1
|
Di Ciaula A, Bonfrate L, Khalil M, Portincasa P. The interaction of bile acids and gut inflammation influences the pathogenesis of inflammatory bowel disease. Intern Emerg Med 2023; 18:2181-2197. [PMID: 37515676 PMCID: PMC10635993 DOI: 10.1007/s11739-023-03343-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/08/2023] [Indexed: 07/31/2023]
Abstract
Bile acids (BA) are amphipathic molecules originating from cholesterol in the liver and from microbiota-driven biotransformation in the colon. In the gut, BA play a key role in fat digestion and absorption and act as potent signaling molecules on the nuclear farnesoid X receptor (FXR) and membrane-associated G protein-coupled BA receptor-1 (GPBAR-1). BA are, therefore, involved in the maintenance of gut barrier integrity, gene expression, metabolic homeostasis, and microbiota profile and function. Disturbed BA homeostasis can activate pro-inflammatory pathways in the gut, while inflammatory bowel diseases (IBD) can induce gut dysbiosis and qualitative and/or quantitative changes of the BA pool. These factors contribute to impaired repair capacity of the mucosal barrier, due to chronic inflammation. A better understanding of BA-dependent mechanisms paves the way to innovative therapeutic tools by administering hydrophilic BA and FXR agonists and manipulating gut microbiota with probiotics and prebiotics. We discuss the translational value of pathophysiological and therapeutic evidence linking BA homeostasis to gut inflammation in IBD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri" and Division Internal Medicine, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, 70124, Bari, Italy
| |
Collapse
|
2
|
Jang JY, Im E, Choi YH, Kim ND. Mechanism of Bile Acid-Induced Programmed Cell Death and Drug Discovery against Cancer: A Review. Int J Mol Sci 2022; 23:7184. [PMID: 35806184 PMCID: PMC9266679 DOI: 10.3390/ijms23137184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 02/06/2023] Open
Abstract
Bile acids are major signaling molecules that play a significant role as emulsifiers in the digestion and absorption of dietary lipids. Bile acids are amphiphilic molecules produced by the reaction of enzymes with cholesterol as a substrate, and they are the primary metabolites of cholesterol in the body. Bile acids were initially considered as tumor promoters, but many studies have deemed them to be tumor suppressors. The tumor-suppressive effect of bile acids is associated with programmed cell death. Moreover, based on this fact, several synthetic bile acid derivatives have also been used to induce programmed cell death in several types of human cancers. This review comprehensively summarizes the literature related to bile acid-induced programmed cell death, such as apoptosis, autophagy, and necroptosis, and the status of drug development using synthetic bile acid derivatives against human cancers. We hope that this review will provide a reference for the future research and development of drugs against cancer.
Collapse
Affiliation(s)
- Jung Yoon Jang
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Korea; (J.Y.J.); (E.I.)
| | - Eunok Im
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Korea; (J.Y.J.); (E.I.)
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-Eui University, Busan 47227, Korea;
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Korea; (J.Y.J.); (E.I.)
| |
Collapse
|
3
|
Tauroursodeoxycholic acid: a potential therapeutic tool in neurodegenerative diseases. Transl Neurodegener 2022; 11:33. [PMID: 35659112 PMCID: PMC9166453 DOI: 10.1186/s40035-022-00307-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023] Open
Abstract
Most neurodegenerative disorders are diseases of protein homeostasis, with misfolded aggregates accumulating. The neurodegenerative process is mediated by numerous metabolic pathways, most of which lead to apoptosis. In recent years, hydrophilic bile acids, particularly tauroursodeoxycholic acid (TUDCA), have shown important anti-apoptotic and neuroprotective activities, with numerous experimental and clinical evidence suggesting their possible therapeutic use as disease-modifiers in neurodegenerative diseases. Experimental evidence on the mechanisms underlying TUDCA's neuroprotective action derives from animal models of Alzheimer's disease, Parkinson's disease, Huntington's diseases, amyotrophic lateral sclerosis (ALS) and cerebral ischemia. Preclinical studies indicate that TUDCA exerts its effects not only by regulating and inhibiting the apoptotic cascade, but also by reducing oxidative stress, protecting the mitochondria, producing an anti-neuroinflammatory action, and acting as a chemical chaperone to maintain the stability and correct folding of proteins. Furthermore, data from phase II clinical trials have shown TUDCA to be safe and a potential disease-modifier in ALS. ALS is the first neurodegenerative disease being treated with hydrophilic bile acids. While further clinical evidence is being accumulated for the other diseases, TUDCA stands as a promising treatment for neurodegenerative diseases.
Collapse
|
4
|
Haring E, Uhl FM, Andrieux G, Proietti M, Bulashevska A, Sauer B, Braun LM, de Vega Gomez E, Esser PR, Martin SF, Pfeifer D, Follo M, Schmitt-Graeff A, Buescher J, Duyster J, Grimbacher B, Boerries M, Pearce EL, Zeiser R, Apostolova P. Bile acids regulate intestinal antigen presentation and reduce graft-versus-host disease without impairing the graft-versus-leukemia effect. Haematologica 2021; 106:2131-2146. [PMID: 32675222 PMCID: PMC8327708 DOI: 10.3324/haematol.2019.242990] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 12/17/2022] Open
Abstract
Acute graft-versus-host disease (GvHD) causes significant mortality in patients undergoing allogeneic hematopoietic cell transplantation. Immunosuppressive treatment for GvHD can impair the beneficial graft-versus-leukemia effect and facilitate malignancy relapse. Therefore, novel approaches that protect and regenerate injured tissues without impeding the donor immune system are needed. Bile acids regulate multiple cellular processes and are in close contact with the intestinal epithelium, a major target of acute GvHD. Here, we found that the bile acid pool is reduced following GvHD induction in a preclinical model. We evaluated the efficacy of bile acids to protect the intestinal epithelium without reducing anti-tumor immunity. We observed that application of bile acids decreased cytokine-induced cell death in intestinal organoids and cell lines. Systemic prophylactic administration of tauroursodeoxycholic acid (TUDCA), the most potent compound in our in vitro studies, reduced GvHD severity in three different murine transplantation models. This effect was mediated by decreased activity of the antigen presentation machinery and subsequent prevention of apoptosis of the intestinal epithelium. Moreover, bile acid administration did not alter the bacterial composition in the intestine suggesting that its effects are cell-specific and independent of the microbiome. Treatment of human and murine leukemic cell lines with TUDCA did not interfere with the expression of antigen presentation-related molecules. Systemic T-cell expansion and especially their cytotoxic capacity against leukemic cells remained intact. This study establishes a role for bile acids in the prevention of acute GvHD without impairing the graft-versus-leukemia effect. In particular, we provide a scientific rationale for the systematic use of TUDCA in patients undergoing allogeneic hematopoietic cell transplantation.
Collapse
Affiliation(s)
- Eileen Haring
- Department of Medicine I, Medical Center - University of Freiburg, Germany
| | - Franziska M Uhl
- Department of Medicine I, Medical Center - University of Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Institute for Immunodeficiency, CCI, Medical Center, University of Freiburg, Freiburg, Germany
| | - Alla Bulashevska
- Institute for Immunodeficiency, CCI, Medical Center, University of Freiburg, Freiburg, Germany
| | - Barbara Sauer
- Department of Medicine I, Medical Center - University of Freiburg, Germany
| | - Lukas M Braun
- Department of Medicine I, Medical Center - University of Freiburg, Germany
| | | | - Philipp R Esser
- Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan F Martin
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I, Medical Center - University of Freiburg, Germany
| | - Marie Follo
- Department of Medicine I, Medical Center - University of Freiburg, Germany
| | | | - Joerg Buescher
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center - University of Freiburg, Germany
| | - Bodo Grimbacher
- Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Erika L Pearce
- Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Germany
| | - Petya Apostolova
- Department of Medicine I, Medical Center - University of Freiburg, Germany
| |
Collapse
|
5
|
Alamoudi JA, Li W, Gautam N, Olivera M, Meza J, Mukherjee S, Alnouti Y. Bile acid indices as biomarkers for liver diseases I: Diagnostic markers. World J Hepatol 2021; 13:433-455. [PMID: 33959226 PMCID: PMC8080550 DOI: 10.4254/wjh.v13.i4.433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatobiliary diseases result in the accumulation of toxic bile acids (BA) in the liver, blood, and other tissues which may contribute to an unfavorable prognosis.
AIM To discover and validate diagnostic biomarkers of cholestatic liver diseases based on the urinary BA profile.
METHODS We analyzed urine samples by liquid chromatography-tandem mass spectrometry and compared the urinary BA profile between 300 patients with hepatobiliary diseases vs 103 healthy controls by statistical analysis. The BA profile was characterized using BA indices, which quantifies the composition, metabolism, hydrophilicity, and toxicity of the BA profile. BA indices have much lower inter- and intra-individual variability compared to absolute concentrations of BA. In addition, BA indices demonstrate high area under the receiver operating characteristic curves, and changes of BA indices are associated with the risk of having a liver disease, which demonstrates their use as diagnostic biomarkers for cholestatic liver diseases.
RESULTS Total and individual BA concentrations were higher in all patients. The percentage of secondary BA (lithocholic acid and deoxycholic acid) was significantly lower, while the percentage of primary BA (chenodeoxycholic acid, cholic acid, and hyocholic acid) was markedly higher in patients compared to controls. In addition, the percentage of taurine-amidation was higher in patients than controls. The increase in the non-12α-OH BA was more profound than 12α-OH BA (cholic acid and deoxycholic acid) causing a decrease in the 12α-OH/ non-12α-OH ratio in patients. This trend was stronger in patients with more advanced liver diseases as reflected by the model for end-stage liver disease score and the presence of hepatic decompensation. The percentage of sulfation was also higher in patients with more severe forms of liver diseases.
CONCLUSION BA indices have much lower inter- and intra-individual variability compared to absolute BA concentrations and changes of BA indices are associated with the risk of developing liver diseases.
Collapse
Affiliation(s)
- Jawaher Abdullah Alamoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Wenkuan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Nagsen Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Marco Olivera
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Jane Meza
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Sandeep Mukherjee
- Department of Internal Medicine, College of Medicine, Creighton University Medical Center, Omaha, NE 68124, United States
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
6
|
Engin A. Bile Acid Toxicity and Protein Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:229-258. [PMID: 33539018 DOI: 10.1007/978-3-030-49844-3_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
If the bile acids reach to pathological concentrations due to cholestasis, accumulation of hydrophobic bile acids within the hepatocyte may result in cell death. Thus, hydrophobic bile acids induce apoptosis in hepatocytes, while hydrophilic bile acids increase intracellular adenosine 3',5'-monophosphate (cAMP) levels and activate mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways to protect hepatocytes from apoptosis.Two apoptotic pathways have been described in bile acids-induced death. Both are controlled by multiple protein kinase signaling pathways. In mitochondria-controlled pathway, caspase-8 is activated with death domain-independent manner, whereas, Fas-dependent classical pathway involves ligand-independent oligomerization of Fas.Hydrophobic bile acids dose-dependently upregulate the inflammatory response by further stimulating production of inflammatory cytokines. Death receptor-mediated apoptosis is regulated at the cell surface by the receptor expression, at the death-inducing signaling complex (DISC) by expression of procaspase-8, the death receptors Fas-associated death domain (FADD), and cellular FADD-like interleukin 1-beta (IL-1β)-converting enzyme (FLICE) inhibitory protein (cFLIP). Bile acids prevent cFLIP recruitment to the DISC and thereby enhance initiator caspase activation and lead to cholestatic apoptosis. At mitochondria, the expression of B-cell leukemia/lymphoma-2 (Bcl-2) family proteins contribute to apoptosis by regulating mitochondrial cytochrome c release via Bcl-2, Bcl-2 homology 3 (BH3) interacting domain death agonist (Bid), or Bcl-2 associated protein x (Bax). Fas receptor CD95 activation by hydrophobic bile acids is initiated by reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent reactive oxygen species (ROS) signaling. However, activation of necroptosis by ligands of death receptors requires the kinase activity of receptor interacting protein1 (RIP1), which mediates the activation of RIP3 and mixed lineage kinase domain-like protein (MLKL). In this chapter, mainly the effect of protein kinases signal transduction on the mechanisms of hydrophobic bile acids-induced inflammation, apoptosis, necroptosis and necrosis are discussed.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
| |
Collapse
|
7
|
Zajic DE, Podrabsky JE. Metabolomics analysis of annual killifish ( Austrofundulus limnaeus) embryos during aerial dehydration stress. Physiol Genomics 2020; 52:408-422. [PMID: 32776802 DOI: 10.1152/physiolgenomics.00072.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The annual killifish, Austrofundulus limnaeus, survives in ephemeral ponds in the coastal deserts of Venezuela. Persistence through the dry season is dependent on drought-resistant eggs embedded in the pond sediments during the rainy season. The ability of these embryos to enter drastic metabolic dormancy (diapause) during normal development enables A. limnaeus to survive conditions lethal to most other aquatic vertebrates; critical to the survival of the species is the ability of embryos to survive months and perhaps years without access to liquid water. Little is known about the molecular mechanisms that aid in survival of the dry season. This study aims to gain insight into the mechanisms facilitating survival of dehydration stress due to aerial exposure by examining metabolite profiles of dormant and developing embryos. There is strong evidence for unique metabolic profiles based on developmental stage and length of aerial exposure. Actively developing embryos exhibit more robust changes; however, dormant embryos respond in an active manner and significantly alter their metabolic profile. A number of metabolites accumulate in aerial-exposed embryos that may play an important role in survival, including the identification of known antioxidants and neuroprotectants. In addition, a number of unique metabolites not yet discussed in the dehydration literature are identified, such as lanthionine and 2-hydroxyglutarate. Despite high oxygen availability, embryos accumulate the anaerobic end product lactate. This paper offers an overview of the metabolic changes occurring that may support embryonic survival during dehydration stress due to aerial incubation, which can be functionally tested using genetic and pharmacological approaches.
Collapse
Affiliation(s)
- Daniel E Zajic
- Department of Biology, Portland State University, Portland, Oregon.,Health, Human Performance, and Athletics Department, Linfield University, McMinnville, Oregon
| | | |
Collapse
|
8
|
Yang H, Yang H, Wang L, Shi H, Liu B, Lin X, Chang Q, Chen JDZ, Duan Z. Transcutaneous Neuromodulation improved inflammation and sympathovagal ratio in patients with primary biliary ssscholangitis and inadequate response to Ursodeoxycholic acid: a pilot study. BMC Complement Med Ther 2020; 20:242. [PMID: 32738911 PMCID: PMC7395375 DOI: 10.1186/s12906-020-03036-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Background At present, ursodeoxycholic acid (UDCA) is internationally recognized as a therapeutic drug in clinic. However, about 40% Primary Biliary Cholangitis (PBC) patients are poor responders to UDCA. It has been demonstrated that Transcutaneous Neuromodulation (TN) can be involved in gut motility, metabolism of bile acids, immune inflammation, and autonomic nerve. Therefore, this study aimed to explore the effect of TN combined with UDCA on PBC and related mechanisms. Methods According to inclusion and exclusion criteria, 10 healthy volunteers and 15 PBC patients were recruited to control group and TN group, respectively. PBC patients were alternately but blindly assigned to group A (TN combined with UDCA) and group B (sham-TN combined with UDCA), and a crossover design was used. The TN treatment was performed via the posterior tibial nerve and acupoint ST36 (Zusanli) 1 h twice/day for 2 weeks. T test and nonparametric test were used to analyze the data. Results 1. TN combined with UDCA improved the liver function of PBC patients shown by a significant decrease of alkaline phosphatase and gamma-glutamyltransferase (γ-GT) (P < 0.05). 2. The treatment also decreased serum IL-6 levels (P < 0.05), but not the level of Tumor Necrosis Factor-α, IL-1β or IL-10. 3. TN combined with UDCA regulated autonomic function, enhanced vagal activity, and decreased the sympathovagal ratio assessed by the spectral analysis of heart rate variability (P < 0.05). 4. There was no change in 13 bile acids in serum or stool after TN or sham-TN. Conclusions TN cssombined with UDCA can significantly improve the liver function of PBC patients. It is possibly via the cholinergic anti-inflammatory pathway. TN might be a new non-drug therapy for PBC. Further studies are required. Trial registration The study protocol was registered in Chinese Clinical Trial Registry (number ChiCTR1800014633) on 25 January 2018.
Collapse
Affiliation(s)
- Hui Yang
- The Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Wu Hou District, Chengdu, 610041, China
| | - Lixia Wang
- The Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Honggang Shi
- The Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Bojia Liu
- The Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Xue Lin
- The Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning, China
| | - Qingyong Chang
- The Second Department of Neurosurgery, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, 116001, Liaoning, China.
| | - Jiande D Z Chen
- Division of Gastroenterology and Hepatology, Johns Hopkins Center for Neurogastroenterology, Baltimore, MD, 21224, USA.
| | - Zhijun Duan
- The Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning, China.
| |
Collapse
|
9
|
Zhao A, Wang S, Chen W, Zheng X, Huang F, Han X, Ge K, Rajani C, Huang Y, Yu H, Zhu J, Jia W. Increased levels of conjugated bile acids are associated with human bile reflux gastritis. Sci Rep 2020; 10:11601. [PMID: 32665615 PMCID: PMC7360626 DOI: 10.1038/s41598-020-68393-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 05/07/2020] [Indexed: 01/07/2023] Open
Abstract
Bile acids (BAs) play essential roles in facilitating lipid digestion and absorption in the intestine. Gastric BAs were attributed to abnormal refluxing from duodenal compartments and correlated with the occurrence of gastric inflammation and carcinogenesis. However, the differences in gastric BAs between physiologically compromised and healthy individuals have not been fully investigated. In this study, gastric juice was collected from patients clinically diagnosed as gastritis with/without bile reflux and healthy subjects for BA profiles measurements. As a result, we found that the conjugated BAs became prominent components in bile reflux juice, whereas almost equal amounts of conjugated and unconjugated BAs existed in non-bile reflux and healthy juice. To investigate whether gastric BA changes were regulated by hepatic BA synthesis, C57BL/6J mice were intervened with GW4064/resin to decrease/increase hepatic BA synthesis. The results revealed that changes of gastric BAs were coordinated with hepatic BA changes. Additionally, gastric BAs were detected in several healthy mammals, in which there were no obvious differences between the conjugated and unconjugated BAs. Pigs were an exception. Thus, increased levels of conjugated BAs are associated with human bile reflux gastritis. Gastric conjugated BAs could become a panel of biomarkers to facilitate diagnosis of pathological bile reflux.
Collapse
Affiliation(s)
- Aihua Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Shouli Wang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wenlian Chen
- University of Hawaii Cancer Center, Honolulu, 96813, USA
| | - Xiaojiao Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Fengjie Huang
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiaolong Han
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Kun Ge
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Cynthia Rajani
- University of Hawaii Cancer Center, Honolulu, 96813, USA
| | - Yanxia Huang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Herbert Yu
- University of Hawaii Cancer Center, Honolulu, 96813, USA
| | - Jinshui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,University of Hawaii Cancer Center, Honolulu, 96813, USA.
| |
Collapse
|
10
|
Paluschinski M, Castoldi M, Schöler D, Bardeck N, Oenarto J, Görg B, Häussinger D. Tauroursodeoxycholate protects from glycochenodeoxycholate-induced gene expression changes in perfused rat liver. Biol Chem 2020; 400:1551-1565. [PMID: 31152635 DOI: 10.1515/hsz-2019-0204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
Tauroursodeoxycholate (TUDC) is well known to protect against glycochenodeoxycholate (GCDC)-induced apoptosis in rat hepatocytes. In the present study, we analyzed whether TUDC also exerts protective effects by modulating GCDC-induced gene expression changes. For this, gene array-based transcriptome analysis and quantitative polymerase chain reaction (qPCR) were performed on RNA isolated from rat livers perfused with GCDC, TUDC or a combination of both (each 20 μm for 2 h). GCDC led to a significant increase of lactate dehydrogenase (LDH) into the effluent perfusate, which was prevented by TUDC. GCDC, TUDC and co-perfusion induced distinct gene expression changes. While GCDC upregulated the expression of several pro-inflammatory genes, co-perfusion with TUDC increased the expression of pro-proliferative and anti-apoptotic p53 target genes. In line with this, levels of serine20-phosphorylated p53 and of its target gene p21 were elevated by GCDC in a TUDC-sensitive way. GCDC upregulated the oxidative stress surrogate marker 8OH(d)G and the pro-apoptotic microRNAs miR-15b/16 and these effects were prevented by TUDC. The upregulation of miR-15b and miR-16 in GCDC-perfused livers was accompanied by a downregulation of several potential miR-15b and miR-16 target genes. The present study identified changes in the transcriptome of the rat liver which suggest, that TUDC is hepatoprotective by counteracting GCDC-induced gene expression changes.
Collapse
Affiliation(s)
- Martha Paluschinski
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Mirco Castoldi
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - David Schöler
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Nils Bardeck
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Jessica Oenarto
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Boris Görg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
11
|
Differential Metabolomic Analysis of Liver Tissues from Rat Models of Parenteral Nutrition-Associated Liver Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9156359. [PMID: 32280707 PMCID: PMC7115143 DOI: 10.1155/2020/9156359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/26/2020] [Indexed: 12/18/2022]
Abstract
Parenteral nutrition (PN) is a life-saving therapy for patients with intestinal failure, but parenteral nutrition-associated liver disease (PNALD) limits its long-term use. The present study is aimed at determining which pathways are altered most notably in a rat model of PNALD. We randomly assigned male Sprague-Dawley (SD) rats into two different groups, whereby they received either enteral nutrition (EN) or PN. Liver tissues were harvested from all rats 7 days later for metabolomic profiling. The composition of primary conjugated bile acids was altered, the synthesis of polyunsaturated fatty acids was reduced, the conversion of pyruvate to acetyl-CoA was blocked, and the synthesis of phosphatidylcholine was inhibited in rats with PNALD. Riboflavin, which is involved in the electron transfer process in the mitochondrial electron transport chain, was remarkably decreased in PNALD rats. A deficiency of polyunsaturated fatty acids, riboflavin, choline, and taurine might be involved in the progression of PNALD. The implications of these findings for the field of medicine are that supplementation with polyunsaturated fatty acids, riboflavin, choline, and taurine might have potential as therapeutic strategies for PNALD and also shed light on the mechanisms of PNALD.
Collapse
|
12
|
Abstract
Cholestasis can be induced by obstruction of bile ducts or intrahepatic toxicity of drugs and chemicals. However, the mode of cell death during cholestasis, i.e., apoptosis or necrosis, has been controversial. There are fundamental reasons for the controversies, both of which are discussed here, namely the design of experiments and the use of parameters with limited specificity for a certain mode of cell death. Based on the assumption that cholestatic liver injury is caused by accumulation of bile acids, rodent (mainly rat) hepatocytes have been exposed to hydrophobic, glycine-conjugated bile acids, which resulted in apoptotic cell death. The problems with this experimental design are that in rodents bile acids are predominantly taurine conjugated and rodent hepatocytes are never exposed to these levels of glycine-conjugated bile acids. In contrast, taurine-conjugated bile acids trigger inflammatory gene activation in rodent hepatocytes and a necro-inflammatory injury in vivo. On the other hand, human hepatocytes are more resistant to glycine-conjugated bile acids and die by necrosis when exposed to high biliary levels of these bile acids. In this chapter, we describe multiple assays including the caspase activity assay, which is specific for apoptosis, and the general cell death assays alanine aminotransferase or lactate dehydrogenase activities in cell culture medium or plasma. An increase in these enzyme activities without caspase activity indicates necrotic cell death. Thus, both the experimental design and the selection of cell death parameters are critical for the relevance of the experiments for the human pathophysiology.
Collapse
Affiliation(s)
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
13
|
Nuño-Lámbarri N, Barbero-Becerra VJ, Uribe M, Chávez-Tapia NC. Elevated cholesterol levels have a poor prognosis in a cholestasis scenario. J Biochem Mol Toxicol 2016; 31:1-6. [PMID: 27517733 DOI: 10.1002/jbt.21831] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 01/15/2023]
Abstract
Cholestasis results from defective bile flow through the biliary ducts leading to the accumulation of bile acids (BAs) in hepatocytes and serum. It has been seen that cholestasis is associated with hypercholesterolemia, which is a prerequisite for gallstone formation and primary biliary cirrhosis, being some of the most common gastrointestinal disorders in Western societies. Cytotoxic BAs induce proinflammatory mediators, oxidative stress, and apoptosis in hepatocytes, whereas cytoprotective BAs prevent them; they can also modify the plasmatic membrane structure of cells or mitochondrial outer membrane properties as well as the distribution of cholesterol, altering various proteins involved in BAs homeostasis.
Collapse
Affiliation(s)
- Natalia Nuño-Lámbarri
- Traslational Research Unit, Médica Sur Clinic & Foundation, Toriello guerra tlalpan, C.P. 14050, Mexico City, Mexico
| | - Varenka J Barbero-Becerra
- Traslational Research Unit, Médica Sur Clinic & Foundation, Toriello guerra tlalpan, C.P. 14050, Mexico City, Mexico
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation, Toriello guerra tlalpan, C.P. 14050, Mexico City, Mexico
| | - Norberto C Chávez-Tapia
- Traslational Research Unit, Médica Sur Clinic & Foundation, Toriello guerra tlalpan, C.P. 14050, Mexico City, Mexico.,Obesity and Digestive Diseases Unit, Médica Sur Clinic & Foundation, Toriello guerra tlalpan, C.P. 14050, Mexico City, Mexico
| |
Collapse
|
14
|
Mäemets-Allas K, Belitškin D, Jaks V. The inhibition of Akt-Pdpk1 interaction efficiently suppresses the growth of murine primary liver tumor cells. Biochem Biophys Res Commun 2016; 474:118-125. [PMID: 27103434 DOI: 10.1016/j.bbrc.2016.04.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 12/12/2022]
Abstract
The lack of primary liver tumor cells has hampered testing of potential chemotherapeutic agents in vitro. To overcome this issue we developed a primary mouse liver tumor cell line K07074. The K07074 cells were immortal, exhibited a biliary phenotype, formed colonies in soft agar and displayed an increase in Hedgehog, Notch and Akt signaling. To study the effect of single and combined inhibition of the liver tumor-related pathways on the growth of K07074 cells we treated these with small-molecule antitumor agents. While the inhibition of Akt and Notch pathways strongly inhibited the growth of K07074 cells the inhibition of Wnt and Hedgehog pathways was less efficient in cell growth suppression. Interestingly, the inhibition of Akt pathway at the level of Akt-Pdpk1 interaction was sufficient to suppress the growth of tumor cells and no significant additive effect could be detected when co-treated with the inhibitors of Wnt, Hedgehog or Notch pathways. Only when suboptimal doses of Akt-Pdpk1 interaction inhibitor NSC156529 were used an additive effect with Notch inhibition was seen. We conclude that the Akt pathway inhibitor NSC156529 is potentially useful as single treatment for liver tumors with hyperactivated Akt signaling.
Collapse
Affiliation(s)
| | - Denis Belitškin
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia; Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
15
|
Webster CRL, Johnston AN, Anwer MS. Protein kinase Cδ protects against bile acid apoptosis by suppressing proapoptotic JNK and BIM pathways in human and rat hepatocytes. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1207-15. [PMID: 25359536 PMCID: PMC4269680 DOI: 10.1152/ajpgi.00165.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Retained bile acids, which are capable of inducing cell death, activate protein kinase Cδ (PKC-δ) in hepatocytes. In nonhepatic cells, both pro- and antiapoptotic effects of PKC-δ are described. The aim of this study was to determine the role of PKC-δ in glycochenodeoxycholate (GCDC)-induced apoptosis in rat hepatocytes and human HUH7-Na-taurocholate-cotransporting polypeptide (Ntcp) cells. Apoptosis was monitored morphologically by Hoechst staining and biochemically by immunoblotting for caspase 3 cleavage. The role of PKC-δ was evaluated with a PKC activator (phorbol myristate acetate, PMA) and PKC inhibitors (chelerythrine, H-7, or calphostin), PKC-δ knockdown, and wild-type (WT) or constitutively active (CA) PKC-δ. PKC-δ activation was monitored by immunoblotting for PKC-δ Thr505 and Tyr311 phosphorylation or by membrane translocation. JNK and Akt phosphorylation and the amount of total bisindolylmaleimide (BIM) were determined by immunoblotting. GCDC induced the translocation of PKC-δ to the mitochondria and/or plasma membrane in rat hepatocytes and HUH7-Ntcp cells and increased PKC-δ phosphorylation on Thr505, but not on Tyr311, in HUH7-Ntcp cells. GCDC-induced apoptosis was attenuated by PMA and augmented by PKC inhibition in rat hepatocytes. In HUH-Ntcp cells, transfection with CA or WT PKC-δ attenuated GCDC-induced apoptosis, whereas knockdown of PKC-δ increased GCDC-induced apoptosis. PKC-δ silencing increased GCDC-induced JNK phosphorylation, decreased GCDC-induced Akt phosphorylation, and increased expression of BIM. GCDC translocated BIM to the mitochondria in rat hepatocytes, and knockdown of BIM in HUH7-Ntcp cells decreased GCDC-induced apoptosis. Collectively, these results suggest that PKC-δ does not mediate GCDC-induced apoptosis in hepatocytes. Instead PKC-δ activation by GCDC stimulates a cytoprotective pathway that involves JNK inhibition, Akt activation, and downregulation of BIM.
Collapse
Affiliation(s)
- Cynthia R. L. Webster
- 1Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, Grafton, Massachusetts;
| | - Andrea N. Johnston
- 1Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, Grafton, Massachusetts;
| | - M. Sawkat Anwer
- 2Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, Grafton, Massachusetts
| |
Collapse
|
16
|
Bathena SPR, Thakare R, Gautam N, Mukherjee S, Olivera M, Meza J, Alnouti Y. Urinary bile acids as biomarkers for liver diseases II. Signature profiles in patients. Toxicol Sci 2014; 143:308-18. [PMID: 25344563 DOI: 10.1093/toxsci/kfu228] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatobiliary diseases result in the accumulation of bile acids (BAs) in the liver, systemic blood, and other tissues leading to an unfavorable prognosis. The BA profile was characterized by the calculation of indices that describe the composition, sulfation, and amidation of total and individual BAs. Comparison of the urinary BA profiles between healthy subjects and patients with hepatobiliary diseases demonstrated significantly higher absolute concentrations of individual and total BAs in patients. The percentage sulfation of some individual BAs were different between the two groups. The percentage amidation of overall and most individual BAs was higher in patients than controls. The percentage of primary BAs (CDCA and CA) was higher in patients, whereas the percentage of secondary BAs (DCA and LCA) was lower in patients. BA indices belonging to percentage amidation and percentage composition were better associated with the severity of the liver disease as determined by the model for end-stage liver disease (MELD) score and disease compensation status compared with the absolute concentrations of individual and total BAs. In addition, BA indices corresponding to percentage amidation and percentage composition of certain BAs demonstrated the highest area under the receiver operating characteristic (ROC) curve suggesting their utility as diagnostic biomarkers in clinic. Furthermore, significant increase in the risk of having liver diseases was associated with changes in BA indices.
Collapse
Affiliation(s)
- Sai Praneeth R Bathena
- *Department of Pharmaceutical Sciences, College of Pharmacy, Department of Internal Medicine, College of Medicine and Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Rhishikesh Thakare
- *Department of Pharmaceutical Sciences, College of Pharmacy, Department of Internal Medicine, College of Medicine and Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Nagsen Gautam
- *Department of Pharmaceutical Sciences, College of Pharmacy, Department of Internal Medicine, College of Medicine and Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Sandeep Mukherjee
- *Department of Pharmaceutical Sciences, College of Pharmacy, Department of Internal Medicine, College of Medicine and Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Marco Olivera
- *Department of Pharmaceutical Sciences, College of Pharmacy, Department of Internal Medicine, College of Medicine and Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jane Meza
- *Department of Pharmaceutical Sciences, College of Pharmacy, Department of Internal Medicine, College of Medicine and Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Yazen Alnouti
- *Department of Pharmaceutical Sciences, College of Pharmacy, Department of Internal Medicine, College of Medicine and Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
17
|
Anwer MS. Role of protein kinase C isoforms in bile formation and cholestasis. Hepatology 2014; 60:1090-7. [PMID: 24700589 PMCID: PMC4141907 DOI: 10.1002/hep.27088] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/13/2014] [Indexed: 12/11/2022]
Abstract
Transhepatic solute transport provides the osmotic driving force for canalicular bile formation. Choleretic and cholestatic agents affect bile formation, in part, by altering plasma membrane localizations of transporters involved in bile formation. These short-term dynamic changes in transporter location are highly regulated posttranslational events requiring various cellular signaling pathways. Interestingly, both choleretic and cholestatic agents activate the same intracellular signaling kinases, such as phosphoinositide-3-kinase (PI3K), protein kinase C (PKC), and mitogen-activated protein kinase (MAPK). An emerging theme is that choleretic and cholestatic effects may be mediated by different isoforms of these kinases. This is most evident for PKC-mediated regulation of plasma membrane localization of Na+-taurocholate cotransporting polypeptide (NTCP) and multidrug resistance-associated protein 2 (MRP2) by conventional PKCα (cPKCα), novel PKCδ (nPKCδ), nPKCε, and atypical PKCζ (aPKCζ). aPKCζ may mediate choleretic effects by inserting NTCP into the plasma membrane, and nPKCε may mediate cholestatic effects by retrieving MRP2 from the plasma membrane. On the other hand, cPKCα and nPKCδ may be involved in choleretic, cholestatic, and anticholestatic effects by inserting, retrieving, and inhibiting retrieval of transporters, respectively. The effects of PKC isoforms may be mediated by phosphorylation of the transporters, actin binding proteins (radixin and myristoylated alanine-rich C kinase substrate), and Rab proteins. Human NTCP plays an important role in the entry of hepatitis B and D viruses into hepatocytes and consequent infection. Thus, PKCs, by regulating NTCP trafficking, may also play an important role in hepatic viral infections.
Collapse
Affiliation(s)
- M Sawkat Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA
| |
Collapse
|
18
|
Jia X, Suzuki Y, Naito H, Yetti H, Kitamori K, Hayashi Y, Kaneko R, Nomura M, Yamori Y, Zaitsu K, Kato M, Ishii A, Nakajima T. A possible role of chenodeoxycholic acid and glycine-conjugated bile acids in fibrotic steatohepatitis in a dietary rat model. Dig Dis Sci 2014; 59:1490-501. [PMID: 24448653 DOI: 10.1007/s10620-014-3028-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/03/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Our previous study indicated that hepatic bile acids (BAs) may have deposited and stimulated the pathogenesis of a high fat-cholesterol (HFC) diet-induced fibrotic steatohepatitis in stroke-prone spontaneously hypertensive 5/Dmcr rats, based on dysregulated BA homeostasis pathways. We aimed to further characterize BA profiles in liver and evaluate their relationships to liver injury using this model. METHODS Hepatic 21 BA levels were determined by ultra-performance liquid chromatography-tandem mass spectrometry, and their correlations with macrovesicular steatosis score, serum alanine aminotransferase (ALT) level and quantified fibrotic area were assessed using Spearman and Pearson correlations. RESULTS Compared to control, BAs highly accumulated in HFC-fed rat liver at 2 weeks: cholic acid (CA), deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) were major species, thereafter, levels of CA and DCA declined, but CDCA species persistently increased, which induced a decrease in total CA/total CDCA ratio at 8 and 14 weeks. CDCA species positively, while total CA/total CDCA negatively, correlated with macrovesicular steatosis score, serum ALT and quantified fibrotic area. Unlike control, total ursodeoxycholic acid was minor in HFC-fed rat liver, and inversely correlated to aforementioned indicators of liver injury; total glyco-BAs, rather than tauro-BAs, were predominant in HFC-fed rat liver, and positively correlated with macrovesicular steatosis score. Moreover, its ratio to total tauro-BAs positively correlated with each parameter of liver injury, while inverse associations were detected for total tauro-BAs. CONCLUSIONS Hepatic BA accumulation may potentiate liver disease. CDCA and glyco-BAs play a more important role in the pathogenesis of fibrotic steatohepatitis.
Collapse
Affiliation(s)
- Xiaofang Jia
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Bile acids, synthesized from cholesterol, are known to produce beneficial as well as toxic effects in the liver. The beneficial effects include choleresis, immunomodulation, cell survival, while the toxic effects include cholestasis, apoptosis and cellular toxicity. It is believed that bile acids produce many of these effects by activating intracellular signaling pathways. However, it has been a challenge to relate intracellular signaling to specific and at times opposing effects of bile acids. It is becoming evident that bile acids produce different effects by activating different isoforms of phosphoinositide 3-kinase (PI3K), Protein kinase Cs (PKCs), and mitogen activated protein kinases (MAPK). Thus, the apoptotic effect of bile acids may be mediated via PI3K-110γ, while cytoprotection induce by cAMP-GEF pathway involves activation of PI3K-p110α/β isoforms. Atypical PKCζ may mediate beneficial effects and nPKCε may mediate toxic effects, while cPKCα and nPKCδ may be involved in both beneficial and toxic effects of bile acids. The opposing effects of nPKCδ activation may depend on nPKCδ phosphorylation site(s). Activation of ERK1/2 and JNK1/2 pathway appears to mediate beneficial and toxic effects, respectively, of bile acids. Activation of p38α MAPK and p38β MAPK may mediate choleretic and cholestatic effects, respectively, of bile acids. Future studies clarifying the isoform specific effects on bile formation should allow us to define potential therapeutic targets in the treatment of cholestatic disorders.
Collapse
Affiliation(s)
- Mohammed Sawkat Anwer
- Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA, USA
| |
Collapse
|
20
|
Abstract
Because of its unique function and anatomical location, the liver is exposed to a multitude of toxins and xenobiotics, including medications and alcohol, as well as to infection by hepatotropic viruses, and therefore, is highly susceptible to tissue injury. Cell death in the liver occurs mainly by apoptosis or necrosis, with apoptosis also being the physiologic route to eliminate damaged or infected cells and to maintain tissue homeostasis. Liver cells, especially hepatocytes and cholangiocytes, are particularly susceptible to death receptor-mediated apoptosis, given the ubiquitous expression of the death receptors in the organ. In a quite unique way, death receptor-induced apoptosis in these cells is mediated by both mitochondrial and lysosomal permeabilization. Signaling between the endoplasmic reticulum and the mitochondria promotes hepatocyte apoptosis in response to excessive free fatty acid generation during the metabolic syndrome. These cell death pathways are partially regulated by microRNAs. Necrosis in the liver is generally associated with acute injury (i.e., ischemia/reperfusion injury) and has been long considered an unregulated process. Recently, a new form of "programmed" necrosis (named necroptosis) has been described: the role of necroptosis in the liver has yet to be explored. However, the minimal expression of a key player in this process in the liver suggests this form of cell death may be uncommon in liver diseases. Because apoptosis is a key feature of so many diseases of the liver, therapeutic modulation of liver cell death holds promise. An updated overview of these concepts is given in this article.
Collapse
Affiliation(s)
- Maria Eugenia Guicciardi
- 1Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
21
|
Mello-Vieira J, Sousa T, Coutinho A, Fedorov A, Lucas SD, Moreira R, Castro RE, Rodrigues CM, Prieto M, Fernandes F. Cytotoxic bile acids, but not cytoprotective species, inhibit the ordering effect of cholesterol in model membranes at physiologically active concentrations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2152-63. [DOI: 10.1016/j.bbamem.2013.05.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 01/10/2023]
|
22
|
Woudenberg-Vrenken TE, Conde de la Rosa L, Buist-Homan M, Faber KN, Moshage H. Metformin protects rat hepatocytes against bile acid-induced apoptosis. PLoS One 2013; 8:e71773. [PMID: 23951244 PMCID: PMC3741108 DOI: 10.1371/journal.pone.0071773] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 07/07/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Metformin is used in the treatment of Diabetes Mellitus type II and improves liver function in patients with non-alcoholic fatty liver disease (NAFLD). Metformin activates AMP-activated protein kinase (AMPK), the cellular energy sensor that is sensitive to changes in the AMP/ATP-ratio. AMPK is an inhibitor of mammalian target of rapamycin (mTOR). Both AMPK and mTOR are able to modulate cell death. AIM To evaluate the effects of metformin on hepatocyte cell death. METHODS Apoptotic cell death was induced in primary rat hepatocytes using either the bile acid glycochenodeoxycholic acid (GCDCA) or TNFα in combination with actinomycin D (actD). AMPK, mTOR and phosphoinositide-3 kinase (PI3K)/Akt were inhibited using pharmacological inhibitors. Apoptosis and necrosis were quantified by caspase activation, acridine orange staining and Sytox green staining respectively. RESULTS Metformin dose-dependently reduces GCDCA-induced apoptosis, even when added 2 hours after GCDCA, without increasing necrotic cell death. Metformin does not protect against TNFα/ActD-induced apoptosis. The protective effect of metformin is dependent on an intact PI3-kinase/Akt pathway, but does not require AMPK/mTOR-signaling. Metformin does not inhibit NF-κB activation. CONCLUSION Metformin protects against bile acid-induced apoptosis and could be considered in the treatment of chronic liver diseases accompanied by inflammation.
Collapse
Affiliation(s)
- Titia E. Woudenberg-Vrenken
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Laura Conde de la Rosa
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
23
|
Lim SC, Duong HQ, Parajuli KR, Han SI. Pro-apoptotic role of the MEK/ERK pathway in ursodeoxycholic acid-induced apoptosis in SNU601 gastric cancer cells. Oncol Rep 2012; 28:1429-34. [PMID: 22824956 DOI: 10.3892/or.2012.1918] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/15/2012] [Indexed: 02/07/2023] Open
Abstract
Ursodeoxycholic acid (UDCA) has been regarded as a suppressor of gastrointestinal cancer, but the mechanisms underlying its antitumor effects are not fully understood. Previously, we reported the antitumor effect of UDCA by demonstrating that UDCA induces apoptosis of gastric cancer cells. Bile acids are known to activate the ERK pathway and ERK is a representative oncogenic kinase in cancer cells. Here, we investigated the role of ERK in UDCA-induced gastric cancer cell apoptosis. We found that UDCA enhanced the phosphorylation of ERK1/2 and MEK1/2. The prevention of MEK by the pharmacologic inhibitors PD98059 and U0126, resulted in decreased UDCA-induced apoptosis as shown by the reduction of apoptotic body formation, caspase-8 activity, and caspase-3, -6 and PARP cleavage, indicating that ERK exerts pro-apoptotic activity upon exposure to UDCA. In addition, U0126 reduced UDCA-triggered TNF-related apoptosis-inducing ligand receptor 2 (TRAIL-R2/DR5) expression. In gene silencing studies, we observed that RNA interference of ERK2 decreased apoptosis and reduced DR5 overexpression. Lipid raft disrupting agent, methyl-β-cyclodextrin, blunted the phosphorylation of ERK1/2, indicating that ERK activation is regulated in a lipid raft-dependent manner. On the other hand, tumor-promoting bile acid, deoxycholic acid (DCA), also phosphorylated ERK in SNU601 cells. However, the DCA-triggered ERK pathway exerted anti-apoptotic function in the cells. Suppression of the ERK pathway enhanced DCA-induced apoptosis, and ERK activation was observed to be lipid raft-independently controlled. These results indicated that UDCA and DCA may cause differential responses in gastric cancer cells through the ERK signaling molecule. Thus, ERK activation may be a possible mechanism by which UDCA and DCA represent differential activities in gastrointestinal cancer.
Collapse
Affiliation(s)
- Sung-Chul Lim
- Research Center for Resistant Cells, Department of Pathology, College of Medicine, Chosun University, Gwangju 501-759, Republic of Korea
| | | | | | | |
Collapse
|
24
|
Tauro-β-muricholic acid restricts bile acid-induced hepatocellular apoptosis by preserving the mitochondrial membrane potential. Biochem Biophys Res Commun 2012; 424:758-64. [DOI: 10.1016/j.bbrc.2012.07.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/08/2012] [Indexed: 11/23/2022]
|
25
|
Dilger K, Hohenester S, Winkler-Budenhofer U, Bastiaansen BAJ, Schaap FG, Rust C, Beuers U. Effect of ursodeoxycholic acid on bile acid profiles and intestinal detoxification machinery in primary biliary cirrhosis and health. J Hepatol 2012; 57:133-40. [PMID: 22414767 DOI: 10.1016/j.jhep.2012.02.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 01/15/2023]
Abstract
BACKGROUND & AIMS Ursodeoxycholic acid (UDCA) exerts anticholestatic, antifibrotic and antiproliferative effects in primary biliary cirrhosis (PBC) via mechanisms not yet fully understood. Its adequate biliary enrichment is considered mandatory for therapeutic efficacy. However, precise determination of biliary enrichment of UDCA is not possible in clinical practice. Therefore, we investigated (i) the relationship between biliary enrichment and plasma pharmacokinetics of UDCA, (ii) the effect of UDCA on plasma and biliary bile acid composition and conjugation patterns, and (iii) on the intestinal detoxification machinery in patients with PBC and healthy controls. METHODS In 11 PBC patients and 11 matched healthy subjects, cystic bile and duodenal tissue were collected before and after 3 weeks of administration of UDCA (15 mg/kg/day). Extensive pharmacokinetic profiling of bile acids was performed. The effect of UDCA on the intestinal detoxification machinery was studied by quantitative PCR and Western blotting. RESULTS The relative fraction of UDCA and its conjugates in plasma at trough level[x] correlated with their biliary enrichment[y] (r=0.73, p=0.0001, y=3.65+0.49x). Taurine conjugates of the major hydrophobic bile acid, chenodeoxycholic acid, were more prominent in bile of PBC patients than in that of healthy controls. Biliary bile acid conjugation patterns normalized after treatment with UDCA. UDCA induced duodenal expression of key export pumps, BCRP and P-glycoprotein. CONCLUSIONS Biliary and trough plasma enrichment of UDCA are closely correlated in PBC and health. Taurine conjugation may represent an adaptive mechanism in PBC against chenodeoxycholic acid-mediated bile duct damage. UDCA may stabilize small intestinal detoxification by upregulation of efflux pumps.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW To critically review most recent experimental evidence for the protective action of biliary HCO(3)(-) secretion against bile acid-induced bile duct damage and development of fibrosing cholangiopathy in humans and experimental animals. RECENT FINDINGS Studies in human cholangiocytes in vitro indicate that a biliary HCO(3)(-) umbrella protects against bile acid-induced cholangiocyte damage and apoptosis in humans. The Cl(-)/HCO(3)(-) exchanger, AE2, and an intact biliary glycocalyx appear crucial for its stability. Related studies with experimental animal models in vivo have to be interpreted with caution as humans and mice differ not only with regard to bile salt pool, but also their expression patterns of transport proteins and signalling molecules. SUMMARY Adequate biliary HCO(3)(-) secretion may protect against bile salt-induced cholangiopathies. Future therapeutic strategies in biliary diseases will aim at stabilizing the biliary HCO(3)(-) umbrella.
Collapse
|
27
|
Trottier J, Białek A, Caron P, Straka RJ, Heathcote J, Milkiewicz P, Barbier O. Metabolomic profiling of 17 bile acids in serum from patients with primary biliary cirrhosis and primary sclerosing cholangitis: a pilot study. Dig Liver Dis 2012; 44:303-10. [PMID: 22169272 DOI: 10.1016/j.dld.2011.10.025] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 10/20/2011] [Accepted: 10/30/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Primary biliary cirrhosis and primary sclerosing cholangitis are two cholestatic diseases characterised by hepatic accumulation of bile acids. AIMS This study compares serum bile acid levels in patients with primary biliary cirrhosis and primary sclerosing cholangitis and from age and sex-matched non cholestatic donors. METHODS Seventeen bile acids were quantified using liquid chromatography coupled to tandem mass spectrometry. Serum samples from cholestatic patients were compared with those of non-cholestatic donors. RESULTS The concentration of total bile acids, taurine and glycine conjugates of primary bile acids was elevated in both patients with primary biliary cirrhosis and primary sclerosing cholangitis when compared to non-cholestatic donors. Samples from primary sclerosing cholangitis patients displayed reduced levels of secondary acids, when compared to non cholestatic and primary biliary cirrhosis sera. The ratio of total glycine versus total taurine conjugates was reduced in patients with primary biliary cirrhosis, but not in primary sclerosing cholangitis. CONCLUSION The present study suggests that circulating bile acids are altered differentially in primary biliary cirrhosis and primary sclerosing cholangitis patients.
Collapse
Affiliation(s)
- Jocelyn Trottier
- Laboratory of Molecular Pharmacology, CHUQ Research Center and the Faculty of Pharmacy, Laval University, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
Trottier J, Białek A, Caron P, Straka RJ, Milkiewicz P, Barbier O. Profiling circulating and urinary bile acids in patients with biliary obstruction before and after biliary stenting. PLoS One 2011; 6:e22094. [PMID: 21760958 PMCID: PMC3132779 DOI: 10.1371/journal.pone.0022094] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 06/15/2011] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Bile acids are considered as extremely toxic at the high concentrations reached during bile duct obstruction, but each acid displays variable cytotoxic properties. This study investigates how biliary obstruction and restoration of bile flow interferes with urinary and circulating levels of 17 common bile acids. Bile acids (conjugated and unconjugated) were quantified by liquid chromatography coupled with tandem mass spectrometry in serum and urine samples from 17 patients (8 men and 9 women) with biliary obstruction, before and after biliary stenting. Results were compared with serum concentrations measured in 40 age- and sex-paired control donors (20 men and 20 women). The total circulating bile acid concentration increases from 2.7 µM in control donors to 156.9 µM in untreated patients with biliary stenosis. Serum taurocholic and glycocholic acids exhibit 304- and 241-fold accumulations in patients with biliary obstruction compared to controls. The enrichment in chenodeoxycholic acid species reached a maximum of only 39-fold, while all secondary and 6α-hydroxylated species--except taurolithocholic acids--were either unchanged or significantly reduced. Stenting was efficient in restoring an almost normal circulating profile and in reducing urinary bile acids. CONCLUSION These results demonstrate that biliary obstruction affects differentially the circulating and/or urinary levels of the various bile acids. The observation that the most drastically affected acids correspond to the less toxic species supports the activation of self-protecting mechanisms aimed at limiting the inherent toxicity of bile acids in face of biliary obstruction.
Collapse
Affiliation(s)
- Jocelyn Trottier
- Laboratory of Molecular Pharmacology, Centre Hospitalier Universitaire de Québec (CHUQ) Research Center and the Faculty of Pharmacy, Laval University, Québec, Canada
| | - Andrzej Białek
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland
| | - Patrick Caron
- Laboratory of Molecular Pharmacology, Centre Hospitalier Universitaire de Québec (CHUQ) Research Center and the Faculty of Pharmacy, Laval University, Québec, Canada
| | - Robert J. Straka
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Piotr Milkiewicz
- Liver Unit and Liver Research Laboratories, Pomeranian Medical University, Szczecin, Poland
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, Centre Hospitalier Universitaire de Québec (CHUQ) Research Center and the Faculty of Pharmacy, Laval University, Québec, Canada
| |
Collapse
|
29
|
Chang X, Hou X, Pan J, Fang K, Wang L, Han J. Investigating the pathogenic role of PADI4 in oesophageal cancer. Int J Biol Sci 2011; 7:769-81. [PMID: 21698003 PMCID: PMC3119849 DOI: 10.7150/ijbs.7.769] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/05/2011] [Indexed: 11/22/2022] Open
Abstract
PADI4 post-translationally converts peptidylarginine to citrulline. PADI4 can disrupt the apoptotic process via the citrullination of histone H3 in the promoter of p53-target genes. The current study focused on PADI4 expression in various subtypes of oesophageal carcinoma (EC) by immunohistochemistry, western blotting and real time PCR. The study also investigated the effect of bile acid deoxycholate (DCA) on PADI4 expression in Eca-109 cells that originated from EC. Apoptosis and DCA-induced toxicity were analyzed by TUNEL, MTT assay and flow cytometry. Additionally, the present study investigated the correlation between single nucleotide polymorphism (SNP) in PADI4 gene and EC risk in Chinese population using Illumina GoldenGate assay. Compared with paraneoplastic tissues, the transcriptional and translational levels of PADI4 were significantly elevated in oesophageal squamous cell carcinoma (ESCC, n=9) and oesophageal adenocarcinoma (EAC, n=5) tissues. Immunolabeling detected expression of PADI4 in ESCC tissues (98.56%, n=139), EAC samples (87.5%, n=16) and oesophageal small cell undifferentiated carcinoma (91.7%, n=12) but not in normal tissues (0%, n=16). Furthermore, PADI4 levels is positively correlated with the pathological classification of ESCC (p=0.009). PADI4 expression levels were consistent with the number of apoptotic cells in the induced Eca-109 cells. rs10437048 [OR= 0.012831; 95% CI, 0.001746~0.094278; p=1.556×10-12] were significantly associated with decreased risk of EC, whereas rs41265997 [OR=12.7; 95% CI, 0.857077~33.207214; p=3.896×10-8] were significantly associated with increased risk of EC. rs41265997 in exon 3 of PADI4 gene is non-synonymous and converts ACG to ATG resulting in a threonine /methionine conversion at position 274 of the protein. Haplotypes GC that carries the variant alleles for rs2501796 and rs2477134 was significantly associated with increased risk of EC (frequency=0.085, p=0.0256, OR=2.7). The results suggest that PADI4 expression is related to the tumorigenic process of EC and the DCA-induced apoptosis. The PADI4 gene may be a valid EC susceptibility gene.
Collapse
Affiliation(s)
- Xiaotian Chang
- Research Center For Medicinal Biotechnology Center, Shandong Academy of Medicinal Sciences. National Laboratory for Biotech-Drugs Ministry of Health & Provincial Laboratory for Modern Medicine and Technology of Shandong, Jinan, P. R. China.
| | | | | | | | | | | |
Collapse
|
30
|
Cao R, Cronk ZX, Zha W, Sun L, Wang X, Fang Y, Studer E, Zhou H, Pandak WM, Dent P, Gil G, Hylemon PB. Bile acids regulate hepatic gluconeogenic genes and farnesoid X receptor via G(alpha)i-protein-coupled receptors and the AKT pathway. J Lipid Res 2010; 51:2234-44. [PMID: 20305288 PMCID: PMC2903791 DOI: 10.1194/jlr.m004929] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bile acids are important regulatory molecules that can activate specific nuclear receptors and cell signaling pathways in the liver and gastrointestinal tract. In the current study, the chronic bile fistula (CBF) rat model and primary rat hepatocytes (PRH) were used to study the regulation of gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase) and the gene encoding short heterodimeric partner (SHP) by taurocholate (TCA). The intestinal infusion of TCA into the CBF rat rapidly (1h) activated the AKT (approximately 9-fold) and ERK1/2 (3- to 5-fold) signaling pathways, downregulated (approximately 50%, 30 min) the mRNA levels of PEPCK and G-6-Pase, and induced (14-fold in 3 h) SHP mRNA. TCA rapidly ( approximately 50%, 1-2 h) downregulated PEPCK and G-6-Pase mRNA levels in PRH. The downregulation of these genes by TCA was blocked by pretreatment of PRH with pertussis toxin (PTX). In PRH, TCA plus insulin showed a significantly stronger inhibition of glucose secretion/synthesis from lactate and pyruvate than either alone. The induction of SHP mRNA in PRH was strongly blocked by inhibition of PI3 kinase or PKCzeta by specific chemical inhibitors or knockdown of PKCzeta by siRNA encoded by a recombinant lentivirus. Activation of the insulin signaling pathway appears to be linked to the upregulation of farnesoid X receptor functional activity and SHP induction.
Collapse
Affiliation(s)
- Risheng Cao
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Zhumei Xu Cronk
- Departments of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298
| | - Weibin Zha
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Lixin Sun
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Xuan Wang
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Youwen Fang
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Elaine Studer
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Huiping Zhou
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298,McGuire Veterans Affairs Medical Center, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298
| | - William M. Pandak
- Departments of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298,McGuire Veterans Affairs Medical Center, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298
| | - Paul Dent
- Departments of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298
| | - Gregorio Gil
- Departments of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298
| | - Phillip B. Hylemon
- Departments of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298,McGuire Veterans Affairs Medical Center, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298,To whom correspondence should be addressed. e-mail
| |
Collapse
|
31
|
Shen H, Liu T, Zhang L, Zheng PY, Ji G, Xing LJ. Pathogenesis of increased sensitivity of hepatocytes to injury in non-alcoholic fatty liver disease. Shijie Huaren Xiaohua Zazhi 2010; 18:685-688. [DOI: 10.11569/wcjd.v18.i7.685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely associated with genetic, environmental, and metabolic stress. Elevated sensitivity of hepatocytes to injury is found in NAFLD in some circumstances, such as exposure to hepatotoxic substances (carbon tetrachloride, alcohol) and cholestasis. Mitochondrial dysfunction, free fatty acids, oxidative stress, inflammatory factor and calcium overload in hepatocytes play an important role in the pathogenesis of increased sensitivity of hepatocytes to injury in NAFLD. Further elucidation of the pathogenesis of hepatocyte sensitivity to injury may provide a new strategy for prevention and treatment of NAFLD.
Collapse
|
32
|
Yui S, Kanamoto R, Saeki T. Biphasic regulation of cell death and survival by hydrophobic bile acids in HCT116 cells. Nutr Cancer 2009; 61:374-80. [PMID: 19373611 DOI: 10.1080/01635580802582744] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A secondary bile acid, namely, deoxycholic acid (DCA), has been known to promote colon tumors; on the other hand, it also induces apoptosis in several human colon cancer cell lines. A hydrophobic primary bile acid, namely, chenodeoxycholic acid (CDCA), exhibits a similar property of apoptosis induction; DCA and CDCA also trigger some specific intracellular signal pathways in the human colon cancer cell line HCT116. In this article, we report that hydrophobic bile acids induce different cellular responses depending on their concentration, that is, a sublethal concentration of hydrophobic bile acids can suppress the apoptosis induced by a higher concentration of DCA. Pretreatment with DCA or CDCA at a concentration of < or = 200 microM for 8 h suppressed the apoptosis induced by 500 microM DCA in HCT116 cells. Under this condition, the association of caspase-9 and Apaf-1 and subsequent activation of caspase-9 were inhibited, but the release of cytochrome c from the mitochondria was not. At 200 microM, DCA and CDCA induced the phosphorylation of Akt and ERK1/2, although these phosphorylations do not appear to be indispensable for the cytoprotection. It is interpreted that prolonged exposure to sublethal concentrations of hydrophobic bile acids induces resistance to apoptosis, leading to promotion of colorectal tumorigenesis.
Collapse
Affiliation(s)
- Satoko Yui
- Laboratory of Molecular Nutrition, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | | | | |
Collapse
|
33
|
Looby E, Abdel-Latif MMM, Athié-Morales V, Duggan S, Long A, Kelleher D. Deoxycholate induces COX-2 expression via Erk1/2-, p38-MAPK and AP-1-dependent mechanisms in esophageal cancer cells. BMC Cancer 2009; 9:190. [PMID: 19534809 PMCID: PMC2704223 DOI: 10.1186/1471-2407-9-190] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 06/17/2009] [Indexed: 12/22/2022] Open
Abstract
Background The progression from Barrett's metaplasia to adenocarcinoma is associated with the acquirement of an apoptosis-resistant phenotype. The bile acid deoxycholate (DCA) has been proposed to play an important role in the development of esophageal adenocarcinoma, but the precise molecular mechanisms remain undefined. The aim of this study was to investigate DCA-stimulated COX-2 signaling pathways and their possible contribution to deregulated cell survival and apoptosis in esophageal adenocarcinoma cells. Methods Following exposure of SKGT-4 cells to DCA, protein levels of COX-2, MAPK and PARP were examined by immunoblotting. AP-1 activity was assessed by mobility shift assay. DCA-induced toxicity was assessed by DNA fragmentation and MTT assay. Results DCA induced persistent activation of the AP-1 transcription factor with Fra-1 and JunB identified as the predominant components of the DCA-induced AP-1 complex. DCA activated Fra-1 via the Erk1/2- and p38 MAPK while Erk1/2 is upstream of JunB. Moreover, DCA stimulation mediated inhibition of proliferation with concomitant low levels of caspase-3-dependent PARP cleavage and DNA fragmentation. Induction of the anti-apoptotic protein COX-2 by DCA, via MAPK/AP-1 pathway appeared to balance the DCA mediated activation of pro-apoptotic markers such as PARP cleavage and DNA fragmentation. Both of these markers were increased upon COX-2 suppression by aspirin pretreatment prior to DCA exposure. Conclusion DCA regulates both apoptosis and COX-2-regulated cell survival in esophageal cells suggesting that the balance between these two opposing signals may determine the transformation potential of DCA as a component of the refluxate.
Collapse
Affiliation(s)
- Eileen Looby
- Department of Clinical Medicine and Institute of Molecular Medicine, Trinity Centre for Health Sciences, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland.
| | | | | | | | | | | |
Collapse
|
34
|
Kremer AE, Rust C, Eichhorn P, Beuers U, Holdenrieder S. Immune-mediated liver diseases: programmed cell death ligands and circulating apoptotic markers. Expert Rev Mol Diagn 2009; 9:139-56. [PMID: 19298138 DOI: 10.1586/14737159.9.2.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Primary biliary cirrhosis, primary sclerosing cholangitis and autoimmune hepatitis are the three major immune-mediated liver diseases. The etiologies of primary biliary cirrhosis, primary sclerosing cholangitis and autoimmune hepatitis are largely unknown, but seem to be influenced by genetic and environmental factors. Autoantibodies can be found in nearly all patients with primary sclerosing cholangitis and autoimmune hepatitis, and in the vast majority of patients with primary sclerosing cholangitis. In addition, autoimmune hepatitis is associated with high concentrations of serum globulins. Enhanced liver cell death by apoptosis has been described in all of these liver diseases, although the precise mechanisms remain unclear. In general, apoptosis can be initiated via an extrinsic pathway that is triggered by engagement of death receptors on the cell surface, or via an intrinsic pathway that is induced by mitochondrial injury and is influenced by members of the Bcl-2 family. In both pathways, effector caspases are finally activated that cleave and degrade cell structures, resulting in the release of apoptotic products into the circulation. New diagnostic tests can detect these apoptotic markers and programmed cell death ligands such as Fas and Fas-ligands, nucleosomes, caspases, cytokeratin fragments, macrophage migration inhibitory factor, soluble intracellular adhesion molecule, natural killer cells group 2D and programmed death ligands. Several of these markers have been found to be altered in tissue and/or blood of immune-mediated liver diseases, some also in nonimmune-mediated liver diseases. Beyond their potential usefulness as additional diagnostic markers, they may be valuable for the estimation of disease severity and therapy monitoring. This review summarizes current knowledge on apoptotic mechanisms, death receptor ligands and circulating apoptotic markers in immune-mediated liver diseases.
Collapse
Affiliation(s)
- Andreas E Kremer
- AMC Liver Center, S1-164, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
35
|
Amaral JD, Viana RJS, Ramalho RM, Steer CJ, Rodrigues CMP. Bile acids: regulation of apoptosis by ursodeoxycholic acid. J Lipid Res 2009; 50:1721-34. [PMID: 19417220 DOI: 10.1194/jlr.r900011-jlr200] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bile acids are a group of molecular species of acidic steroids with peculiar physical-chemical and biological characteristics. At high concentrations they become toxic to mammalian cells, and their presence is pertinent in the pathogenesis of several liver diseases and colon cancer. Bile acid cytoxicity has been related to membrane damage, but also to nondetergent effects, such as oxidative stress and apoptosis. Strikingly, hydrophilic ursodeoxycholic acid (UDCA), and its taurine-conjugated form (TUDCA), show profound cytoprotective properties. Indeed, these molecules have been described as potent inhibitors of classic pathways of apoptosis, although their precise mode of action remains to be clarified. UDCA, originally used for cholesterol gallstone dissolution, is currently considered the first choice therapy for several forms of cholestatic syndromes. However, the beneficial effects of both UDCA and TUDCA have been tested in other experimental pathological conditions with deregulated levels of apoptosis, including neurological disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Here, we review the role of bile acids in modulating the apoptosis process, emphasizing the anti-apoptotic effects of UDCA and TUDCA, as well as their potential use as novel and alternate therapeutic agents for the treatment of apoptosis-related diseases.
Collapse
Affiliation(s)
- Joana D Amaral
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
36
|
Wang P, Gong G, Wei Z, Li Y. Ethyl pyruvate prevents intestinal inflammatory response and oxidative stress in a rat model of extrahepatic cholestasis. J Surg Res 2009; 160:228-35. [PMID: 19628226 DOI: 10.1016/j.jss.2009.03.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 03/01/2009] [Accepted: 03/13/2009] [Indexed: 01/01/2023]
Abstract
BACKGROUND Ringer's ethyl pyruvate solution (REPS) has been shown to ameliorate liver injury in a murine model of extrahepatic cholestasis. The goal of the present investigation was to gain additional information about whether infusing REPS instead of Ringer's lactate solution (RLS) after inducing obstructive jaundice would be beneficial to intestinal barrier function, inflammatory response, and oxidative stress. METHODS Male Sprague Dawley rats were divided into three groups: Group Sham (n=6), sham-treated controls; Group RLS (n=9), common bile duct ligation (CBDL) plus RLS; and Group REPS (n=9), CBDL plus REPS. On 14 d after BDL, the rats were sacrificed and intestinal permeability was analyzed. Ileal IL-6 and TNF-alpha levels, malondialdehyde (MDA), glutathione (GSH), myeloperoxidase (MPO), and NF-kappaB activity were determined. Histologic examination and apoptosis of ileum were also examined. RESULTS Relative to sham-treated controls, CBDL in RLS-treated rats were associated with increased intestinal permeability to FITC-labeled dextran (4.51+/-0.85 versus 0.44+/-0.18, P<0.01), histopathologic damage and apoptosis (68.4+/-13.4 versus 6.7+/-1.9 pre-1000 villi cells, P<0.01). IL-6 and TNF-alpha level, MDA, MPO, and NF-kappaB activity in ileal tissues were also promoted, along with decreased GSH levels. Treatment with REPS significantly decreased intestinal permeability (3.37+/-0.71, P<0.01) and apoptosis (42.8+/-14.3 pre-1000 villi cells, P<0.01). Other changes were also significantly attenuated by treatment with REPS after CBDL. CONCLUSIONS The present study demonstrates that administration of REPS, but not RLS, maintains intestinal barrier function and reduces intestinal oxidative damage, inflammatory response, and apoptosis in cholestatic rats. This effect of ethyl pyruvate may be useful for preventing intestinal injury in patients with biliary obstruction.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | |
Collapse
|
37
|
|
38
|
Frankenberg T, Miloh T, Chen FY, Ananthanarayanan M, Sun AQ, Balasubramaniyan N, Arias I, Setchell KDR, Suchy FJ, Shneider BL. The membrane protein ATPase class I type 8B member 1 signals through protein kinase C zeta to activate the farnesoid X receptor. Hepatology 2008; 48:1896-905. [PMID: 18668687 PMCID: PMC2774894 DOI: 10.1002/hep.22431] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UNLABELLED Prior loss-of-function analyses revealed that ATPase class I type 8B member 1 [familial intrahepatic cholestasis 1 (FIC1)] posttranslationally activated the farnesoid X receptor (FXR). Mechanisms underlying this regulation were examined by gain-of-function studies in UPS cells, which lack endogenous FIC1 expression. FXR function was assayed in response to wild-type and mutated FIC1 expression constructs with a human bile salt export pump (BSEP) promoter and a variety of cellular localization techniques. FIC1 overexpression led to enhanced phosphorylation and nuclear localization of FXR that was associated with FXR-dependent activation of the BSEP promoter. The FIC1 effect was lost after mutation of the FXR response element in the BSEP promoter. Despite similar levels of FIC1 protein expression, Byler disease FIC1 mutants did not activate BSEP, whereas benign recurrent intrahepatic cholestasis mutants partially activated BSEP. The FIC1 effect was dependent on the presence of the FXR ligand, chenodeoxycholic acid. The effect of FIC1 on FXR phosphorylation and nuclear localization and its effects on BSEP promoter activity could be blocked with protein kinase C zeta (PKC zeta) inhibitors (pseudosubstrate or small interfering RNA silencing). Recombinant PKC zeta directly phosphorylated immunoprecipitated FXR. The mutation of threonine 442 of FXR to alanine yielded a dominant negative protein, whereas the phosphomimetic conversion to glutamate resulted in FXR with enhanced activity and nuclear localization. Inhibition of PKC zeta in Caco-2 cells resulted in activation of the human apical sodium-dependent bile acid transporter promoter. CONCLUSION These results demonstrate that FIC1 signals to FXR via PKC zeta. FIC1-related liver disease is likely related to downstream effects of FXR on bile acid homeostasis. Benign recurrent intrahepatic cholestasis emanates from a partially functional FIC1 protein. Phosphorylation of FXR is an important mechanism for regulating its activity.
Collapse
Affiliation(s)
- Tamara Frankenberg
- Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Tamir Miloh
- Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Frank Y. Chen
- Division of Gastroenterology, Children’s Hospital of Pittsburgh of The University of Pittsburgh Medical Center, and the Department of Pediatrics, University of Pittsburgh School of Medicine, 3705 Fifth Avenue, Pittsburgh, PA 15213
| | - Meena Ananthanarayanan
- Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - An-Qiang Sun
- Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | | | - Irwin Arias
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892
| | - Kenneth D. R. Setchell
- Department of Pathology, Cincinnati Children’s Hospital Medical Center and the Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Frederick J. Suchy
- Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029
| | - Benjamin L. Shneider
- Division of Gastroenterology, Children’s Hospital of Pittsburgh of The University of Pittsburgh Medical Center, and the Department of Pediatrics, University of Pittsburgh School of Medicine, 3705 Fifth Avenue, Pittsburgh, PA 15213
| |
Collapse
|
39
|
Vrenken TE, Buist-Homan M, Kalsbeek AJ, Faber KN, Moshage H. The active metabolite of leflunomide, A77 1726, protects rat hepatocytes against bile acid-induced apoptosis. J Hepatol 2008; 49:799-809. [PMID: 18809221 DOI: 10.1016/j.jhep.2008.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 06/16/2008] [Accepted: 07/10/2008] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Leflunomide is used in the treatment of autoimmune diseases as an anti-inflammatory agent. Leflunomide and its active metabolite A77 1726 modulate mitogen-activated protein kinases (MAPK), Src kinases, the phosphoinositide-3 kinase (PI3K)/Akt-pathway and nuclear factor (NF)-kappaB activation. Both cell protective and cytotoxic effects of leflunomide have been described. Since leflunomide affects pathways involved in hepatocyte cell survival, we examined the effects of A77 1726 on hepatocyte cell death. METHODS Primary rat hepatocytes were exposed to the bile acid glycochenodeoxycholic acid (GCDCA), the superoxide anion donor menadione, or tumor necrosis factor (TNF) alpha in combination with actinomycin D. Activation of MAP-kinases was determined by Western blot analysis. Apoptosis and necrosis were analyzed by acridine orange staining and caspase activity and Sytox Green staining, respectively. RESULTS A77 1726 dose-dependently reduces GCDCA-induced apoptosis and necrosis, but not menadione- or TNFalpha/ActD-induced apoptosis. The hepatoprotective effect of A77 1726 does not involve ERK1/2, p38 or PI3K/Akt activation. A77 1726 does not inhibit NF-kappaB activation in hepatocytes. CONCLUSIONS Since A77 1726 inhibits bile acid-induced apoptosis and does not sensitize hepatocytes to TNFalpha, our results suggest that A77 1726 could be considered for the treatment of chronic liver diseases accompanied by elevated bile acid levels and inflammation.
Collapse
Affiliation(s)
- Titia E Vrenken
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
40
|
El Kihel L, Clément M, Bazin MA, Descamps G, Khalid M, Rault S. New lithocholic and chenodeoxycholic piperazinylcarboxamides with antiproliferative and pro-apoptotic effects on human cancer cell lines. Bioorg Med Chem 2008; 16:8737-44. [DOI: 10.1016/j.bmc.2008.07.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 07/11/2008] [Accepted: 07/18/2008] [Indexed: 01/19/2023]
|
41
|
Gineste R, Sirvent A, Paumelle R, Helleboid S, Aquilina A, Darteil R, Hum DW, Fruchart JC, Staels B. Phosphorylation of farnesoid X receptor by protein kinase C promotes its transcriptional activity. Mol Endocrinol 2008; 22:2433-47. [PMID: 18755856 DOI: 10.1210/me.2008-0092] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The farnesoid X receptor (FXR, NR1H4) belongs to the nuclear receptor superfamily and is activated by bile acids such as chenodeoxycholic acid, or synthetic ligands such as GW4064. FXR is implicated in the regulation of bile acid, lipid, and carbohydrate metabolism. Posttranslational modifications regulating its activity have not been investigated yet. Here, we demonstrate that calcium-dependent protein kinase C (PKC) inhibition impairs ligand-mediated regulation of FXR target genes. Moreover, in a transactivation assay, we show that FXR transcriptional activity is modulated by PKC. Furthermore, phorbol 12-myristate 13-acetate , a PKC activator, induces the phosphorylation of endogenous FXR in HepG2 cells and PKCalpha phosphorylates in vitro FXR in its DNA-binding domain on S135 and S154. Mutation of S135 and S154 to alanine residues reduces in cell FXR phosphorylation. In contrast to wild-type FXR, mutant FXRS135AS154A displays an impaired PKCalpha-induced transactivation and a decreased ligand-dependent FXR transactivation. Finally, phosphorylation of FXR by PKC promotes the recruitment of peroxisomal proliferator-activated receptor gamma coactivator 1alpha. In conclusion, these findings show that the phosphorylation of FXR induced by PKCalpha directly modulates the ability of agonists to activate FXR.
Collapse
|
42
|
Nonaka M, Tazuma S, Hyogo H, Kanno K, Chayama K. Cytoprotective effect of tauroursodeoxycholate on hepatocyte apoptosis induced by peroxisome proliferator-activated receptor gamma ligand. J Gastroenterol Hepatol 2008; 23:e198-206. [PMID: 17868335 DOI: 10.1111/j.1440-1746.2007.05073.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands inhibit cell growth and induce apoptosis in various cancer cells. Bile acids are also known to cause hepatocyte apoptosis through nuclear receptor-mediated mechanisms. The aim of this study was to examine the effect of two different bile acid species on the inhibitory action of PPARgamma in cell growth with paying attention to the role of the mitogen-activated protein kinase pathway as an underlying mechanism. METHODS Immortalized human hepatocytes (OUMS-29) and hepatoma cells (HepG2 and Huh7) were incubated with troglitazone (TGZ), a PPARgamma ligand with or without pre-incubation of either hydrophobic glycochenodeoxycholate (GCDC) or hydrophilic tauroursodeoxycholate (TUDC). RESULTS TGZ induced cell apoptosis in all cell types, resulting in the reduction of cell viability. While pre-incubation with GCDC enhanced the apoptotic effects of TGZ, TUDC significantly attenuated it. Both bile acids enhanced p38 and c-Jun N-terminal kinase (JNK) phosphorylation in a similar way, whereas there was more drastic enhancement of extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in the presence of TUDC compared to GCDC. In addition, ERK inhibitors suppressed the action of TUDC against apoptotic effect of TGZ. CONCLUSION This study demonstrates that TUDC exhibits anti-apoptotic and cytoprotective effects against TGZ-induced cell apoptosis, presumably through the ERK signaling pathway. We speculate that the administration of TUDC might be one of the potential strategies for the hepatotoxicity caused by TGZ.
Collapse
Affiliation(s)
- Michihiro Nonaka
- Department of Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
43
|
Park SE, Lee SW, Hossain MA, Kim MY, Kim MN, Ahn EY, Park YC, Suh H, Kim GY, Choi YH, Kim ND. A chenodeoxycholic derivative, HS-1200, induces apoptosis and cell cycle modulation via Egr-1 gene expression control on human hepatoma cells. Cancer Lett 2008; 270:77-86. [PMID: 18554781 DOI: 10.1016/j.canlet.2008.04.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 01/31/2008] [Accepted: 04/28/2008] [Indexed: 12/17/2022]
Abstract
We previously reported that HS-1200, a synthetic chenodeoxycholic acid derivative, has apoptosis-inducing activity in various human cancer cells. The present study was undertaken to examine whether HS-1200 had an anticancer effect on HepG2 (wild-type p53) and Hep3B (p53 deleted) human hepatoma cells. Treatment of both cells with HS-1200 resulted in growth inhibition and induction of apoptosis as measured by MTT assay, nuclear staining, DNA fragmentation and flow cytometry analysis. The increase in apoptosis was associated with the alteration in the ratio of Bcl-2/Bax protein expression. In addition, flow cytometry analysis indicated that HS-1200 induced G1 phase arrest in both cells. When analyzing the expression of cell cycle-related proteins, we found that HS-1200 reduced the expression levels of cyclin D1, cyclin A, and Cdk2. HS-1200 treatment also caused an increase in the expression levels of p21 WAF1/CIP1 in HepG2 cells in a p53-dependent manner and in Hep3B cells in a p53-independent manner. Moreover, the expression level of p27 KIP1 was increased in both cell lines. We also observed that HS-1200 decreased the levels of cyclooxygenase (COX)-2 mRNA and protein expression. Furthermore, HS-1200 treatment markedly induced the Egr-1 expression at an early time point, and the increased expression levels of p53, p21 WAF1/CIP1, p27 KIP1, and COX-2 after treatment with HS-1200 were completely inhibited in HepG2 cells and partially inhibited in Hep3B cells by silencing of Egr-1, respectively. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anticancer activity of the synthetic bile acid derivative, HS-1200, through Egr-1 regulation.
Collapse
Affiliation(s)
- Sang Eun Park
- Department of Pharmacy BK21 Program, Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Free fatty acids sensitize hepatocytes to bile acid-induced apoptosis. Biochem Biophys Res Commun 2008; 371:441-5. [PMID: 18452708 DOI: 10.1016/j.bbrc.2008.04.113] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 04/17/2008] [Indexed: 01/05/2023]
Abstract
Delivery of free fatty acids to the liver in nonalcoholic fatty liver disease (NAFLD) may render hepatocytes more vulnerable to glycochenodeoxycholic acid (GCDCA)-induced apoptosis. Fat overloading was induced in HepG2-Ntcp cells and primary rat hepatocytes by incubation with palmitic or oleic acid. Apoptosis was quantified by measuring caspase 3/7 activity and transcription of interleukin (IL) 8 and IL-22 by quantitative real-time PCR. Oleic acid (500 microM) alone did not induce apoptosis, while palmitic acid (500 microM) increased apoptosis 5-fold. GCDCA did not induce significant apoptosis at low micromolar concentrations (5-30 microM) in non-steatotic cells. However, at the same concentrations, GCDCA increased apoptosis 3-fold in oleic acid-pretreated HepG2-Ntcp cells and 3.5-fold in primary rat hepatocytes. Pretreatment with oleic acid increased GCDCA-induced gene transcription of the proinflammatory cytokines IL-8 and IL-22 5-fold and 19-fold, respectively. Thus, low levels of cholestasis normally not considered harmful could advance liver injury in patients with NAFLD.
Collapse
|
45
|
Vadász I, Dada LA, Briva A, Trejo HE, Welch LC, Chen J, Tóth PT, Lecuona E, Witters LA, Schumacker PT, Chandel NS, Seeger W, Sznajder JI. AMP-activated protein kinase regulates CO2-induced alveolar epithelial dysfunction in rats and human cells by promoting Na,K-ATPase endocytosis. J Clin Invest 2008; 118:752-62. [PMID: 18188452 DOI: 10.1172/jci29723] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 11/16/2007] [Indexed: 12/12/2022] Open
Abstract
Hypercapnia (elevated CO(2) levels) occurs as a consequence of poor alveolar ventilation and impairs alveolar fluid reabsorption (AFR) by promoting Na,K-ATPase endocytosis. We studied the mechanisms regulating CO(2)-induced Na,K-ATPase endocytosis in alveolar epithelial cells (AECs) and alveolar epithelial dysfunction in rats. Elevated CO(2) levels caused a rapid activation of AMP-activated protein kinase (AMPK) in AECs, a key regulator of metabolic homeostasis. Activation of AMPK was mediated by a CO(2)-triggered increase in intracellular Ca(2+) concentration and Ca(2+)/calmodulin-dependent kinase kinase-beta (CaMKK-beta). Chelating intracellular Ca(2+) or abrogating CaMKK-beta function by gene silencing or chemical inhibition prevented the CO(2)-induced AMPK activation in AECs. Activation of AMPK or overexpression of constitutively active AMPK was sufficient to activate PKC-zeta and promote Na,K-ATPase endocytosis. Inhibition or downregulation of AMPK via adenoviral delivery of dominant-negative AMPK-alpha(1) prevented CO(2)-induced Na,K-ATPase endocytosis. The hypercapnia effects were independent of intracellular ROS. Exposure of rats to hypercapnia for up to 7 days caused a sustained decrease in AFR. Pretreatment with a beta-adrenergic agonist, isoproterenol, or a cAMP analog ameliorated the hypercapnia-induced impairment of AFR. Accordingly, we provide evidence that elevated CO(2) levels are sensed by AECs and that AMPK mediates CO(2)-induced Na,K-ATPase endocytosis and alveolar epithelial dysfunction, which can be prevented with beta-adrenergic agonists and cAMP.
Collapse
Affiliation(s)
- István Vadász
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Raufman JP, Shant J, Guo CY, Roy S, Cheng K. Deoxycholyltaurine rescues human colon cancer cells from apoptosis by activating EGFR-dependent PI3K/Akt signaling. J Cell Physiol 2008; 215:538-49. [PMID: 18064605 DOI: 10.1002/jcp.21332] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies indicate that secondary bile acids promote colon cancer cell proliferation but their role in maintaining cell survival has not been explored. We found that deoxycholyltaurine (DCT) markedly attenuated both unstimulated and TNF-alpha-stimulated programmed cell death in colon cancer cells by a phosphatidylinositol 3-kinase (PI3K)-dependent mechanism. To examine the role of bile acids and PI3K signaling in maintaining colon cancer cell survival, we explored the role of signaling downstream of bile acid-induced activation of the epidermal growth factor receptor (EGFR) in regulating both apoptosis and proliferation of HT-29 and H508 human colon cancer cells. DCT caused dose- and time-dependent Akt (Ser(473)) phosphorylation, a commonly used marker of activated PI3K/Akt signaling. Both EGFR kinase and PI3K inhibitors attenuated DCT-induced Akt phosphorylation and Akt activation, as demonstrated by reduced phosphorylation of a GSK-3-paramyosin substrate. Transfection of HT-29 cells with kinase-dead EGFR (K721M) reduced DCT-induced Akt phosphorylation. In HT-29 cells, EGFR and PI3K inhibitors as well as transfection with dominant negative AKT attenuated DCT-induced cell proliferation. DCT-induced PI3K/Akt activation resulted in downstream phosphorylation of GSK-3 (Ser(21/9)) and BAD (Ser(136)), and nuclear translocation (activation) of NF-kappaB, thereby confirming that DCT-induced activation of PI3K/Akt signaling regulates both proproliferative and prosurvival signals. Collectively, these results indicate that DCT-induced activation of post-EGFR PI3K/Akt signaling stimulates both colon cancer cell survival and proliferation.
Collapse
Affiliation(s)
- Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, VA Maryland Health Care System and Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland.
| | | | | | | | | |
Collapse
|
47
|
Abstract
Mitochondria have multiple functions in eukaryotic cells and are organized into dynamic tubular networks that continuously undergo changes through coordinated fusion and fission and migration through the cytosol. Mitochondria integrate cell-signaling networks, especially those involving the intracellular messenger Ca(2+), into the regulation of metabolic pathways. Recently, it has become clear that mitochondria are central to the three main cell death pathways, namely necrosis, apoptosis, and autophagic cell death. This article discusses the role of mitochondria in drug-induced cholestatic injury to the liver. The role of mitochondria in the cellular adaptation against the toxic effects of bile acids is discussed also.
Collapse
Affiliation(s)
- George E N Kass
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK.
| | | |
Collapse
|
48
|
Mariette C, Piessen G, Leteurtre E, Hémon B, Triboulet JP, Van Seuningen I. Activation of MUC1 mucin expression by bile acids in human esophageal adenocarcinomatous cells and tissues is mediated by the phosphatidylinositol 3-kinase. Surgery 2008; 143:58-71. [PMID: 18154934 DOI: 10.1016/j.surg.2007.07.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 06/21/2007] [Accepted: 07/10/2007] [Indexed: 11/26/2022]
Abstract
BACKGROUND In esophageal adenocarcinoma, MUC1 mucin expression increases in early stages of the carcinogenetic sequence, during which bile reflux has been identified as a major carcinogen. However, no link between MUC1 overexpression and the presence of bile acids in the reflux has been established so far, and molecular mechanisms regulating MUC1 expression during esophageal carcinogenetic sequence are unknown. Our aim was to identify (1) the bile acids able to upregulate MUC1 expression in esophageal cancer cells and mucosal samples, (2) the regulatory regions in MUC1 promoter responsive to bile acids, and (3) the signaling pathway(s) involved in this regulation. METHODS MUC1 mRNA and mucin expression were studied by the means of real-time reverse transcriptase polymerase chain reaction (RT-PCR) and immunohistochemistry, both in the human esophageal OE33 adenocarcinoma cell line and in an ex vivo explant model. MUC1 promoter was cloned and transcription regulation was studied by transient cell transfection to identify the bile acid-responsive regions. Signaling pathways involved were identified using specific pharmacologic inhibitors and siRNA approach. RESULTS Taurocholic, taurodeoxycholic, taurochenodeoxycholic, glycocholic, sodium glycocholate, and deoxycholic bile acids upregulated MUC1 mRNA and protein expression. The highest induction was obtained with deoxycholic and taurocholic acids in both cellular and explant models. The bile acid-mediated upregulation of MUC1 transcription occurs at the promoter level, with responsive elements located in the -1472/-234 region of the promoter, and involves the phosphatidylinositol 3-kinase signaling pathway. CONCLUSIONS Bile acids induce MUC1 mucin overexpression in human esophageal adenocarcinoma cells and tissues by activating its transcription through a process involving phosphatidylinositol 3-kinase.
Collapse
Affiliation(s)
- Christophe Mariette
- Inserm Unit 837, and Department of Digestive and Oncological Surgery, University Hospital Claude Huriez, Lille Cedex, France.
| | | | | | | | | | | |
Collapse
|
49
|
Tauroursodeoxycholic acid reduces bile acid-induced apoptosis by modulation of AP-1. Biochem Biophys Res Commun 2007; 367:208-12. [PMID: 18164257 DOI: 10.1016/j.bbrc.2007.12.122] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 12/19/2007] [Indexed: 01/13/2023]
Abstract
Ursodeoxycholic acid (UDCA) is used in the therapy of cholestatic liver diseases. Apoptosis induced by toxic bile acids plays an important role in the pathogenesis of liver injury during cholestasis and appears to be mediated by the human transcription factor AP-1. We aimed to study if TUDCA can decrease taurolitholic acid (TLCA)-induced apoptosis by modulating AP-1. TLCA (20 microM) upregulated AP-1 proteins cFos (26-fold) and JunB (11-fold) as determined by quantitative real-time PCR in HepG2-Ntcp hepatoma cells. AP-1 transcriptional activity increased by 300% after exposure to TLCA. cFos and JunB expression as well as AP-1 transcriptional activity were unaffected by TUDCA (75 microM). However, TUDCA significantly decreased TLCA-induced upregulation of cFos and JunB. Furthermore, TUDCA inhibited TLCA-induced AP-1 transcriptional activity and reduced TLCA-induced apoptosis. These data suggest that reversal of bile acid-induced AP-1 activation may be relevant for the antiapoptotic effect of TUDCA in liver cells.
Collapse
|
50
|
Fava G, Marzioni M, Francis H, Glaser S, Demorrrow S, Ueno Y, Benedetti A, Alpini G. Novel interaction of bile acid and neural signaling in the regulation of cholangiocyte function. Hepatol Res 2007; 37 Suppl 3:S420-9. [PMID: 17931197 DOI: 10.1111/j.1872-034x.2007.00228.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cholangiocytes, the epithelial cells that line the intrahepatic biliary tree, are the target of cholangiopathies, a wide array of chronic disorders that are characterized by the progressive vanishing of bile ducts, leading to ductopenia and liver failure. The loss of bile ducts is a consequence of cholangiocyte death by apoptosis and impaired proliferative response of these cells to injury. The factors that regulate cholangiocyte proliferation and survival are poorly understood. In this regard, a major role is played by the interaction between bile acids and the autonomic nervous system. It has been shown that adrenergic and cholinergic denervation of the liver results in the induction of cell death and impaired proliferative responses of the biliary epithelium to cholestasis. In addition,bile acids have been shown to enter cholangiocytes through the apical, Na(+)-dependent bile acid transporter, ASBT, which has a marked impact on cholangiocyte pathobiology. Recent evidence shows that bile acids and autonomic innervation interact in modulating cholangiocyte response to liver injury. In this review, we describe the recent advances in understanding the molecular mechanisms by which such events occur.
Collapse
Affiliation(s)
- Giammarco Fava
- Department of Gastroenterology, Polytechnic University of Marche, Ancona, Italy
| | | | | | | | | | | | | | | |
Collapse
|