1
|
Pribicevic S, Graham AC, Cafiso DS, Pérez-Lara Á, Jahn R. Intermediate steps in the formation of neuronal SNARE complexes. J Biol Chem 2024; 300:107591. [PMID: 39032647 PMCID: PMC11381810 DOI: 10.1016/j.jbc.2024.107591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/06/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Neuronal exocytosis requires the assembly of three SNARE proteins, syntaxin and SNAP25 on the plasma membrane and synaptobrevin on the vesicle membrane. However, the precise steps in this process and the points at which assembly and fusion are controlled by regulatory proteins are unclear. In the present work, we examine the kinetics and intermediate states during SNARE assembly in vitro using a combination of time resolved fluorescence and EPR spectroscopy. We show that syntaxin rapidly forms a dimer prior to forming the kinetically stable 2:1 syntaxin:SNAP25 complex and that the 2:1 complex is not diminished by the presence of excess SNAP25. Moreover, the 2:1 complex is temperature-dependent with a reduced concentration at 37 °C. The two segments of SNAP25 behave differently. The N-terminal SN1 segment of SNAP25 exhibits a pronounced increase in backbone ordering from the N- to the C-terminus that is not seen in the C-terminal SNAP25 segment SN2. Both the SN1 and SN2 segments of SNAP25 will assemble with syntaxin; however, while the association of the SN1 segment with syntaxin produces a stable 2:2 (SN1:syntaxin) complex, the complex formed between SN2 and syntaxin is largely disordered. Synaptobrevin fails to bind syntaxin alone but will associate with syntaxin in the presence of either the SN1 or SN2 segments; however, the synaptobrevin:syntaxin:SN2 complex remains disordered. Taken together, these data suggest that synaptobrevin and syntaxin do not assemble in the absence of SNAP25 and that the SN2 segment of SNAP25 is the last to enter the SNARE complex.
Collapse
Affiliation(s)
- Sonja Pribicevic
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Abigail C Graham
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - David S Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA.
| | - Ángel Pérez-Lara
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain.
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
2
|
Jahn R, Cafiso DC, Tamm LK. Mechanisms of SNARE proteins in membrane fusion. Nat Rev Mol Cell Biol 2024; 25:101-118. [PMID: 37848589 DOI: 10.1038/s41580-023-00668-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/19/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a family of small conserved eukaryotic proteins that mediate membrane fusion between organelles and with the plasma membrane. SNAREs are directly or indirectly anchored to membranes. Prior to fusion, complementary SNAREs assemble between membranes with the aid of accessory proteins that provide a scaffold to initiate SNARE zippering, pulling the membranes together and mediating fusion. Recent advances have enabled the construction of detailed models describing bilayer transitions and energy barriers along the fusion pathway and have elucidated the structures of SNAREs complexed in various states with regulatory proteins. In this Review, we discuss how these advances are yielding an increasingly detailed picture of the SNARE-mediated fusion pathway, leading from first contact between the membranes via metastable non-bilayer intermediates towards the opening and expansion of a fusion pore. We describe how SNARE proteins assemble into complexes, how this assembly is regulated by accessory proteins and how SNARE complexes overcome the free energy barriers that prevent spontaneous membrane fusion.
Collapse
Affiliation(s)
- Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - David C Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Stefani I, Iwaszkiewicz J, Fasshauer D. Exploring the conformational changes of the Munc18-1/syntaxin 1a complex. Protein Sci 2023; 33:e4870. [PMID: 38109275 PMCID: PMC10895456 DOI: 10.1002/pro.4870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
Neurotransmitters are released from synaptic vesicles, the membrane of which fuses with the plasma membrane upon calcium influx. This membrane fusion reaction is driven by the formation of a tight complex comprising the plasma membrane N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins syntaxin-1a and SNAP-25 with the vesicle SNARE protein synaptobrevin. The neuronal protein Munc18-1 forms a stable complex with syntaxin-1a. Biochemically, syntaxin-1a cannot escape the tight grip of Munc18-1, so formation of the SNARE complex is inhibited. However, Munc18-1 is essential for the release of neurotransmitters in vivo. It has therefore been assumed that Munc18-1 makes the bound syntaxin-1a available for SNARE complex formation. Exactly how this occurs is still unclear, but it is assumed that structural rearrangements occur. Here, we used a series of mutations to specifically weaken the complex at different positions in order to induce these rearrangements biochemically. Our approach was guided through sequence and structural analysis and supported by molecular dynamics simulations. Subsequently, we created a homology model showing the complex in an altered conformation. This conformation presumably represents a more open arrangement of syntaxin-1a that permits the formation of a SNARE complex to be initiated while still bound to Munc18-1. In the future, research should investigate how this central reaction for neuronal communication is controlled by other proteins.
Collapse
Affiliation(s)
- Ioanna Stefani
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| | | | - Dirk Fasshauer
- Department of Computational BiologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
4
|
Wang S, Ma C. Stability profile of the neuronal SNARE complex reflects its potency to drive fast membrane fusion. Biophys J 2022; 121:3081-3102. [PMID: 35810329 PMCID: PMC9463651 DOI: 10.1016/j.bpj.2022.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/24/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) form the SNARE complex to mediate most fusion events of the secretory pathway. The neuronal SNARE complex is featured by its high stability and half-zippered conformation required for driving robust and fast synaptic exocytosis. However, these two features seem to be thermodynamically mutually exclusive. In this study, we have employed temperature-dependent disassociation assays and single-molecule Förster resonance energy transfer (FRET) experiments to analyze the stability and conformation of the neuronal SNARE complex. We reclassified the amino acids of the SNARE motif into four sub-groups (core, core-side I and II, and non-contact). Our data showed that the core residues predominantly contribute to the complex stability to meet a basal requirement for SNARE-mediated membrane fusion, while the core-side residues exert an unbalanced effect on the N- and C-half bundle stability that determines the half-zippered conformation of the neuronal SNARE complex, which would accommodate essential regulations by complexins and synaptotagmins for fast Ca2+-triggered membrane fusion. Furthermore, our data confirmed a strong coupling of folding energy between the N- and C-half assembly of the neuronal SNARE complex, which rationalizes the strong potency of the half-zippered conformation to conduct robust and fast fusion. Overall, these results uncovered that the stability profile of the neuronal SNARE complex reflects its potency to drive fast and robust membrane fusion. Based on these results, we also developed a new parameter, the stability factor (Fs), to characterize the overall stability of the neuronal SNARE complex and resolved a linear correlation between the stability and inter-residue coulombic interactions of the neuronal SNARE complex, which would help rationally design artificial SNARE complexes and remold functional SNARE complexes with desirable stability.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Wang S, Ma C. Neuronal SNARE complex assembly guided by Munc18-1 and Munc13-1. FEBS Open Bio 2022; 12:1939-1957. [PMID: 35278279 PMCID: PMC9623535 DOI: 10.1002/2211-5463.13394] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 01/25/2023] Open
Abstract
Neurotransmitter release by Ca2+ -triggered synaptic vesicle exocytosis is essential for information transmission in the nervous system. The soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) syntaxin-1, SNAP-25, and synaptobrevin-2 form the SNARE complex to bring synaptic vesicles and the plasma membranes together and to catalyze membrane fusion. Munc18-1 and Munc13-1 regulate synaptic vesicle priming via orchestrating neuronal SNARE complex assembly. In this review, we summarize recent advances toward the functions and molecular mechanisms of Munc18-1 and Munc13-1 in guiding neuronal SNARE complex assembly, and discuss the functional similarities and differences between Munc18-1 and Munc13-1 in neurons and their homologs in other intracellular membrane trafficking systems.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
6
|
François-Martin C, Bacle A, Rothman JE, Fuchs PFJ, Pincet F. Cooperation of Conical and Polyunsaturated Lipids to Regulate Initiation and Processing of Membrane Fusion. Front Mol Biosci 2021; 8:763115. [PMID: 34746239 PMCID: PMC8566721 DOI: 10.3389/fmolb.2021.763115] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
The shape of lipids has long been suspected to be a critical determinant for the control of membrane fusion. To experimentally test this assertion, we used conical and malleable lipids and measured their influence on the fusion kinetics. We found that, as previously suspected, both types of lipids accelerate fusion. However, the implicated molecular mechanisms are strikingly different. Malleable lipids, with their ability to change shape with low energy cost, favor fusion by decreasing the overall activation energy. On the other hand, conical lipids, with their small polar head relative to the area occupied by the hydrophobic chains, tend to make fusion less energetically advantageous because they tend to migrate towards the most favorable lipid leaflet, hindering fusion pore opening. They could however facilitate fusion by generating hydrophobic defects on the membranes; this is suggested by the similar trend observed between the experimental rate of fusion nucleation and the surface occupied by hydrophobic defects obtained by molecular simulations. The synergy of dual-process, activation energy and nucleation kinetics, could facilitate membrane fusion regulation in vivo.
Collapse
Affiliation(s)
- Claire François-Martin
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, CNRS, Université PSL, Sorbonne Université, Université de Paris, Paris, France
| | - Amélie Bacle
- Laboratoire Coopératif "Lipotoxicity and Channelopathies-ConicMeds", Université de Poitiers, Poitiers, France
| | - James E Rothman
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, United States.,Nanobiology Institute, Yale School of Medicine, West Haven, CT, United States
| | - Patrick F J Fuchs
- Laboratoire des Biomolécules (LBM), CNRS, Ecole Normale Supérieure, Sorbonne Université, PSL Research University, Paris, France.,UFR Sciences Du Vivant, Université de Paris, Paris, France
| | - Frédéric Pincet
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, CNRS, Université PSL, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
7
|
Tight docking of membranes before fusion represents a metastable state with unique properties. Nat Commun 2021; 12:3606. [PMID: 34127664 PMCID: PMC8203622 DOI: 10.1038/s41467-021-23722-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
Membrane fusion is fundamental to biological processes as diverse as membrane trafficking or viral infection. Proteins catalyzing membrane fusion need to overcome energy barriers to induce intermediate steps in which the integrity of bilayers is lost. Here, we investigate the structural features of tightly docked intermediates preceding hemifusion. Using lipid vesicles in which progression to hemifusion is arrested, we show that the metastable intermediate does not require but is enhanced by divalent cations and is characterized by the absence of proteins and local membrane thickening. Molecular dynamics simulations reveal that thickening is due to profound lipid rearrangements induced by dehydration of the membrane surface. Proteins need to overcome energy barriers to induce intermediate steps in membrane fusion. Using lipid vesicles in which progression to hemifusion is arrested, the authors show that the metastable intermediate is enhanced by divalent cations and is characterized by the absence of proteins and local membrane thickening. Simulations reveal that thickening is induced by dehydration of the membrane surface.
Collapse
|
8
|
Saccardo A, Soloviev M, Ferrari E. A thermo-responsive, self-assembling biointerface for on demand release of surface-immobilised proteins. Biomater Sci 2020; 8:2673-2681. [PMID: 32254844 DOI: 10.1039/c9bm01957j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dedicated chemistries for on-demand capture and release of biomolecules at the solid-liquid interface are required for applications in drug delivery, for the synthesis of switchable surfaces used in analytical devices and for the assembly of next-generation biomaterials with complex architectures and functions. Here we report the engineering of a binary self-assembling polypeptide system for reversible protein capture, immobilisation and controlled thermo-responsive release from a solid surface. The first element of the binary system is a universal protein substrate immobilised on a solid surface. This protein is bio-inspired by the neuronal SNAP25, which is the protein involved in the docking and fusion of synaptic vesicles to the synaptic membrane. The second element is an artificial chimeric protein engineered to include distinct domains from three different proteins: Syntaxin, VAMP and SNAP25. These native proteins constitute the machinery dedicated to vesicle trafficking in eukaryotes. We removed approximately 70% of native protein sequence from these proteins and constructed a protein chimera capable of high affinity interaction and self-assembly with immobilised substrate. The interaction of the two parts of the engineered protein complex is strong but fully-reversible and therefore the chimera can be recombinantly fused as a tag to a protein of interest, to allow spontaneous assembly and stimuli-sensitive release from the surface upon heating at a predetermined temperature. Two thermo-responsive tags are reported: the first presents remarkable thermal stability with melting temperature of the order of 80 °C; the second disassembles at a substantially lower temperature of about 45 °C. The latter is a promising candidate for remote-controlled localised delivery of therapeutic proteins, as physiologically tolerable local increase of temperatures in the 40-45 °C range can be achieved using magnetic fields, infra-red light or focused ultrasound. Importantly, these two novel polypeptides provide a broader blueprint for the engineering of future functional proteins with predictable folding and response to external stimuli.
Collapse
Affiliation(s)
- Angela Saccardo
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK.
| | - Mikhail Soloviev
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Enrico Ferrari
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK.
| |
Collapse
|
9
|
|
10
|
Wang G, Galli T. Reciprocal link between cell biomechanics and exocytosis. Traffic 2018; 19:741-749. [PMID: 29943478 DOI: 10.1111/tra.12584] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/03/2018] [Accepted: 06/03/2018] [Indexed: 12/16/2022]
Abstract
A cell is able to sense the biomechanical properties of the environment such as the rigidity of the extracellular matrix and adapt its tension via regulation of plasma membrane and underlying actomyosin meshwork properties. The cell's ability to adapt to the changing biomechanical environment is important for cellular homeostasis and also cell dynamics such as cell growth and motility. Membrane trafficking has emerged as an important mechanism to regulate cell biomechanics. In this review, we summarize the current understanding of the role of cell mechanics in exocytosis, and reciprocally, the role of exocytosis in regulating cell mechanics. We also discuss how cell mechanics and membrane trafficking, particularly exocytosis, can work together to regulate cell polarity and motility.
Collapse
Affiliation(s)
- Guan Wang
- Membrane Traffic in Healthy & Diseased Brain, Center of Psychiatry and Neurosciences, INSERM U894, Sorbonne Paris-Cité, Université Paris Descartes, Paris, France
| | - Thierry Galli
- Membrane Traffic in Healthy & Diseased Brain, Center of Psychiatry and Neurosciences, INSERM U894, Sorbonne Paris-Cité, Université Paris Descartes, Paris, France
| |
Collapse
|
11
|
Völker JM, Dergai M, Abriata LA, Mingard Y, Ysselstein D, Krainc D, Dal Peraro M, Fischer von Mollard G, Fasshauer D, Koliwer J, Schwake M. Functional assays for the assessment of the pathogenicity of variants of GOSR2, an ER-to-Golgi SNARE involved in progressive myoclonus epilepsies. Dis Model Mech 2017; 10:1391-1398. [PMID: 28982678 PMCID: PMC5769602 DOI: 10.1242/dmm.029132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 10/02/2017] [Indexed: 11/20/2022] Open
Abstract
Progressive myoclonus epilepsies (PMEs) are inherited disorders characterized by myoclonus, generalized tonic-clonic seizures, and ataxia. One of the genes that is associated with PME is the ER-to-Golgi Qb-SNARE GOSR2, which forms a SNARE complex with syntaxin-5, Bet1 and Sec22b. Most PME patients are homozygous for a p.Gly144Trp mutation and develop similar clinical presentations. Recently, a patient who was compound heterozygous for p.Gly144Trp and a previously unseen p.Lys164del mutation was identified. Because this patient presented with a milder disease phenotype, we hypothesized that the p.Lys164del mutation may be less severe compared to p.Gly144Trp. To characterize the effect of the p.Gly144Trp and p.Lys164del mutations, both of which are present in the SNARE motif of GOSR2, we examined the corresponding mutations in the yeast ortholog Bos1. Yeasts expressing the orthologous mutants in Bos1 showed impaired growth, suggesting a partial loss of function, which was more severe for the Bos1 p.Gly176Trp mutation. Using anisotropy and gel filtration, we report that Bos1 p.Gly176Trp and p.Arg196del are capable of complex formation, but with partly reduced activity. Molecular dynamics (MD) simulations showed that the hydrophobic core, which triggers SNARE complex formation, is compromised due to the glycine-to-tryptophan substitution in both GOSR2 and Bos1. In contrast, the deletion of residue p.Lys164 (or p.Arg196del in Bos1) interferes with the formation of hydrogen bonds between GOSR2 and syntaxin-5. Despite these perturbations, all SNARE complexes stayed intact during longer simulations. Thus, our data suggest that the milder course of disease in compound heterozygous PME is due to less severe impairment of the SNARE function. Summary: Mutations in the Qb-SNARE GOSR2 cause progressive myoclonus epilepsies. The authors report the effect of two mutations on SNARE function to investigate their correlation with progression and severity of disease.
Collapse
Affiliation(s)
- Jörn M Völker
- Biochemistry III/Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Mykola Dergai
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Luciano A Abriata
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
| | - Yves Mingard
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Daniel Ysselstein
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, 60611 Chicago, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, 60611 Chicago, USA
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), CH-1015 Lausanne, Switzerland
| | | | - Dirk Fasshauer
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - Judith Koliwer
- Biochemistry III/Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Michael Schwake
- Biochemistry III/Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany .,Department of Neurology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, 60611 Chicago, USA
| |
Collapse
|
12
|
Morey C, Kienle CN, Klöpper TH, Burkhardt P, Fasshauer D. Evidence for a conserved inhibitory binding mode between the membrane fusion assembly factors Munc18 and syntaxin in animals. J Biol Chem 2017; 292:20449-20460. [PMID: 29046354 DOI: 10.1074/jbc.m117.811182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/10/2017] [Indexed: 12/30/2022] Open
Abstract
The membrane fusion necessary for vesicle trafficking is driven by the assembly of heterologous SNARE proteins orchestrated by the binding of Sec1/Munc18 (SM) proteins to specific syntaxin SNARE proteins. However, the precise mode of interaction between SM proteins and SNAREs is debated, as contrasting binding modes have been found for different members of the SM protein family, including the three vertebrate Munc18 isoforms. While different binding modes could be necessary, given their roles in different secretory processes in different tissues, the structural similarity of the three isoforms makes this divergence perplexing. Although the neuronal isoform Munc18a is well-established to bind tightly to both the closed conformation and the N-peptide of syntaxin 1a, thereby inhibiting SNARE complex formation, Munc18b and -c, which have a more widespread distribution, are reported to mainly interact with the N-peptide of their partnering syntaxins and are thought to instead promote SNARE complex formation. We have reinvestigated the interaction between Munc18c and syntaxin 4 (Syx4). Using isothermal titration calorimetry, we found that Munc18c, like Munc18a, binds to both the closed conformation and the N-peptide of Syx4. Furthermore, using a novel kinetic approach, we found that Munc18c, like Munc18a, slows down SNARE complex formation through high-affinity binding to syntaxin. This strongly suggests that secretory Munc18s in general control the accessibility of the bound syntaxin, probably preparing it for SNARE complex assembly.
Collapse
Affiliation(s)
- Czuee Morey
- From the Département des neurosciences fondamentales, Université de Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - C Nickias Kienle
- From the Département des neurosciences fondamentales, Université de Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Tobias H Klöpper
- Whitehat Life Sciences Ltd., 20 Wenlock Road, N1 7GU London, United Kingdom, and
| | - Pawel Burkhardt
- the Marine Biological Association, Citadel Hill Marine Laboratory, Plymouth PL1 2PB, United Kingdom
| | - Dirk Fasshauer
- From the Département des neurosciences fondamentales, Université de Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland,
| |
Collapse
|
13
|
Kliesch TT, Dietz J, Turco L, Halder P, Polo E, Tarantola M, Jahn R, Janshoff A. Membrane tension increases fusion efficiency of model membranes in the presence of SNAREs. Sci Rep 2017; 7:12070. [PMID: 28935937 PMCID: PMC5608890 DOI: 10.1038/s41598-017-12348-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/05/2017] [Indexed: 11/24/2022] Open
Abstract
The large gap in time scales between membrane fusion occurring in biological systems during neurotransmitter release and fusion observed between model membranes has provoked speculations over a large number of possible factors that might explain this discrepancy. One possible reason is an elevated lateral membrane tension present in the presynaptic membrane. We investigated the tension-dependency of fusion using model membranes equipped with a minimal fusion machinery consisting of syntaxin 1, synaptobrevin and SNAP 25. Two different strategies were realized; one based on supported bilayers and the other one employing sessile giant liposomes. In the first approach, isolated patches of planar bilayers derived from giant unilamellar vesicles containing syntaxin 1 and preassembled SNAP 25 (ΔN-complex) were deposited on a dilatable PDMS sheet. In a second approach, lateral membrane tension was controlled through the adhesion of intact giant unilamellar vesicles on a functionalized surface. In both approaches fusion efficiency increases considerably with lateral tension and we identified a threshold tension of 3.4 mN m−1, at which the number of fusion events is increased substantially.
Collapse
Affiliation(s)
| | - Jörn Dietz
- Institute of Physical Chemistry, Georg-August-University, Göttingen, 37077, Germany
| | - Laura Turco
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, 37077, Germany
| | - Partho Halder
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| | - Elena Polo
- Institute of Physical Chemistry, Georg-August-University, Göttingen, 37077, Germany
| | - Marco Tarantola
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, 37077, Germany
| | - Reinhard Jahn
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry, Georg-August-University, Göttingen, 37077, Germany.
| |
Collapse
|
14
|
Dhara M, Mohrmann R, Bruns D. v-SNARE function in chromaffin cells. Pflugers Arch 2017; 470:169-180. [PMID: 28887593 PMCID: PMC5748422 DOI: 10.1007/s00424-017-2066-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023]
Abstract
Vesicle fusion is elementary for intracellular trafficking and release of signal molecules, thus providing the basis for diverse forms of intercellular communication like hormonal regulation or synaptic transmission. A detailed characterization of the mechanisms underlying exocytosis is key to understand how the nervous system integrates information and generates appropriate responses to stimuli. The machinery for vesicular release employs common molecular players in different model systems including neuronal and neuroendocrine cells, in particular members of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) protein family, Sec1/Munc18-like proteins, and other accessory factors. To achieve temporal precision and speed, excitable cells utilize specialized regulatory proteins like synaptotagmin and complexin, whose interplay putatively synchronizes vesicle fusion and enhances stimulus-secretion coupling. In this review, we aim to highlight recent progress and emerging views on the molecular mechanisms, by which constitutively forming SNAREpins are organized in functional, tightly regulated units for synchronized release. Specifically, we will focus on the role of vesicle associated membrane proteins, also referred to as vesicular SNAREs, in fusion and rapid cargo discharge. We will further discuss the functions of SNARE regulators during exocytosis and focus on chromaffin cell as a model system of choice that allows for detailed structure-function analyses and direct measurements of vesicle fusion under precise control of intracellular [Ca]i.
Collapse
Affiliation(s)
- Madhurima Dhara
- Molecular Neurophysiology, CIPMM, Medical Faculty, Saarland University, 66421, Homburg/Saar, Germany
| | - Ralf Mohrmann
- Zentrum für Human- und Molekularbiologie, Saarland University, 66421, Homburg/Saar, Germany
| | - Dieter Bruns
- Molecular Neurophysiology, CIPMM, Medical Faculty, Saarland University, 66421, Homburg/Saar, Germany.
| |
Collapse
|
15
|
Li Y, Wang S, Li T, Zhu L, Xu Y, Ma C. A Stimulation Function of Synaptotagmin-1 in Ternary SNARE Complex Formation Dependent on Munc18 and Munc13. Front Mol Neurosci 2017; 10:256. [PMID: 28860966 PMCID: PMC5559510 DOI: 10.3389/fnmol.2017.00256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022] Open
Abstract
The Ca2+ sensor synaptotagmin-1 (Syt1) plays an essential function in synaptic exocytosis. Recently, Syt1 has been implicated in synaptic vesicle priming, a maturation step prior to Ca2+-triggered membrane fusion that is believed to involve formation of the ternary SNARE complex and require priming proteins Munc18-1 and Munc13-1. However, the mechanisms of Syt1 in synaptic vesicle priming are still unclear. In this study, we found that Syt1 stimulates the transition from the Munc18-1/syntaxin-1 complex to the ternary SNARE complex catalyzed by Munc13-1. This stimulation can be further enhanced in a membrane-containing environment. Further, we showed that Syt1, together with Munc18-1 and Munc13-1, stimulates trans ternary SNARE complex formation on membranes in a manner resistant to disassembly factors NSF and α-SNAP. Disruption of a proposed Syt1/SNARE binding interface strongly abrogated the stimulation function of Syt1. Our results suggest that binding of Syt1 to an intermediate SNARE assembly with Munc18-1 and Munc13-1 is critical for the stimulation function of Syt1 in ternary SNARE complex formation, and this stimulation may underlie the priming function of Syt1 in synaptic exocytosis.
Collapse
Affiliation(s)
- Yun Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Tianzhi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Le Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Yuanyuan Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
16
|
Zhang Y. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers. Protein Sci 2017; 26:1252-1265. [PMID: 28097727 PMCID: PMC5477538 DOI: 10.1002/pro.3116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/03/2017] [Indexed: 01/17/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are universal molecular engines that drive membrane fusion. Particularly, synaptic SNAREs mediate fast calcium-triggered fusion of neurotransmitter-containing vesicles with plasma membranes for synaptic transmission, the basis of all thought and action. During membrane fusion, complementary SNAREs located on two apposed membranes (often called t- and v-SNAREs) join together to assemble into a parallel four-helix bundle, releasing the energy to overcome the energy barrier for fusion. A long-standing hypothesis suggests that SNAREs act like a zipper to draw the two membranes into proximity and thereby force them to fuse. However, a quantitative test of this SNARE zippering hypothesis was hindered by difficulties to determine the energetics and kinetics of SNARE assembly and to identify the relevant folding intermediates. Here, we first review different approaches that have been applied to study SNARE assembly and then focus on high-resolution optical tweezers. We summarize the folding energies, kinetics, and pathways of both wild-type and mutant SNARE complexes derived from this new approach. These results show that synaptic SNAREs assemble in four distinct stages with different functions: slow N-terminal domain association initiates SNARE assembly; a middle domain suspends and controls SNARE assembly; and rapid sequential zippering of the C-terminal domain and the linker domain directly drive membrane fusion. In addition, the kinetics and pathway of the stagewise assembly are shared by other SNARE complexes. These measurements prove the SNARE zippering hypothesis and suggest new mechanisms for SNARE assembly regulated by other proteins.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale School of MedicineYale UniversityNew HavenConnecticut06511
| |
Collapse
|
17
|
Jakhanwal S, Lee CT, Urlaub H, Jahn R. An activated Q-SNARE/SM protein complex as a possible intermediate in SNARE assembly. EMBO J 2017; 36:1788-1802. [PMID: 28483813 DOI: 10.15252/embj.201696270] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/15/2023] Open
Abstract
Assembly of the SNARE proteins syntaxin1, SNAP25, and synaptobrevin into a SNARE complex is essential for exocytosis in neurons. For efficient assembly, SNAREs interact with additional proteins but neither the nature of the intermediates nor the sequence of protein assembly is known. Here, we have characterized a ternary complex between syntaxin1, SNAP25, and the SM protein Munc18-1 as a possible acceptor complex for the R-SNARE synaptobrevin. The ternary complex binds synaptobrevin with fast kinetics, resulting in the rapid formation of a fully zippered SNARE complex to which Munc18-1 remains tethered by the N-terminal domain of syntaxin1. Intriguingly, only one of the synaptobrevin truncation mutants (Syb1-65) was able to bind to the syntaxin1:SNAP25:Munc18-1 complex, suggesting either a cooperative zippering mechanism that proceeds bidirectionally or the progressive R-SNARE binding via an SM template. Moreover, the complex is resistant to disassembly by NSF Based on these findings, we consider the ternary complex as a strong candidate for a physiological intermediate in SNARE assembly.
Collapse
Affiliation(s)
- Shrutee Jakhanwal
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Chung-Tien Lee
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
18
|
Witkowska A, Jahn R. Rapid SNARE-Mediated Fusion of Liposomes and Chromaffin Granules with Giant Unilamellar Vesicles. Biophys J 2017; 113:1251-1259. [PMID: 28400045 PMCID: PMC5607038 DOI: 10.1016/j.bpj.2017.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 11/03/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) proteins are the main catalysts for membrane fusion in the secretory pathway of eukaryotic cells. In vitro, SNAREs are sufficient to mediate effective fusion of both native and artificial membranes. Here we have established, to our knowledge, a new platform for monitoring SNARE-mediated docking and fusion between giant unilamellar vesicles (GUVs) and smaller liposomes or purified secretory granules with high temporal and spatial resolution. Analysis of fusion is restricted to the free-standing part of the GUV-membrane exhibiting low curvature and a lack of surface contact, thus avoiding adhesion-mediated interference with the fusion reaction as in fusion with supported bilayers or surface-immobilized small vesicles. Our results show that liposomes and chromaffin granules fuse with GUVs containing activated SNAREs with only few milliseconds delay between docking and fusion. We conclude that after initial contact in trans, SNAREs alone can complete fusion at a rate close to fast neuronal exocytosis.
Collapse
Affiliation(s)
- Agata Witkowska
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; International Max Planck Research School for Molecular Biology at the University of Göttingen, Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
19
|
Ryu JK, Jahn R, Yoon TY. Review: Progresses in understanding N-ethylmaleimide sensitive factor (NSF) mediated disassembly of SNARE complexes. Biopolymers 2017; 105:518-31. [PMID: 27062050 DOI: 10.1002/bip.22854] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/19/2016] [Accepted: 04/06/2016] [Indexed: 11/09/2022]
Abstract
N-ethylmaleimide sensitive factor (NSF) is a key protein of intracellular membrane traffic. NSF is a highly conserved protein belonging to the ATPases associated with other activities (AAA+ proteins). AAA+ share common domains and all transduce ATP hydrolysis into major conformational movements that are used to carry out conformational work on client proteins. Together with its cofactor SNAP, NSF is specialized on disassembling highly stable SNARE complexes that form after each membrane fusion event. Although essential for all eukaryotic cells, however, the details of this reaction have long been enigmatic. Recently, major progress has been made in both elucidating the structure of NSF/SNARE complexes and in understanding the reaction mechanism. Advances in both cryo EM and single molecule measurements suggest that NSF, together with its cofactor SNAP, imposes a tight grip on the SNARE complex. After ATP hydrolysis and phosphate release, it then builds up mechanical tension that is ultimately used to rip apart the SNAREs in a single burst. Because the AAA domains are extremely well-conserved, the molecular mechanism elucidated for NSF is presumably shared by many other AAA+ ATPases. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 518-531, 2016.
Collapse
Affiliation(s)
- Je-Kyung Ryu
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, CJ, 2628, the Netherlands
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| | - Tae-Young Yoon
- Center for Nanomedicine, Institute for Basic Science (IBS) and Y-IBS Institute, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
20
|
Kinetic barriers to SNAREpin assembly in the regulation of membrane docking/priming and fusion. Proc Natl Acad Sci U S A 2016; 113:10536-41. [PMID: 27601655 DOI: 10.1073/pnas.1604000113] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neurotransmission is achieved by soluble NSF attachment protein receptor (SNARE)-driven fusion of readily releasable vesicles that are docked and primed at the presynaptic plasma membrane. After neurotransmission, the readily releasable pool of vesicles must be refilled in less than 100 ms for subsequent release. Here we show that the initial association of SNARE complexes, SNAREpins, is far too slow to support this rapid refilling owing to an inherently high activation energy barrier. Our data suggest that acceleration of this process, i.e., lowering of the barrier, is physiologically necessary and can be achieved by molecular factors. Furthermore, under zero force, a low second energy barrier transiently traps SNAREpins in a half-zippered state similar to the partial assembly that engages calcium-sensitive regulatory machinery. This result suggests that the barrier must be actively raised in vivo to generate a sufficient pause in the zippering process for the regulators to set in place. We show that the heights of the activation energy barriers can be selectively changed by molecular factors. Thus, it is possible to modify, both in vitro and in vivo, the lifespan of each metastable state. This controllability provides a simple model in which vesicle docking/priming, an intrinsically slow process, can be substantially accelerated. It also explains how the machinery that regulates vesicle fusion can be set in place while SNAREpins are trapped in a half-zippered state.
Collapse
|
21
|
Winkle CC, Taylor KL, Dent EW, Gallo G, Greif KF, Gupton SL. Beyond the cytoskeleton: The emerging role of organelles and membrane remodeling in the regulation of axon collateral branches. Dev Neurobiol 2016; 76:1293-1307. [PMID: 27112549 DOI: 10.1002/dneu.22398] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/11/2016] [Accepted: 04/21/2016] [Indexed: 12/19/2022]
Abstract
The generation of axon collateral branches is a fundamental aspect of the development of the nervous system and the response of axons to injury. Although much has been discovered about the signaling pathways and cytoskeletal dynamics underlying branching, additional aspects of the cell biology of axon branching have received less attention. This review summarizes recent advances in our understanding of key factors involved in axon branching. This article focuses on how cytoskeletal mechanisms, intracellular organelles, such as mitochondria and the endoplasmic reticulum, and membrane remodeling (exocytosis and endocytosis) contribute to branch initiation and formation. Together this growing literature provides valuable insight as well as a platform for continued investigation into how multiple aspects of axonal cell biology are spatially and temporally orchestrated to give rise to axon branches. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1293-1307, 2016.
Collapse
Affiliation(s)
- Cortney C Winkle
- Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina, 27599
| | - Kendra L Taylor
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Erik W Dent
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, 53705
| | - Gianluca Gallo
- Lewis Katz School of Medicine, Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University, Philadelphia, Pennsylvania, 19140
| | - Karen F Greif
- Department of Biology, Bryn Mawr College, Bryn Mawr, Pennsylvania, 19010
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, 27599
| |
Collapse
|
22
|
Wang S, Li Y, Ma C. Synaptotagmin-1 C2B domain interacts simultaneously with SNAREs and membranes to promote membrane fusion. eLife 2016; 5. [PMID: 27083046 PMCID: PMC4878868 DOI: 10.7554/elife.14211] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/14/2016] [Indexed: 12/30/2022] Open
Abstract
Synaptotagmin-1 (Syt1) acts as a Ca2+ sensor for neurotransmitter release through its C2 domains. It has been proposed that Syt1 promotes SNARE-dependent fusion mainly through its C2B domain, but the underlying mechanism is poorly understood. In this study, we show that the C2B domain interacts simultaneously with acidic membranes and SNARE complexes via the top Ca2+-binding loops, the side polybasic patch, and the bottom face in response to Ca2+. Disruption of the simultaneous interactions completely abrogates the triggering activity of the C2B domain in liposome fusion. We hypothesize that the simultaneous interactions endow the C2B domain with an ability to deform local membranes, and this membrane-deformation activity might underlie the functional significance of the Syt1 C2B domain in vivo. DOI:http://dx.doi.org/10.7554/eLife.14211.001 Information travels around the nervous system along cells called neurons, which communicate with each other via connections called synapses. When a signal travelling along one neuron reaches a synapse, it triggers the release of molecules known as neurotransmitters. These molecules are then taken up by the next neuron to pass the signal on. Neurotransmitters are stored in compartments called synaptic vesicles and their release from the first neuron depends on the synaptic vesicles fusing with the membrane that surrounds the cell. This “membrane fusion” process is driven by a group of proteins called the SNARE complex. Membrane fusion is triggered by a sudden increase in the amount of calcium ions in the cell, which leads to an increase in the activity of a protein called synaptotagmin-1. A region of this protein known as the C2B domain is able to detect calcium ions, and it can also bind to the cell membrane and SNARE complex proteins. However, it is not clear what roles these interactions play in driving the release of neurotransmitters. Wang, Li et al. have used a variety of biophysical techniques to study these interactions in more detail using purified proteins and other cell components. The experiments show that all three interactions occur at the same time and are all required for synaptotagmin-1 to trigger membrane fusion. Wang, Li et al. propose that these interactions allow synaptotagmin-1 to bend a section of the cell membrane in response to calcium ions. The experiments also show that the C2B domain interacts more strongly with the SNARE complex than previously thought. A future challenge is to observe whether synaptotagmin-1 works in the same way in living cells. DOI:http://dx.doi.org/10.7554/eLife.14211.002
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Ma L, Rebane AA, Yang G, Xi Z, Kang Y, Gao Y, Zhang Y. Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis. eLife 2015; 4. [PMID: 26701912 PMCID: PMC4744192 DOI: 10.7554/elife.09580] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/22/2015] [Indexed: 12/20/2022] Open
Abstract
Synaptic-soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins couple their stage-wise folding/assembly to rapid exocytosis of neurotransmitters in a Munc18-1-dependent manner. The functions of the different assembly stages in exocytosis and the role of Munc18-1 in SNARE assembly are not well understood. Using optical tweezers, we observed four distinct stages of assembly in SNARE N-terminal, middle, C-terminal, and linker domains (or NTD, MD, CTD, and LD, respectively). We found that SNARE layer mutations differentially affect SNARE assembly. Comparison of their effects on SNARE assembly and on exocytosis reveals that NTD and CTD are responsible for vesicle docking and fusion, respectively, whereas MD regulates SNARE assembly and fusion. Munc18-1 initiates SNARE assembly and structures t-SNARE C-terminus independent of syntaxin N-terminal regulatory domain (NRD) and stabilizes the half-zippered SNARE complex dependent upon the NRD. Our observations demonstrate distinct functions of SNARE domains whose assembly is intimately chaperoned by Munc18-1. DOI:http://dx.doi.org/10.7554/eLife.09580.001 Plants, animals and other eukaryotes transport many large molecules within their cells inside membrane-bound packages called vesicles. These vesicles can fuse with the membrane of a target compartment in the cell to deliver their contents inside, or fuse with the cell’s membrane to release the contents outside of the cell. Membrane fusion is carried out by a group of proteins called SNAREs. These proteins are embedded on the membranes of both the vesicle and its target, and they bind to each other to form a tight complex. This complex docks the vesicle to the target and then acts like a “zipper” to pull the two membranes close enough to fuse. The best-studied SNARE proteins act in nerve cells and fuse vesicles to the cell’s membrane in order to release molecules called neurotransmitters. This process is essential for communication between nerve cells, and relies on a protein called Munc18-1. However, it is not well understood how SNARE proteins assemble into the complex and how Munc18-1 regulates this process. Ma et al. have now used a tool called “optical tweezers” to pull an assembled SNARE complex apart in the laboratory and then observe how it folds and assembles in a step-by-step process. These experiments showed that the complex assembled in four stages and not three as has been reported in previous work. SNARE proteins are made up of four parts called domains, and Ma et al. observed that the N-terminal domains were the first to bind to each other. Next, the binding progressed to the middle domain, then to the C-terminal domain and finally to the linker domain. An intermediate, half-zippered form was also observed. Ma et al. next analysed each domain in more detail and found that the N-terminal and C-terminal domains drive the docking of vesicles to the target membrane, the middle domain is crucial for assembling the SNARE complex correctly, and all three domains regulate the fusing of the membranes. Further experiments showed that Munc18-1 promoted the assembly of new SNARE complexes and stabilized the half-zippered form, rather than stabilizing the complex after it had fully assembled. This study will provide a new tool to examine many other proteins that regulate SNARE assembly, and a basis to understand the role of SNARE proteins in brain activity. DOI:http://dx.doi.org/10.7554/eLife.09580.002
Collapse
Affiliation(s)
- Lu Ma
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Aleksander A Rebane
- Department of Cell Biology, Yale School of Medicine, New Haven, United States.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, United States.,Department of Physics, Yale University, New Haven, United States
| | - Guangcan Yang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States.,Department of Physics, Wenzhou University, Wenzhou, China
| | - Zhiqun Xi
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Yuhao Kang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Ying Gao
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Yongli Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| |
Collapse
|
24
|
Different infectivity of HIV-1 strains is linked to number of envelope trimers required for entry. PLoS Pathog 2015; 11:e1004595. [PMID: 25569556 PMCID: PMC4287578 DOI: 10.1371/journal.ppat.1004595] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/02/2014] [Indexed: 12/13/2022] Open
Abstract
HIV-1 enters target cells by virtue of envelope glycoprotein trimers that are incorporated at low density in the viral membrane. How many trimers are required to interact with target cell receptors to mediate virus entry, the HIV entry stoichiometry, still awaits clarification. Here, we provide estimates of the HIV entry stoichiometry utilizing a combined approach of experimental analyses and mathematical modeling. We demonstrate that divergent HIV strains differ in their stoichiometry of entry and require between 1 to 7 trimers, with most strains depending on 2 to 3 trimers to complete infection. Envelope modifications that perturb trimer structure lead to an increase in the entry stoichiometry, as did naturally occurring antibody or entry inhibitor escape mutations. Highlighting the physiological relevance of our findings, a high entry stoichiometry correlated with low virus infectivity and slow virus entry kinetics. The entry stoichiometry therefore directly influences HIV transmission, as trimer number requirements will dictate the infectivity of virus populations and efficacy of neutralizing antibodies. Thereby our results render consideration of stoichiometric concepts relevant for developing antibody-based vaccines and therapeutics against HIV. Our estimates of the HIV-1 entry stoichiometry, that is the number of envelope glycoprotein trimers needed to mediate fusion of viral and target cell membrane, close an important gap in our understanding of the HIV entry process. As we show, stoichiometric requirements for envelope trimers differ between HIV strains and steer virus entry efficacy and virus entry kinetics. Thus, the entry stoichiometry has important implications for HIV transmission, as demands on trimer numbers will dictate the infectivity of virus populations, target cell preferences and virus inactivation by trimer-targeting inhibitors and neutralizing antibodies. Beyond this, our data contribute to the general understanding of mechanisms and energetic requirements of protein-mediated membrane fusion, as HIV entry proved to follow similar stoichiometries as described for Influenza virus HA and SNARE protein mediated membrane fusion. In summary, our findings provide a relevant contribution towards a refined understanding of HIV-1 entry and pathogenesis with particular importance for ongoing efforts to generate neutralizing antibody based therapeutics and vaccines targeting the HIV-1 envelope trimer.
Collapse
|
25
|
Sadler JBA, Bryant NJ, Gould GW. Characterization of VAMP isoforms in 3T3-L1 adipocytes: implications for GLUT4 trafficking. Mol Biol Cell 2014; 26:530-6. [PMID: 25501368 PMCID: PMC4310743 DOI: 10.1091/mbc.e14-09-1368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The levels of expression, distribution, and association of all of the VAMPs expressed in 3T3-L1 adipocytes are characterized. This is the first systematic analysis of all members of this protein family for any cell type. The fusion of GLUT4-containing vesicles with the plasma membrane of adipocytes is a key facet of insulin action. This process is mediated by the formation of functional soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes between the plasma membrane t-SNARE complex and the vesicle v-SNARE or VAMP. The t-SNARE complex consists of Syntaxin4 and SNAP23, and whereas many studies identify VAMP2 as the v-SNARE, others suggest that either VAMP3 or VAMP8 may also fulfil this role. Here we characterized the levels of expression, distribution, and association of all the VAMPs expressed in 3T3-L1 adipocytes to provide the first systematic analysis of all members of this protein family for any cell type. Despite our finding that all VAMP isoforms form SDS-resistant SNARE complexes with Syntaxin4/SNAP23 in vitro, a combination of levels of expression (which vary by >30-fold), subcellular distribution, and coimmunoprecipitation analyses lead us to propose that VAMP2 is the major v-SNARE involved in GLUT4 trafficking to the surface of 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Jessica B A Sadler
- Henry Wellcome Laboratory of Cell Biology, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Nia J Bryant
- Department of Biology, University of York, Heslington YO10 5DD, United Kingdom
| | - Gwyn W Gould
- Henry Wellcome Laboratory of Cell Biology, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
26
|
Ma J, Kelly L, Ingram J, Price TJ, Meriney SD, Dittrich M. New insights into short-term synaptic facilitation at the frog neuromuscular junction. J Neurophysiol 2014; 113:71-87. [PMID: 25210157 DOI: 10.1152/jn.00198.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Short-term synaptic facilitation occurs during high-frequency stimulation, is known to be dependent on presynaptic calcium ions, and persists for tens of milliseconds after a presynaptic action potential. We have used the frog neuromuscular junction as a model synapse for both experimental and computer simulation studies aimed at testing various mechanistic hypotheses proposed to underlie short-term synaptic facilitation. Building off our recently reported excess-calcium-binding-site model of synaptic vesicle release at the frog neuromuscular junction (Dittrich M, Pattillo JM, King JD, Cho S, Stiles JR, Meriney SD. Biophys J 104: 2751-2763, 2013), we have investigated several mechanisms of short-term facilitation at the frog neuromuscular junction. Our studies place constraints on previously proposed facilitation mechanisms and conclude that the presence of a second class of calcium sensor proteins distinct from synaptotagmin can explain known properties of facilitation observed at the frog neuromuscular junction. We were further able to identify a novel facilitation mechanism, which relied on the persistent binding of calcium-bound synaptotagmin molecules to lipids of the presynaptic membrane. In a real physiological context, both mechanisms identified in our study (and perhaps others) may act simultaneously to cause the experimentally observed facilitation. In summary, using a combination of computer simulations and physiological recordings, we have developed a stochastic computer model of synaptic transmission at the frog neuromuscular junction, which sheds light on the facilitation mechanisms in this model synapse.
Collapse
Affiliation(s)
- Jun Ma
- Biomedical Applications Group, Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania; Joint Carnegie Mellon-University of Pittsburgh PhD Program in Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Lauren Kelly
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Justin Ingram
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Thomas J Price
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Stephen D Meriney
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Markus Dittrich
- Biomedical Applications Group, Pittsburgh Supercomputing Center, Carnegie Mellon University, Pittsburgh, Pennsylvania; Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism. Nat Commun 2013; 4:1705. [PMID: 23591872 PMCID: PMC3644077 DOI: 10.1038/ncomms2692] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 03/01/2013] [Indexed: 01/15/2023] Open
Abstract
Formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex provides mechanical thrust for membrane fusion, but its molecular mechanism is still unclear. Here using magnetic tweezers, we observe mechanical responses of a single neuronal SNARE complex under constant pulling force. Single SNARE complexes may be unzipped with 34 pN force. When rezipping is induced by lowering the force to 11 pN, only a partially assembled state results, with the C-terminal half of the SNARE complex remaining disassembled. Reassembly of the C-terminal half occurs only when the force is further lowered below 11 pN. Thus, mechanical hysteresis, characterized by the unzipping and rezipping cycle of a single SNARE complex, produces the partially assembled state. In this metastable state, unzipping toward the N-terminus is suppressed while zippering toward the C-terminus is initiated as a steep function of force. This ensures the directionality of SNARE-complex formation, making the SNARE complex a robust force-generating machine. Interactions between (SNARE) proteins on vesicle and target membranes provide the force necessary to drive membrane fusion. By applying piconewton forces to single SNARE complexes, the authors identify a partially assembled intermediate state that reveals how force is generated in a consistent direction.
Collapse
|
28
|
Lindau M, Hall BA, Chetwynd A, Beckstein O, Sansom MSP. Coarse-grain simulations reveal movement of the synaptobrevin C-terminus in response to piconewton forces. Biophys J 2013; 103:959-69. [PMID: 23009845 DOI: 10.1016/j.bpj.2012.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 07/20/2012] [Accepted: 08/02/2012] [Indexed: 12/18/2022] Open
Abstract
Fusion of neurosecretory vesicles with the plasma membrane is mediated by SNARE proteins, which transfer a force to the membranes. However, the mechanism by which this force transfer induces fusion pore formation is still unknown. The neuronal vesicular SNARE protein synaptobrevin 2 (syb2) is anchored in the vesicle membrane by a single C-terminal transmembrane (TM) helix. In coarse-grain molecular-dynamics simulations, self-assembly of the membrane occurred with the syb2 TM domain inserted, as expected from experimental data. The free-energy profile for the position of the syb2 membrane anchor in the membrane was determined using umbrella sampling. To predict the free-energy landscapes for a reaction pathway pulling syb2 toward the extravesicular side of the membrane, which is the direction of the force transfer from the SNARE complex, harmonic potentials were applied to the peptide in its unbiased position, pulling it toward new biased equilibrium positions. Application of piconewton forces to the extravesicular end of the TM helix in the simulation detached the synaptobrevin C-terminus from the vesicle's inner-leaflet lipid headgroups and pulled it deeper into the membrane. This C-terminal movement was facilitated and hindered by specific mutations in parallel with experimentally observed facilitation and inhibition of fusion. Direct application of such forces to the intravesicular end of the TM domain resulted in tilting motion of the TM domain through the membrane with an activation energy of ∼70 kJ/mol. The results suggest a mechanism whereby fusion pore formation is induced by movement of the charged syb2 C-terminus within the membrane in response to pulling and tilting forces generated by C-terminal zippering of the SNARE complex.
Collapse
Affiliation(s)
- Manfred Lindau
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA.
| | | | | | | | | |
Collapse
|
29
|
Xiang L, Etxeberria E, den Ende W. Vacuolar protein sorting mechanisms in plants. FEBS J 2013; 280:979-93. [DOI: 10.1111/febs.12092] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 11/08/2012] [Accepted: 12/11/2012] [Indexed: 01/12/2023]
Affiliation(s)
- Li Xiang
- Laboratory of Molecular Plant Biology KU Leuven Belgium
| | - Ed Etxeberria
- Horticulture Department Citrus Research and Education Center University of Florida Lake Alfred FL USA
| | - Wim den Ende
- Laboratory of Molecular Plant Biology KU Leuven Belgium
| |
Collapse
|
30
|
Schäfer IB, Hesketh GG, Bright NA, Gray SR, Pryor PR, Evans PR, Luzio JP, Owen DJ. The binding of Varp to VAMP7 traps VAMP7 in a closed, fusogenically inactive conformation. Nat Struct Mol Biol 2012; 19:1300-9. [PMID: 23104059 PMCID: PMC3605791 DOI: 10.1038/nsmb.2414] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 09/18/2012] [Indexed: 11/29/2022]
Abstract
SNAREs provide energy and specificity to membrane fusion events. Fusogenic trans-SNARE complexes are assembled from glutamine-contributing SNAREs (Q-SNAREs) embedded in one membrane and an arginine-contributing SNARE (R-SNARE) embedded in the other. Regulation of membrane fusion events is crucial for intracellular trafficking. We identify the endosomal protein Varp as an R-SNARE-binding regulator of SNARE complex formation. Varp colocalizes with and binds to VAMP7, an R-SNARE that is involved in both endocytic and secretory pathways. We present the structure of the second ankyrin repeat domain of mammalian Varp in complex with the cytosolic portion of VAMP7. The VAMP7-SNARE motif is trapped between Varp and the VAMP7 longin domain, and hence Varp kinetically inhibits the ability of VAMP7 to form SNARE complexes. This inhibition will be increased when Varp can also bind to other proteins present on the same membrane as VAMP7, such as Rab32-GTP.
Collapse
Affiliation(s)
- Ingmar B Schäfer
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Rizo J, Südhof TC. The Membrane Fusion Enigma: SNAREs, Sec1/Munc18 Proteins, and Their Accomplices—Guilty as Charged? Annu Rev Cell Dev Biol 2012; 28:279-308. [DOI: 10.1146/annurev-cellbio-101011-155818] [Citation(s) in RCA: 318] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390;
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, California 94305;
| |
Collapse
|
32
|
Abstract
Calcium-dependent exocytosis of synaptic vesicles mediates the release of neurotransmitters. Important proteins in this process have been identified such as the SNAREs, synaptotagmins, complexins, Munc18 and Munc13. Structural and functional studies have yielded a wealth of information about the physiological role of these proteins. However, it has been surprisingly difficult to arrive at a unified picture of the molecular sequence of events from vesicle docking to calcium-triggered membrane fusion. Using mainly a biochemical and biophysical perspective, we briefly survey the molecular mechanisms in an attempt to functionally integrate the key proteins into the emerging picture of the neuronal fusion machine.
Collapse
Affiliation(s)
- Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | | |
Collapse
|
33
|
Affiliation(s)
- Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
34
|
Park Y, Hernandez JM, van den Bogaart G, Ahmed S, Holt M, Riedel D, Jahn R. Controlling synaptotagmin activity by electrostatic screening. Nat Struct Mol Biol 2012; 19:991-7. [PMID: 22940675 PMCID: PMC3465474 DOI: 10.1038/nsmb.2375] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/27/2012] [Indexed: 01/24/2023]
Abstract
Exocytosis of neurosecretory vesicles is mediated bythe SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins syntaxin-1, synaptobrevin, and SNAP-25, with synaptotagmin functioning as the major Ca2+-sensor for triggering membrane fusion. Here we show that bovine chromaffin granules readily fuse with large unilamellar liposomes in a SNARE-dependent manner. Fusion is enhanced by Ca2+ but only if the target liposomes contain PI(4,5)P2 and if polyphosphate anions such as nucleotides or pyrophosphate are present. Ca2+-dependent enhancement is mediated by endogenous synaptotagmin-1. Polyphosphates operate by an electrostatic mechanism that reverses an inactivating cis-association of synaptotagmin-1 with its own membrane whereas trans-binding is not affected. Hence, balancing trans- and cis-membrane interactions of synaptotagmin may be a crucial element in the pathway of Ca2+-dependent exocytosis.
Collapse
Affiliation(s)
- Yongsoo Park
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Gao Y, Zorman S, Gundersen G, Xi Z, Ma L, Sirinakis G, Rothman JE, Zhang Y. Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 2012; 337:1340-3. [PMID: 22903523 DOI: 10.1126/science.1224492] [Citation(s) in RCA: 316] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins drive membrane fusion by assembling into a four-helix bundle in a zippering process. Here, we used optical tweezers to observe in a cell-free reconstitution experiment in real time a long-sought SNARE assembly intermediate in which only the membrane-distal amino-terminal half of the bundle is assembled. Our findings support the zippering hypothesis, but suggest that zippering proceeds through three sequential binary switches, not continuously, in the amino- and carboxyl-terminal halves of the bundle and the linker domain. The half-zippered intermediate was stabilized by externally applied force that mimicked the repulsion between apposed membranes being forced to fuse. This intermediate then rapidly and forcefully zippered, delivering free energy of 36 k(B)T (where k(B) is Boltzmann's constant and T is temperature) to mediate fusion.
Collapse
Affiliation(s)
- Ying Gao
- Department of Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lipid interaction of the C terminus and association of the transmembrane segments facilitate atlastin-mediated homotypic endoplasmic reticulum fusion. Proc Natl Acad Sci U S A 2012; 109:E2146-54. [PMID: 22802620 DOI: 10.1073/pnas.1208385109] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The homotypic fusion of endoplasmic reticulum (ER) membranes is mediated by atlastin (ATL), which consists of an N-terminal cytosolic domain containing a GTPase module and a three-helix bundle followed by two transmembrane (TM) segments and a C-terminal tail (CT). Fusion depends on a GTP hydrolysis-induced conformational change in the cytosolic domain. Here, we show that the CT and TM segments also are required for efficient fusion and provide insight into their mechanistic roles. The essential feature of the CT is a conserved amphipathic helix. A synthetic peptide corresponding to the helix, but not to unrelated amphipathic helices, can act in trans to restore the fusion activity of tailless ATL. The CT promotes vesicle fusion by interacting directly with and perturbing the lipid bilayer without causing significant lysis. The TM segments do not serve as mere membrane anchors for the cytosolic domain but rather mediate the formation of ATL oligomers. Point mutations in either the C-terminal helix or the TMs impair ATL's ability to generate and maintain ER morphology in vivo. Our results suggest that protein-lipid and protein-protein interactions within the membrane cooperate with the conformational change of the cytosolic domain to achieve homotypic ER membrane fusion.
Collapse
|
37
|
Hernandez JM, Stein A, Behrmann E, Riedel D, Cypionka A, Farsi Z, Walla PJ, Raunser S, Jahn R. Membrane fusion intermediates via directional and full assembly of the SNARE complex. Science 2012; 336:1581-4. [PMID: 22653732 PMCID: PMC3677693 DOI: 10.1126/science.1221976] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cellular membrane fusion is thought to proceed through intermediates including docking of apposed lipid bilayers, merging of proximal leaflets to form a hemifusion diaphragm, and fusion pore opening. A membrane-bridging four-helix complex of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediates fusion. However, how assembly of the SNARE complex generates docking and other fusion intermediates is unknown. Using a cell-free reaction, we identified intermediates visually and then arrested the SNARE fusion machinery when fusion was about to begin. Partial and directional assembly of SNAREs tightly docked bilayers, but efficient fusion and an extended form of hemifusion required assembly beyond the core complex to the membrane-connecting linkers. We propose that straining of lipids at the edges of an extended docking zone initiates fusion.
Collapse
Affiliation(s)
- Javier M. Hernandez
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Alexander Stein
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Elmar Behrmann
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Dietmar Riedel
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Anna Cypionka
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- AG Biomolecular Spectroscopy and Single-Molecule Detection, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Zohreh Farsi
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Peter J. Walla
- AG Biomolecular Spectroscopy and Single-Molecule Detection, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
- Department of Biophysical Chemistry, Institute for Physical and Theoretical Chemistry, Technical University of Braunschweig, Hans-Sommer-Str. 10, 38106 Braunschweig, Germany
| | - Stefan Raunser
- Department of Physical Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
38
|
Gofman Y, Haliloglu T, Ben-Tal N. Monte Carlo simulations of peptide-membrane interactions with the MCPep web server. Nucleic Acids Res 2012; 40:W358-63. [PMID: 22695797 PMCID: PMC3394254 DOI: 10.1093/nar/gks577] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The MCPep server (http://bental.tau.ac.il/MCPep/) is designed for non-experts wishing to perform Monte Carlo (MC) simulations of helical peptides in association with lipid membranes. MCPep is a web implementation of a previously developed MC simulation model. The model has been tested on a variety of peptides and protein fragments. The simulations successfully reproduced available empirical data and provided new molecular insights, such as the preferred locations of peptides in the membrane and the contribution of individual amino acids to membrane association. MCPep simulates the peptide in the aqueous phase and membrane environments, both described implicitly. In the former, the peptide is subjected solely to internal conformational changes, and in the latter, each MC cycle includes additional external rigid body rotational and translational motions to allow the peptide to change its location in the membrane. The server can explore the interaction of helical peptides of any amino-acid composition with membranes of various lipid compositions. Given the peptide’s sequence or structure and the natural width and surface charge of the membrane, MCPep reports the main determinants of peptide–membrane interactions, e.g. average location and orientation in the membrane, free energy of membrane association and the peptide’s helical content. Snapshots of example simulations are also provided.
Collapse
Affiliation(s)
- Yana Gofman
- Helmholtz-Zentrum, Department of Structure Research on Macromolecules, 21502 Geesthacht, Germany
| | | | | |
Collapse
|
39
|
Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. Proc Natl Acad Sci U S A 2012; 109:E1609-18. [PMID: 22589300 DOI: 10.1073/pnas.1119442109] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used X-ray diffraction on the rhombohedral phospholipid phase to reconstruct stalk structures in different pure lipids and lipid mixtures with unprecedented resolution, enabling a quantitative analysis of geometry, as well as curvature and hydration energies. Electron density isosurfaces are used to study shape and curvature properties of the bent lipid monolayers. We observe that the stalk structure is highly universal in different lipid systems. The associated curvatures change in a subtle, but systematic fashion upon changes in lipid composition. In addition, we have studied the hydration interaction prior to the transition from the lamellar to the stalk phase. The results indicate that facilitating dehydration is the key to promote stalk formation, which becomes favorable at an approximately constant interbilayer separation of 9.0 ± 0.5 Å for the investigated lipid compositions.
Collapse
|
40
|
Liu W, Stout RF, Parpura V. Ternary SNARE complexes in parallel versus anti-parallel orientation: examination of their disassembly using single-molecule force spectroscopy. Cell Calcium 2012; 52:241-9. [PMID: 22525946 DOI: 10.1016/j.ceca.2012.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/25/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
Interactions between the proteins of the ternary soluble N-ethyl maleimide-sensitive fusion protein attachment protein receptor (SNARE) complex, synaptobrevin 2 (Sb2), syntaxin 1A (Sx1A) and synaptosome-associated protein of 25 kDa (SNAP25) can be readily assessed using force spectroscopy single-molecule measurements. We studied interactions during the disassembly of the ternary SNARE complex pre-formed by binding Sb2 in parallel or anti-parallel orientations to the binary Sx1A-SNAP25B acceptor complex. We determined the spontaneous dissociation lifetimes and found that the stability of the anti-parallel ternary SNARE complex is ∼1/3 less than that of the parallel complex. While the free energies were very similar, within 0.5 k(B)T, for both orientations, the enthalpy changes (42.1 k(B)T and 39.8 k(B)T, for parallel and anti-parallel orientations, respectively) indicate that the parallel ternary complex is energetically advantageous by 2.3 k(B)T. Indeed, both ternary SNARE complex orientations were much more stable (by ∼4-13 times) and energetically favorable (by ∼9-13 k(B)T) than selected binary complexes, constituents of the ternary complex, in both orientations. We propose a model which considers the geometry for the vesicle approach to the plasma membrane with favorable energies and stability as the basis for preferential usage of the parallel ternary SNARE complex in exocytosis.
Collapse
Affiliation(s)
- Wei Liu
- Department of Neurobiology, Center for Glial Biology in Medicine, Atomic Force Microscopy & Nanotechnology Laboratories, Civitan International Research Center, Evelyn F. McKnight Brain Institute, University of Alabama, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
41
|
Ghai R, Falconer RJ, Collins BM. Applications of isothermal titration calorimetry in pure and applied research--survey of the literature from 2010. J Mol Recognit 2012; 25:32-52. [PMID: 22213449 DOI: 10.1002/jmr.1167] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Isothermal titration calorimetry (ITC) is a biophysical technique for measuring the formation and dissociation of molecular complexes and has become an invaluable tool in many branches of science from cell biology to food chemistry. By measuring the heat absorbed or released during bond formation, ITC provides accurate, rapid, and label-free measurement of the thermodynamics of molecular interactions. In this review, we survey the recent literature reporting the use of ITC and have highlighted a number of interesting studies that provide a flavour of the diverse systems to which ITC can be applied. These include measurements of protein-protein and protein-membrane interactions required for macromolecular assembly, analysis of enzyme kinetics, experimental validation of molecular dynamics simulations, and even in manufacturing applications such as food science. Some highlights include studies of the biological complex formed by Staphylococcus aureus enterotoxin C3 and the murine T-cell receptor, the mechanism of membrane association of the Parkinson's disease-associated protein α-synuclein, and the role of non-specific tannin-protein interactions in the quality of different beverages. Recent developments in automation are overcoming limitations on throughput imposed by previous manual procedures and promise to greatly extend usefulness of ITC in the future. We also attempt to impart some practical advice for getting the most out of ITC data for those researchers less familiar with the method.
Collapse
Affiliation(s)
- Rajesh Ghai
- Institute for Molecular Bioscience (IMB), University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | |
Collapse
|
42
|
Mohrmann R, Sørensen JB. SNARE requirements en route to exocytosis: from many to few. J Mol Neurosci 2012; 48:387-94. [PMID: 22427188 DOI: 10.1007/s12031-012-9744-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/29/2012] [Indexed: 12/30/2022]
Abstract
Although it has been known for almost two decades that the ternary complex of N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) constitutes the functional unit driving membrane fusion, our knowledge about the dynamical arrangement and organization of SNARE proteins and their complexes before and during vesicle exocytosis is still limited. Here, we review recent progress in this expanding field with emphasis on the question of fusion complex stoichiometry, i.e., how many SNARE proteins and complexes are needed for the fusion of a vesicle with the plasma membrane.
Collapse
Affiliation(s)
- Ralf Mohrmann
- Department of Physiology, University of Saarland, Homburg, Germany.
| | | |
Collapse
|
43
|
Risselada HJ, Grubmüller H. How SNARE molecules mediate membrane fusion: recent insights from molecular simulations. Curr Opin Struct Biol 2012; 22:187-96. [PMID: 22365575 DOI: 10.1016/j.sbi.2012.01.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 10/28/2022]
Abstract
SNARE molecules are the core constituents of the protein machinery that facilitate fusion of synaptic vesicles with the presynaptic plasma membrane, resulting in the release of neurotransmitter. On a molecular level, SNARE complexes seem to play a quite versatile and involved role during all stages of fusion. In addition to merely triggering fusion by forcing the opposing membranes into close proximity, SNARE complexes are now seen to also overcome subsequent fusion barriers and to actively guide the fusion reaction up to the expansion of the fusion pore. Here, we review recent advances in the understanding of SNARE-mediated membrane fusion by molecular simulations.
Collapse
Affiliation(s)
- Herre Jelger Risselada
- Theoretical Molecular Biophysics Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | |
Collapse
|
44
|
Collins R, Holz R, Zimmerberg J. 5.14 The Biophysics of Membrane Fusion. COMPREHENSIVE BIOPHYSICS 2012. [PMCID: PMC7151979 DOI: 10.1016/b978-0-12-374920-8.00523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A crucial interplay between protein conformations and lipid membrane energetics emerges as the guiding principle for the regulation and mechanism of membrane fusion in biological systems. As some of the basics of fusion become clear, a myriad of compelling questions come to the fore. Is the interior of the fusion pore protein or lipid? Why is synaptic release so fast? Why is PIP2 needed for exocytosis? How does fusion peptide insertion lead to fusion of viruses to cell membranes? What role does the TMD play? How can studies on membrane fission contribute to our understanding of membrane fusion? What exactly are SNARE proteins doing?
Collapse
|
45
|
Liu W, Montana V, Parpura V, Mohideen U. Single-molecule measurements of dissociation rates and energy landscapes of binary trans snare complexes in parallel versus antiparallel orientation. Biophys J 2011; 101:1854-62. [PMID: 22004738 PMCID: PMC3192972 DOI: 10.1016/j.bpj.2011.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/27/2011] [Accepted: 08/11/2011] [Indexed: 10/16/2022] Open
Abstract
Interactions between synaptobrevin 2 (Sb2) and syntaxin 1A (Sx1A) can be readily isolated and studied with the use of force spectroscopy single-molecule measurements. We studied interactions between Sx1A and Sb2 in two different orientations (parallel and antiparallel) using four different terminus configurations of these proteins. Force-loading experiments indicated that protein pairs in any configuration/orientation are zippered. We measured the extension and force for disassembly of these interactions, calculated the spontaneous dissociation lifetimes, and determined their free energies, enthalpies, and entropies. Although the free energies were very similar for all four configurations (∼28 k(B)T (Eyring model) and ∼20 k(B)T (Kramers model)), the enthalpy changes of binary Sx1A-Sb2 interactions varied between 24.7 k(B)T and 33.1 k(B)T. This variation is consistent with the conformation changes that occur during disassembly of the various protein terminus configurations, as verified by alterations in the extension. The parallel interactions appear to be energetically somewhat advantageous over antiparallel configurations/orientation, especially when the N-termini of Sx1A-Sb2 are left to interact freely.
Collapse
Affiliation(s)
- Wei Liu
- Department of Physics and Astronomy, University of California, Riverside, California
- Center for Nanoscale Science and Engineering, University of California, Riverside, California
| | - Vedrana Montana
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
- Center for Glial-Neuronal Interactions, University of California, Riverside, California
| | - Vladimir Parpura
- Department of Physics and Astronomy, University of California, Riverside, California
- Department of Cell Biology and Neuroscience, University of California, Riverside, California
- Center for Glial-Neuronal Interactions, University of California, Riverside, California
- Center for Nanoscale Science and Engineering, University of California, Riverside, California
| | - U. Mohideen
- Department of Physics and Astronomy, University of California, Riverside, California
- Center for Nanoscale Science and Engineering, University of California, Riverside, California
| |
Collapse
|
46
|
Primordial neurosecretory apparatus identified in the choanoflagellate Monosiga brevicollis. Proc Natl Acad Sci U S A 2011; 108:15264-9. [PMID: 21876177 DOI: 10.1073/pnas.1106189108] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
SNARE protein-driven secretion of neurotransmitters from synaptic vesicles is at the center of neuronal communication. In the absence of the cytosolic protein Munc18-1, synaptic secretion comes to a halt. Although it is believed that Munc18-1 orchestrates SNARE complexes, its mode of action is still a matter of debate. In particular, it has been challenging to clarify the role of a tight Munc18/syntaxin 1 complex, because this interaction interferes strongly with syntaxin's ability to form a SNARE complex. In this complex, two regions of syntaxin, the N-peptide and the remainder in closed conformation, bind to Munc18 simultaneously. Until now, this binary complex has been reported for neuronal tissues only, leading to the hypothesis that it might be a specialization of the neuronal secretion apparatus. Here we aimed, by comparing the core secretion machinery of the unicellular choanoflagellate Monosiga brevicollis with that of animals, to reconstruct the ancestral function of the Munc18/syntaxin1 complex. We found that the Munc18/syntaxin 1 complex from M. brevicollis is structurally and functionally highly similar to the vertebrate complex, suggesting that it constitutes a fundamental step in the reaction pathway toward SNARE assembly. We thus propose that the primordial secretion machinery of the common ancestor of choanoflagellates and animals has been co-opted for synaptic roles during the rise of animals.
Collapse
|
47
|
Two synaptobrevin molecules are sufficient for vesicle fusion in central nervous system synapses. Proc Natl Acad Sci U S A 2011; 108:14318-23. [PMID: 21844343 DOI: 10.1073/pnas.1101818108] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exocytosis of synaptic vesicles (SVs) during fast synaptic transmission is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly formed by the coil-coiling of three members of this protein family: vesicle SNARE protein, synaptobrevin 2 (syb2), and the presynaptic membrane SNAREs syntaxin-1A and SNAP-25. However, it is controversially debated how many SNARE complexes are minimally needed for SV priming and fusion. To quantify this effective number, we measured the fluorescence responses from single fusing vesicles expressing pHluorin (pHl), a pH-sensitive variant of GFP, fused to the luminal domain of the vesicular SNARE syb2 (spH) in cultured hippocampal neurons lacking endogenous syb2. Fluorescence responses were quantal, with the unitary signals precisely corresponding to single pHluorin molecules. Using this approach we found that two copies of spH per SV fully rescued evoked fusion whereas SVs expressing only one spH were unable to rapidly fuse upon stimulation. Thus, two syb2 molecules and likely two SNARE complexes are necessary and sufficient for SV fusion during fast synaptic transmission.
Collapse
|
48
|
Domanska MK, Kiessling V, Tamm LK. Docking and fast fusion of synaptobrevin vesicles depends on the lipid compositions of the vesicle and the acceptor SNARE complex-containing target membrane. Biophys J 2011; 99:2936-46. [PMID: 21044591 DOI: 10.1016/j.bpj.2010.09.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/30/2010] [Accepted: 09/01/2010] [Indexed: 10/18/2022] Open
Abstract
The influence of the lipid environment on docking and fusion of synaptobrevin 2 (Syb2) vesicles with target SNARE complex membranes was examined in a planar supported membrane fusion assay with high time-resolution. Previously, we showed that approximately eight SNARE complexes are required to fuse phosphatidylcholine (PC) and cholesterol model membranes in ∼20 ms. Here we present experiments, in which phosphatidylserine (PS) and phosphatidylethanolamine (PE) were added to mixtures of PC/cholesterol in different proportions in the Syb2 vesicle membranes only or in both the supported bilayers and the Syb2 vesicles. We found that PS and PE both reduce the probability of fusion and that this reduction is fully accounted for by the lipid composition in the vesicle membrane. However, the docking efficiency increases when the PE content in the vesicle (and target membrane) is increased from 0 to 30%. The fraction of fast-activating SNARE complexes decreases with increasing PE content. As few as three SNARE complexes are sufficient to support membrane fusion when at least 5% PS and 10% PE are present in both membranes or 5% and 30% PE are present in the vesicle membrane only. Despite the smaller number of required SNAREs, the SNARE activation and fusion rates are almost as fast as previously reported in reconstituted PC/cholesterol bilayers, i.e., ~10 and ~20 ms, respectively [corrected].
Collapse
Affiliation(s)
- Marta K Domanska
- Center for Membrane Biology and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | | | | |
Collapse
|
49
|
Falconer RJ, Collins BM. Survey of the year 2009: applications of isothermal titration calorimetry. J Mol Recognit 2010; 24:1-16. [DOI: 10.1002/jmr.1073] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Peng RW, Abellan E, Fussenegger M. Differential effect of exocytic SNAREs on the production of recombinant proteins in mammalian cells. Biotechnol Bioeng 2010; 108:611-20. [PMID: 21246508 DOI: 10.1002/bit.22986] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 09/29/2010] [Accepted: 10/18/2010] [Indexed: 01/09/2023]
Abstract
Mammalian cells play a dominant role in the industrial production of biopharmaceutical proteins. However, the productivity of producer cells is often hindered by a bottleneck in the saturated secretory pathway, where a sophisticated mechanism of vesicle trafficking is mediated by numerous proteins and their complexes, among which are the cross-kingdom conserved SNAREs [soluble NSF (N-ethylmaleimide-sensitive factor) receptor]. The SNAREs assemble into complexes by means of four interactive α-helices and, thus, trigger the fusion of transport vesicles with the respective target membranes. We report that the transgenic expression of exocytic SNAREs, which control the fusion of secretory vesicles to the plasma membrane, differentially impacts the secretory capacity of HEK-293, HeLa, and CHO-K1 cells. While other exocytic SNAREs have no effect or a negative effect, SNAP-23 [synaptosome-associated protein of 23 kDa] and VAMP8 [vesicle-associated membrane protein 8] specifically increase the production of recombinant proteins when they are ectopically and stably expressed in mammalian cells. The targeted and effective intervention in the secretory capacity of SNARE proteins is a novel engineering strategy, which could lead to the development of new therapies by increasing the production of biopharmaceutical proteins or by boosting the secretion of cell implants in cell therapy initiatives.
Collapse
Affiliation(s)
- Ren-Wang Peng
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland
| | | | | |
Collapse
|