1
|
Kashyap J, Chhabra A, Kumari N, Tyagi RK. Nuclear localization signal in nuclear receptor VDR facilitates the mitotic genome bookmarking by involving distinct amino acid residues. Mol Cell Endocrinol 2024; 589:112233. [PMID: 38616036 DOI: 10.1016/j.mce.2024.112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Mitotic genome-bookmarking preserves epigenetic information, re-establishing progenitor's gene expression profile through transcription factors, chromatin remodelers, and histone modifiers, thereby regulating cell fate and lineage commitment post-mitotically in progeny cells. Our recent study revealed that the constitutive association of VDR with mitotic chromatin involves its DNA-binding domain. However, amino acid residues in this domain, crucial for genome bookmarking, remain elusive. This study demonstrates that nuclear localization signal (NLS) residues between 49 and 55 amino acids in VDR are essential for receptor-chromatin interaction during mitosis. Furthermore, it is revealed that both bipartite nature of VDR-NLS region and N-terminally located positively charged arginine residues are critical for its 'genome-bookmarking' property. Since mitotic chromatin association of heterodimeric partner RXR depends on VDR-chromatin association, interventions in VDR binding also abort RXR-chromatin interaction. Overall, this study documents the mechanistic details underlying VDR-chromatin interactions in genome-bookmarking behavior, potentially aiding in comprehending VDR-mediated diseases attributed to certain SNPs.
Collapse
Affiliation(s)
- Jyoti Kashyap
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ayushi Chhabra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neha Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India; Special Centre for Systems Medicine (Concurrent Faculty), Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
2
|
Daamouch S, Blüher M, Vázquez DC, Hackl M, Hofbauer LC, Rauner M. MiR-144-5p and miR-21-5p do not drive bone disease in a mouse model of type 1 diabetes mellitus. JBMR Plus 2024; 8:ziae036. [PMID: 38606150 PMCID: PMC11008730 DOI: 10.1093/jbmrpl/ziae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
The increased risk of fractures in patients with type 1 diabetes mellitus (T1DM) is nowadays well recognized. However, the exact mechanism of action of diabetic bone disease has not been fully elucidated. MicroRNAs (miRNAs) are gene regulators that operate post-transcriptionally and have been implicated in the development of various metabolic disorders including T1DM. Previous studies have implicated a role for miR-144-5p and miR-21-5p, which are involved in controlling oxidative stress by targeting Nrf2, in T1DM. To date, it is unclear whether miR-144-5p and miR-21-5p affect bone health in T1DM. Thus, this study aimed to investigate the influence of miR-144-5p and miR-21-5p knockdown in the development of bone disease in T1DM male mice. Therefore, T1DM was induced in 10-wk-old male mice using streptozotocin (STZ). One week later, after development of hyperglycemia, antagomir-144-5p and antagomir-21-5p or their non-targeting control were administered at 10 mg/kg BW once a week until the end of the experiment. At 14 wk of age, glucose levels, bone, and fat mass were analyzed. The results revealed that treating T1DM male mice with antagomir-144-5p and antagomir-21-5p did not protect against diabetes development or bone loss, despite the successful downregulation of the miRNAs and the normalization of Nrf2 mRNA levels in bone tissue. Histological and serological parameters of bone formation or resorption were not altered by the antagomir treatment. Finally, we measured the expression of miRNA-144-5p or miRNA-21-5p in the serum of 30 individuals with T1DM and compared them to non-diabetic controls, but did not find an altered expression of either miRNA. In conclusion, the knockdown of miR-144-5p and miR-21-5p does not affect STZ-induced diabetes development or loss of bone mass in male mice. However, it does normalize expression of the anti-oxidant factor Nrf2 in diabetic bone tissue.
Collapse
Affiliation(s)
- Souad Daamouch
- Department of Medicine III, Center for Healthy Aging, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Saxony, 04109, Germany
| | | | | | - Lorenz C Hofbauer
- Department of Medicine III, Center for Healthy Aging, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Martina Rauner
- Department of Medicine III, Center for Healthy Aging, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| |
Collapse
|
3
|
Rhodes CT, Asokumar D, Sohn M, Naskar S, Elisha L, Stevenson P, Lee DR, Zhang Y, Rocha PP, Dale RK, Lee S, Petros TJ. Loss of Ezh2 in the medial ganglionic eminence alters interneuron fate, cell morphology and gene expression profiles. Front Cell Neurosci 2024; 18:1334244. [PMID: 38419656 PMCID: PMC10899338 DOI: 10.3389/fncel.2024.1334244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction Enhancer of zeste homolog 2 (Ezh2) is responsible for trimethylation of histone 3 at lysine 27 (H3K27me3), resulting in repression of gene expression. Here, we explore the role of Ezh2 in forebrain GABAergic interneuron development. Methods We removed Ezh2 in the MGE by generating Nkx2-1Cre;Ezh2 conditional knockout mice. We then characterized changes in MGE-derived interneuron fate and electrophysiological properties in juvenile mice, as well as alterations in gene expression, chromatin accessibility and histone modifications in the MGE. Results Loss of Ezh2 increases somatostatin-expressing (SST+) and decreases parvalbumin-expressing (PV+) interneurons in the forebrain. We observe fewer MGE-derived interneurons in the first postnatal week, indicating reduced interneuron production. Intrinsic electrophysiological properties in SST+ and PV+ interneurons are normal, but PV+ interneurons display increased axonal complexity in Ezh2 mutant mice. Single nuclei multiome analysis revealed differential gene expression patterns in the embryonic MGE that are predictive of these cell fate changes. Lastly, CUT&Tag analysis revealed that some genomic loci are particularly resistant or susceptible to shifts in H3K27me3 levels in the absence of Ezh2, indicating differential selectivity to epigenetic perturbation. Discussion Thus, loss of Ezh2 in the MGE alters interneuron fate, morphology, and gene expression and regulation. These findings have important implications for both normal development and potentially in disease etiologies.
Collapse
Affiliation(s)
- Christopher T Rhodes
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Dhanya Asokumar
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Mira Sohn
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Shovan Naskar
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Lielle Elisha
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Parker Stevenson
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Dongjin R Lee
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
- National Cancer Institute (NCI), NIH, Bethesda, MD, United States
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| | - Soohyun Lee
- Unit on Functional Neural Circuits, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, United States
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, MD, United States
| |
Collapse
|
4
|
Vimalraj S, Sekaran S. RUNX Family as a Promising Biomarker and a Therapeutic Target in Bone Cancers: A Review on Its Molecular Mechanism(s) behind Tumorigenesis. Cancers (Basel) 2023; 15:3247. [PMID: 37370857 DOI: 10.3390/cancers15123247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The transcription factor runt-related protein (RUNX) family is the major transcription factor responsible for the formation of osteoblasts from bone marrow mesenchymal stem cells, which are involved in bone formation. Accumulating evidence implicates the RUNX family for its role in tumor biology and cancer progression. The RUNX family has been linked to osteosarcoma via its regulation of many tumorigenicity-related factors. In the regulatory network of cancers, with numerous upstream signaling pathways and its potential target molecules downstream, RUNX is a vital molecule. Hence, a pressing need exists to understand the precise process underpinning the occurrence and prognosis of several malignant tumors. Until recently, RUNX has been regarded as one of the therapeutic targets for bone cancer. Therefore, in this review, we have provided insights into various molecular mechanisms behind the tumorigenic role of RUNX in various important cancers. RUNX is anticipated to grow into a novel therapeutic target with the in-depth study of RUNX family-related regulatory processes, aid in the creation of new medications, and enhance clinical efficacy.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
5
|
Soujanya M, Bihani A, Hajirnis N, Pathak RU, Mishra RK. Nuclear architecture and the structural basis of mitotic memory. CHROMOSOME RESEARCH : AN INTERNATIONAL JOURNAL ON THE MOLECULAR, SUPRAMOLECULAR AND EVOLUTIONARY ASPECTS OF CHROMOSOME BIOLOGY 2023; 31:8. [PMID: 36725757 DOI: 10.1007/s10577-023-09714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/13/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023]
Abstract
The nucleus is a complex organelle that hosts the genome and is essential for vital processes like DNA replication, DNA repair, transcription, and splicing. The genome is non-randomly organized in the three-dimensional space of the nucleus. This functional sub-compartmentalization was thought to be organized on the framework of nuclear matrix (NuMat), a non-chromatin scaffold that functions as a substratum for various molecular processes of the nucleus. More recently, nuclear bodies or membrane-less subcompartments of the nucleus are thought to arise due to phase separation of chromatin, RNA, and proteins. The nuclear architecture is an amalgamation of the relative organization of chromatin, epigenetic landscape, the nuclear bodies, and the nucleoskeleton in the three-dimensional space of the nucleus. During mitosis, the nucleus undergoes drastic changes in morphology to the degree that it ceases to exist as such; various nuclear components, including the envelope that defines the nucleus, disintegrate, and the chromatin acquires mitosis-specific epigenetic marks and condenses to form chromosome. Upon mitotic exit, chromosomes are decondensed, re-establish hierarchical genome organization, and regain epigenetic and transcriptional status similar to that of the mother cell. How this mitotic memory is inherited during cell division remains a puzzle. NuMat components that are a part of the mitotic chromosome in the form of mitotic chromosome scaffold (MiCS) could potentially be the seeds that guide the relative re-establishment of the epigenome, chromosome territories, and the nuclear bodies. Here, we synthesize the advances towards understanding cellular memory of nuclear architecture across mitosis and propose a hypothesis that a subset of NuMat proteome essential for nucleation of various nuclear bodies are retained in MiCS to serve as seeds of mitotic memory, thus ensuring the daughter cells re-establish the complex status of nuclear architecture similar to that of the mother cells, thereby maintaining the pre-mitotic transcriptional status.
Collapse
Affiliation(s)
- Mamilla Soujanya
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ashish Bihani
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
| | - Nikhil Hajirnis
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, USA
| | - Rashmi U Pathak
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India.
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, India.
- TIGS - Tata Institute for Genetics and Society, Bangalore, India.
| |
Collapse
|
6
|
Fritz AJ, Ghule PN, Toor R, Dillac L, Perelman J, Boyd J, Lian JB, Gordon JA, Frietze S, Van Wijnen A, Stein JL, Stein GS. Spatiotemporal Epigenetic Control of the Histone Gene Chromatin Landscape during the Cell Cycle. Crit Rev Eukaryot Gene Expr 2023; 33:85-97. [PMID: 37017672 PMCID: PMC10826887 DOI: 10.1615/critreveukaryotgeneexpr.2022046190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Higher-order genomic organization supports the activation of histone genes in response to cell cycle regulatory cues that epigenetically mediates stringent control of transcription at the G1/S-phase transition. Histone locus bodies (HLBs) are dynamic, non-membranous, phase-separated nuclear domains where the regulatory machinery for histone gene expression is organized and assembled to support spatiotemporal epigenetic control of histone genes. HLBs provide molecular hubs that support synthesis and processing of DNA replication-dependent histone mRNAs. These regulatory microenvironments support long-range genomic interactions among non-contiguous histone genes within a single topologically associating domain (TAD). HLBs respond to activation of the cyclin E/CDK2/NPAT/HINFP pathway at the G1/S transition. HINFP and its coactivator NPAT form a complex within HLBs that controls histone mRNA transcription to support histone protein synthesis and packaging of newly replicated DNA. Loss of HINFP compromises H4 gene expression and chromatin formation, which may result in DNA damage and impede cell cycle progression. HLBs provide a paradigm for higher-order genomic organization of a subnuclear domain that executes an obligatory cell cycle-controlled function in response to cyclin E/CDK2 signaling. Understanding the coordinately and spatiotemporally organized regulatory programs in focally defined nuclear domains provides insight into molecular infrastructure for responsiveness to cell signaling pathways that mediate biological control of growth, differentiation phenotype, and are compromised in cancer.
Collapse
Affiliation(s)
- Andrew J. Fritz
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Prachi N. Ghule
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Rabail Toor
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Louis Dillac
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Jonah Perelman
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Joseph Boyd
- College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Jane B. Lian
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Johnathan A.R. Gordon
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Seth Frietze
- University of Vermont Cancer Center, Burlington, Vermont, USA
- College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Andre Van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Janet L. Stein
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| | - Gary S. Stein
- Department of Biochemistry, University of Vermont, Burlington, Vermont, USA
- University of Vermont Cancer Center, Burlington, Vermont, USA
| |
Collapse
|
7
|
Kashyap J, Tyagi RK. Mitotic genome bookmarking by nuclear receptor VDR advocates transmission of cellular transcriptional memory to progeny cells. Exp Cell Res 2022; 417:113193. [PMID: 35523304 DOI: 10.1016/j.yexcr.2022.113193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/04/2022]
Abstract
Mitosis is an essential process for the self-renewal of cells that is accompanied by dynamic changes in nuclear architecture and chromatin organization. Despite all the changes, the cell manages to re-establish all the parental epigenetic marks, post-mitotically. Recent reports suggest that some sequence-specific transcription factors remain attached to mitotic chromatin during cell division to ensure timely reactivation of a subset of transcription factors necessary to maintain cell identity. These mitotically associated factors are suggested to act as 'genome bookmarking factors' and the phenomenon is termed 'genome bookmarking'. Here, we studied this phenomenon with Vitamin D Receptor (VDR), a key regulator of calcium and phosphate homeostasis and a member of the nuclear receptor superfamily. This study, for the first time, has confirmed VDR as a mitotic bookmarking factor that may be playing a crucial role in the maintenance of cell identity and genome bookmarking. Full 'DNA binding domain (DBD)' present in VDR was identified as essential for enrichment of VDR on mitotic chromatin. Furthermore, the study also demonstrates that VDR evokes mitotic chromatin binding behaviour in its heterodimeric partner Retinoid X receptor (RXR). Interestingly, for promoting bookmarking behaviour in RXR, both DBD and/or ligand-binding domain (LBD) in conjunction with hinge region of VDR were required. Additionally, ChIP analysis showed that VDR remains associated with DR3 (direct repeat 3) region of its specific target gene promoter CYP24A1(Cytochrome P450 family 24 subfamily A member1), during mitosis. Altogether, our study illustrates a novel function of VDR in the epigenetic transmission and control of expression of target proteome for maintenance of cell identity and traits in progeny cells.
Collapse
Affiliation(s)
- Jyoti Kashyap
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
8
|
Fritz AJ, El Dika M, Toor RH, Rodriguez PD, Foley SJ, Ullah R, Nie D, Banerjee B, Lohese D, Glass KC, Frietze S, Ghule PN, Heath JL, Imbalzano AN, van Wijnen A, Gordon J, Lian JB, Stein JL, Stein GS, Stein GS. Epigenetic-Mediated Regulation of Gene Expression for Biological Control and Cancer: Cell and Tissue Structure, Function, and Phenotype. Results Probl Cell Differ 2022; 70:339-373. [PMID: 36348114 PMCID: PMC9753575 DOI: 10.1007/978-3-031-06573-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epigenetic gene regulatory mechanisms play a central role in the biological control of cell and tissue structure, function, and phenotype. Identification of epigenetic dysregulation in cancer provides mechanistic into tumor initiation and progression and may prove valuable for a variety of clinical applications. We present an overview of epigenetically driven mechanisms that are obligatory for physiological regulation and parameters of epigenetic control that are modified in tumor cells. The interrelationship between nuclear structure and function is not mutually exclusive but synergistic. We explore concepts influencing the maintenance of chromatin structures, including phase separation, recognition signals, factors that mediate enhancer-promoter looping, and insulation and how these are altered during the cell cycle and in cancer. Understanding how these processes are altered in cancer provides a potential for advancing capabilities for the diagnosis and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Andrew J. Fritz
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Mohammed El Dika
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rabail H. Toor
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | | - Stephen J. Foley
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rahim Ullah
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Daijing Nie
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Bodhisattwa Banerjee
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Dorcas Lohese
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Karen C. Glass
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Pharmacology, Burlington, VT 05405
| | - Seth Frietze
- University of Vermont, College of Nursing and Health Sciences, Burlington, VT 05405
| | - Prachi N. Ghule
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jessica L. Heath
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405,University of Vermont, Larner College of Medicine, Department of Pediatrics, Burlington, VT 05405
| | - Anthony N. Imbalzano
- UMass Chan Medical School, Department of Biochemistry and Molecular Biotechnology, Worcester, MA 01605
| | - Andre van Wijnen
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jonathan Gordon
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jane B. Lian
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Janet L. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Gary S. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | |
Collapse
|
9
|
El Dika M, Fritz AJ, Toor RH, Rodriguez PD, Foley SJ, Ullah R, Nie D, Banerjee B, Lohese D, Glass KC, Frietze S, Ghule PN, Heath JL, Imbalzano AN, van Wijnen A, Gordon J, Lian JB, Stein JL, Stein GS, Stein GS. Epigenetic-Mediated Regulation of Gene Expression for Biological Control and Cancer: Fidelity of Mechanisms Governing the Cell Cycle. Results Probl Cell Differ 2022; 70:375-396. [PMID: 36348115 PMCID: PMC9703624 DOI: 10.1007/978-3-031-06573-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cell cycle is governed by stringent epigenetic mechanisms that, in response to intrinsic and extrinsic regulatory cues, support fidelity of DNA replication and cell division. We will focus on (1) the complex and interdependent processes that are obligatory for control of proliferation and compromised in cancer, (2) epigenetic and topological domains that are associated with distinct phases of the cell cycle that may be altered in cancer initiation and progression, and (3) the requirement for mitotic bookmarking to maintain intranuclear localization of transcriptional regulatory machinery to reinforce cell identity throughout the cell cycle to prevent malignant transformation.
Collapse
Affiliation(s)
- Mohammed El Dika
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Andrew J. Fritz
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rabail H. Toor
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | | - Stephen J. Foley
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rahim Ullah
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Daijing Nie
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Bodhisattwa Banerjee
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Dorcas Lohese
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Karen C. Glass
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Pharmacology, Burlington, VT 05405
| | - Seth Frietze
- University of Vermont, College of Nursing and Health Sciences, Burlington, VT 05405
| | - Prachi N. Ghule
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jessica L. Heath
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405,University of Vermont, Larner College of Medicine, Department of Pediatrics, Burlington, VT 05405
| | - Anthony N. Imbalzano
- UMass Chan Medical School, Department of Biochemistry and Molecular Biotechnology, Worcester, MA 01605
| | - Andre van Wijnen
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jonathan Gordon
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jane B. Lian
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Janet L. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Gary S. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | |
Collapse
|
10
|
Jawa Y, Yadav P, Gupta S, Mathan SV, Pandey J, Saxena AK, Kateriya S, Tiku AB, Mondal N, Bhattacharya J, Ahmad S, Chaturvedi R, Tyagi RK, Tandon V, Singh RP. Current Insights and Advancements in Head and Neck Cancer: Emerging Biomarkers and Therapeutics with Cues from Single Cell and 3D Model Omics Profiling. Front Oncol 2021; 11:676948. [PMID: 34490084 PMCID: PMC8418074 DOI: 10.3389/fonc.2021.676948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer (HNC) is among the ten leading malignancies worldwide, with India solely contributing one-third of global oral cancer cases. The current focus of all cutting-edge strategies against this global malignancy are directed towards the heterogeneous tumor microenvironment that obstructs most treatment blueprints. Subsequent to the portrayal of established information, the review details the application of single cell technology, organoids and spheroid technology in relevance to head and neck cancer and the tumor microenvironment acknowledging the resistance pattern of the heterogeneous cell population in HNC. Bioinformatic tools are used for study of differentially expressed genes and further omics data analysis. However, these tools have several challenges and limitations when analyzing single-cell gene expression data that are discussed briefly. The review further examines the omics of HNC, through comprehensive analyses of genomics, transcriptomics, proteomics, metabolomics, and epigenomics profiles. Patterns of alterations vary between patients, thus heterogeneity and molecular alterations between patients have driven the clinical significance of molecular targeted therapies. The analyses of potential molecular targets in HNC are discussed with connotation to the alteration of key pathways in HNC followed by a comprehensive study of protein kinases as novel drug targets including its ATPase and additional binding pockets, non-catalytic domains and single residues. We herein review, the therapeutic agents targeting the potential biomarkers in light of new molecular targeted therapies. In the final analysis, this review suggests that the development of improved target-specific personalized therapies can combat HNC's global plight.
Collapse
Affiliation(s)
- Yashika Jawa
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Pooja Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Shruti Gupta
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sivapar V. Mathan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Jyoti Pandey
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ajay K. Saxena
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Suneel Kateriya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ashu B. Tiku
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Neelima Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh K. Tyagi
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Vibha Tandon
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Rana P. Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
11
|
Reolid A, Muñoz-Aceituno E, Abad-Santos F, Ovejero-Benito MC, Daudén E. Epigenetics in Non-tumor Immune-Mediated Skin Diseases. Mol Diagn Ther 2021; 25:137-161. [PMID: 33646564 DOI: 10.1007/s40291-020-00507-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 02/08/2023]
Abstract
Epigenetics is the study of the mechanisms that regulate gene expression without modifying DNA sequences. Knowledge of and evidence about how epigenetics plays a causative role in the pathogenesis of many skin diseases is increasing. Since the epigenetic changes present in tumor diseases have been thoroughly reviewed, we believe that knowledge of the new epigenetic findings in non-tumor immune-mediated dermatological diseases should be of interest to the general dermatologist. Hence, the purpose of this review is to summarize the recent literature on epigenetics in most non-tumor dermatological pathologies, focusing on psoriasis. Hyper- and hypomethylation of DNA methyltransferases and methyl-DNA binding domain proteins are the most common and studied methylation mechanisms. The acetylation and methylation of histones H3 and H4 are the most frequent and well-characterized histone modifications and may be associated with disease severity parameters and serve as therapeutic response markers. Many specific microRNAs dysregulated in non-tumor dermatological disease have been reviewed. Deepening the study of how epigenetic mechanisms influence non-tumor immune-mediated dermatological diseases might help us better understand the role of interactions between the environment and the genome in the physiopathogenesis of these diseases.
Collapse
Affiliation(s)
- Alejandra Reolid
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Diego de León, 62, 28006, Madrid, Spain.
| | - E Muñoz-Aceituno
- Dermatology Department, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Diego de León, 62, 28006, Madrid, Spain
| | - F Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - M C Ovejero-Benito
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| | - E Daudén
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IIS-IP), Madrid, Spain
| |
Collapse
|
12
|
Chen L, Lin Z, Liu Y, Cao S, Huang Y, Yang X, Zhu F, Tang W, He S, Zuo J. DZ2002 alleviates psoriasis-like skin lesions via differentially regulating methylation of GATA3 and LCN2 promoters. Int Immunopharmacol 2021; 91:107334. [PMID: 33412493 DOI: 10.1016/j.intimp.2020.107334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/19/2020] [Accepted: 12/19/2020] [Indexed: 10/22/2022]
Abstract
Psoriasis is the most prevalent inflammatory skin disorders, affecting 1-3% of the worldwide population. We previously reported that topical application of methyl 4-(adenin-9-yl)-2-hydroxybutanoate (DZ2002), a reversible S-adenosyl-l-homocysteine hydrolase (SAHH) inhibitor, was a viable treatment in murine psoriatic skin inflammation. In current study, we further explored the mechanisms of DZ2002 on keratinocyte dysfunction and skin infiltration, the key pathogenic events in psoriasis. We conducted genome-wide DNA methylation analysis in skin tissue from imiquimod (IMQ)-induced psoriatic and normal mice, demonstrated that topical administration of DZ2002 directly rectified aberrant DNA methylation pattern in epidermis and dermis of psoriatic skin lesion. Especially, DZ2002 differentially regulated DNA methylation of GATA3 and LCN2 promoters, which maintained keratinocytes differentiation and reduced inflammatory infiltration in psoriatic skin respectively. In vitro studies in TNF-α/IFN-γ-elicited HaCaT manifested that DZ2002 treatment rectified compromised keratinocyte differentiation via GATA3 enhancement and abated chemokine expression by reducing LCN2 production under inflammatory stimulation. Chemotaxis assays conducted on dHL-60 cells confirmed that suppression of LCN2 expression by DZ2002 was accompanied by CXCR1 and CXCR2 downregulation, and contributed to the inhibition of CXCL8-driven neutrophils migration. In conclusion, therapeutic benefits of DZ2002 are achieved through differentially regulating DNA methylation of GATA3 and LCN2 promoters in psoriatic skin lesion, which efficiently interrupt the pathogenic interplay between keratinocytes and infiltrating immune cells, thus maintains epidermal keratinocytes differentiation and prevents dermal immune infiltration in psoriatic skin.
Collapse
Affiliation(s)
- Li Chen
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Zemin Lin
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China
| | - Yuting Liu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Shiqi Cao
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China
| | - Yueteng Huang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoqian Yang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China
| | - Fenghua Zhu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China
| | - Wei Tang
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shijun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China.
| | - Jianping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang, Shanghai 201203, China; University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, China; Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
13
|
Fend-Guella DL, von Kopylow K, Spiess AN, Schulze W, Salzbrunn A, Diederich S, El Hajj N, Haaf T, Zechner U, Linke M. The DNA methylation profile of human spermatogonia at single-cell- and single-allele-resolution refutes its role in spermatogonial stem cell function and germ cell differentiation. Mol Hum Reprod 2020; 25:283-294. [PMID: 30892608 DOI: 10.1093/molehr/gaz017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/06/2019] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
Human spermatogonial stem cells (hSSCs) have potential in fertility preservation of prepubertal boys or in treatment of male adults suffering from meiotic arrest. Prior to therapeutic application, in vitro propagation of rare hSSCs is mandatory. As the published data points to epigenetic alterations in long-term cell culture of spermatogonia (SPG), an initial characterisation of their DNA methylation state is important. Testicular biopsies from five adult normogonadotropic patients were converted into aggregate-free cell suspensions. FGFR3-positive (FGFR3+) SPG, resembling a very early stem cell state, were labelled with magnetic beads and isolated in addition to unlabelled SPG (FGFR3-). DNA methylation was assessed by limiting dilution bisulfite pyrosequencing for paternally imprinted (H19 and MEG3), maternally imprinted (KCNQ1OT1, PEG3, and SNRPN), pluripotency (POU5F1/OCT4 and NANOG), and spermatogonial/hSSC marker (FGFR3, GFRA1, PLZF, and L1TD1) genes on either single cells or pools of 10 cells. Both spermatogonial subpopulations exhibited a methylation pattern largely equivalent to sperm, with hypomethylation of hSSC marker and maternally imprinted genes and hypermethylation of pluripotency and paternally imprinted genes. Interestingly, we detected fine differences between the two spermatogonial subpopulations, which were reflected by an inverse methylation pattern of imprinted genes, i.e. decreasing methylation in hypomethylated genes and increasing methylation in hypermethylated genes, from FGFR3+ through FGFR3- SPG to sperm. Limitations of this study are due to it not being performed on a genome-wide level and being based on previously published regulatory gene regions. However, the concordance of DNA methylation between SPG and sperm implies that hSSC regulation and germ cell differentiation do not occur at the DNA methylation level.
Collapse
Affiliation(s)
- Desiree Lucia Fend-Guella
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kathrein von Kopylow
- Department of Andrology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Wolfgang Schulze
- Medizinisches Versorgungszentrum Fertility Center Hamburg GmbH, Amedes Group, Hamburg, Germany
| | - Andrea Salzbrunn
- Department of Andrology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Diederich
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nady El Hajj
- Institute of Human Genetics, Biocenter, Julius Maximilians University, Würzburg, Germany.,College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Thomas Haaf
- Institute of Human Genetics, Biocenter, Julius Maximilians University, Würzburg, Germany
| | - Ulrich Zechner
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Senckenberg Center of Human Genetics, Facharztzentrum Frankfurt-Nordend gGmbH, Frankfurt, Germany
| | - Matthias Linke
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
14
|
Abstract
Background Organisms can be primed by metabolic exposures to continue expressing response genes even once the metabolite is no longer available, and can affect the speed and magnitude of responsive gene expression during subsequent exposures. This “metabolic transcriptional memory” can have a profound impact on the survivability of organisms in fluctuating environments. Scope of review Here I present several examples of metabolic transcriptional memory in the microbial world and discuss what is known so far regarding the underlying mechanisms, which mainly focus on chromatin modifications, protein inheritance, and broad changes in metabolic network. From these lessons learned in microbes, some insights into the yet understudied human metabolic memory can be gained. I thus discuss the implications of metabolic memory in disease progression in humans – i.e., the memory of high blood sugar exposure and the resulting effects on diabetic complications. Major conclusions Carbon source shifts from glucose to other less preferred sugars such as lactose, galactose, and maltose for energy metabolism as well as starvation of a signal transduction precursor sugar inositol are well-studied examples of metabolic transcriptional memory in Escherichia coli and Saccharomyces cerevisiae. Although the specific factors guiding metabolic transcriptional memory are not necessarily conserved from microbes to humans, the same basic mechanisms are in play, as is observed in hyperglycemic memory. Exploration of new metabolic transcriptional memory systems as well as further detailed mechanistic analyses of known memory contexts in microbes is therefore central to understanding metabolic memory in humans, and may be of relevance for the successful treatment of the ever-growing epidemic of diabetes. Metabolic exposures can prime genes to have memory. Memory of carbon source shifts occurs in all kingdoms of life. Memory is maintained through multiple mechanisms including chromatin modifications, proteins, and metabolic network. Metabolic transcriptional memory in unicellular organisms is a part of “bet-hedging” strategies to ensure survival. Hyperglycemic memory in humans contributes to diabetes and aging.
Collapse
Affiliation(s)
- Poonam Bheda
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
15
|
Maeda M, Takeshima H, Iida N, Hattori N, Yamashita S, Moro H, Yasukawa Y, Nishiyama K, Hashimoto T, Sekine S, Ishii G, Ochiai A, Fukagawa T, Katai H, Sakai Y, Ushijima T. Cancer cell niche factors secreted from cancer-associated fibroblast by loss of H3K27me3. Gut 2020; 69:243-251. [PMID: 31085554 DOI: 10.1136/gutjnl-2018-317645] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/25/2019] [Accepted: 04/21/2019] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Cancer-associated fibroblasts (CAFs), a major component of cancer stroma, can confer aggressive properties to cancer cells by secreting multiple factors. Their phenotypes are stably maintained, but the mechanisms are not fully understood. We aimed to show the critical role of epigenetic changes in CAFs in maintaining their tumour-promoting capacity and to show the validity of the epigenomic approach in identifying therapeutic targets from CAFs to starve cancer cells. DESIGN Twelve pairs of primary gastric CAFs and their corresponding non-CAFs (NCAFs) were established from surgical specimens. Genome-wide DNA methylation and H3K27me3 analyses were conducted by BeadArray 450K and ChIP-on-Chip, respectively. Functions of potential a therapeutic target were analysed by inhibiting it, and prognostic impact was assessed in a database. RESULTS CAFs had diverse and distinct DNA methylation and H3K27me3 patterns compared with NCAFs. Loss of H3K27me3, but not DNA methylation, in CAFs was enriched for genes involved in stem cell niche, cell growth, tissue development and stromal-epithelial interactions, such as WNT5A, GREM1, NOG and IGF2. Among these, we revealed that WNT5A, which had been considered to be derived from cancer cells, was highly expressed in cancer stromal fibroblasts, and was associated with poor prognosis. Inhibition of secreted WNT5A from CAFs suppressed cancer cell growth and migration. CONCLUSIONS H3K27me3 plays a crucial role in defining tumour-promoting capacities of CAFs, and multiple stem cell niche factors were secreted from CAFs due to loss of H3K27me3. The validity of the epigenetic approach to uncover therapeutic targets for cancer-starving therapy was demonstrated.
Collapse
Affiliation(s)
- Masahiro Maeda
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan.,Department of Gastrointestinal Surgery, Faculty of Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Naoko Iida
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroshi Moro
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshimi Yasukawa
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuhiro Nishiyama
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Taiki Hashimoto
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Shigeki Sekine
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Genichiro Ishii
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, Chiba, Japan
| | - Atsushi Ochiai
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Takeo Fukagawa
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Hitoshi Katai
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiharu Sakai
- Department of Gastrointestinal Surgery, Faculty of Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
16
|
Song Y, Soto J, Chen B, Yang L, Li S. Cell engineering: Biophysical regulation of the nucleus. Biomaterials 2020; 234:119743. [PMID: 31962231 DOI: 10.1016/j.biomaterials.2019.119743] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/02/2019] [Accepted: 12/25/2019] [Indexed: 12/12/2022]
Abstract
Cells live in a complex and dynamic microenvironment, and a variety of microenvironmental cues can regulate cell behavior. In addition to biochemical signals, biophysical cues can induce not only immediate intracellular responses, but also long-term effects on phenotypic changes such as stem cell differentiation, immune cell activation and somatic cell reprogramming. Cells respond to mechanical stimuli via an outside-in and inside-out feedback loop, and the cell nucleus plays an important role in this process. The mechanical properties of the nucleus can directly or indirectly modulate mechanotransduction, and the physical coupling of the cell nucleus with the cytoskeleton can affect chromatin structure and regulate the epigenetic state, gene expression and cell function. In this review, we will highlight the recent progress in nuclear biomechanics and mechanobiology in the context of cell engineering, tissue remodeling and disease development.
Collapse
Affiliation(s)
- Yang Song
- Department of Bioengineering, University of California, Los Angeles, CA, USA; School of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Jennifer Soto
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Binru Chen
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Li Yang
- School of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA, USA; Department of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Overexpression of cerebral cytochrome P450s in prenatally exposed offspring modify the toxicity of lindane in rechallenged offspring. Toxicol Appl Pharmacol 2019; 371:20-37. [DOI: 10.1016/j.taap.2019.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/20/2019] [Accepted: 03/24/2019] [Indexed: 12/21/2022]
|
18
|
Genomic alterations driving psoriasis pathogenesis. Gene 2018; 683:61-71. [PMID: 30287254 DOI: 10.1016/j.gene.2018.09.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/22/2018] [Accepted: 09/22/2018] [Indexed: 11/23/2022]
Abstract
Psoriasis is an immune mediated inflammatory skin disease with complex etiology involving interplay between environmental and genetic risk factors as disease initiating event. Enhanced understanding on genetic risk factors, differentially expressed genes, deregulated proteins and pathway-targeted therapeutics have established multiple axis of psoriasis pathogenesis. So far, loci in 424 genes are reported to be associated with psoriasis alongside copy number variations and epigenetic alterations. From clinical perspective, presence of specific genetic trigger(s) in individual psoriasis patient could aid in devising a personalized therapeutic strategy. Therefore, the review presents an updates on reported genomic alterations and their subsequent course of cutaneous inflammations that potentially drive to psoriasis.
Collapse
|
19
|
Sureka R, Wadhwa R, Thakur SS, Pathak RU, Mishra RK. Comparison of Nuclear Matrix and Mitotic Chromosome Scaffold Proteins in Drosophila S2 Cells-Transmission of Hallmarks of Nuclear Organization Through Mitosis. Mol Cell Proteomics 2018; 17:1965-1978. [PMID: 29991507 PMCID: PMC6166678 DOI: 10.1074/mcp.ra118.000591] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/07/2018] [Indexed: 01/08/2023] Open
Abstract
Chromatin condenses several folds to form mitotic chromosomes during cell division and decondenses post-mitotically to reoccupy their nuclear territory and regain their specific transcriptional profile in a precisely lineage specific manner. This necessitates that the features of nuclear architecture and DNA topology persist through mitosis. We compared the proteome of nuclease and high salt resistant fraction of interphase nucleus known as nuclear matrix (NuMat) and an equivalent biochemical fraction in the mitotic chromosome known as mitotic chromosome scaffold (MiCS). Our study elucidates that as much as 67% of the NuMat proteins are retained in the MiCS indicating that the features of nuclear architecture in interphase nucleus are retained on the mitotic chromosomes. Proteins of the NuMat/MiCS have large dynamic range of MS signal and were detected in sub-femtomolar amounts. Chromatin/RNA binding proteins with hydrolase and helicase activity are highly enriched in NuMat as well as MiCS. Although several transcription factors involved in functioning of interphase nucleus are present exclusively in NuMat, protein components responsible for assembly of membrane-less nuclear bodies are uniquely retained in MiCS. Our study clearly indicates that the features of nuclear architecture, in the structural context of NuMat, are retained in MiCS and possibly play an important role in maintenance of cell lineage specific transcriptional status during cell division and thereby, serve as components of cellular memory.
Collapse
Affiliation(s)
- Rahul Sureka
- From the Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500007, India
| | - Rashi Wadhwa
- From the Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500007, India
| | - Suman S Thakur
- From the Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500007, India
| | - Rashmi U Pathak
- From the Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500007, India
| | - Rakesh K Mishra
- From the Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500007, India
| |
Collapse
|
20
|
Zaidi SK, Fritz AJ, Tracy KM, Gordon JA, Tye CE, Boyd J, Van Wijnen AJ, Nickerson JA, Imbalzano AN, Lian JB, Stein JL, Stein GS. Nuclear organization mediates cancer-compromised genetic and epigenetic control. Adv Biol Regul 2018; 69:1-10. [PMID: 29759441 PMCID: PMC6102062 DOI: 10.1016/j.jbior.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/13/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Abstract
Nuclear organization is functionally linked to genetic and epigenetic regulation of gene expression for biological control and is modified in cancer. Nuclear organization supports cell growth and phenotypic properties of normal and cancer cells by facilitating physiologically responsive interactions of chromosomes, genes and regulatory complexes at dynamic three-dimensional microenvironments. We will review nuclear structure/function relationships that include: 1. Epigenetic bookmarking of genes by phenotypic transcription factors to control fidelity and plasticity of gene expression as cells enter and exit mitosis; 2. Contributions of chromatin remodeling to breast cancer nuclear morphology, metabolism and effectiveness of chemotherapy; 3. Relationships between fidelity of nuclear organization and metastasis of breast cancer to bone; 4. Dynamic modifications of higher-order inter- and intra-chromosomal interactions in breast cancer cells; 5. Coordinate control of cell growth and phenotype by tissue-specific transcription factors; 6. Oncofetal epigenetic control by bivalent histone modifications that are functionally related to sustaining the stem cell phenotype; and 7. Noncoding RNA-mediated regulation in the onset and progression of breast cancer. The discovery of components to nuclear organization that are functionally related to cancer and compromise gene expression have the potential for translation to innovative cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Sayyed K Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Kirsten M Tracy
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Jonathan A Gordon
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Joseph Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Andre J Van Wijnen
- Departments of Orthopedic Surgery, Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Jeffrey A Nickerson
- Department of Pediatrics, UMass Medical School, Worcester, MA, United States
| | - Antony N Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, MA, United States
| | - Jane B Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States
| | - Janet L Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| | - Gary S Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
21
|
A novel Lipidoid-MicroRNA formulation promotes calvarial bone regeneration. Biomaterials 2018; 177:88-97. [PMID: 29886386 DOI: 10.1016/j.biomaterials.2018.05.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 11/23/2022]
Abstract
Specific microRNAs (miRs) and the Wnt signaling pathway play critical roles in regulating bone development and homeostasis. Our previous studies revealed the ability of miR-335-5p to promote osteogenic differentiation by downregulating Wnt antagonist Dickkopf-1 (DKK1). The purpose of this study was to use nano-materials to efficiently deliver miR-335-5p into osteogenic cells for tissue engineering applications. We synthesized and screened a library of 12 candidate nano-lipidoids,of which L8 was identified as the preferred biodegradable lipidoid for miRNA molecule delivery into cells. We then investigated whether a lipidoid-miRNA formulation of miR-335-5-p (LMF-335) could successfully deliver miR-335-5-p into cells to promote osteogenesis in vitro and calvarial bone healing in vivo. Transfection of C3H10T1/2 cells and bone marrow stromal cells (BMSCs) with LMF-335 led to decreased expression of DKK1 and increased expression of the key osteogenic genes. LMF-335 and LMF-335-transfected BMSCs were then used in combination with silk scaffolds to evaluate healing of critical-size calvarial bone defects in mice. The results revealed significant new bone formation in the defects in LMF-335 groups as compared with control groups. In conclusion, this first report supports the notion that lipidoid delivery of miRNA can be used to induce osteogenic differentiation of stem cells and bone regeneration.
Collapse
|
22
|
Wang C, Zhu B, Xiong J. Recruitment and reinforcement: maintaining epigenetic silencing. SCIENCE CHINA-LIFE SCIENCES 2018; 61:515-522. [PMID: 29564598 DOI: 10.1007/s11427-018-9276-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 01/07/2023]
Abstract
Cells need to appropriately balance transcriptional stability and adaptability in order to maintain their identities while responding robustly to various stimuli. Eukaryotic cells use an elegant "epigenetic" system to achieve this functionality. "Epigenetics" is referred to as heritable information beyond the DNA sequence, including histone and DNA modifications, ncRNAs and other chromatin-related components. Here, we review the mechanisms of the epigenetic inheritance of a repressive chromatin state, with an emphasis on recent progress in the field. We emphasize that (i) epigenetic information is inherited in a relatively stable but imprecise fashion; (ii) multiple cis and trans factors are involved in the maintenance of epigenetic information during mitosis; and (iii) the maintenance of a repressive epigenetic state requires both recruitment and self-reinforcement mechanisms. These mechanisms crosstalk with each other and form interconnected feedback loops to shape a stable epigenetic system while maintaining certain degrees of flexibility.
Collapse
Affiliation(s)
- Chengzhi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Xiong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
23
|
Accomando WP, Michels KB. Multiplexed Reduced Representation Bisulfite Sequencing with Magnetic Bead Fragment Size Selection. Methods Mol Biol 2018; 1708:137-159. [PMID: 29224143 DOI: 10.1007/978-1-4939-7481-8_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Reduced representation bisulfite sequencing (RRBS) is a technique for assessing genome-wide DNA methylation in an organism whose genome has been fully sequenced. It allows researchers to target gene regions with particular CpG densities, thereby selecting the desired genomic contexts. Here, we describe an approach that uses magnetic beads to accomplish this selection. In addition, the use of indexed, methylated adapters enables up to 12 samples to be pooled, and subjected to multiplexed RRBS in a single-sequencing lane. First, genomic DNA is fragmented via restriction endonuclease digestion that ensures at least two CpG loci per fragment. The fragmented DNA is then end-repaired and A-tailed. Indexed, methylated adapters are ligated to the A-tailed DNA fragments to create a DNA library. A combination of negative and positive selections, using magnetic beads that preferentially bind to larger DNA fragments, ensures that only the desired sizes of adapter-ligated DNA fragments are included in a library. This allows researchers to dictate what types of genomic regions will be sequenced, since fragment size depends on the proximity of restriction sites. The DNA libraries are then quantified, and up to 12 libraries are pooled in order to be sequenced on a single lane of an Illumina HiSeq2500. The pools are next treated with sodium bisulfite, and then PCR amplified. A final bead cleanup removes any residual contaminants prior to sequencing, which is followed by base calling and alignment to a sequenced genome.
Collapse
Affiliation(s)
- William P Accomando
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115, USA.
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA, 02115, USA.
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
24
|
Mitotic Gene Bookmarking: An Epigenetic Mechanism for Coordination of Lineage Commitment, Cell Identity and Cell Growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:95-102. [PMID: 28299653 DOI: 10.1007/978-981-10-3233-2_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Epigenetic control of gene expression contributes to dynamic responsiveness of cellular processes that include cell cycle, cell growth and differentiation. Mitotic gene bookmarking, retention of sequence-specific transcription factors at target gene loci, including the RUNX regulatory proteins, provide a novel dimension to epigenetic regulation that sustains cellular identity in progeny cells following cell division. Runx transcription factor retention during mitosis coordinates physiological control of cell growth and differentiation in a broad spectrum of biological conditions, and is associated with compromised gene expression in pathologies that include cancer.
Collapse
|
25
|
Carmona JJ, Accomando WP, Binder AM, Hutchinson JN, Pantano L, Izzi B, Just AC, Lin X, Schwartz J, Vokonas PS, Amr SS, Baccarelli AA, Michels KB. Empirical comparison of reduced representation bisulfite sequencing and Infinium BeadChip reproducibility and coverage of DNA methylation in humans. NPJ Genom Med 2017; 2:13. [PMID: 29263828 PMCID: PMC5642382 DOI: 10.1038/s41525-017-0012-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/04/2017] [Accepted: 01/12/2017] [Indexed: 12/13/2022] Open
Abstract
We empirically examined the strengths and weaknesses of two human genome-wide DNA methylation platforms: rapid multiplexed reduced representation bisulfite sequencing and Illumina’s Infinium BeadChip. Rapid multiplexed reduced representation bisulfite sequencing required less input DNA, offered more flexibility in coverage, and interrogated more CpG loci at a higher regional density. The Infinium covered slightly more protein coding, cancer-associated and mitochondrial-related genes, both platforms covered all known imprinting clusters, and rapid multiplexed reduced representation bisulfite sequencing covered more microRNA genes than the HumanMethylation450, but fewer than the MethylationEPIC. Rapid multiplexed reduced representation bisulfite sequencing did not always interrogate exactly the same CpG loci, but genomic tiling improved overlap between different libraries. Reproducibility of rapid multiplexed reduced representation bisulfite sequencing and concordance between the platforms increased with CpG density. Only rapid multiplexed reduced representation bisulfite sequencing could genotype samples and measure allele-specific methylation, and we confirmed that Infinium measurements are influenced by nearby single-nucleotide polymorphisms. The respective strengths and weaknesses of these two genome-wide DNA methylation platforms need to be considered when conducting human epigenetic studies. Researchers who study human epigenetics need to carefully consider the platform used to measure genome-wide patterns of DNA methylation. A team led by Karin Michels and Andrea Baccarelli from Harvard University in Boston, Massachusetts, USA, empirically examined the strengths and weaknesses of two methylation profiling tools: Illumina’s Infinium BeadChip, which uses a microarray system to interrogate hundreds of thousands of methylation sites across the genome at single-nucleotide resolution; and a high-throughput sequencing-based approach known as rapid multiplexed reduced representation bisulfite sequencing, or rmRRBS. The former did a better job at reading methylation in protein-coding and mitochondrial-related genes, while the latter required less input DNA and covered more methylation sites across the genome. The authors conclude that a scientist’s platform preference should depend on the nature of his or her investigation.
Collapse
Affiliation(s)
- Juan J Carmona
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA.,Program in Quantitative Genomics, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA.,Center for Bioethics, Harvard Medical School, Boston, MA 02115 USA
| | - William P Accomando
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA.,Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Alexandra M Binder
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA.,Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - John N Hutchinson
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115 USA
| | - Lorena Pantano
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115 USA
| | - Benedetta Izzi
- Institute for Prevention and Cancer Epidemiology, Freiburg Medical Center, University of Freiburg, Freiburg, Germany
| | - Allan C Just
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115 USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Pantel S Vokonas
- Veterans Affairs Normative Aging Study, Veterans Affairs Boston Healthcare System, Department of Medicine, Boston University School of Medicine, Boston, MA 02118 USA
| | - Sami S Amr
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115 USA.,Translational Genomics Core, Partners Healthcare Personalized Medicine, Cambridge, MA 02139 USA
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Karin B Michels
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA.,Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
26
|
Deluz C, Strebinger D, Friman ET, Suter DM. The elusive role of mitotic bookmarking in transcriptional regulation: Insights from Sox2. Cell Cycle 2017; 16:601-606. [PMID: 28166426 DOI: 10.1080/15384101.2017.1288332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The ability of some transcription factors to remain bound to specific genes on condensed mitotic chromosomes has been suggested to play a role in their rapid transcriptional reactivation upon mitotic exit. We have recently shown that SOX2 and OCT4 remain associated to mitotic chromosomes, and that depletion of SOX2 at the mitosis-G1 (M-G1) transition impairs its ability to maintain pluripotency and drive neuroectodermal commitment. Here we report on the role of SOX2 at the M-G1 transition in regulating transcriptional activity of embryonic stem cells. Using single cell time-lapse analysis of reporter constructs for STAT3 and SOX2/OCT4 activity, we show that SOX2/OCT4 do not lead to more rapid transcriptional reactivation in G1 than STAT3, a transcription factor that is excluded from mitotic chromosomes. We also report that only few endogenous target genes show decreased pre-mRNA levels after mitotic exit or in other cell cycle phases in the absence of SOX2 at the M-G1 transition. This suggests that bookmarked SOX2 target genes are not differently regulated than non-bookmarked target genes, and we discuss an alternative hypothesis on how mitotic bookmarking by SOX2 and other sequence-specific transcription factors could be involved in transcriptional regulation.
Collapse
Affiliation(s)
- Cédric Deluz
- a UPSUTER , The Institute of Bioengineering (IBI), School of Life Sciences, Swiss Federal Institute of Technology , Lausanne , Switzerland
| | - Daniel Strebinger
- a UPSUTER , The Institute of Bioengineering (IBI), School of Life Sciences, Swiss Federal Institute of Technology , Lausanne , Switzerland
| | - Elias T Friman
- a UPSUTER , The Institute of Bioengineering (IBI), School of Life Sciences, Swiss Federal Institute of Technology , Lausanne , Switzerland
| | - David M Suter
- a UPSUTER , The Institute of Bioengineering (IBI), School of Life Sciences, Swiss Federal Institute of Technology , Lausanne , Switzerland
| |
Collapse
|
27
|
Osteogenic Differentiation in Healthy and Pathological Conditions. Int J Mol Sci 2016; 18:ijms18010041. [PMID: 28035992 PMCID: PMC5297676 DOI: 10.3390/ijms18010041] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the osteogenic differentiation of mesenchymal stem cells (MSC), bone formation and turn-over in good and ill skeletal fates. The interacting molecular pathways which control bone remodeling in physiological conditions during a lifelong process are described. Then, alterations of the molecular pathways regulating osteogenesis are addressed. In the aging process, as well as in glucocorticoid-induced osteoporosis, bone loss is caused not only by an unbalanced bone resorption activity, but also by an impairment of MSCs’ commitment towards the osteogenic lineage, in favour of adipogenesis. Mutations affecting the expression of key genes involved in the control of bone development occur in several heritable bone disorders. A few examples are described in order to illustrate the pathological consequences of perturbation in different steps of osteogenic commitment, osteoblast maturation, and matrix mineralization, respectively. The involvement of abnormal MSC differentiation in cancer is then discussed. Finally, a brief overview of clinical applications of MSCs in bone regeneration and repair is presented.
Collapse
|
28
|
Richards J, Ogoe HA, Li W, Babayewa O, Xu W, Bythwood T, Garcia-Barrios M, Ma L, Song Q. DNA Methylation Signature of Post-injury Neointimal Cells During Vascular Remodeling in the Rat Balloon Injury Model. ACTA ACUST UNITED AC 2016; 5. [PMID: 27857867 PMCID: PMC5110257 DOI: 10.4172/2168-9547.1000163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vascular smooth muscle cell (VSMC) accumulation in the neointimal is a common feature in vascular diseases such as atherosclerosis, transplant arteriosclerosis and restenosis. In this study, we isolated the neointimal cells and uninjured residential vascular smooth muscle cells by laser micro dissection and carried out single-cell whole-genome methylation sequencing. We also sequenced the bisulfite converted genome of circulating bone-marrow-derived cells such as peripheral blood mononuclear cells (PBMC) and bone marrow mononuclear cells (BMMC). We found totally 2,360 differential methylation sites (DMS) annotated to 1,127 gene regions. The majority of differentially methylated regions (DMRs) were located in intergenic regions, outside those CpG islands and island shores. Interestingly, exons have less DMRs than promotors and introns, and CpG islands contain more DMRs than islands shores. Pearson correlation analysis showed a clear clustering of neointimal cells with PBMC/BMMC. Gene set enrichment analysis of differentially methylated CpG sites revealed that many genes were important for regulation of VSMC differentiation and stem cell maintenance. In conclusion, our results showed that neointimal cells are more similar to the progenitor cells in methylation profile than the residential VSMCs at the 30th day after the vascular injury.
Collapse
Affiliation(s)
- Jendai Richards
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Henry Ato Ogoe
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wenzhi Li
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Oguljahan Babayewa
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Wei Xu
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Tameka Bythwood
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Minerva Garcia-Barrios
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Li Ma
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA; 4DGenome Inc, Atlanta, Georgia, USA
| | - Qing Song
- Cardiovascular Research Institute and Department of Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA; 4DGenome Inc, Atlanta, Georgia, USA
| |
Collapse
|
29
|
Moosavi A, Ardekani AM. Role of Epigenetics in Biology and Human Diseases. IRANIAN BIOMEDICAL JOURNAL 2016; 20:246-58. [PMID: 27377127 PMCID: PMC5075137 DOI: 10.22045/ibj.2016.01] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022]
Abstract
For a long time, scientists have tried to describe disorders just by genetic or environmental factors. However, the role of epigenetics in human diseases has been considered from a half of century ago. In the last decade, this subject has attracted many interests, especially in complicated disorders such as behavior plasticity, memory, cancer, autoimmune disease, and addiction as well as neurodegenerative and psychological disorders. This review first explains the history and classification of epigenetic modifications, and then the role of epigenetic in biology and connection between the epigenetics and environment are explained. Furthermore, the role of epigenetics in human diseases is considered by focusing on some diseases with some complicated features, and at the end, we have given the future perspective of this field. The present review article provides concepts with some examples to reveal a broad view of different aspects of epigenetics in biology and human diseases.
Collapse
Affiliation(s)
- Azam Moosavi
- Department of Biochemistry, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | | |
Collapse
|
30
|
Soini Y. Epigenetic and genetic changes in soft tissue sarcomas: a review. APMIS 2016; 124:925-934. [PMID: 27670825 DOI: 10.1111/apm.12600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/03/2016] [Indexed: 11/26/2022]
Abstract
Soft tissue sarcomas are a versatile group of tumors with a proposed origin from mesenchymal stem cells. During recent years, the molecular biologic mechanisms behind the histogenesis of these tumors have become clearer. In addition to translocations and other genomic changes, epigenetic mechanisms have been shown to be greatly involved in the histogenesis of sarcomas as well as other cancers. Even though the molecular mechanisms behind sarcomas appear to be more complex than previously expected, epigenetic mechanisms bring new opportunities and means for the treatment of these complex diseases.
Collapse
Affiliation(s)
- Ylermi Soini
- Department of Pathology and Forensic Medicine, University of Eastern Finland, Kuopio and Cancer Center of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
31
|
Varela N, Aranguiz A, Lizama C, Sepulveda H, Antonelli M, Thaler R, Moreno RD, Montecino M, Stein GS, van Wijnen AJ, Galindo M. Mitotic Inheritance of mRNA Facilitates Translational Activation of the Osteogenic-Lineage Commitment Factor Runx2 in Progeny of Osteoblastic Cells. J Cell Physiol 2016; 231:1001-14. [PMID: 26381402 PMCID: PMC5812339 DOI: 10.1002/jcp.25188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/24/2022]
Abstract
Epigenetic mechanisms mediate the acquisition of specialized cellular phenotypes during tissue development, maintenance and repair. When phenotype-committed cells transit through mitosis, chromosomal condensation counteracts epigenetic activation of gene expression. Subsequent post-mitotic re-activation of transcription depends on epigenetic DNA and histone modifications, as well as other architecturally bound proteins that "bookmark" the genome. Osteogenic lineage commitment, differentiation and progenitor proliferation require the bone-related runt-related transcription factor Runx2. Here, we characterized a non-genomic mRNA mediated mechanism by which osteoblast precursors retain their phenotype during self-renewal. We show that osteoblasts produce maximal levels of Runx2 mRNA, but not protein, prior to mitotic cell division. Runx2 mRNA partitions symmetrically between daughter cells in a non-chromosomal tubulin-containing compartment. Subsequently, transcription-independent de novo synthesis of Runx2 protein in early G1 phase results in increased functional interactions of Runx2 with a representative osteoblast-specific target gene (osteocalcin/BGLAP2) in chromatin. Somatic transmission of Runx2 mRNAs in osteoblasts and osteosarcoma cells represents a versatile mechanism for translational rather than transcriptional induction of this principal gene regulator to maintain osteoblast phenotype identity after mitosis.
Collapse
Affiliation(s)
- Nelson Varela
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Alejandra Aranguiz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| | - Carlos Lizama
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo Sepulveda
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Marcelo Antonelli
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Roman Thaler
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., MSB 3-69, Rochester, MN 55905
| | - Ricardo D. Moreno
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martin Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Gary S. Stein
- Department of Biochemistry, HSRF 326, Vermont Cancer Center for Basic and Translational Research, University of Vermont Medical School, Burlington, VT
| | - Andre J. van Wijnen
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., MSB 3-69, Rochester, MN 55905
| | - Mario Galindo
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago, Chile
| |
Collapse
|
32
|
Demin SY, Berdieva MA, Podlipaeva YI, Yudin AL, Goodkov AV. Optical tomography analysis of Amoeba proteus chromatin organization at various cell cycle stages. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s1990519x16010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Davie JR, Xu W, Delcuve GP. Histone H3K4 trimethylation: dynamic interplay with pre-mRNA splicing. Biochem Cell Biol 2016; 94:1-11. [DOI: 10.1139/bcb-2015-0065] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) is often stated as a mark of transcriptionally active promoters. However, closer study of the positioning of H3K4me3 shows the mark locating primarily after the first exon at the 5′ splice site and overlapping with a CpG island in mammalian cells. There are several enzyme complexes that are involved in the placement of the H3K4me3 mark, including multiple protein complexes containing SETD1A, SETD1B, and MLL1 enzymes (writers). CXXC1, which is associated with SETD1A and SETD1B, target these enzymes to unmethylated CpG islands. Lysine demethylases (KDM5 family members, erasers) demethylate H3K4me3. The H3K4me3 mark is recognized by several proteins (readers), including lysine acetyltransferase complexes, chromatin remodelers, and RNA bound proteins involved in pre-mRNA splicing. Interestingly, attenuation of H3K4me3 impacts pre-mRNA splicing, and inhibition of pre-mRNA splicing attenuates H3K4me3.
Collapse
Affiliation(s)
- James R. Davie
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Wayne Xu
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Genevieve P. Delcuve
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
34
|
Minarovits J, Banati F, Szenthe K, Niller HH. Epigenetic Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 879:1-25. [DOI: 10.1007/978-3-319-24738-0_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Montecino M, Stein G, Stein J, Zaidi K, Aguilar R. Multiple levels of epigenetic control for bone biology and pathology. Bone 2015; 81:733-738. [PMID: 25865577 PMCID: PMC4600412 DOI: 10.1016/j.bone.2015.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 03/13/2015] [Indexed: 12/12/2022]
Abstract
Multiple dimensions of epigenetic control contribute to regulation of gene expression that governs bone biology and pathology. Once confined to DNA methylation and a limited number of post-translational modifications of histone proteins, the definition of epigenetic mechanisms is expanding to include contributions of non-coding RNAs and mitotic bookmarking, a mechanism for retaining phenotype identity during cell proliferation. Together these different levels of epigenetic control of physiological processes and their perturbations that are associated with compromised gene expression during the onset and progression of disease, have contributed to an unprecedented understanding of the activities (operation) of the genomic landscape. Here, we address general concepts that explain the contribution of epigenetic control to the dynamic regulation of gene expression during eukaryotic transcription. This article is part of a Special Issue entitled Epigenetics and Bone.
Collapse
Affiliation(s)
- Martin Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 239, Santiago, Chile.
| | - Gary Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, USA.
| | - Janet Stein
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, USA
| | - Kaleem Zaidi
- Department of Biochemistry and Vermont Cancer Center, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT, USA
| | - Rodrigo Aguilar
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 239, Santiago, Chile
| |
Collapse
|
36
|
LeBlanc KT, Walcott ME, Gaur T, O'Connell SL, Basil K, Tadiri CP, Mason-Savas A, Silva JA, van Wijnen AJ, Stein JL, Stein GS, Ayers DC, Lian JB, Fanning PJ. Runx1 Activities in Superficial Zone Chondrocytes, Osteoarthritic Chondrocyte Clones and Response to Mechanical Loading. J Cell Physiol 2015; 230:440-8. [PMID: 25078095 DOI: 10.1002/jcp.24727] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/24/2014] [Indexed: 01/15/2023]
Abstract
Runx1, the hematopoietic lineage determining transcription factor, is present in perichondrium and chondrocytes. Here we addressed Runx1 functions, by examining expression in cartilage during mouse and human osteoarthritis (OA) progression and in response to mechanical loading. Spared and diseased compartments in knees of OA patients and in mice with surgical destabilization of the medial meniscus were examined for changes in expression of Runx1 mRNA (Q-PCR) and protein (immunoblot, immunohistochemistry). Runx1 levels were quantified in response to static mechanical compression of bovine articular cartilage. Runx1 function was assessed by cell proliferation (Ki67, PCNA) and cell type phenotypic markers. Runx1 is enriched in superficial zone (SZ) chondrocytes of normal bovine, mouse, and human tissues. Increasing loading conditions in bovine cartilage revealed a positive correlation with a significant elevation of Runx1. Runx1 becomes highly expressed at the periphery of mouse OA lesions and in human OA chondrocyte 'clones' where Runx1 co-localizes with Vcam1, the mesenchymal stem cell (MSC) marker and lubricin (Prg4), a cartilage chondroprotective protein. These OA induced cells represent a proliferative cell population, Runx1 depletion in MPCs decreases cell growth, supporting Runx1 contribution to cell expansion. The highest Runx1 levels in SZC of normal cartilage suggest a function that supports the unique phenotype of articular chondrocytes, reflected by upregulation under conditions of compression. We propose Runx1 co-expression with Vcam1 and lubricin in murine cell clusters and human 'clones' of OA cartilage, participate in a cooperative mechanism for a compensatory anabolic function.
Collapse
Affiliation(s)
- Kimberly T LeBlanc
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Marie E Walcott
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Tripti Gaur
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Shannon L O'Connell
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Kirti Basil
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Christina P Tadiri
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - April Mason-Savas
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jason A Silva
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Andre J van Wijnen
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Janet L Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Gary S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - David C Ayers
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jane B Lian
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Paul J Fanning
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts.,Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
37
|
Scott RE, Ghule PN, Stein JL, Stein GS. Cell cycle gene expression networks discovered using systems biology: Significance in carcinogenesis. J Cell Physiol 2015; 230:2533-42. [PMID: 25808367 PMCID: PMC4481160 DOI: 10.1002/jcp.24990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 03/18/2015] [Indexed: 12/13/2022]
Abstract
The early stages of carcinogenesis are linked to defects in the cell cycle. A series of cell cycle checkpoints are involved in this process. The G1/S checkpoint that serves to integrate the control of cell proliferation and differentiation is linked to carcinogenesis and the mitotic spindle checkpoint is associated with the development of chromosomal instability. This paper presents the outcome of systems biology studies designed to evaluate if networks of covariate cell cycle gene transcripts exist in proliferative mammalian tissues including mice, rats, and humans. The GeneNetwork website that contains numerous gene expression datasets from different species, sexes, and tissues represents the foundational resource for these studies (www.genenetwork.org). In addition, WebGestalt, a gene ontology tool, facilitated the identification of expression networks of genes that co-vary with key cell cycle targets, especially Cdc20 and Plk1 (www.bioinfo.vanderbilt.edu/webgestalt). Cell cycle expression networks of such covariate mRNAs exist in multiple proliferative tissues including liver, lung, pituitary, adipose, and lymphoid tissues among others but not in brain or retina that have low proliferative potential. Sixty-three covariate cell cycle gene transcripts (mRNAs) compose the average cell cycle network with P = e(-13) to e(-36) . Cell cycle expression networks show species, sex and tissue variability, and they are enriched in mRNA transcripts associated with mitosis, many of which are associated with chromosomal instability.
Collapse
Affiliation(s)
- RE Scott
- Varigenix, Inc., Memphis, Tennessee
| | - PN Ghule
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - JL Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - GS Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
38
|
Jing D, Hao J, Shen Y, Tang G, Li ML, Huang SH, Zhao ZH. The role of microRNAs in bone remodeling. Int J Oral Sci 2015. [PMID: 26208037 PMCID: PMC4582559 DOI: 10.1038/ijos.2015.22] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bone remodeling is balanced by bone formation and bone resorption as well as by alterations in the quantities and functions of seed cells, leading to either the maintenance or deterioration of bone status. The existing evidence indicates that microRNAs (miRNAs), known as a family of short non-coding RNAs, are the key post-transcriptional repressors of gene expression, and growing numbers of novel miRNAs have been verified to play vital roles in the regulation of osteogenesis, osteoclastogenesis, and adipogenesis, revealing how they interact with signaling molecules to control these processes. This review summarizes the current knowledge of the roles of miRNAs in regulating bone remodeling as well as novel applications for miRNAs in biomaterials for therapeutic purposes.
Collapse
Affiliation(s)
- Dian Jing
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Hao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shen
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ge Tang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei-Le Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shi-Hu Huang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Zhi-He Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Bouwman BAM, de Laat W. Getting the genome in shape: the formation of loops, domains and compartments. Genome Biol 2015; 16:154. [PMID: 26257189 PMCID: PMC4536798 DOI: 10.1186/s13059-015-0730-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The hierarchical levels of genome architecture exert transcriptional control by tuning the accessibility and proximity of genes and regulatory elements. Here, we review current insights into the trans-acting factors that enable the genome to flexibly adopt different functionally relevant conformations.
Collapse
Affiliation(s)
- Britta A M Bouwman
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Wouter de Laat
- Hubrecht Institute - KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| |
Collapse
|
40
|
Wong MM, Byun JS, Sacta M, Jin Q, Baek S, Gardner K. Promoter-bound p300 complexes facilitate post-mitotic transmission of transcriptional memory. PLoS One 2014; 9:e99989. [PMID: 24945803 PMCID: PMC4063784 DOI: 10.1371/journal.pone.0099989] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 05/21/2014] [Indexed: 11/18/2022] Open
Abstract
A central hallmark of epigenetic inheritance is the parental transmission of changes in patterns of gene expression to progeny without modification of DNA sequence. Although, the trans-generational conveyance of this molecular memory has been traditionally linked to covalent modification of histone and/or DNA, recent studies suggest a role for proteins that persist or remain bound within chromatin to "bookmark" specific loci for enhanced or potentiated responses in daughter cells immediately following cell division. In this report we describe a role for p300 in enabling gene bookmarking by pre-initiation complexes (PICs) containing RNA polymerase II (pol II), Mediator and TBP. Once formed these complexes require p300 to enable reacquisition of protein complex assemblies, chromatin modifications and long range chromatin interactions that facilitate post-mitotic transmission of transcriptional memory of prior environmental stimuli.
Collapse
Affiliation(s)
- Madeline M. Wong
- Genetics Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jung S. Byun
- Genetics Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maria Sacta
- Genetics Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Qihuang Jin
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, United States of America
| | - SongJoon Baek
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Kevin Gardner
- Genetics Branch, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
41
|
Lodhi N, Kossenkov AV, Tulin AV. Bookmarking promoters in mitotic chromatin: poly(ADP-ribose)polymerase-1 as an epigenetic mark. Nucleic Acids Res 2014; 42:7028-38. [PMID: 24861619 PMCID: PMC4066802 DOI: 10.1093/nar/gku415] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epigenetics are the heritable changes in gene expression or cellular phenotype caused by mechanisms other than changes in the underlying DNA sequence. After mitosis, it is thought that bookmarking transcription factors remain at promoters, regulating which genes become active and which remain silent. Herein, we demonstrate that poly(ADP-ribose)polymerase-1 (PARP-1) is a genome-wide epigenetic memory mark in mitotic chromatin, and we further show that the presence of PARP-1 is absolutely crucial for reactivation of transcription after mitosis. Based on these findings, a novel molecular model of epigenetic memory transmission through the cell cycle is proposed.
Collapse
Affiliation(s)
- Niraj Lodhi
- Fox Chase Cancer Center, Philadelphia, PA, 19111 USA
| | | | | |
Collapse
|
42
|
Accomando WP, Wiencke JK, Houseman EA, Nelson HH, Kelsey KT. Quantitative reconstruction of leukocyte subsets using DNA methylation. Genome Biol 2014; 15:R50. [PMID: 24598480 PMCID: PMC4053693 DOI: 10.1186/gb-2014-15-3-r50] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 03/05/2014] [Indexed: 11/23/2022] Open
Abstract
Background Cell lineage-specific DNA methylation patterns distinguish normal human leukocyte subsets and can be used to detect and quantify these subsets in peripheral blood. We have developed an approach that uses DNA methylation to simultaneously quantify multiple leukocyte subsets, enabling investigation of immune modulations in virtually any blood sample including archived samples previously precluded from such analysis. Here we assess the performance characteristics and validity of this approach. Results Using Illumina Infinium HumanMethylation27 and VeraCode GoldenGate Methylation Assay microarrays, we measure DNA methylation in leukocyte subsets purified from human whole blood and identify cell lineage-specific DNA methylation signatures that distinguish human T cells, B cells, NK cells, monocytes, eosinophils, basophils and neutrophils. We employ a bioinformatics-based approach to quantify these cell types in complex mixtures, including whole blood, using DNA methylation at as few as 20 CpG loci. A reconstruction experiment confirms that the approach could accurately measure the composition of mixtures of human blood leukocyte subsets. Applying the DNA methylation-based approach to quantify the cellular components of human whole blood, we verify its accuracy by direct comparison to gold standard immune quantification methods that utilize physical, optical and proteomic characteristics of the cells. We also demonstrate that the approach is not affected by storage of blood samples, even under conditions prohibiting the use of gold standard methods. Conclusions Cell mixture distributions within peripheral blood can be assessed accurately and reliably using DNA methylation. Thus, precise immune cell differential estimates can be reconstructed using only DNA rather than whole cells.
Collapse
|
43
|
Lei I, Liu L, Sham MH, Wang Z. SWI/SNF in cardiac progenitor cell differentiation. J Cell Biochem 2013; 114:2437-45. [PMID: 23606236 PMCID: PMC4174539 DOI: 10.1002/jcb.24570] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 12/18/2022]
Abstract
Cardiogenesis requires proper specification, proliferation, and differentiation of cardiac progenitor cells (CPCs). The differentiation of CPCs to specific cardiac cell types is likely guided by a comprehensive network comprised of cardiac transcription factors and epigenetic complexes. In this review, we describe how the ATP-dependent chromatin remodeling SWI/SNF complexes work synergistically with transcription and epigenetic factors to direct specific cardiac gene expression during CPC differentiation. Furthermore, we discuss how SWI/SNF may prime chromatin for cardiac gene expression at a genome-wide level. A detailed understanding of SWI/SNF-mediated CPC differentiation will provide important insight into the etiology of cardica defects and help design novel therapies for heart disease.
Collapse
Affiliation(s)
- Ienglam Lei
- Department of Cardiac Surgery, Cardiovascular Research Center, University of Michigan Medical School, North Campus Research Complex, Ann Arbor, MI 48109
| | - Liu Liu
- Department of Cardiac Surgery, Cardiovascular Research Center, University of Michigan Medical School, North Campus Research Complex, Ann Arbor, MI 48109
| | - Mai Har Sham
- Departments of Biochemistry, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Research Center, University of Michigan Medical School, North Campus Research Complex, Ann Arbor, MI 48109
| |
Collapse
|
44
|
Lian JB, Gordon JA, Stein GS. Redefining the activity of a bone-specific transcription factor: novel insights for understanding bone formation. J Bone Miner Res 2013; 28:2060-3. [PMID: 23966343 DOI: 10.1002/jbmr.2076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jane B Lian
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA
| | | | | |
Collapse
|
45
|
Madeja ZE, Sosnowski J, Hryniewicz K, Warzych E, Pawlak P, Rozwadowska N, Plusa B, Lechniak D. Changes in sub-cellular localisation of trophoblast and inner cell mass specific transcription factors during bovine preimplantation development. BMC DEVELOPMENTAL BIOLOGY 2013; 13:32. [PMID: 23941255 PMCID: PMC3751447 DOI: 10.1186/1471-213x-13-32] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 08/07/2013] [Indexed: 02/27/2023]
Abstract
Background Preimplantation bovine development is emerging as an attractive experimental model, yet little is known about the mechanisms underlying trophoblast (TE)/inner cell mass (ICM) segregation in cattle. To gain an insight into these processes we have studied protein and mRNA distribution during the crucial stages of bovine development. Protein distribution of lineage specific markers OCT4, NANOG, CDX2 were analysed in 5-cell, 8–16 cell, morula and blastocyst stage embryos. ICM/TE mRNA levels were compared in hatched blastocysts and included: OCT4, NANOG, FN-1, KLF4, c-MYC, REX1, CDX2, KRT-18 and GATA6. Results At the mRNA level the observed distribution patterns agree with the mouse model. CDX2 and OCT4 proteins were first detected in 5-cell stage embryos. NANOG appeared at the morula stage and was located in the cytoplasm forming characteristic rings around the nuclei. Changes in sub-cellular localisation of OCT4, NANOG and CDX2 were noted from the 8–16 cell onwards. CDX2 initially co-localised with OCT4, but at the blastocyst stage a clear lineage segregation could be observed. Interestingly, we have observed in a small proportion of embryos (2%) that CDX2 immunolabelling overlapped with mitotic chromosomes. Conclusions Cell fate specification in cattle become evident earlier than presently anticipated – around the time of bovine embryonic genome activation. There is an intriguing possibility that for proper lineage determination certain transcription factors (such as CDX2) may need to occupy specific regions of chromatin prior to its activation in the interphase nucleus. Our observation suggests a possible role of CDX2 in the process of epigenetic regulation of embryonic cell fate.
Collapse
Affiliation(s)
- Zofia E Madeja
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, Poznan 60-673, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Cohen-Zinder M, Zinder-Cohen M, Karasik D, Onn I. Structural maintenance of chromosome complexes and bone development: the beginning of a wonderful relationship? BONEKEY REPORTS 2013; 2:388. [PMID: 24422108 DOI: 10.1038/bonekey.2013.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/25/2013] [Indexed: 11/09/2022]
Abstract
Bone development depends on environmental, nutritional and hormonal factors. Yet, an ordered and timed activation of genes and their associated molecular pathways are central for the growth and development of healthy bones. The correct expression of genes depends on both cis- and trans-regulatory elements. Of these, the elusive role of chromatin ultrastructure is just beginning to become appreciated. Changes in the higher-order structure of chromatin are affecting the expression of genes in response to intrinsic and environmental signals. Cohesin and condensin are members of the structural maintenance of chromosome (SMC) family of protein complexes, which mediate higher-order chromatin structure by tethering distinct regions of chromatin either inter- or intra-molecularly. In recent years, SMCs had been identified for their function in the regulation of gene expression and developmental processes, whereas malfunction of cohesin or condensin has an impact on human health. However, little is known about the specific roles of SMC complexes in bone development and their possible effect on bone health. Here, we review studies that suggest an intimate link between SMCs and bone development, as well as a plausible effect, direct or indirect, on the bone health. We describe genetic syndromes associated with SMCs with distinctive bone phenotypes and identify links between SMCs and bone-related molecular pathways. Future studies of the relationship between SMCs and bone development will reveal new understandings of both the cellular and molecular roles of SMC complexes and provide new insights into the growth and developmental processes in the bone.
Collapse
Affiliation(s)
| | - Miri Zinder-Cohen
- Faculty of Medicine in the Galilee, Bar-Ilan University , Safed, Israel
| | - David Karasik
- Faculty of Medicine in the Galilee, Bar-Ilan University , Safed, Israel ; Hebrew SeniorLife, Harvard Medical School , Boston, MA, USA
| | - Itay Onn
- Faculty of Medicine in the Galilee, Bar-Ilan University , Safed, Israel
| |
Collapse
|
47
|
López-Rodríguez R, Hernández-Bartolomé Á, Borque MJ, Rodríguez-Muñoz Y, Martín-Vílchez S, Trapero-Marugán M, García-Buey L, Muñoz de Rueda P, Rodrigo L, Vidal-Castiñeira JR, Salmerón J, Moreno-Otero R, Sanz-Cameno P. Polymorphisms in histone deacetylases improve the predictive value of IL-28B for chronic hepatitis C therapy. Genes Immun 2013; 14:317-24. [PMID: 23615070 DOI: 10.1038/gene.2013.24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/07/2013] [Accepted: 03/12/2013] [Indexed: 12/20/2022]
Abstract
Histone deacetylases (HDACs) influence many cellular processes, including the modulation of signal transducer and activator of transcription activity (STAT) in response to interferon (IFN). To identify genetic markers that help optimize the IL-28B prediction of chronic hepatitis C (CHC) sustained virological response (SVR), we evaluated 27 single-nucleotide polymorphisms (SNPs) in HDAC1-11. Three SNPs, rs3778216, rs976552 and rs368328 in HDAC2, HDAC3 and HDAC5, respectively, were independently associated with SVR (P<0.05). The addition of these three HDAC's SNPs to the IL-28B predictive model (area under the curve (AUC)=0.630) rendered an important improvement of AUC-receiver operating characteristic value (AUC=0.747, P=0.021). Chi-squared Automatic Interaction Detector (CHAID) analysis denoted the significance of the rs3778216 C/C genotype in identifying a group of good responders despite carrying IL-28B T allele (79.2% of SVR), whereas HDAC5 G allele characterized a subgroup with poor response rate (25.5%). However, HDAC3 rs976552 did not display a relevant role for the hierarchical classification of patients. Variables related to SVR in hepatitis C virus genotype 1 (HCV-1) cohort were the same of those obtained for the overall population. Interestingly, in non-HCV-1 patients (n=56) the HDAC2 C/C genotype was the unique predictive variable related to SVR (AUC=0.733, P<0.007). Thus, these preliminary results suggest the potential usefulness of combined IL-28B and HDAC genotyping for the CHC patients' classification by likelihood of an SVR.
Collapse
Affiliation(s)
- R López-Rodríguez
- Liver Unit, Gastroenterology Service, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid and CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Epigenetic control of cytomegalovirus latency and reactivation. Viruses 2013; 5:1325-45. [PMID: 23698401 PMCID: PMC3712310 DOI: 10.3390/v5051325] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/19/2013] [Accepted: 05/07/2013] [Indexed: 12/17/2022] Open
Abstract
Cytomegalovirus (CMV) gene expression is repressed in latency due to heterochromatinization of viral genomes. In murine CMV (MCMV) latently infected mice, viral genomes are bound to histones with heterochromatic modifications, to enzymes that mediate these modifications, and to adaptor proteins that may recruit co-repressor complexes. Kinetic analyses of repressor binding show that these repressors are recruited at the earliest time of infection, suggesting that latency may be the default state. Kidney transplantation leads to epigenetic reprogramming of latent viral chromatin and reactivation of immediate early gene expression. Inflammatory signaling pathways, which activate transcription factors that regulate the major immediate early promoter (MIEP), likely mediate the switch in viral chromatin.
Collapse
|
49
|
Kadauke S, Blobel GA. Mitotic bookmarking by transcription factors. Epigenetics Chromatin 2013; 6:6. [PMID: 23547918 PMCID: PMC3621617 DOI: 10.1186/1756-8935-6-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/11/2013] [Indexed: 11/30/2022] Open
Abstract
Mitosis is accompanied by dramatic changes in chromatin organization and nuclear architecture. Transcription halts globally and most sequence-specific transcription factors and co-factors are ejected from mitotic chromatin. How then does the cell maintain its transcriptional identity throughout the cell division cycle? It has become clear that not all traces of active transcription and gene repression are erased within mitotic chromatin. Many histone modifications are stable or only partially diminished throughout mitosis. In addition, some sequence-specific DNA binding factors have emerged that remain bound to select sites within mitotic chromatin, raising the possibility that they function to transmit regulatory information through the transcriptionally silent mitotic phase, a concept that has been termed “mitotic bookmarking.” Here we review recent approaches to studying potential bookmarking factors with regards to their mitotic partitioning, and summarize emerging ideas concerning the in vivo functions of mitotically bound nuclear factors.
Collapse
Affiliation(s)
- Stephan Kadauke
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | | |
Collapse
|
50
|
Østrup O, Andersen IS, Collas P. Chromatin-linked determinants of zygotic genome activation. Cell Mol Life Sci 2013; 70:1425-37. [PMID: 22965566 PMCID: PMC11113722 DOI: 10.1007/s00018-012-1143-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/13/2012] [Accepted: 08/14/2012] [Indexed: 12/20/2022]
Abstract
The merging of the maternal and paternal genomes into a single pronucleus after fertilization is accompanied by a remarkable reconfiguration of chromatin in the newly formed zygote. The first stages of embryonic chromatin remodeling take place in the absence of ongoing transcription, during a species-specific developmental time-frame. Once post-fertilization chromatin states are organized, zygotic genome activation (ZGA) is initiated, and embryonic transcripts gradually take control of development. We review here transitions in chromatin modifications associated with the onset of ZGA, and the role of transcription factors and DNA motifs in the regulation of ZGA. We propose a model of sequential chromatin remodeling events preceding ZGA, leading to the onset of embryonic transcription.
Collapse
Affiliation(s)
- Olga Østrup
- Stem Cell Epigenetics Laboratory, and Norwegian Center for Stem Cell Research, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway
| | - Ingrid S. Andersen
- Stem Cell Epigenetics Laboratory, and Norwegian Center for Stem Cell Research, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway
| | - Philippe Collas
- Stem Cell Epigenetics Laboratory, and Norwegian Center for Stem Cell Research, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway
| |
Collapse
|