1
|
Valiuska S, Elder KK, McKay SJ, Ciudad CJ, Noé V, Brooks TA. Combinatorial Anti-Cancer Effect of Polypurine Reverse Hoogsteen Hairpins against KRAS and MYC Targeting in Prostate and Pancreatic Cancer Cell Lines. Genes (Basel) 2024; 15:1332. [PMID: 39457457 PMCID: PMC11507358 DOI: 10.3390/genes15101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Introduction: KRAS and MYC are proto-oncogenes that are strictly regulated in healthy cells that have key roles in several processes such as cell growth, proliferation, differentiation, or apoptosis. These genes are tightly interconnected, and their dysregulation can lead to cancer progression. We previously individually targeted these oncogenes using Polypurine Reverse Hoogsteen (PPRH) hairpins, mostly targeting the complementary strand of G-quadruplex-forming sequences. We validated them in vitro in different cancer cell lines with deregulated KRAS and/or MYC. In this work we focused on our understanding of the cooperative dynamics between these oncogenes, by investigating the combined impact of PPRHs targeting KRAS and MYC in pancreatic and prostate cancer cells. Results: The combinations had a modulatory impact on the expression of both oncogenes, with transcriptional and translational downregulation occurring five days post-treatment. Out of the four tested PPRHs, MYC-targeting PPRHs, especially HpMYC-G4-PR-C directed against the promoter, showed a greater cytotoxic and expression modulation effect. When both KRAS- and MYC-targeting PPRHs were applied in combination, a synergistic reduction in cell viability was observed. Conclusion: The simultaneous targeting of KRAS and MYC demonstrates efficacy in gene modulation, thus in decreasing cell proliferation and viability.
Collapse
Affiliation(s)
- Simonas Valiuska
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona (UB), 08028 Barcelona, Spain; (S.V.); (C.J.C.)
- Instituto de Nanociencia y Nanotecnología (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Kayla K. Elder
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA; (K.K.E.); (S.J.M.)
| | - Steven J. McKay
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA; (K.K.E.); (S.J.M.)
| | - Carlos J. Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona (UB), 08028 Barcelona, Spain; (S.V.); (C.J.C.)
- Instituto de Nanociencia y Nanotecnología (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona (UB), 08028 Barcelona, Spain; (S.V.); (C.J.C.)
- Instituto de Nanociencia y Nanotecnología (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Tracy A. Brooks
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA; (K.K.E.); (S.J.M.)
| |
Collapse
|
2
|
Ciudad CJ, Valiuska S, Rojas JM, Nogales-Altozano P, Aviñó A, Eritja R, Chillón M, Sevilla N, Noé V. Polypurine reverse hoogsteen hairpins as a therapeutic tool for SARS-CoV-2 infection. J Biol Chem 2024; 300:107884. [PMID: 39395809 PMCID: PMC11570937 DOI: 10.1016/j.jbc.2024.107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
Although the COVID-19 pandemic was declared no longer a global emergency by the World Health Organization in May 2023, SARS-CoV-2 is still infecting people across the world. Many therapeutic oligonucleotides such as ASOs, siRNAs, or CRISPR-based systems emerged as promising antiviral strategies for the treatment of SARS-CoV-2. In this work, we explored the inhibitory potential on SARS-CoV-2 replication of Polypurine Reverse Hoogsteen Hairpins (PPRHs), CC1-PPRH, and CC3-PPRH, targeting specific polypyrimidine sequences within the replicase and Spike regions, respectively, and previously validated for COVID-19 diagnosis. Both PPRHs are bound to their target sequences in the viral genome with high affinity in the order of nM. In vitro, both PPRHs reduced viral replication by more than 92% when transfected into VERO-E6 cells 24 h prior to infection with SARS-CoV-2. In vivo intranasal administration of CC1-PPRH in K18-hACE2 mice expressing the human ACE receptor protected all the animals from SARS-CoV-2 infection. The properties of PPRHs position them as promising candidates for the development of novel therapeutics against SARS-CoV-2 and other viral infections.
Collapse
Affiliation(s)
- Carlos J Ciudad
- Department of Biochemistry & Physiology, School Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona, Spain.
| | - Simonas Valiuska
- Department of Biochemistry & Physiology, School Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - José Manuel Rojas
- Centro de Investigación en Sanidad Animal-CISA, INIA, CSIC, Madrid, Spain
| | | | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia, CSIC, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Ramón Eritja
- Institute for Advanced Chemistry of Catalonia, CSIC, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Chillón
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal-CISA, INIA, CSIC, Madrid, Spain
| | - Verónique Noé
- Department of Biochemistry & Physiology, School Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Isanta B, Delgado A, Ciudad CJ, Busquets MA, Griera R, Llor N, Noé V. Synthesis and Validation of TRIFAPYs as a Family of Transfection Agents for Therapeutic Oligonucleotides. Biomolecules 2024; 14:390. [PMID: 38672408 PMCID: PMC11048556 DOI: 10.3390/biom14040390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Transfection agents play a crucial role in facilitating the uptake of nucleic acids into eukaryotic cells offering potential therapeutic solutions for genetic disorders. However, progress in this field needs the development of improved systems that guarantee efficient transfection. Here, we describe the synthesis of a set of chemical delivery agents (TRIFAPYs) containing alkyl chains of different lengths based on the 1,3,5-tris[(4-alkyloxy-1pyridinio)methyl]benzene tribromide structure. Their delivery properties for therapeutic oligonucleotides were evaluated using PolyPurine Reverse Hoogsteen hairpins (PPRHs) as a silencing tool. The binding of liposomes to PPRHs was evaluated by retardation assays in agarose gels. The complexes had a size of 125 nm as determined by DLS, forming well-defined concentrical vesicles as visualized by Cryo-TEM. The prostate cancer cell line PC-3 was used to study the internalization of the nanoparticles by fluorescence microscopy and flow cytometry. The mechanism of entrance involved in the cellular uptake was mainly by clathrin-mediated endocytosis. Cytotoxicity analyses determined the intrinsic toxicity caused by each TRIFAPY and the effect on cell viability upon transfection of a specific PPRH (HpsPr-C) directed against the antiapoptotic target survivin. TRIFAPYs C12-C18 were selected to expand these studies in the breast cancer cell line SKBR-3 opening the usage of TRIFAPYs for both sexes and, in the hCMEC/D3 cell line, as a model for the blood-brain barrier. The mRNA levels of survivin decreased, while apoptosis levels increased upon the transfection of HpsPr-C with these TRIFAPYs in PC-3 cells. Therefore, TRIFAPYs can be considered novel lipid-based vehicles for the delivery of therapeutic oligonucleotides.
Collapse
Affiliation(s)
- Berta Isanta
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (B.I.); (R.G.); (N.L.)
| | - Ana Delgado
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| | - Carlos J. Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Nanoscience and Nanotechnology Institute, IN2UB, University of Barcelona, 08028 Barcelona, Spain;
| | - Mª Antònia Busquets
- Nanoscience and Nanotechnology Institute, IN2UB, University of Barcelona, 08028 Barcelona, Spain;
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Rosa Griera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (B.I.); (R.G.); (N.L.)
- Nanoscience and Nanotechnology Institute, IN2UB, University of Barcelona, 08028 Barcelona, Spain;
| | - Núria Llor
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (B.I.); (R.G.); (N.L.)
- Nanoscience and Nanotechnology Institute, IN2UB, University of Barcelona, 08028 Barcelona, Spain;
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Nanoscience and Nanotechnology Institute, IN2UB, University of Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|
4
|
López-Aguilar E, Fernández-Nogueira P, Fuster G, Carbó N, Ciudad CJ, Noé V. In Vitro and In Vivo Effects of the Combination of Polypurine Reverse Hoogsteen Hairpins against HER-2 and Trastuzumab in Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24087073. [PMID: 37108234 PMCID: PMC10139100 DOI: 10.3390/ijms24087073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Therapeutic oligonucleotides are powerful tools for the inhibition of potential targets involved in cancer. We describe the effect of two Polypurine Reverse Hoogsteen (PPRH) hairpins directed against the ERBB2 gene, which is overexpressed in positive HER-2 breast tumors. The inhibition of their target was analyzed by cell viability and at the mRNA and protein levels. The combination of these specific PPRHs with trastuzumab was also explored in breast cancer cell lines, both in vitro and in vivo. PPRHs designed against two intronic sequences of the ERBB2 gene decreased the viability of SKBR-3 and MDA-MB-453 breast cancer cells. The decrease in cell viability was associated with a reduction in ERBB2 mRNA and protein levels. In combination with trastuzumab, PPRHs showed a synergic effect in vitro and reduced tumor growth in vivo. These results represent the preclinical proof of concept of PPRHs as a therapeutic tool for breast cancer.
Collapse
Affiliation(s)
- Ester López-Aguilar
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Patricia Fernández-Nogueira
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Gemma Fuster
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IrisCC), 08500 Vic, Spain
- Department of Biosciences, Faculty of Sciences, Technology and Engineering, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), 08500 Vic, Spain
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| | - Neus Carbó
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine, Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| | - Carlos J Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona (IN2UB), 08028 Barcelona, Spain
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona (IN2UB), 08028 Barcelona, Spain
| |
Collapse
|
5
|
Delgado A, Griera R, Llor N, López-Aguilar E, Busquets MA, Noé V, Ciudad CJ. Trioleyl Pyridinium, a Cationic Transfection Agent for the Lipofection of Therapeutic Oligonucleotides into Mammalian Cells. Pharmaceutics 2023; 15:pharmaceutics15020420. [PMID: 36839742 PMCID: PMC9960667 DOI: 10.3390/pharmaceutics15020420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND One of the most significant limitations that therapeutic oligonucleotides present is the development of specific and efficient delivery vectors for the internalization of nucleic acids into cells. Therefore, there is a need for the development of new transfection agents that ensure a proper and efficient delivery into mammalian cells. METHODS We describe the synthesis of 1,3,5-tris[(4-oelyl-1-pyridinio)methyl]benzene tribromide (TROPY) and proceeded to the validation of its binding capacity toward oligonucleotides, the internalization of DNA into the cells, the effect on cell viability, apoptosis, and its capability to transfect plasmid DNA. RESULTS The synthesis and chemical characterization of TROPY, which can bind DNA and transfect oligonucleotides into mammalian cells through clathrin and caveolin-mediated endocytosis, are described. Using a PPRH against the antiapoptotic survivin gene as a model, we validated that the complex TROPY-PPRH decreased cell viability in human cancer cells, increased apoptosis, and reduced survivin mRNA and protein levels. TROPY was also able to stably transfect plasmid DNA, as demonstrated by the formation of viable colonies upon the transfection of a dhfr minigene into dhfr-negative cells and the subsequent metabolic selection. CONCLUSIONS TROPY is an efficient transfecting agent that allows the delivery of therapeutic oligonucleotides, such as PPRHs and plasmid DNA, inside mammalian cells.
Collapse
Affiliation(s)
- Ana Delgado
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Rosa Griera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Núria Llor
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Ester López-Aguilar
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Maria Antònia Busquets
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute, IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute, IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Carlos J. Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Nanoscience and Nanotechnology Institute, IN2UB, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-403-4455
| |
Collapse
|
6
|
Valiuska S, Psaras AM, Noé V, Brooks TA, Ciudad CJ. Targeting MYC Regulation with Polypurine Reverse Hoogsteen Oligonucleotides. Int J Mol Sci 2022; 24:ijms24010378. [PMID: 36613820 PMCID: PMC9820101 DOI: 10.3390/ijms24010378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
The oncogene MYC has key roles in transcription, proliferation, deregulating cellular energetics, and more. Modulating the expression or function of the MYC protein is a viable therapeutic goal in an array of cancer types, and potential inhibitors of MYC with high specificity and selectivity are of great interest. In cancer cells addicted to their aberrant MYC function, suppression can lead to apoptosis, with minimal effects on non-addicted, non-oncogenic cells, providing a wide therapeutic window for specific and efficacious anti-tumor treatment. Within the promoter of MYC lies a GC-rich, G-quadruplex (G4)-forming region, wherein G4 formation is capable of mediating transcriptional downregulation of MYC. Such GC-rich regions of DNA are prime targets for regulation with Polypurine Reverse Hoogsteen hairpins (PPRHs). The current study designed and examined PPRHs targeting the G4-forming and four other GC-rich regions of DNA within the promoter or intronic regions. Six total PPRHs were designed, examined in cell-free conditions for target engagement and in cells for transcriptional modulation, and correlating cytotoxic activity in pancreatic, prostate, neuroblastoma, colorectal, ovarian, and breast cancer cells. Two lead PPRHs, one targeting the promoter G4 and one targeting Intron 1, were identified with high potential for further development as an innovative approach to both G4 stabilization and MYC modulation.
Collapse
Affiliation(s)
- Simonas Valiuska
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Alexandra Maria Psaras
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Tracy A. Brooks
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA
- Correspondence: (C.J.C.); (T.A.B.); Tel.: +34-93-403-4455 (C.J.C.)
| | - Carlos J. Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (C.J.C.); (T.A.B.); Tel.: +34-93-403-4455 (C.J.C.)
| |
Collapse
|
7
|
Sousa de Almeida M, Rothen-Rutishauser B, Mayer M, Taskova M. Multi-Functionalized Heteroduplex Antisense Oligonucleotides for Targeted Intracellular Delivery and Gene Silencing in HeLa Cells. Biomedicines 2022; 10:biomedicines10092096. [PMID: 36140196 PMCID: PMC9495875 DOI: 10.3390/biomedicines10092096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Oligonucleotide therapeutics, antisense oligonucleotides (ASOs) and short interfering RNA (siRNA) are short synthetic nucleic acid molecules with a promising potential to treat a wide range of diseases. Despite considerable progress in the field, the development of safe and effective delivery systems that target organs and tissues other than the liver is challenging. While keeping possible off-target oligonucleotide interactions and toxicity related to chemical modifications in mind, innovative solutions for targeted intracellular delivery are highly needed. Herein, we report on the design, synthesis and testing of a novel multi-modified and multi-functionalized heteroduplex oligonucleotide (HDO) with respect to its intracellular delivery and its ability to silence genes in HeLa cells. Simultaneously, folic acid- and peptide- labeled HDO show proficient silencing of the green fluorescent protein (GFP) gene with an 84% reduction in the GFP fluorescence. In addition, the Bcl2 HDO achieved effective Bcl2 gene knockdown in the cells. The data show the proficiency of the multi-functionalization strategy and provide an example for advancing the design of safe and efficient forthcoming oligonucleotide therapeutics, such as HDO.
Collapse
Affiliation(s)
- Mauro Sousa de Almeida
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Barbara Rothen-Rutishauser
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Michael Mayer
- Biophysics, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Maria Taskova
- Biophysics, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
- Correspondence:
| |
Collapse
|
8
|
Lin PY, Chi R, Wu YL, Ho JAA. Applications of triplex DNA nanostructures in sensor development. Anal Bioanal Chem 2022; 414:5217-5237. [PMID: 35469098 DOI: 10.1007/s00216-022-04058-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Triplex DNA nanostructures are one of the most emerging and fascinating self-assembled nanostructures due to their unique nanoparticle-like organization and inherit characteristics. They have attracted numerous interests recently because of their versatile and powerful utility in diverse areas of science and technology, such as clinical or disease diagnosis and stimuli-based drug delivery. This review addresses particularly the utilization of DNA triplexes in the development of biosensors for detecting nucleic acid; strategies in sensing pH, protein activity, ions, or molecules. Finally, an outlook for potential applications of triplex DNA nanoswitches is provided.
Collapse
Affiliation(s)
- Pei-Ying Lin
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Rong Chi
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Ling Wu
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Ja-An Annie Ho
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan. .,Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan. .,Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan. .,Center for Biotechnology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
9
|
Psaras AM, Valiuska S, Noé V, Ciudad CJ, Brooks TA. Targeting KRAS Regulation with PolyPurine Reverse Hoogsteen Oligonucleotides. Int J Mol Sci 2022; 23:2097. [PMID: 35216221 PMCID: PMC8876201 DOI: 10.3390/ijms23042097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
KRAS is a GTPase involved in the proliferation signaling of several growth factors. The KRAS gene is GC-rich, containing regions with known and putative G-quadruplex (G4) forming regions. Within the middle of the G-rich proximal promoter, stabilization of the physiologically active G4mid structure downregulates transcription of KRAS; the function and formation of other G4s within the gene are unknown. Herein we identify three putative G4-forming sequences (G4FS) within the KRAS gene, explore their G4 formation, and develop oligonucleotides targeting these three regions and the G4mid forming sequence. We tested Polypurine Reverse Hoogsteen hairpins (PPRHs) for their effects on KRAS regulation via enhancing G4 formation or displacing G-rich DNA strands, downregulating KRAS transcription and mediating an anti-proliferative effect. Five PPRH were designed, two against the KRAS promoter G4mid and three others against putative G4FS in the distal promoter, intron 1 and exon 5. PPRH binding was confirmed by gel electrophoresis. The effect on KRAS transcription was examined by luciferase, FRET Melt2, qRT-PCR. Cytotoxicity was evaluated in pancreatic and ovarian cancer cells. PPRHs decreased activity of a luciferase construct driven by the KRAS promoter. PPRH selectively suppressed proliferation in KRAS dependent cancer cells. PPRH demonstrated synergistic activity with a KRAS promoter selective G4-stabilizing compound, NSC 317605, in KRAS-dependent pancreatic cells. PPRHs selectively stabilize G4 formation within the KRAS mid promoter region and represent an innovative approach to both G4-stabilization and to KRAS modulation with potential for development into novel therapeutics.
Collapse
Affiliation(s)
- Alexandra Maria Psaras
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA;
| | - Simonas Valiuska
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain; (S.V.); (V.N.); (C.J.C.)
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain; (S.V.); (V.N.); (C.J.C.)
| | - Carlos J. Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain; (S.V.); (V.N.); (C.J.C.)
| | - Tracy A. Brooks
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA;
| |
Collapse
|
10
|
Aubets E, Chillon M, Ciudad CJ, Noé V. PolyPurine Reverse Hoogsteen Hairpins Work as RNA Species for Gene Silencing. Int J Mol Sci 2021; 22:10025. [PMID: 34576188 PMCID: PMC8466063 DOI: 10.3390/ijms221810025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
PolyPurine Reverse Hoogsteen Hairpins (PPRHs) are gene-silencing DNA-oligonucleotides developed in our laboratory that are formed by two antiparallel polypurine mirror repeat domains bound intramolecularly by Hoogsteen bonds. The aim of this work was to explore the feasibility of using viral vectors to deliver PPRHs as a gene therapy tool. After treatment with synthetic RNA, plasmid transfection, or viral infection targeting the survivin gene, viability was determined by the MTT assay, mRNA was determined by RT-qPCR, and protein levels were determined by Western blot. We showed that the RNA-PPRH induced a decrease in cell viability in a dose-dependent manner and an increase in apoptosis in PC-3 and HeLa cells. Both synthetic RNA-PPRH and RNA-PPRH intracellularly generated upon the transfection of a plasmid vector were able to reduce survivin mRNA and protein levels in PC-3 cells. An adenovirus type-5 vector encoding the PPRH against survivin was also able to decrease survivin mRNA and protein levels, leading to a reduction in HeLa cell viability. In this work, we demonstrated that PPRHs can also work as RNA species, either chemically synthesized, transcribed from a plasmid construct, or transcribed from viral vectors. Therefore, all these results are the proof of principle that viral vectors could be considered as a delivery system for PPRHs.
Collapse
Affiliation(s)
- Eva Aubets
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Nanoscience and Nanotechnology Institute, IN2UB, University of Barcelona, 08028 Barcelona, Spain; (E.A.); (C.J.C.)
| | - Miguel Chillon
- ICREA, Institute of Neurosciences at UAB, 08193 Bellaterra, Spain;
- Vall d’Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Carlos J. Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Nanoscience and Nanotechnology Institute, IN2UB, University of Barcelona, 08028 Barcelona, Spain; (E.A.); (C.J.C.)
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Nanoscience and Nanotechnology Institute, IN2UB, University of Barcelona, 08028 Barcelona, Spain; (E.A.); (C.J.C.)
| |
Collapse
|
11
|
Synthesis and validation of DOPY: A new gemini dioleylbispyridinium based amphiphile for nucleic acid transfection. Eur J Pharm Biopharm 2021; 165:279-292. [PMID: 34033881 DOI: 10.1016/j.ejpb.2021.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/15/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Nucleic acids therapeutics provide a selective and promising alternative to traditional treatments for multiple genetic diseases. A major obstacle is the development of safe and efficient delivery systems. Here, we report the synthesis of the new cationic gemini amphiphile 1,3-bis[(4-oleyl-1-pyridinio)methyl]benzene dibromide (DOPY). Its transfection efficiency was evaluated using PolyPurine Reverse Hoogsteen hairpins (PPRHs), a nucleic acid tool for gene silencing and gene repair developed in our laboratory. The interaction of DOPY with PPRHs was confirmed by gel retardation assays, and it forms complexes of 155 nm. We also demonstrated the prominent internalization of PPRHs using DOPY compared to other chemical vehicles in SH-SY5Y, PC-3 and DF42 cells. Regarding gene silencing, a specific PPRH against the survivin gene delivered with DOPY decreased survivin protein levels and cell viability more effectively than with N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium methylsulfate (DOTAP) in both SH-SY5Y and PC-3 cells. We also validated the applicability of DOPY in gene repair approaches by correcting a point mutation in the endogenous locus of the dhfr gene in DF42 cells using repair-PPRHs. All these results indicate both an efficient entry and release of PPRHs at the intracellular level. Therefore, DOPY can be considered as a new lipid-based vehicle for the delivery of therapeutic oligonucleotides.
Collapse
|
12
|
Noé V, Ciudad CJ. Polypurine Reverse-Hoogsteen Hairpins as a Tool for Exon Skipping at the Genomic Level in Mammalian Cells. Int J Mol Sci 2021; 22:3784. [PMID: 33917446 PMCID: PMC8038689 DOI: 10.3390/ijms22073784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 01/15/2023] Open
Abstract
Therapeutic strategies for rare diseases based on exon skipping are aimed at mediating the elimination of mutated exons and restoring the reading frame of the affected protein. We explored the capability of polypurine reverse-Hoogsteen hairpins (PPRHs) to cause exon skipping in NB6 cells carrying a duplication of exon 2 of the DHFR gene that causes a frameshift abolishing DHFR activity. METHODS Different editing PPRHs were designed and transfected in NB6 cells followed by incubation in a DHFR-selective medium lacking hypoxanthine and thymidine. Surviving colonies were analyzed by DNA sequencing, RT-PCR, Western blotting and DHFR enzymatic activity. RESULTS Transfection of editing PPRHs originated colonies in the DHFR-selective medium. DNA sequencing results proved that the DHFR sequence in all these colonies corresponded to the wildtype sequence with just one copy of exon 2. In the edited colonies, the skipping of the additional exon was confirmed at the mRNA level, the DHFR protein was restored, and it showed high levels of DHFR activity. CONCLUSIONS Editing-PPRHs are able to cause exon skipping at the DNA level and could be applied as a possible therapeutic tool for rare diseases.
Collapse
Affiliation(s)
- Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences & IN2UB, University of Barcelona, 08028 Barcelona, Spain;
| | | |
Collapse
|
13
|
Noé V, Aubets E, Félix AJ, Ciudad CJ. Nucleic acids therapeutics using PolyPurine Reverse Hoogsteen hairpins. Biochem Pharmacol 2020; 189:114371. [PMID: 33338475 DOI: 10.1016/j.bcp.2020.114371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
PolyPurine Reverse Hoogsteen hairpins (PPRHs) are DNA hairpins formed by intramolecular reverse Hoogsteen bonds which can bind to polypyrimidine stretches in dsDNA by Watson:Crick bonds, thus forming a triplex and displacing the fourth strand of the DNA complex. PPRHs were first described as a gene silencing tool in vitro for DHFR, telomerase and survivin genes. Then, the effect of PPRHs directed against the survivin gene was also determined in vivo using a xenograft model of prostate cancer cells (PC3). Since then, the ability of PPRHs to inhibit gene expression has been explored in other genes involved in cancer (BCL-2, mTOR, topoisomerase, C-MYC and MDM2), in immunotherapy (SIRPα/CD47 and PD-1/PD-L1 tandem) or in replication stress (WEE1 and CHK1). Furthermore, PPRHs have the ability to target the complementary strand of a G-quadruplex motif as a regulatory element of the TYMS gene. PPRHs have also the potential to correct point mutations in the DNA as shown in two collections of CHO cell lines bearing mutations in either the dhfr or aprt loci. Finally, based on the capability of PPRHs to form triplexes, they have been incorporated as probes in biosensors for the determination of the DNA methylation status of PAX-5 in cancer and the detection of mtLSU rRNA for the diagnosis of Pneumocystis jirovecii. Of note, PPRHs have high stability and do not present immunogenicity, hepatotoxicity or nephrotoxicity in vitro. Overall, PPRHs constitute a new economical biotechnological tool with multiple biomedical applications.
Collapse
Affiliation(s)
- Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Eva Aubets
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Alex J Félix
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Carlos J Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, & IN2UB, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
14
|
Félix AJ, Solé A, Noé V, Ciudad CJ. Gene Correction of Point Mutations Using PolyPurine Reverse Hoogsteen Hairpins Technology. Front Genome Ed 2020; 2:583577. [PMID: 34713221 PMCID: PMC8525393 DOI: 10.3389/fgeed.2020.583577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/08/2020] [Indexed: 01/01/2023] Open
Abstract
Monogenic disorders are often the result of single point mutations in specific genes, leading to the production of non-functional proteins. Different blood disorders such as ß-thalassemia, sickle cell disease, hereditary spherocytosis, Fanconi anemia, and Hemophilia A and B are usually caused by point mutations. Gene editing tools including TALENs, ZFNs, or CRISPR/Cas platforms have been developed to correct mutations responsible for different diseases. However, alternative molecular tools such as triplex-forming oligonucleotides and their derivatives (e.g., peptide nucleic acids), not relying on nuclease activity, have also demonstrated their ability to correct mutations in the DNA. Here, we review the Repair-PolyPurine Reverse Hoogsteen hairpins (PPRHs) technology, which can represent an alternative gene editing tool within this field. Repair-PPRHs are non-modified single-stranded DNA molecules formed by two polypurine mirror repeat sequences linked by a five-thymidine bridge, followed by an extended sequence at one end of the molecule which is homologous to the DNA sequence to be repaired but containing the corrected nucleotide. The two polypurine arms of the PPRH are bound by intramolecular reverse-Hoogsteen bonds between the purines, thus forming a hairpin structure. This hairpin core binds to polypyrimidine tracts located relatively near the target mutation in the dsDNA in a sequence-specific manner by Watson-Crick bonds, thus producing a triplex structure which stimulates recombination. This technology has been successfully employed to repair a collection of mutants of the dhfr and aprt genes within their endogenous loci in mammalian cells and could be suitable for the correction of mutations responsible for blood disorders.
Collapse
|
15
|
Bandyopadhyay D, Mishra PP. Real-Time Monitoring of the Multistate Conformational Dynamics of Polypurine Reverse Hoogsteen Hairpin To Capture Their Triplex-Affinity for Gene Silencing by smFRET Microspectroscopy. J Phys Chem B 2020; 124:8230-8239. [DOI: 10.1021/acs.jpcb.0c05493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Debolina Bandyopadhyay
- Single-Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI Mumbai, 1/AF Bidhannagar, Kolkata 700064, India
| | - Padmaja P. Mishra
- Single-Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, HBNI Mumbai, 1/AF Bidhannagar, Kolkata 700064, India
| |
Collapse
|
16
|
Detection of a G-Quadruplex as a Regulatory Element in Thymidylate synthase for Gene Silencing Using Polypurine Reverse Hoogsteen Hairpins. Int J Mol Sci 2020; 21:ijms21145028. [PMID: 32708710 PMCID: PMC7404261 DOI: 10.3390/ijms21145028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Thymidylate synthase (TYMS) enzyme is an anti-cancer target given its role in DNA biosynthesis. TYMS inhibitors (e.g., 5-Fluorouracil) can lead to drug resistance through an autoregulatory mechanism of TYMS that causes its overexpression. Since G-quadruplexes (G4) can modulate gene expression, we searched for putative G4 forming sequences (G4FS) in the TYMS gene that could be targeted using polypurine reverse Hoogsteen hairpins (PPRH). G4 structures in the TYMS gene were detected using the quadruplex forming G-rich sequences mapper and confirmed through spectroscopic approaches such as circular dichroism and NMR using synthetic oligonucleotides. Interactions between G4FS and TYMS protein or G4FS and a PPRH targeting this sequence (HpTYMS-G4-T) were studied by EMSA and thioflavin T staining. We identified a G4FS in the 5’UTR of the TYMS gene in both DNA and RNA capable of interacting with TYMS protein. The PPRH binds to its corresponding target dsDNA, promoting G4 formation. In cancer cells, HpTYMG-G4-T decreased TYMS mRNA and protein levels, leading to cell death, and showed a synergic effect when combined with 5-fluorouracil. These results reveal the presence of a G4 motif in the TYMS gene, probably involved in the autoregulation of TYMS expression, and the therapeutic potential of a PPRH targeted to the G4FS.
Collapse
|
17
|
Aubets E, Noé V, Ciudad CJ. Targeting replication stress response using polypurine reverse hoogsteen hairpins directed against WEE1 and CHK1 genes in human cancer cells. Biochem Pharmacol 2020; 175:113911. [PMID: 32173365 DOI: 10.1016/j.bcp.2020.113911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022]
Abstract
In response to DNA damage, cell cycle checkpoints produce cell cycle arrest to repair and maintain genomic integrity. Due to the high rates of replication and genetic abnormalities, cancer cells are dependent on replication stress response (RSR) and inhibitors of this pathway are being studied as an anticancer approach. In this direction, we investigated the inhibition of CHK1 and WEE1, key components of RSR, using Polypurine Reverse Hoogsteen hairpins (PPRHs) as gene silencing tool. PPRHs designed against WEE1 or CHK1 reduced the viability of different cancer cell lines and showed an increase of apoptosis in HeLa cells. The effect of the PPRHs on cell viability were dose- and time-dependent in HeLa cells. Both the levels of mRNA and protein for each gene were decreased after treatment with the PPRHs. When analyzing the levels of the two CHK1 mRNA splicing variants, CHK1 and CHK1-S, there was a proportional decrease of the two forms, thus maintaining the same expression ratio. PPRHs targeting WEE1 and CHK1 also proved to disrupt cell cycle after 15 h of treatment. Moreover, PPRHs showed a synergy effect when combined with DNA damaging agents, such as methotrexate or 5-Fluorouracil, widely used in clinical practice. This work validates in vitro the usage of PPRHs as a silencing tool against the RSR genes WEE1 and CHK1 and corroborates the potential of inhibiting these targets as a single agent therapy or in combination with other chemotherapy agents in cancer research.
Collapse
Affiliation(s)
- Eva Aubets
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Carlos J Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain.
| |
Collapse
|
18
|
Félix AJ, Ciudad CJ, Noé V. Correction of the aprt Gene Using Repair-Polypurine Reverse Hoogsteen Hairpins in Mammalian Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:683-695. [PMID: 31945727 PMCID: PMC6965513 DOI: 10.1016/j.omtn.2019.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023]
Abstract
In this study, we describe the correction of single-point mutations in mammalian cells by repair-polypurine reverse Hoogsteen hairpins (repair-PPRHs). These molecules consist of (1) a PPRH hairpin core that binds to a polypyrimidine target sequence in the double-stranded DNA (dsDNA), producing a triplex structure, and (2) an extension sequence homologous to the DNA sequence to be repaired but containing the wild-type nucleotide instead of the mutation and acting as a donor DNA to correct the mutation. We repaired different point mutations in the adenosyl phosphoribosyl transferase (aprt) gene contained in different aprt-deficient Chinese hamster ovary (CHO) cell lines. Because we had previously corrected mutations in the dihydrofolate reductase (dhfr) gene, in this study, we demonstrate the generality of action of the repair-PPRHs. Repaired cells were analyzed by DNA sequencing, mRNA expression, and enzymatic activity to confirm the correction of the mutation. Moreover, whole-genome sequencing analyses did not detect any off-target effect in the repaired genome. We also performed gel-shift assays to show the binding of the repair-PPRH to the target sequence and the formation of a displacement-loop (D-loop) structure that can trigger a homologous recombination event. Overall, we demonstrate that repair-PPRHs achieve the permanent correction of point mutations in the dsDNA at the endogenous level in mammalian cells without off-target activity.
Collapse
Affiliation(s)
- Alex J Félix
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute for Nanoscience and Nanotechnology IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Carlos J Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute for Nanoscience and Nanotechnology IN2UB, University of Barcelona, 08028 Barcelona, Spain.
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute for Nanoscience and Nanotechnology IN2UB, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
19
|
Ciudad CJ, Medina Enriquez MM, Félix AJ, Bener G, Noé V. Silencing PD-1 and PD-L1: the potential of PolyPurine Reverse Hoogsteen hairpins for the elimination of tumor cells. Immunotherapy 2019; 11:369-372. [DOI: 10.2217/imt-2018-0215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Carlos J Ciudad
- Department of Biochemistry & Physiology School of Pharmacy & Food Sciences & Institute of Nanoscience & Nanotechnology IN2UB University of Barcelona 08028 Barcelona, Spain
| | - Mariam Marlene Medina Enriquez
- Department of Biochemistry & Physiology School of Pharmacy & Food Sciences & Institute of Nanoscience & Nanotechnology IN2UB University of Barcelona 08028 Barcelona, Spain
| | - Alex J Félix
- Department of Biochemistry & Physiology School of Pharmacy & Food Sciences & Institute of Nanoscience & Nanotechnology IN2UB University of Barcelona 08028 Barcelona, Spain
| | - Gizem Bener
- Department of Biochemistry & Physiology School of Pharmacy & Food Sciences & Institute of Nanoscience & Nanotechnology IN2UB University of Barcelona 08028 Barcelona, Spain
| | - Véronique Noé
- Department of Biochemistry & Physiology School of Pharmacy & Food Sciences & Institute of Nanoscience & Nanotechnology IN2UB University of Barcelona 08028 Barcelona, Spain
| |
Collapse
|
20
|
Aviñó A, Eritja R, Ciudad CJ, Noé V. Parallel Clamps and Polypurine Hairpins (PPRH) for Gene Silencing and Triplex‐Affinity Capture: Design, Synthesis, and Use. ACTA ACUST UNITED AC 2019; 77:e78. [DOI: 10.1002/cpnc.78] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | - Carlos J. Ciudad
- School of Pharmacy and IN2UBUniversity of Barcelona Barcelona Spain
| | - Verónica Noé
- School of Pharmacy and IN2UBUniversity of Barcelona Barcelona Spain
| |
Collapse
|
21
|
Medina Enríquez MM, Félix AJ, Ciudad CJ, Noé V. Cancer immunotherapy using PolyPurine Reverse Hoogsteen hairpins targeting the PD-1/PD-L1 pathway in human tumor cells. PLoS One 2018; 13:e0206818. [PMID: 30399174 PMCID: PMC6219785 DOI: 10.1371/journal.pone.0206818] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/20/2018] [Indexed: 12/31/2022] Open
Abstract
Immunotherapy approaches stand out as innovative strategies to eradicate tumor cells. Among them, PD-1/PD-L1 immunotherapy is considered one of the most successful advances in the history of cancer immunotherapy. We used our technology of Polypurine reverse Hoogsteen hairpins (PPRHs) for silencing both genes with the aim to provoke the elimination of tumor cells by macrophages in co-culture experiments. Incubation of PPRHs against PD-1 and PD-L1 decreased the levels of mRNA and protein in THP-1 monocytes and PC3 prostate cancer cells, respectively. Viability of THP-1 cells and macrophages obtained by PMA-differentiation of THP-1 cells was not affected upon incubation with the different PPRHs. On the other hand, PC3 cell survival was partially decreased by PPRHs against PD-L1. The greatest effect in decreasing cell viability was obtained in macrophages/PC3 co-culture experiments by combining PPRHs against PD-1 and PD-L1. This effect was also observed in other cancer cell lines: HeLa, SKBR3 and to a minor extent in M21. Apoptosis was not detected when macrophages were treated with the different PPRHs. However, co-cultures of macrophages with the four cancer cell lines treated with PPRHs showed an increase in apoptosis. The order of fold-increase in apoptosis was HeLa > PC3 > SKBR3 > M21. This study demonstrates that PPRHs could be powerful pharmacological agents to use in immunotherapy approaches for the inhibition of PD-1 and PD-L1.
Collapse
Affiliation(s)
- Miriam Marlene Medina Enríquez
- Department of Biochemistry and Physiology, School of Pharmacy, and Institute of Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain
| | - Alex J. Félix
- Department of Biochemistry and Physiology, School of Pharmacy, and Institute of Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain
| | - Carlos J. Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy, and Institute of Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy, and Institute of Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
22
|
Functional pharmacogenomics and toxicity of PolyPurine Reverse Hoogsteen hairpins directed against survivin in human cells. Biochem Pharmacol 2018; 155:8-20. [PMID: 29940174 DOI: 10.1016/j.bcp.2018.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/14/2018] [Indexed: 01/27/2023]
Abstract
PolyPurine Reverse Hoogsteen (PPRH) hairpins constitute a relatively new pharmacological agent for gene silencing that has been applied for a growing number of gene targets. Previously we reported that specific PPRHs against the antiapoptotic gene survivin were able to decrease viability of PC3 prostate cancer cells by increasing apoptosis, while not acting on HUVEC non-tumoral cells. These PPRHs were efficient both in vitro and in vivo. In the present work, we performed a functional pharmacogenomics study on the effects of specific and unspecific hairpins against survivin. Incubation of PC3 cells with the specific HpsPr-C-WT led to 244 differentially expressed genes when applying the p < 0.05, FC > 2, Benjamini-Hochberg filtering. Importantly, the unspecific or control Hp-WC did not originate differentially expressed genes using the same settings. Gene Set Enrichment Analysis (GSEA) revealed that the differentially expressed genes clustered very significantly within the gene sets of Regulation of cell proliferation, Cellular response to stress, Apoptosis and Prostate cancer. Network analyses using STRING identified important interacting gene-nodes within the response of PC3 cells to treatment with the PPRH against survivin, mainly POLR2G, PAK1IP1, SMC3, SF3A1, PPARGC1A, NCOA6, UGT2B7, ALG5, VAMP7 and HIST1H2BE, the former six present in the Gene Sets detected in the GSEA. Additionally, HepG2 and 786-O cell lines were used to carry out in vitro experiments of hepatotoxicity and nephrotoxicity, respectively. The unspecific hairpin did not cause toxicity in cell survival assays (MTT) and produced minor changes in gene expression for selected genes in RT-qPCR arrays specifically developed for hepatic and renal toxicity screening.
Collapse
|
23
|
Lu C, Smith-Carpenter JE, Taylor JSA. Evidence for Reverse Hoogsteen Hairpin Intermediates in the Photocrosslinking of Human Telomeric DNA Sequences. Photochem Photobiol 2018; 94:685-697. [PMID: 29418001 DOI: 10.1111/php.12898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/04/2018] [Indexed: 12/28/2022]
Abstract
UVB irradiation of human telomeric d(GGGTTA)3 GGG sequences in potassium ion solution crosslinks the first and third TTA segments through anti cyclobutane pyrimidine dimer (CPD) formation. The photocrosslinking reaction was first proposed to occur through a form 3 two-tetrad G-quadruplex in which the lateral four-nucleotide GTTA loop can interact with an adjacent TTA loop. Curiously, the reaction does not occur with sodium ion, which was explained by the formation of a basket structure which only has three-nucleotide TTA loops that cannot interact. Sequences known or expected to favor the two-tetrad basket did not show enhanced photocrosslinking, suggesting that some other structure was the reactive intermediate. Herein, we report that anti CPDs form in human telomeric DNA sequences with lithium ion that is known to disfavor G-quadruplex formation, as well as with potassium ion when the bases are modified to interfere with G-quartet formation. We also show that anti CPDs form in sequences containing A's in place of G's that cannot form Hoogsteen hairpins, but can form reverse Hoogsteen hairpins. These results suggest that reverse Hoogsteen hairpins may play a hitherto unrecognized role in the biology and photoreactivity of DNA in telomeres, and possibly in other purine-rich sequences found in regulatory regions.
Collapse
Affiliation(s)
- Chen Lu
- Department of Chemistry, Washington University, St. Louis, MO
| | | | | |
Collapse
|
24
|
Miguel A, Sendra L, Noé V, Ciudad CJ, Dasí F, Hervas D, Herrero MJ, Aliño SF. Silencing of Foxp3 enhances the antitumor efficacy of GM-CSF genetically modified tumor cell vaccine against B16 melanoma. Onco Targets Ther 2017; 10:503-514. [PMID: 28176947 PMCID: PMC5271385 DOI: 10.2147/ott.s104393] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The antitumor response after therapeutic vaccination has a limited effect and seems to be related to the presence of T regulatory cells (Treg), which express the immunoregulatory molecules CTLA4 and Foxp3. The blockage of CTLA4 using antibodies has shown an effective antitumor response conducing to the approval of the human anti-CTLA4 antibody ipilimumab by the US Food and Drug Administration. On the other hand, Foxp3 is crucial for Treg development. For this reason, it is an attractive target for cancer treatment. This study aims to evaluate whether combining therapeutic vaccination with CTLA4 or Foxp3 gene silencing enhances the antitumor response. First, the "in vitro" cell entrance and gene silencing efficacy of two tools, 2'-O-methyl phosphorotioate-modified oligonucleotides (2'-OMe-PS-ASOs) and polypurine reverse Hoogsteen hairpins (PPRHs), were evaluated in EL4 cells and cultured primary lymphocytes. Following B16 tumor transplant, C57BL6 mice were vaccinated with irradiated B16 tumor cells engineered to produce granulocyte-macrophage colony-stimulating factor (GM-CSF) and were intraperitoneally treated with CTLA4 and Foxp3 2'-OMe-PS-ASO before and after vaccination. Tumor growth, mice survival, and CTLA4 and Foxp3 expression in blood cells were measured. The following results were obtained: 1) only 2'-OMe-PS-ASO reached gene silencing efficacy "in vitro"; 2) an improved survival effect was achieved combining both therapeutic vaccine and Foxp3 antisense or CTLA4 antisense oligonucleotides (50% and 20%, respectively); 3) The blood CD4+CD25+Foxp3+ (Treg) and CD4+CTLA4+ cell counts were higher in mice that developed tumor on the day of sacrifice. Our data showed that tumor cell vaccine combined with Foxp3 or CTLA4 gene silencing can increase the efficacy of therapeutic antitumor vaccination.
Collapse
Affiliation(s)
- Antonio Miguel
- Department of Pharmacology, Faculty of Medicine, University of Valencia
| | - Luis Sendra
- Department of Pharmacology, Faculty of Medicine, University of Valencia
| | - Verónica Noé
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona
| | - Carles J Ciudad
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona
| | - Francisco Dasí
- Research University Hospital of Valencia, INCLIVA Health Research Institute; Department of Physiology, Faculty of Medicine, University of Valencia Foundation
| | | | - María José Herrero
- Department of Pharmacology, Faculty of Medicine, University of Valencia; Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe (IIS La Fe)
| | - Salvador F Aliño
- Department of Pharmacology, Faculty of Medicine, University of Valencia; Clinical Pharmacology Unit, ACM Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
25
|
Solé A, Delagoutte E, Ciudad CJ, Noé V, Alberti P. Polypurine reverse-Hoogsteen (PPRH) oligonucleotides can form triplexes with their target sequences even under conditions where they fold into G-quadruplexes. Sci Rep 2017; 7:39898. [PMID: 28067256 PMCID: PMC5220335 DOI: 10.1038/srep39898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/28/2016] [Indexed: 02/03/2023] Open
Abstract
Polypurine reverse-Hoogsteen (PPRH) oligonucleotides are non-modified DNA molecules composed of two mirror-symmetrical polypurine stretches linked by a five-thymidine loop. They can fold into reverse-Hoogsteen hairpins and bind to their polypyrimidine target sequence by Watson-Crick bonds forming a three-stranded structure. They have been successfully used to knockdown gene expression and to repair single-point mutations in cells. In this work, we provide an in vitro characterization (UV and fluorescence spectroscopy, gel electrophoresis and nuclease assays) of the structure and stability of two repair-PPRH oligonucleotides and of the complexes they form with their single-stranded targets. We show that one PPRH oligonucleotide forms a hairpin, while the other folds, in potassium, into a guanine-quadruplex (G4). However, the hairpin-prone oligonucleotide does not form a triplex with its single-stranded target, while the G4-prone oligonucleotide converts from a G4 into a reverse-Hoogsteen hairpin forming a triplex with its target sequence. Our work proves, in particular, that folding of a PPRH oligonucleotide into a G4 does not necessarily impair sequence-specific DNA recognition by triplex formation. It also illustrates an original example of DNA structural conversion of a G4 into a reverse-Hoogsteen hairpin driven by triplex formation; this kind of conversion might occur at particular loci of genomic DNA.
Collapse
Affiliation(s)
- Anna Solé
- Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Emmanuelle Delagoutte
- Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Carlos J. Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Patrizia Alberti
- Structure et Instability of Genomes, Sorbonne Universités, Muséum National d’Histoire Naturelle, Inserm U 1154, CNRS UMR 7196, Paris, France
| |
Collapse
|
26
|
Bener G, J. Félix A, Sánchez de Diego C, Pascual Fabregat I, Ciudad CJ, Noé V. Silencing of CD47 and SIRPα by Polypurine reverse Hoogsteen hairpins to promote MCF-7 breast cancer cells death by PMA-differentiated THP-1 cells. BMC Immunol 2016; 17:32. [PMID: 27671753 PMCID: PMC5037635 DOI: 10.1186/s12865-016-0170-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/19/2016] [Indexed: 03/13/2023] Open
Abstract
Background Methods Results Conclusions
Collapse
|
27
|
Solé A, Ciudad CJ, Chasin LA, Noé V. Correction of point mutations at the endogenous locus of the dihydrofolate reductase gene using repair-PolyPurine Reverse Hoogsteen hairpins in mammalian cells. Biochem Pharmacol 2016; 110-111:16-24. [PMID: 27063945 DOI: 10.1016/j.bcp.2016.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
Abstract
Correction of point mutations that lead to aberrant transcripts, often with pathological consequences, has been the focus of considerable research. In this work, repair-PPRHs are shown to be a new powerful tool for gene correction. A repair-PPRH consists of a PolyPurine Reverse Hoogsteen hairpin core bearing an extension sequence at one end, homologous to the DNA strand to be repaired but containing the wild type nucleotide instead of the mutation. Previously, we had corrected a single-point mutation with repair-PPRHs using a mutated version of a dihydrofolate reductase (dhfr) minigene. To further evaluate the utility of these molecules, different repair-PPRHs were designed to correct insertions, deletions, substitutions and a double substitution present in a collection of mutants at the endogenous locus of the dhfr gene, the product of which is the target of the chemotherapeutic agent methotrexate. We also describe an approach to use when the point mutation is far away from the homopyrimidine target domain. This strategy consists in designing Long-Distance- and Short-Distance-Repair-PPRHs where the PPRH core is bound to the repair tail by a five-thymidine linker. Surviving colonies in a DHFR selective medium, lacking glycine and sources of purines and thymidine, were analyzed by DNA sequencing, and by mRNA, protein and enzymatic measurements, confirming that all the dhfr mutants had been corrected. These results show that repair-PPRHs can be effective tools to accomplish a permanent correction of point mutations in the DNA sequence of mutant mammalian cells.
Collapse
Affiliation(s)
- Anna Solé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, IN2UB, University of Barcelona, 08028 Barcelona, Spain
| | - Carlos J Ciudad
- Department of Biochemistry and Molecular Biology, School of Pharmacy, IN2UB, University of Barcelona, 08028 Barcelona, Spain.
| | - Lawrence A Chasin
- Department of Biological Sciences, Columbia University, New York, NY 10027, United States
| | - Véronique Noé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, IN2UB, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
28
|
Villalobos X, Rodríguez L, Solé A, Lliberós C, Mencia N, Ciudad CJ, Noé V. Effect of Polypurine Reverse Hoogsteen Hairpins on Relevant Cancer Target Genes in Different Human Cell Lines. Nucleic Acid Ther 2015; 25:198-208. [PMID: 26042602 DOI: 10.1089/nat.2015.0531] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We studied the ability of polypurine reverse Hoogsteen hairpins (PPRHs) to silence a variety of relevant cancer-related genes in several human cell lines. PPRHs are hairpins formed by two antiparallel polypurine strands bound by intramolecular Hoogsteen bonds linked by a pentathymidine loop. These hairpins are able to bind to their target DNA sequence through Watson-Crick bonds producing specific silencing of gene expression. We designed PPRHs against the following genes: BCL2, TOP1, mTOR, MDM2, and MYC and tested them for mRNA levels, cytotoxicity, and apoptosis in prostate, pancreas, colon, and breast cancer cell lines. Even though all PPRHs were effective, the most remarkable results were obtained with those against BCL2 and mammalian target of rapamycin (mTOR) in decreasing cell survival and mRNA levels and increasing apoptosis in prostate, colon, and pancreatic cancer cells. In the case of TOP1, MDM2, and MYC, their corresponding PPRHs produced a strong effect in decreasing cell viability and mRNA levels and increasing apoptosis in breast cancer cells. Thus, we confirm that the PPRH technology is broadly useful to silence the expression of cancer-related genes as demonstrated using target genes involved in metabolism (DHFR), proliferation (mTOR), DNA topology (TOP1), lifespan and senescence (telomerase), apoptosis (survivin, BCL2), transcription factors (MYC), and proto-oncogenes (MDM2).
Collapse
Affiliation(s)
- Xenia Villalobos
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona , Barcelona, Spain
| | - Laura Rodríguez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona , Barcelona, Spain
| | - Anna Solé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona , Barcelona, Spain
| | - Carolina Lliberós
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona , Barcelona, Spain
| | - Núria Mencia
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona , Barcelona, Spain
| | - Carlos J Ciudad
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona , Barcelona, Spain
| | - Véronique Noé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona , Barcelona, Spain
| |
Collapse
|
29
|
Rodríguez L, Villalobos X, Solé A, Lliberós C, Ciudad CJ, Noé V. Improved design of PPRHs for gene silencing. Mol Pharm 2015; 12:867-77. [PMID: 25615267 DOI: 10.1021/mp5007008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nowadays, the modulation of gene expression by nucleic acids has become a routine tool in biomedical research for target validation and it is also used to develop new therapeutic approaches. Recently, we developed the so-called polypurine reverse Hoogsteen hairpins (PPRHs) that show high stability and a low immunogenic profile and we demonstrated their efficacy both in vitro and in vivo. In this work, we explored different characteristics of PPRHs to improve their usage as a tool for gene silencing. We studied the role of PPRH length in the range from 20 to 30 nucleotides. We also proved their higher affinity of binding and efficacy on cell viability compared to nonmodified TFOs. To overcome possible off-target effects, we tested wild-type PPRHs, which proved to be capable of binding to their target sequence with more affinity, displaying a higher stability of binding and a higher effect in terms of cell viability. Moreover, we developed a brand new molecule called Wedge-PPRH with the ability to lock the ds-DNA into the displaced structure and proved its efficacy in prostate and breast cancer cell lines.
Collapse
Affiliation(s)
- Laura Rodríguez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona , 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Solé A, Villalobos X, Ciudad CJ, Noé V. Repair of single-point mutations by polypurine reverse Hoogsteen hairpins. Hum Gene Ther Methods 2014; 25:288-302. [PMID: 25222154 DOI: 10.1089/hgtb.2014.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Polypurine reverse Hoogsteen hairpins (PPRHs) are formed by two intramolecularly bound antiparallel homopurine domains linked by a five-thymidine loop. One of the homopurine strands binds with antiparallel orientation by Watson-Crick bonds to the polypyrimidine target sequence, forming a triplex. We had previously reported the ability of PPRHs to effectively bind dsDNA displacing the fourth strand away from the newly formed triplex. The main goal of this work was to explore the possibility of repairing a point mutation in mammalian cells using PPRHs as tools. These repair-PPRHs contain different combinations of extended sequences of DNA with the corrected nucleotide to repair the point mutation. As a model we used the dihydrofolate reductase gene. On the one hand, we demonstrate in vitro that PPRHs bind specifically to their polypyrimidine target sequence, opening the two strands of the dsDNA, and allowing the binding of a given repair oligonucleotide to the displaced strand of the DNA. Subsequently, we show at a cellular level (Chinese ovary hamster cells) that repair-PPRHs are able to correct a single-point mutation in a dihydrofolate reductase minigene bearing a nonsense mutation, both in an extrachromosomal location and when the mutated plasmid was stably transfected into the cells. Finally, this methodology was successfully applied to repair a single-point mutation at the endogenous locus, using the DA5 cell line with a deleted nucleotide in exon six of the dhfr gene.
Collapse
Affiliation(s)
- Anna Solé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona , E08028 Barcelona, Spain
| | | | | | | |
Collapse
|
31
|
Villalobos X, Rodríguez L, Prévot J, Oleaga C, Ciudad CJ, Noé V. Stability and immunogenicity properties of the gene-silencing polypurine reverse Hoogsteen hairpins. Mol Pharm 2013; 11:254-64. [PMID: 24251728 DOI: 10.1021/mp400431f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gene silencing by either small-interference RNAs (siRNA) or antisense oligodeoxynucleotides (aODN) is widely used in biomedical research. However, their use as therapeutic agents is hindered by two important limitations: their low stability and the activation of the innate immune response. Recently, we developed a new type of molecule to decrease gene expression named polypurine reverse Hoogsteen hairpins (PPRHs) that bind to polypyrimidine targets in the DNA. Herein, stability experiments performed in mouse, human, and fetal calf serum and in PC3 cells revealed that the half-life of PPRHs is much longer than that of siRNAs in all cases. Usage of PPRHs with a nicked-circular structure increased the binding affinity to their target sequence and their half-life in FCS when bound to the target. Regarding the innate immune response, we determined that the levels of the transcription factors IRF3 and its phosphorylated form, as well as NF-κB were increased by siRNAs and not by PPRHs; that the expression levels of several proinflammatory cytokines including IL-6, TNF-α, IFN-α, IFN-ß, IL-1ß, and IL-18 were not significantly increased by PPRHs; and that the cleavage and activation of the proteolytic enzyme caspase-1 was not triggered by PPRHs. These determinations indicated that PPRHs, unlike siRNAs, do not activate the innate inflammatory response.
Collapse
Affiliation(s)
- Xenia Villalobos
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona , Av. Diagonal 643, E-08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Polypurine reverse Hoogsteen hairpins as a gene therapy tool against survivin in human prostate cancer PC3 cells in vitro and in vivo. Biochem Pharmacol 2013; 86:1541-54. [PMID: 24070653 DOI: 10.1016/j.bcp.2013.09.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 11/22/2022]
Abstract
As a new approach for gene therapy, we recently developed a new type of molecule called polypurine reverse Hoogsteen hairpins (PPRHs). We decided to explore the in vitro and in vivo effect of PPRHs in cancer choosing survivin as a target since it is involved in apoptosis, mitosis and angiogenesis, and overexpressed in different tumors. We designed four PPRHs against the survivin gene, one of them directed against the template strand and three against different regions of the coding strand. These PPRHs were tested in PC3 prostate cancer cells in an in vitro screening of cell viability and apoptosis. PPRHs against the promoter sequence were the most effective and caused a decrease in survivin mRNA and protein levels. We confirmed the binding between the selected PPRHs and their target sequences in the survivin gene. In addition we determined that both the template- and the coding-PPRH targeting the survivin promoter were interfering with the binding of transcription factors Sp1 and GATA-3, respectively. Finally, we conducted two in vivo efficacy assays using the Coding-PPRH against the survivin promoter and performing two routes of administration, namely intratumoral and intravenous, in a subcutaneous xenograft tumor model of PC3 prostate cancer cells. The results showed that the chosen Coding-PPRH proved to be effective in decreasing tumor volume, and reduced the levels of survivin protein and the formation of blood vessels. These findings represent the preclinical proof of principle of PPRHs as a new silencing tool for cancer gene therapy.
Collapse
|
33
|
Barros S, Mencia N, Rodríguez L, Oleaga C, Santos C, Noé V, Ciudad CJ. The redox state of cytochrome c modulates resistance to methotrexate in human MCF7 breast cancer cells. PLoS One 2013; 8:e63276. [PMID: 23675469 PMCID: PMC3652835 DOI: 10.1371/journal.pone.0063276] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 04/01/2013] [Indexed: 11/19/2022] Open
Abstract
Background Methotrexate is a chemotherapeutic agent used to treat a variety of cancers. However, the occurrence of resistance limits its effectiveness. Cytochrome c in its reduced state is less capable of triggering the apoptotic cascade. Thus, we set up to study the relationship among redox state of cytochrome c, apoptosis and the development of resistance to methotrexate in MCF7 human breast cancer cells. Results Cell incubation with cytochrome c-reducing agents, such as tetramethylphenylenediamine, ascorbate or reduced glutathione, decreased the mortality and apoptosis triggered by methotrexate. Conversely, depletion of glutathione increased the apoptotic action of methotrexate, showing an involvement of cytochrome c redox state in methotrexate-induced apoptosis. Methotrexate-resistant MCF7 cells showed increased levels of endogenous reduced glutathione and a higher capability to reduce exogenous cytochrome c. Using functional genomics we detected the overexpression of GSTM1 and GSTM4 in methotrexate-resistant MCF7 breast cancer cells, and determined that methotrexate was susceptible of glutathionylation by GSTs. The inhibition of these GSTM isoforms caused an increase in methotrexate cytotoxicity in sensitive and resistant cells. Conclusions We conclude that overexpression of specific GSTMs, GSTM1 and GSTM4, together with increased endogenous reduced glutathione levels help to maintain a more reduced state of cytochrome c which, in turn, would decrease apoptosis, thus contributing to methotrexate resistance in human MCF7 breast cancer cells.
Collapse
Affiliation(s)
- Susana Barros
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
- Department of Biology, CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Núria Mencia
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Laura Rodríguez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Carlota Oleaga
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Conceição Santos
- Department of Biology, CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Verónique Noé
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Carlos J. Ciudad
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
34
|
Oleaga C, Welten S, Belloc A, Solé A, Rodriguez L, Mencia N, Selga E, Tapias A, Noé V, Ciudad CJ. Identification of novel Sp1 targets involved in proliferation and cancer by functional genomics. Biochem Pharmacol 2012; 84:1581-91. [PMID: 23018034 DOI: 10.1016/j.bcp.2012.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/04/2012] [Accepted: 09/17/2012] [Indexed: 01/07/2023]
Abstract
Sp1 is a transcription factor regulating many genes through its DNA binding domain, containing three zinc fingers. We were interested in identifying target genes regulated by Sp1, particularly those involved in proliferation and cancer. Our approach was to treat HeLa cells with a siRNA directed against Sp1 mRNA to decrease the expression of Sp1 and, in turn, the genes activated by this transcription factor. Sp1-siRNA treatment led to a great number of differentially expressed genes as determined by whole genome cDNA microarray analysis. Underexpressed genes were selected since they represent putative genes activated by Sp1 and classified in six Gene Onthology categories, namely proliferation and cancer, mRNA processing, lipid metabolism, glucidic metabolism, transcription and translation. Putative Sp1 binding sites were found in the promoters of the selected genes using the Match™ software. After literature mining, 11 genes were selected for further validation. Underexpression by qRT-PCR was confirmed for the 11 genes plus Sp1 in HeLa cells after Sp1-siRNA treatment. EMSA and ChIP assays were performed to test for binding of Sp1 to the promoters of these genes. We observed binding of Sp1 to the promoters of RAB20, FGF21, IHPK2, ARHGAP18, NPM3, SRSF7, CALM3, PGD and Sp1 itself. Furthermore, the mRNA levels of RAB20, FGF21 and IHPK2 and luciferase activity for these three genes related to proliferation and cancer, were determined after overexpression of Sp1 in HeLa cells, to confirm their regulation by Sp1. Involvement of these three genes in proliferation was validated by gene silencing using polypurine reverse hoogsteen hairpins.
Collapse
Affiliation(s)
- Carlota Oleaga
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mencia N, Selga E, Noé V, Ciudad CJ. Underexpression of miR-224 in methotrexate resistant human colon cancer cells. Biochem Pharmacol 2011; 82:1572-82. [PMID: 21864507 DOI: 10.1016/j.bcp.2011.08.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 10/17/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs involved in RNA silencing that play a role in many biological processes. They are involved in the development of many diseases, including cancer. Extensive experimental data show that they play a role in the pathogenesis of cancer as well as the development of drug resistance during treatments. The aim of this work was to detect differentially expressed miRNAs in MTX-resistant cells. Thus, miRNA microarrays of sensitive and MTX-resistant HT29 colon cancer cells were performed. The results were analyzed using the GeneSpring GX11.5 software. Differentially expressed miRNAs in resistant cells were identified and miR-224, which was one of the most differentially expressed miRNAs and with high raw signal values, was selected for further studies. The underexpression of miR-224 was also observed in CaCo-2 and K562 cells resistant to MTX. Putative targets were predicted using TargetScan 5.1 software and integrated with the data from expression microarrays previously performed. This approach allowed us to identify miR-224 targets that were differentially expressed more than 2-fold in resistant cells. Among them CDS2, DCP2, HSPC159, MYST3 and SLC4A4 were validated at the mRNA level by qRT-PCR. Functional assays using an anti-miR against miR-224 desensitized the cells towards MTX, mimicking the resistant phenotype. On the other hand, siRNA treatment against SLC4A4 or incubation of Poly Purine Reverse Hoogsteen (PPRH) hairpins against CDS2 or HSPC159 increased sensitivity to MTX. These results revealed a role for miR-224 and its targets in MTX resistance in HT29 colon cancer cells.
Collapse
Affiliation(s)
- Núria Mencia
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
36
|
Buske FA, Mattick JS, Bailey TL. Potential in vivo roles of nucleic acid triple-helices. RNA Biol 2011; 8:427-39. [PMID: 21525785 DOI: 10.4161/rna.8.3.14999] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ability of double-stranded DNA to form a triple-helical structure by hydrogen bonding with a third strand is well established, but the biological functions of these structures remain largely unknown. There is considerable albeit circumstantial evidence for the existence of nucleic triplexes in vivo and their potential participation in a variety of biological processes including chromatin organization, DNA repair, transcriptional regulation, and RNA processing has been investigated in a number of studies to date. There is also a range of possible mechanisms to regulate triplex formation through differential expression of triplex-forming RNAs, alteration of chromatin accessibility, sequence unwinding and nucleotide modifications. With the advent of next generation sequencing technology combined with targeted approaches to isolate triplexes, it is now possible to survey triplex formation with respect to their genomic context, abundance and dynamical changes during differentiation and development, which may open up new vistas in understanding genome biology and gene regulation.
Collapse
Affiliation(s)
- Fabian A Buske
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD Australia
| | | | | |
Collapse
|
37
|
de Almagro MC, Mencia N, Noé V, Ciudad CJ. Coding polypurine hairpins cause target-induced cell death in breast cancer cells. Hum Gene Ther 2011; 22:451-63. [PMID: 20942657 DOI: 10.1089/hum.2010.102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Polypurine reverse-Hoogsteen hairpins (PPRHs) are double-stranded DNA molecules formed by two polypurine stretches linked by a pentathymidine loop, with intramolecular reverse-Hoogsteen bonds that allow a hairpin structure. PPRHs bind to polypyrimidine targets by Watson-Crick bonds maintaining simultaneously a hairpin structure due to intramolecular Hoogsteen bonds. Previously, we described the ability of Template-PPRHs to decrease mRNA levels because these PPRHs target the template DNA strand interfering with the transcription process. Now, we designed Coding-PPRHs, a new type of PPRHs that directly target the pre-mRNA. The dihydrofolate reductase (dhfr) gene was selected as a target in breast cancer therapy. These PPRHs caused a high degree of cytotoxicity and a decrease in DHFR mRNA and protein levels, but by a different mechanism of action than Template-PPRHs. Coding-PPRHs interfere with the splicing process by competing with U2 auxiliary factor 65 for binding to the polypyrimidine target sequence, leading to a lower amount of mature mRNA. These new PPRHs showed high specificity as no off-target effects were found. The application of these molecules as therapeutic tools was tested in breast cancer cells resistant to methotrexate, obtaining a noticeable cytotoxicity even though the dhfr locus was amplified. Coding-PPRHs can be considered as new molecules to decrease gene expression at the mRNA level and an alternative to other antisense molecules.
Collapse
Affiliation(s)
- M Cristina de Almagro
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, E-08028 Barcelona, Spain
| | | | | | | |
Collapse
|
38
|
Spanish Society of Gene and Cell Therapy 2009 Poster Presentations. Hum Gene Ther 2009. [DOI: 10.1089/hum.2009.1722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|