exhibit other essential nonconventional functions. Here we review all the subcellular compartments that prokaryotic and eukaryotic cytosolic aaRSs can reach to exert either a conventional or nontranslational role. We describe the physiological and stress conditions, the mechanisms and the signaling pathways that trigger their relocation and the new functions associated with these relocating cytosolic aaRS. Finally, given that these relocating pools of cytosolic aaRSs participate to a wide range of cellular pathways beyond translation, but equally important for cellular homeostasis, we mention some of the pathologies and diseases associated with the dis-regulation or malfunctioning of these nontranslational functions.
Collapse
Affiliation(s)
- Nathaniel Yakobov
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Sylvain Debard
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Bruno Senger
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Hubert Dominique Becker
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| |
Collapse
|
23
|
HIV-1 Exploits a Dynamic Multi-aminoacyl-tRNA Synthetase Complex To Enhance Viral Replication. J Virol 2017; 91:JVI.01240-17. [PMID: 28814526 DOI: 10.1128/jvi.01240-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/10/2017] [Indexed: 11/20/2022] Open
Abstract
A hallmark of retroviruses such as human immunodeficiency virus type 1 (HIV-1) is reverse transcription of genomic RNA to DNA, a process that is primed by cellular tRNAs. HIV-1 recruits human tRNALys3 to serve as the reverse transcription primer via an interaction between lysyl-tRNA synthetase (LysRS) and the HIV-1 Gag polyprotein. LysRS is normally sequestered in a multi-aminoacyl-tRNA synthetase complex (MSC). Previous studies demonstrated that components of the MSC can be mobilized in response to certain cellular stimuli, but how LysRS is redirected from the MSC to viral particles for packaging is unknown. Here, we show that upon HIV-1 infection, a free pool of non-MSC-associated LysRS is observed and partially relocalized to the nucleus. Heat inactivation of HIV-1 blocks nuclear localization of LysRS, but treatment with a reverse transcriptase inhibitor does not, suggesting that the trigger for relocalization occurs prior to reverse transcription. A reduction in HIV-1 infection is observed upon treatment with an inhibitor to mitogen-activated protein kinase that prevents phosphorylation of LysRS on Ser207, release of LysRS from the MSC, and nuclear localization. A phosphomimetic mutant of LysRS (S207D) that lacked the capability to aminoacylate tRNALys3 localized to the nucleus, rescued HIV-1 infectivity, and was packaged into virions. In contrast, a phosphoablative mutant (S207A) remained cytosolic and maintained full aminoacylation activity but failed to rescue infectivity and was not packaged. These findings suggest that HIV-1 takes advantage of the dynamic nature of the MSC to redirect and coopt cellular translation factors to enhance viral replication.IMPORTANCE Human tRNALys3, the primer for reverse transcription, and LysRS are essential host factors packaged into HIV-1 virions. Previous studies found that tRNALys3 packaging depends on interactions between LysRS and HIV-1 Gag; however, many details regarding the mechanism of tRNALys3 and LysRS packaging remain unknown. LysRS is normally sequestered in a high-molecular-weight multi-aminoacyl-tRNA synthetase complex (MSC), restricting the pool of free LysRS-tRNALys Mounting evidence suggests that LysRS is released under a variety of stimuli to perform alternative functions within the cell. Here, we show that HIV-1 infection results in a free pool of LysRS that is relocalized to the nucleus of target cells. Blocking this pathway in HIV-1-producing cells resulted in less infectious progeny virions. Understanding the mechanism by which LysRS is recruited into the viral assembly pathway can be exploited for the development of specific and effective therapeutics targeting this nontranslational function.
Collapse
|
24
|
Debard S, Bader G, De Craene JO, Enkler L, Bär S, Laporte D, Hammann P, Myslinski E, Senger B, Friant S, Becker HD. Nonconventional localizations of cytosolic aminoacyl-tRNA synthetases in yeast and human cells. Methods 2017; 113:91-104. [DOI: 10.1016/j.ymeth.2016.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 11/26/2022] Open
|
25
|
Abstract
Aminoacyl-tRNA synthetases (AARSs) are essential enzymes that specifically aminoacylate one tRNA molecule by the cognate amino acid. They are a family of twenty enzymes, one for each amino acid. By coupling an amino acid to a specific RNA triplet, the anticodon, they are responsible for interpretation of the genetic code. In addition to this translational, canonical role, several aminoacyl-tRNA synthetases also fulfill nontranslational, moonlighting functions. In mammals, nine synthetases, those specific for amino acids Arg, Asp, Gln, Glu, Ile, Leu, Lys, Met and Pro, associate into a multi-aminoacyl-tRNA synthetase complex, an association which is believed to play a key role in the cellular organization of translation, but also in the regulation of the translational and nontranslational functions of these enzymes. Because the balance between their alternative functions rests on the assembly and disassembly of this supramolecular entity, it is essential to get precise insight into the structural organization of this complex. The high-resolution 3D-structure of the native particle, with a molecular weight of about 1.5 MDa, is not yet known. Low-resolution structures of the multi-aminoacyl-tRNA synthetase complex, as determined by cryo-EM or SAXS, have been reported. High-resolution data have been reported for individual enzymes of the complex, or for small subcomplexes. This review aims to present a critical view of our present knowledge of the aminoacyl-tRNA synthetase complex in 3D. These preliminary data shed some light on the mechanisms responsible for the balance between the translational and nontranslational functions of some of its components.
Collapse
Affiliation(s)
- Marc Mirande
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, Paris, France.
| |
Collapse
|
26
|
Webster GR, Teh AYH, Ma JKC. Synthetic gene design-The rationale for codon optimization and implications for molecular pharming in plants. Biotechnol Bioeng 2016; 114:492-502. [PMID: 27618314 DOI: 10.1002/bit.26183] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 08/10/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022]
Abstract
Degeneracy in the genetic code allows multiple codon sequences to encode the same protein. Codon usage bias in genes is the term given to the preferred use of particular synonymous codons. Synonymous codon substitutions had been regarded as "silent" as the primary structure of the protein was not affected; however, it is now accepted that synonymous substitutions can have a significant effect on heterologous protein expression. Codon optimization, the process of altering codons within the gene sequence to improve recombinant protein expression, has become widely practised. Multiple inter-linked factors affecting protein expression need to be taken into consideration when optimizing a gene sequence. Over the years, various computer programmes have been developed to aid in the gene sequence optimization process. However, as the rulebook for altering codon usage to affect protein expression is still not completely understood, it is difficult to predict which strategy, if any, will design the "optimal" gene sequence. In this review, codon usage bias and factors affecting codon selection will be discussed and the evidence for codon optimization impact will be reviewed for recombinant protein expression using plants as a case study. These developments will be relevant to all recombinant expression systems; however, molecular pharming in plants is an area which has consistently encountered difficulties with low levels of recombinant protein expression, and should benefit from an evidence based rational approach to synthetic gene design. Biotechnol. Bioeng. 2017;114: 492-502. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gina R Webster
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, SW17 0RE, London, UK
| | - Audrey Y-H Teh
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, SW17 0RE, London, UK
| | - Julian K-C Ma
- Molecular Immunology Unit, Institute for Infection and Immunity, St. George's University of London, SW17 0RE, London, UK
| |
Collapse
|
27
|
Keam SP, Sobala A, Ten Have S, Hutvagner G. tRNA-Derived RNA Fragments Associate with Human Multisynthetase Complex (MSC) and Modulate Ribosomal Protein Translation. J Proteome Res 2016; 16:413-420. [PMID: 27936807 DOI: 10.1021/acs.jproteome.6b00267] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The functionality of small RNAs from abundant species of "housekeeping" noncoding RNAs (e.g., rRNA, tRNA, snRNA, snoRNA, etc.) remains a highly studied topic. The current state of research on short RNAs derived from transfer RNA (tRNA), called tRNA-derived fragments (tRFs), has been restricted largely to expression studies and limited functional studies. 5' tRFs are known translational inhibitors in mammalian cells, yet little is known about their functionality. Here we report on the first experimental evidence of the tRF protein interactome, identifying the mammalian multisynthetase complex as the primary interactor of the 5' tRF Gln19. We also present proteome-wide SILAC evidence that 5' tRFs increase ribosomal and poly(A)-binding protein translation.
Collapse
Affiliation(s)
- Simon P Keam
- Centre for Health Technologies, Faculty of Engineering and Information Technology, University of Technology Sydney , Ultimo 2007, Australia
| | - Andrew Sobala
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee , Dundee DD1 4HN, United Kingdom
| | - Sara Ten Have
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee , Dundee DD1 4HN, United Kingdom
| | - Gyorgy Hutvagner
- Centre for Health Technologies, Faculty of Engineering and Information Technology, University of Technology Sydney , Ultimo 2007, Australia
| |
Collapse
|
28
|
Rémion A, Khoder-Agha F, Cornu D, Argentini M, Redeker V, Mirande M. Identification of protein interfaces within the multi-aminoacyl-tRNA synthetase complex: the case of lysyl-tRNA synthetase and the scaffold protein p38. FEBS Open Bio 2016; 6:696-706. [PMID: 27398309 PMCID: PMC4932449 DOI: 10.1002/2211-5463.12074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/23/2016] [Accepted: 04/19/2016] [Indexed: 11/06/2022] Open
Abstract
Human cytoplasmic lysyl-tRNA synthetase (LysRS) is associated within a multi-aminoacyl-tRNA synthetase complex (MSC). Within this complex, the p38 component is the scaffold protein that binds the catalytic domain of LysRS via its N-terminal region. In addition to its translational function when associated to the MSC, LysRS is also recruited in nontranslational roles after dissociation from the MSC. The balance between its MSC-associated and MSC-dissociated states is essential to regulate the functions of LysRS in cellular homeostasis. With the aim of understanding the rules that govern association of LysRS in the MSC, we analyzed the protein interfaces between LysRS and the full-length version of p38, the scaffold protein of the MSC. In a previous study, the cocrystal structure of LysRS with a N-terminal peptide of p38 was reported [Ofir-Birin Y et al. (2013) Mol Cell 49, 30-42]. In order to identify amino acid residues involved in interaction of the two proteins, the non-natural, photo-cross-linkable amino acid p-benzoyl-l-phenylalanine (Bpa) was incorporated at 27 discrete positions within the catalytic domain of LysRS. Among the 27 distinct LysRS mutants, only those with Bpa inserted in place of Lys356 or His364 were cross-linked with p38. Using mass spectrometry, we unambiguously identified the protein interface of the cross-linked complex and showed that Lys356 and His364 of LysRS interact with the peptide from Pro8 to Arg26 in native p38, in agreement with the published cocrystal structure. This interface, which in LysRS is located on the opposite side of the dimer to the site of interaction with its tRNA substrate, defines the core region of the MSC. The residues identified herein in human LysRS are not conserved in yeast LysRS, an enzyme that does not associate within the MSC, and contrast with the residues proposed to be essential for LysRS:p38 association in the earlier work.
Collapse
Affiliation(s)
- Azaria Rémion
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS) CNRS Gif-sur-Yvette France
| | - Fawzi Khoder-Agha
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS) CNRS Gif-sur-Yvette France; Institute for Integrative Biology of the Cell (I2BC) CEACNRS Univ. Paris-Sud, Université Paris-Saclay Gif-sur-Yvette France
| | - David Cornu
- Service d'identification et de Caractérisation des Protéines par Spectrométrie de Masse (SICaPS) CEA CNRS Univ. Paris-Sud, Université Paris-Saclay Gif-sur-Yvette France
| | - Manuela Argentini
- Service d'identification et de Caractérisation des Protéines par Spectrométrie de Masse (SICaPS) CEA CNRS Univ. Paris-Sud, Université Paris-Saclay Gif-sur-Yvette France
| | - Virginie Redeker
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS) CNRSGif-sur-Yvette France; Service d'identification et de Caractérisation des Protéines par Spectrométrie de Masse (SICaPS) CEACNRS Univ. Paris-Sud, Université Paris-Saclay Gif-sur-Yvette France; Present address: Paris-Saclay Institute of Neuroscience (Neuro-PSI) CNRS 1 avenue de la Terrasse 91190 Gif-sur-Yvette France
| | - Marc Mirande
- Laboratoire d'Enzymologie et Biochimie Structurales (LEBS) CNRS Gif-sur-Yvette France; Institute for Integrative Biology of the Cell (I2BC) CEACNRS Univ. Paris-Sud, Université Paris-Saclay Gif-sur-Yvette France
| |
Collapse
|
29
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
30
|
Berezovsky IN, Zheng Z, Kurotani A, Tokmakov AA, Kurochkin IV. Organization of the multiaminoacyl-tRNA synthetase complex and the cotranslational protein folding. Protein Sci 2015; 24:1475-85. [PMID: 26131561 DOI: 10.1002/pro.2735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 11/09/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) play an essential role in the protein synthesis by catalyzing an attachment of their cognate amino acids to tRNAs. Unlike their prokaryotic counterparts, ARSs in higher eukaryotes form a multiaminoacyl-tRNA synthetase complex (MARS), consisting of the subset of ARS polypeptides and three auxiliary proteins. The intriguing feature of MARS complex is the presence of only nine out of twenty ARSs, specific for Arg, Asp, Gln, Glu, Ile, Leu, Lys, Met, and Pro, regardless of the organism, cell, or tissue types. Although existence of MARSs complex in higher eukaryotes has been already known for more than four decades, its functional significance remains elusive. We found that seven of the nine corresponding amino acids (Arg, Gln, Glu, Ile, Leu, Lys, and Met) together with Ala form a predictor of the protein α-helicity. Remarkably, all amino acids (besides Ala) in the predictor have the highest possible number of side-chain rotamers. Therefore, compositional bias of a typical α-helix can contribute to the helix's stability by increasing the entropy of the folded state. It also appears that position-specific α-helical propensity, specifically periodic alternation of charged and hydrophobic residues in the helices, may well be provided by the structural organization of the complex. Considering characteristics of MARS complex from the perspective of the α-helicity, we hypothesize that specific composition and structure of the complex represents a functional mechanism for coordination of translation with the fast and correct folding of amphiphilic α-helices.
Collapse
Affiliation(s)
- Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (a*STAR), Singapore, 138671.,Department of Biological Sciences (DBS), National University of Singapore (NUS), Singapore, 117579
| | - Zejun Zheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (a*STAR), Singapore, 138671
| | - Atsushi Kurotani
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Kanagawa, 230-0045, Japan
| | | | - Igor V Kurochkin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (a*STAR), Singapore, 138671
| |
Collapse
|
31
|
Aminoacyl-tRNA synthetase complexes in evolution. Int J Mol Sci 2015; 16:6571-94. [PMID: 25807264 PMCID: PMC4394549 DOI: 10.3390/ijms16036571] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/17/2015] [Accepted: 03/11/2015] [Indexed: 11/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases are essential enzymes for interpreting the genetic code. They are responsible for the proper pairing of codons on mRNA with amino acids. In addition to this canonical, translational function, they are also involved in the control of many cellular pathways essential for the maintenance of cellular homeostasis. Association of several of these enzymes within supramolecular assemblies is a key feature of organization of the translation apparatus in eukaryotes. It could be a means to control their oscillation between translational functions, when associated within a multi-aminoacyl-tRNA synthetase complex (MARS), and nontranslational functions, after dissociation from the MARS and association with other partners. In this review, we summarize the composition of the different MARS described from archaea to mammals, the mode of assembly of these complexes, and their roles in maintenance of cellular homeostasis.
Collapse
|
32
|
Giessen TW, Altegoer F, Nebel AJ, Steinbach RM, Bange G, Marahiel MA. A Synthetic Adenylation-Domain-Based tRNA-Aminoacylation Catalyst. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201410047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Giessen TW, Altegoer F, Nebel AJ, Steinbach RM, Bange G, Marahiel MA. A synthetic adenylation-domain-based tRNA-aminoacylation catalyst. Angew Chem Int Ed Engl 2015; 54:2492-6. [PMID: 25583137 DOI: 10.1002/anie.201410047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/01/2014] [Indexed: 01/04/2023]
Abstract
The incorporation of non-proteinogenic amino acids represents a major challenge for the creation of functionalized proteins. The ribosomal pathway is limited to the 20-22 proteinogenic amino acids while nonribosomal peptide synthetases (NRPSs) are able to select from hundreds of different monomers. Introduced herein is a fusion-protein-based design for synthetic tRNA-aminoacylation catalysts based on combining NRPS adenylation domains and a small eukaryotic tRNA-binding domain (Arc1p-C). Using rational design, guided by structural insights and molecular modeling, the adenylation domain PheA was fused with Arc1p-C using flexible linkers and achieved tRNA-aminoacylation with both proteinogenic and non-proteinogenic amino acids. The resulting aminoacyl-tRNAs were functionally validated and the catalysts showed broad substrate specificity towards the acceptor tRNA. Our strategy shows how functional tRNA-aminoacylation catalysts can be created for bridging the ribosomal and nonribosomal worlds. This opens up new avenues for the aminoacylation of tRNAs with functional non-proteinogenic amino acids.
Collapse
Affiliation(s)
- Tobias W Giessen
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg (Germany); LOEWE Center for Synthetic Microbiology (Synmikro), Philipps-University Marburg, Hans-Meerwein-Strasse, 35032 Marburg (Germany).
| | | | | | | | | | | |
Collapse
|
34
|
Laporte D, Huot JL, Bader G, Enkler L, Senger B, Becker HD. Exploring the evolutionary diversity and assembly modes of multi-aminoacyl-tRNA synthetase complexes: lessons from unicellular organisms. FEBS Lett 2014; 588:4268-78. [PMID: 25315413 DOI: 10.1016/j.febslet.2014.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous and ancient enzymes, mostly known for their essential role in generating aminoacylated tRNAs. During the last two decades, many aaRSs have been found to perform additional and equally crucial tasks outside translation. In metazoans, aaRSs have been shown to assemble, together with non-enzymatic assembly proteins called aaRSs-interacting multifunctional proteins (AIMPs), into so-called multi-synthetase complexes (MSCs). Metazoan MSCs are dynamic particles able to specifically release some of their constituents in response to a given stimulus. Upon their release from MSCs, aaRSs can reach other subcellular compartments, where they often participate to cellular processes that do not exploit their primary function of synthesizing aminoacyl-tRNAs. The dynamics of MSCs and the expansion of the aaRSs functional repertoire are features that are so far thought to be restricted to higher and multicellular eukaryotes. However, much can be learnt about how MSCs are assembled and function from apparently 'simple' organisms. Here we provide an overview on the diversity of these MSCs, their composition, mode of assembly and the functions that their constituents, namely aaRSs and AIMPs, exert in unicellular organisms.
Collapse
Affiliation(s)
- Daphné Laporte
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Jonathan L Huot
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Gaétan Bader
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Ludovic Enkler
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Bruno Senger
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Hubert Dominique Becker
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France.
| |
Collapse
|
35
|
Structure of the ArgRS-GlnRS-AIMP1 complex and its implications for mammalian translation. Proc Natl Acad Sci U S A 2014; 111:15084-9. [PMID: 25288775 DOI: 10.1073/pnas.1408836111] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In higher eukaryotes, one of the two arginyl-tRNA synthetases (ArgRSs) has evolved to have an extended N-terminal domain that plays a crucial role in protein synthesis and cell growth and in integration into the multisynthetase complex (MSC). Here, we report a crystal structure of the MSC subcomplex comprising ArgRS, glutaminyl-tRNA synthetase (GlnRS), and the auxiliary factor aminoacyl tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1)/p43. In this complex, the N-terminal domain of ArgRS forms a long coiled-coil structure with the N-terminal helix of AIMP1 and anchors the C-terminal core of GlnRS, thereby playing a central role in assembly of the three components. Mutation of AIMP1 destabilized the N-terminal helix of ArgRS and abrogated its catalytic activity. Mutation of the N-terminal helix of ArgRS liberated GlnRS, which is known to control cell death. This ternary complex was further anchored to AIMP2/p38 through interaction with AIMP1. These findings demonstrate the importance of interactions between the N-terminal domains of ArgRS and AIMP1 for the catalytic and noncatalytic activities of ArgRS and for the assembly of the higher-order MSC protein complex.
Collapse
|
36
|
Zhang X, Ling J, Barcia G, Jing L, Wu J, Barry BJ, Mochida GH, Hill RS, Weimer JM, Stein Q, Poduri A, Partlow JN, Ville D, Dulac O, Yu TW, Lam ATN, Servattalab S, Rodriguez J, Boddaert N, Munnich A, Colleaux L, Zon LI, Söll D, Walsh CA, Nabbout R. Mutations in QARS, encoding glutaminyl-tRNA synthetase, cause progressive microcephaly, cerebral-cerebellar atrophy, and intractable seizures. Am J Hum Genet 2014; 94:547-58. [PMID: 24656866 DOI: 10.1016/j.ajhg.2014.03.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/05/2014] [Indexed: 01/30/2023] Open
Abstract
Progressive microcephaly is a heterogeneous condition with causes including mutations in genes encoding regulators of neuronal survival. Here, we report the identification of mutations in QARS (encoding glutaminyl-tRNA synthetase [QARS]) as the causative variants in two unrelated families affected by progressive microcephaly, severe seizures in infancy, atrophy of the cerebral cortex and cerebellar vermis, and mild atrophy of the cerebellar hemispheres. Whole-exome sequencing of individuals from each family independently identified compound-heterozygous mutations in QARS as the only candidate causative variants. QARS was highly expressed in the developing fetal human cerebral cortex in many cell types. The four QARS mutations altered highly conserved amino acids, and the aminoacylation activity of QARS was significantly impaired in mutant cell lines. Variants p.Gly45Val and p.Tyr57His were located in the N-terminal domain required for QARS interaction with proteins in the multisynthetase complex and potentially with glutamine tRNA, and recombinant QARS proteins bearing either substitution showed an over 10-fold reduction in aminoacylation activity. Conversely, variants p.Arg403Trp and p.Arg515Trp, each occurring in a different family, were located in the catalytic core and completely disrupted QARS aminoacylation activity in vitro. Furthermore, p.Arg403Trp and p.Arg515Trp rendered QARS less soluble, and p.Arg403Trp disrupted QARS-RARS (arginyl-tRNA synthetase 1) interaction. In zebrafish, homozygous qars loss of function caused decreased brain and eye size and extensive cell death in the brain. Our results highlight the importance of QARS during brain development and that epilepsy due to impairment of QARS activity is unusually severe in comparison to other aminoacyl-tRNA synthetase disorders.
Collapse
Affiliation(s)
- Xiaochang Zhang
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute
| | - Jiqiang Ling
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA; Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Giulia Barcia
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France; Institut National de la Santé et de la Recherche Médicale U1129, Université Paris Descartes, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale U1129, NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, 91191 Gif-sur-Yvette, France
| | - Lili Jing
- Howard Hughes Medical Institute; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jiang Wu
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Brenda J Barry
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute
| | - Ganeshwaran H Mochida
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, MA 02115, USA; Pediatric Neurology Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - R Sean Hill
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute
| | - Jill M Weimer
- Sanford Children's Health Research Center, Sanford Research, 2301 East 60(th) Street North, Sioux Falls, SD 57104, USA
| | - Quinn Stein
- Departments of Pediatrics and Ob/Gyn, Sanford School of Medicine, Sioux Falls, SD 57105, USA
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer N Partlow
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute
| | - Dorothée Ville
- Department of Pediatric Neurology, Centre Hospitalier Universitaire de Lyon, 69007 Lyon, France
| | - Olivier Dulac
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France; Institut National de la Santé et de la Recherche Médicale U1129, Université Paris Descartes, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale U1129, NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, 91191 Gif-sur-Yvette, France
| | - Tim W Yu
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Anh-Thu N Lam
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute
| | - Sarah Servattalab
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute
| | - Jacqueline Rodriguez
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute
| | - Nathalie Boddaert
- Institut National de la Santé et de la Recherche Médicale U781, Department of Pediatric Radiology, Hôpital Necker-Enfants Malades, Imagine institute, Université Paris Descartes, 75006 Paris, France
| | - Arnold Munnich
- Institut National de la Santé et de la Recherche Médicale U781, Department of Genetics, Hôpital Necker-Enfants Malades, Imagine institute, Université Paris Descartes, 75006 Paris, France
| | - Laurence Colleaux
- Institut National de la Santé et de la Recherche Médicale U781, Department of Genetics, Hôpital Necker-Enfants Malades, Imagine institute, Université Paris Descartes, 75006 Paris, France
| | - Leonard I Zon
- Howard Hughes Medical Institute; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute; Department of Pediatrics, Harvard Medical School, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Rima Nabbout
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France; Institut National de la Santé et de la Recherche Médicale U1129, Université Paris Descartes, 75006 Paris, France; Institut National de la Santé et de la Recherche Médicale U1129, NeuroSpin, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
37
|
Antón LC, Yewdell JW. Translating DRiPs: MHC class I immunosurveillance of pathogens and tumors. J Leukoc Biol 2014; 95:551-62. [PMID: 24532645 PMCID: PMC3958739 DOI: 10.1189/jlb.1113599] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 11/24/2022] Open
Abstract
MHC class I molecules display oligopeptides on the cell surface to enable T cell immunosurveillance of intracellular pathogens and tumors. Speed is of the essence in detecting viruses, which can complete a full replication cycle in just hours, whereas tumor detection is typically a finding-the-needle-in-the-haystack exercise. We review current evidence supporting a nonrandom, compartmentalized selection of peptidogenic substrates that focuses on rapidly degraded translation products as a main source of peptide precursors to optimize immunosurveillance of pathogens and tumors.
Collapse
Affiliation(s)
- Luis C Antón
- 1.NIAID, NIH, Bldg. 33, Bethesda, MD 20892, USA.
| | | |
Collapse
|
38
|
Godinic-Mikulcic V, Jaric J, Greber BJ, Franke V, Hodnik V, Anderluh G, Ban N, Weygand-Durasevic I. Archaeal aminoacyl-tRNA synthetases interact with the ribosome to recycle tRNAs. Nucleic Acids Res 2014; 42:5191-201. [PMID: 24569352 PMCID: PMC4005694 DOI: 10.1093/nar/gku164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRS) are essential enzymes catalyzing the formation of aminoacyl-tRNAs, the immediate precursors for encoded peptides in ribosomal protein synthesis. Previous studies have suggested a link between tRNA aminoacylation and high-molecular-weight cellular complexes such as the cytoskeleton or ribosomes. However, the structural basis of these interactions and potential mechanistic implications are not well understood. To biochemically characterize these interactions we have used a system of two interacting archaeal aaRSs: an atypical methanogenic-type seryl-tRNA synthetase and an archaeal ArgRS. More specifically, we have shown by thermophoresis and surface plasmon resonance that these two aaRSs bind to the large ribosomal subunit with micromolar affinities. We have identified the L7/L12 stalk and the proteins located near the stalk base as the main sites for aaRS binding. Finally, we have performed a bioinformatics analysis of synonymous codons in the Methanothermobacter thermautotrophicus genome that supports a mechanism in which the deacylated tRNAs may be recharged by aaRSs bound to the ribosome and reused at the next occurrence of a codon encoding the same amino acid. These results suggest a mechanism of tRNA recycling in which aaRSs associate with the L7/L12 stalk region to recapture the tRNAs released from the preceding ribosome in polysomes.
Collapse
Affiliation(s)
- Vlatka Godinic-Mikulcic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000 Zagreb, Croatia, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zurich, Switzerland, Department of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000 Zagreb, Croatia, Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia and Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
39
|
A multiple aminoacyl-tRNA synthetase complex that enhances tRNA-aminoacylation in African trypanosomes. Mol Cell Biol 2013; 33:4872-88. [PMID: 24126051 DOI: 10.1128/mcb.00711-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes for all cytoplasmic and potentially all mitochondrial aminoacyl-tRNA synthetases (aaRSs) were identified, and all those tested by RNA interference were found to be essential for the growth of Trypanosoma brucei. Some of these enzymes were localized to the cytoplasm or mitochondrion, but most were dually localized to both cellular compartments. Cytoplasmic T. brucei aaRSs were organized in a multiprotein complex in both bloodstream and procyclic forms. The multiple aminoacyl-tRNA synthetase (MARS) complex contained at least six aaRS enzymes and three additional non-aaRS proteins. Steady-state kinetic studies showed that association in the MARS complex enhances tRNA-aminoacylation efficiency, which is in part dependent on a MARS complex-associated protein (MCP), named MCP2, that binds tRNAs and increases their aminoacylation by the complex. Conditional repression of MCP2 in T. brucei bloodstream forms resulted in reduced parasite growth and infectivity in mice. Thus, association in a MARS complex enhances tRNA-aminoacylation and contributes to parasite fitness. The MARS complex may be part of a cellular regulatory system and a target for drug development.
Collapse
|
40
|
Building better drugs: developing and regulating engineered therapeutic proteins. Trends Pharmacol Sci 2013; 34:534-48. [PMID: 24060103 DOI: 10.1016/j.tips.2013.08.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 11/22/2022]
Abstract
Most native proteins do not make optimal drugs and thus a second- and third-generation of therapeutic proteins, which have been engineered to improve product attributes or to enhance process characteristics, are rapidly becoming the norm. There has been unprecedented progress, during the past decade, in the development of platform technologies that further these ends. Although the advantages of engineered therapeutic proteins are considerable, the alterations can affect the safety and efficacy of the drugs. We discuss both the key technological innovations with respect to engineered therapeutic proteins and advancements in the underlying basic science. The latter would permit the design of science-based criteria for the prediction and assessment of potential risks and the development of appropriate risk management plans. This in turn holds promise for more predictable criteria for the licensure of a class of products that are extremely challenging to develop but represent an increasingly important component of modern medical practice.
Collapse
|
41
|
Abstract
The composition of the cellular proteome is commonly thought to strictly adhere to the genetic code. However, accumulating evidence indicates that cells also regulate the synthesis of mutant protein molecules that deviate from the genetic code. Production of mutant proteins generally occurs when cells are stressed or when they undergo environmental adaptation, but production varies in amounts and specificity. The deliberate synthesis of mutant proteins suggests that some of these proteins can be useful in cellular stress response and adaptation. This review describes the occurrence of, the translation mechanisms for, and the functional hypotheses on regulated synthesis of mutant proteins.
Collapse
Affiliation(s)
- Tao Pan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
42
|
El'skaya AV, Negrutskii BS, Shalak VF, Vislovukh AA, Vlasenko DO, Novosylna AV, Lukash TO, Veremieva MV. Specific features of protein biosynthesis in higher eukaryotes. ACTA ACUST UNITED AC 2013. [DOI: 10.7124/bc.000818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- A. V. El'skaya
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - B. S. Negrutskii
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - V. F. Shalak
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - A. A. Vislovukh
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - D. O. Vlasenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - A. V. Novosylna
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - T. O. Lukash
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| | - M. V. Veremieva
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
43
|
Citric acid cycle and the origin of MARS. Trends Biochem Sci 2013; 38:222-8. [PMID: 23415030 DOI: 10.1016/j.tibs.2013.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/01/2013] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
The vertebrate multiaminoacyl tRNA synthetase complex (MARS) is an assemblage of nine aminoacyl tRNA synthetases (ARSs) and three non-synthetase scaffold proteins, aminoacyl tRNA synthetase complex-interacting multifunctional protein (AIMP)1, AIMP2, and AIMP3. The evolutionary origin of the MARS is unclear, as is the significance of the inclusion of only nine of 20 tRNA synthetases. Eight of the nine amino acids corresponding to ARSs of the MARS are derived from two citric acid cycle intermediates, α-ketoglutatrate and oxaloacetate. We propose that the metabolic link with the citric acid cycle, the appearance of scaffolding proteins AIMP2 and AIMP3, and the subsequent disappearance of the glyoxylate cycle, together facilitated the origin of the MARS in a common ancestor of metazoans and choanoflagellates.
Collapse
|
44
|
Taking AIM at the Start of Translation. J Mol Biol 2012; 423:473-4. [DOI: 10.1016/j.jmb.2012.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
46
|
Raina M, Elgamal S, Santangelo TJ, Ibba M. Association of a multi-synthetase complex with translating ribosomes in the archaeon Thermococcus kodakarensis. FEBS Lett 2012; 586:2232-8. [PMID: 22683511 DOI: 10.1016/j.febslet.2012.05.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/12/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
Abstract
In archaea and eukaryotes aminoacyl-tRNA synthetases (aaRSs) associate in multi-synthetase complexes (MSCs), however the role of such MSCs in translation is unknown. MSC function was investigated in vivo in the archaeon Thermococcus kodakarensis, wherein six aaRSs were affinity co-purified together with several other factors involved in protein synthesis, suggesting that MSCs may interact directly with translating ribosomes. In support of this hypothesis, the aminoacyl-tRNA synthetase (aaRS) activities of the MSC were enriched in isolated T. kodakarensis polysome fractions. These data indicate that components of the archaeal protein synthesis machinery associate into macromolecular assemblies in vivo and provide the potential to increase translation efficiency by limiting substrate diffusion away from the ribosome, thus facilitating rapid recycling of tRNAs.
Collapse
Affiliation(s)
- Medha Raina
- Ohio State Biochemistry Program, Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
47
|
Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 2011; 12:683-91. [PMID: 21878961 DOI: 10.1038/nrg3051] [Citation(s) in RCA: 690] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Synonymous mutations - sometimes called 'silent' mutations - are now widely acknowledged to be able to cause changes in protein expression, conformation and function. The recent increase in knowledge about the association of genetic variants with disease, particularly through genome-wide association studies, has revealed a substantial contribution of synonymous SNPs to human disease risk and other complex traits. Here we review current understanding of the extent to which synonymous mutations influence disease, the various molecular mechanisms that underlie these effects and the implications for future research and biomedical applications.
Collapse
Affiliation(s)
- Zuben E Sauna
- Laboratory of Hemostasis, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, 29 Lincoln Drive, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
48
|
Determinants of translation efficiency and accuracy. Mol Syst Biol 2011; 7:481. [PMID: 21487400 PMCID: PMC3101949 DOI: 10.1038/msb.2011.14] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 02/15/2011] [Indexed: 12/17/2022] Open
Abstract
A given protein sequence can be encoded by an astronomical number of alternative nucleotide sequences. Recent research has revealed that this flexibility provides evolution with multiple ways to tune the efficiency and fidelity of protein translation and folding. Proper functioning of biological cells requires that the process of protein expression be carried out with high efficiency and fidelity. Given an amino-acid sequence of a protein, multiple degrees of freedom still remain that may allow evolution to tune efficiency and fidelity for each gene under various conditions and cell types. Particularly, the redundancy of the genetic code allows the choice between alternative codons for the same amino acid, which, although ‘synonymous,' may exert dramatic effects on the process of translation. Here we review modern developments in genomics and systems biology that have revolutionized our understanding of the multiple means by which translation is regulated. We suggest new means to model the process of translation in a richer framework that will incorporate information about gene sequences, the tRNA pool of the organism and the thermodynamic stability of the mRNA transcripts. A practical demonstration of a better understanding of the process would be a more accurate prediction of the proteome, given the transcriptome at a diversity of biological conditions.
Collapse
|
49
|
Kobbi L, Octobre G, Dias J, Comisso M, Mirande M. Association of Mitochondrial Lysyl-tRNA Synthetase with HIV-1 GagPol Involves Catalytic Domain of the Synthetase and Transframe and Integrase Domains of Pol. J Mol Biol 2011; 410:875-86. [DOI: 10.1016/j.jmb.2011.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/18/2011] [Accepted: 03/02/2011] [Indexed: 11/16/2022]
|
50
|
Havrylenko S, Legouis R, Negrutskii B, Mirande M. Caenorhabditis elegans evolves a new architecture for the multi-aminoacyl-tRNA synthetase complex. J Biol Chem 2011; 286:28476-87. [PMID: 21685384 DOI: 10.1074/jbc.m111.254037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MARS is an evolutionary conserved supramolecular assembly of aminoacyl-tRNA synthetases found in eukaryotes. This complex was thought to be ubiquitous in the deuterostome and protostome clades of bilaterians because similar complexes were isolated from arthropods and vertebrates. However, several features of the component enzymes suggested that in the nematode Caenorhabditis elegans, a species grouped with arthropods in modern phylogeny, this complex might not exist, or should display a significantly different structural organization. C. elegans was also taken as a model system to study in a multicellular organism amenable to experimental approaches, the reason for existence of these supramolecular entities. Here, using a proteomic approach, we have characterized the components of MARS in C. elegans. We show that this organism evolved a specific structural organization of this complex, which contains several bona fide components of the MARS complexes known so far, but also displays significant variations. These data highlight molecular evolution events that took place after radiation of bilaterians. Remarkably, it shows that expansion of MARS assembly in metazoans is not linear, but is the result of additions but also of subtractions along evolution. We then undertook an experimental approach, using inactivation of the endogenous copy of methionyl-tRNA synthetase by RNAi and expression of transgenic variants, to understand the role in complex assembly and the in vivo functionality, of the eukaryotic-specific domains appended to aminoacyl-tRNA synthetases. We show that rescue of the worms and assembly of transgenic variants into MARS rest on the presence of these appended domains.
Collapse
Affiliation(s)
- Svitlana Havrylenko
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | |
Collapse
|