1
|
Afify AF, Hassanien RT, El Naggar RF, Rohaim MA, Munir M. Unmasking the ongoing challenge of equid herpesvirus- 1 (EHV-1): A comprehensive review. Microb Pathog 2024; 193:106755. [PMID: 38897362 DOI: 10.1016/j.micpath.2024.106755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/01/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Equid herpesviruses (EHVs) are a group of highly impactful viral pathogens that affect horses, presenting a substantial risk to the global equine industry. Among these, equid herpesvirus-1 (EHV-1) primarily causes respiratory infections. However, its ability to spread to distant organs can lead to severe consequences such as abortion and neurological diseases. These viruses can enter a dormant phase, with minimal activity, and later reactivate to trigger active infections at any time. Recently, there has been a notable rise in the prevalence of a particularly devastating strains of EHV-1 known as equid herpesviral myeloencephalopathy (EHM). In the light of dynamic nature of EHV-1, this review provides a thorough overview of EHV-1 and explores how advances in viral biology affect the pathophysiology of viral infection. The information presented here is crucial for understanding the dynamics of EHV-1 infections and creating practical plans to stop the virus's global spread among equid populations.
Collapse
Affiliation(s)
- Ahmed F Afify
- Department of Virology, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, 12618, Egypt
| | - Rabab T Hassanien
- Department of Virology, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, 12618, Egypt
| | - Rania F El Naggar
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| | - Mohammed A Rohaim
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Division of Biomedical and Life Science, Lancaster University, Lancaster, LA1 4YG, UK
| | - Muhammad Munir
- Division of Biomedical and Life Science, Lancaster University, Lancaster, LA1 4YG, UK.
| |
Collapse
|
2
|
Gustavsson E, Grünewald K, Elias P, Hällberg BM. Dynamics of the Herpes simplex virus DNA polymerase holoenzyme during DNA synthesis and proof-reading revealed by Cryo-EM. Nucleic Acids Res 2024; 52:7292-7304. [PMID: 38806233 PMCID: PMC11229320 DOI: 10.1093/nar/gkae374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Herpes simplex virus 1 (HSV-1), a double-stranded DNA virus, replicates using seven essential proteins encoded by its genome. Among these, the UL30 DNA polymerase, complexed with the UL42 processivity factor, orchestrates leading and lagging strand replication of the 152 kb viral genome. UL30 polymerase is a prime target for antiviral therapy, and resistance to current drugs can arise in immunocompromised individuals. Using electron cryo-microscopy (cryo-EM), we unveil the dynamic changes of the UL30/UL42 complex with DNA in three distinct states. First, a pre-translocation state with an open fingers domain ready for nucleotide incorporation. Second, a halted elongation state where the fingers close, trapping dATP in the dNTP pocket. Third, a DNA-editing state involving significant conformational changes to allow DNA realignment for exonuclease activity. Additionally, the flexible UL30 C-terminal domain interacts with UL42, forming an extended positively charged surface binding to DNA, thereby enhancing processive synthesis. These findings highlight substantial structural shifts in the polymerase and its DNA interactions during replication, offering insights for future antiviral drug development.
Collapse
Affiliation(s)
- Emil Gustavsson
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Building 15, 22607 Hamburg, Germany
| | - Kay Grünewald
- Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Building 15, 22607 Hamburg, Germany
- Leibniz-Institute of Virology, Martinistraße 52, 20251 Hamburg, Germany
- Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Per Elias
- Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Building 15, 22607 Hamburg, Germany
| |
Collapse
|
3
|
Wan Y, Li L, Chen R, Han J, Lei Q, Chen Z, Tang X, Wu W, Liu S, Yao X. Engineered extracellular vesicles efficiently deliver CRISPR-Cas9 ribonucleoprotein (RNP) to inhibit herpes simplex virus1 infection in vitro and in vivo. Acta Pharm Sin B 2024; 14:1362-1379. [PMID: 38486996 PMCID: PMC10934336 DOI: 10.1016/j.apsb.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 03/17/2024] Open
Abstract
Extracellular vesicles (EVs) have recently emerged as a promising delivery platform for CRISPR/Cas9 ribonucleoproteins (RNPs), owing to their ability to minimize off-target effects and immune responses. However, enhancements are required to boost the efficiency and safety of Cas9 RNP enrichment within EVs. In response, we employed the Fc/Spa interaction system, in which the human Fc domain was fused to the intracellular domain of PTGFRN-Δ687 and anchored to the EV membrane. Simultaneously, the B domain of the Spa protein was fused to the C domain of cargos such as Cre or spCas9. Due to the robust interaction between Fc and Spa, this method enriched nearly twice the amount of cargo within the EVs. EVs loaded with spCas9 RNP targeting the HSV1 genome exhibited significant inhibition of viral replication in vitro and in vivo. Moreover, following neuron-targeting peptide RVG modification, the in vivo dosage in neural tissues substantially increased, contributing to the clearance of the HSV1 virus in neural tissues and exhibiting a lower off-target efficiency. These findings establish a robust platform for efficient EV-based SpCas9 delivery, offering potential therapeutic advantages for HSV1 infections and other neurological disorders.
Collapse
Affiliation(s)
- Yuanda Wan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liren Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Center of Clinical Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruilin Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiajia Han
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiyun Lei
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaodong Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenyu Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Xingang Yao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| |
Collapse
|
4
|
Dabral P, Uppal T, Verma SC. G-quadruplexes of KSHV oriLyt play important roles in promoting lytic DNA replication. Microbiol Spectr 2023; 11:e0531622. [PMID: 37800915 PMCID: PMC10714766 DOI: 10.1128/spectrum.05316-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/15/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Biological processes originating from the DNA and RNA can be regulated by the secondary structures present in the stretch of nucleic acids, and the G-quadruplexes are shown to regulate transcription, translation, and replication. In this study, we identified the presence of multiple G-quadruplex sites in the region (oriLyt) of Kaposi's sarcoma-associated herpesvirus (KSHV) DNA, which is essential for DNA replication during the lytic cycle. We demonstrated the roles of these G-quadruplexes through multiple biochemical and biophysical assays in controlling replication and efficient virus production. We demonstrated that KSHV achieves this by recruiting RecQ1 (helicase) at those G-quadruplex sites for efficient viral DNA replication. Analysis of the replicated DNA through nucleoside labeling and immunostaining showed a reduced initiation of DNA replication in cells with a pharmacologic stabilizer of G-quadruplexes. Overall, this study confirmed the role of the G-quadruplex in regulating viral DNA replication, which can be exploited for controlling viral DNA replication.
Collapse
Affiliation(s)
- Prerna Dabral
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
- Vitalant Research Institute, San Francisco, California, USA
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
5
|
Twigg CAI, Haugo-Crooks A, Roller RJ. Extragenic suppression of an HSV-1 UL34 nuclear egress mutant reveals role for pUS9 as an inhibitor of epithelial cell-to-cell spread. J Virol 2023; 97:e0083623. [PMID: 37787529 PMCID: PMC10617574 DOI: 10.1128/jvi.00836-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/16/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Herpesviruses are able to disseminate in infected hosts despite development of a strong immune response. Their ability to do this relies on a specialized process called cell-to-cell spread in which newly assembled virus particles are trafficked to plasma membrane surfaces that abut adjacent uninfected cells. The mechanism of cell-to-cell spread is obscure, and little is known about whether or how it is regulated in different cells. We show here that a viral protein with a well-characterized role in promoting spread from neurons has an opposite, inhibitory role in other cells.
Collapse
Affiliation(s)
- Carly A. I. Twigg
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Alison Haugo-Crooks
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Richard J. Roller
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Sutter J, Bruggeman PJ, Wigdahl B, Krebs FC, Miller V. Manipulation of Oxidative Stress Responses by Non-Thermal Plasma to Treat Herpes Simplex Virus Type 1 Infection and Disease. Int J Mol Sci 2023; 24:4673. [PMID: 36902102 PMCID: PMC10003306 DOI: 10.3390/ijms24054673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a contagious pathogen with a large global footprint, due to its ability to cause lifelong infection in patients. Current antiviral therapies are effective in limiting viral replication in the epithelial cells to alleviate clinical symptoms, but ineffective in eliminating latent viral reservoirs in neurons. Much of HSV-1 pathogenesis is dependent on its ability to manipulate oxidative stress responses to craft a cellular environment that favors HSV-1 replication. However, to maintain redox homeostasis and to promote antiviral immune responses, the infected cell can upregulate reactive oxygen and nitrogen species (RONS) while having a tight control on antioxidant concentrations to prevent cellular damage. Non-thermal plasma (NTP), which we propose as a potential therapy alternative directed against HSV-1 infection, is a means to deliver RONS that affect redox homeostasis in the infected cell. This review emphasizes how NTP can be an effective therapy for HSV-1 infections through the direct antiviral activity of RONS and via immunomodulatory changes in the infected cells that will stimulate anti-HSV-1 adaptive immune responses. Overall, NTP application can control HSV-1 replication and address the challenges of latency by decreasing the size of the viral reservoir in the nervous system.
Collapse
Affiliation(s)
- Julia Sutter
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Peter J. Bruggeman
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian Wigdahl
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Fred C. Krebs
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Vandana Miller
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
7
|
Dihydromyricetin Inhibits Pseudorabies Virus Multiplication In Vitro by Regulating NF-κB Signaling Pathway and Apoptosis. Vet Sci 2023; 10:vetsci10020111. [PMID: 36851415 PMCID: PMC9961748 DOI: 10.3390/vetsci10020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Pseudorabies virus (PRV) infections have caused huge economic losses to the breeding industry worldwide, especially pig husbandry. PRV could threaten human health as an easily ignored zoonotic pathogen. The emergence of new mutants significantly reduced the protective effect of vaccination, indicating an urgent need to develop specific therapeutic drugs for PRV infection. In this study, we found that dihydromyricetin (DMY) could dose-dependently restrain PRV infection in vitro with an IC50 of 161.34 μM; the inhibition rate of DMY at a concentration of 500 μM was 92.16 %. Moreover, the mode of action showed that DMY directly inactivated PRV virion and inhibited viral adsorption and cellular replication. DMY treatment could improve PRV-induced abnormal changes of the NF-κB signaling pathway and excessive inflammatory response through regulation of the contents of IκBα and p-P65/P65 and the transcriptional levels of cytokines (TNF-α, IL-1β and IL-6). Furthermore, DMY promoted the apoptosis of PRV-infected cells through the regulation of the expressions of Bax and Bcl-xl and the transcriptional levels of Caspase-3, Bax, Bcl-2 and Bcl-xl, thereby limiting the production of progeny virus. These findings indicated that DMY could be a candidate drug for the treatment of PRV infection.
Collapse
|
8
|
Xiong F, Yang H, Song YG, Qin HB, Zhang QY, Huang X, Jing W, Deng M, Liu Y, Liu Z, Shen Y, Han Y, Lu Y, Xu X, Holmes TC, Luo M, Zhao F, Luo MH, Zeng WB. An HSV-1-H129 amplicon tracer system for rapid and efficient monosynaptic anterograde neural circuit tracing. Nat Commun 2022; 13:7645. [PMID: 36496505 PMCID: PMC9741617 DOI: 10.1038/s41467-022-35355-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Monosynaptic viral tracers are essential tools for dissecting neuronal connectomes and for targeted delivery of molecular sensors and effectors. Viral toxicity and complex multi-injection protocols are major limiting application barriers. To overcome these barriers, we developed an anterograde monosynaptic H129Amp tracer system based on HSV-1 strain H129. The H129Amp tracer system consists of two components: an H129-dTK-T2-pacFlox helper which assists H129Amp tracer's propagation and transneuronal monosynaptic transmission. The shared viral features of tracer/helper allow for simultaneous single-injection and subsequent high expression efficiency from multiple-copy of expression cassettes in H129Amp tracer. These improvements of H129Amp tracer system shorten experiment duration from 28-day to 5-day for fast-bright monosynaptic tracing. The lack of toxic viral genes in the H129Amp tracer minimizes toxicity in postsynaptic neurons, thus offering the potential for functional anterograde mapping and long-term tracer delivery of genetic payloads. The H129Amp tracer system is a powerful tracing tool for revealing neuronal connectomes.
Collapse
Affiliation(s)
- Feng Xiong
- grid.9227.e0000000119573309State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Hong Yang
- grid.9227.e0000000119573309State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Yi-Ge Song
- grid.33199.310000 0004 0368 7223Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Bin Qin
- grid.9227.e0000000119573309State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yang Zhang
- grid.9227.e0000000119573309State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Xian Huang
- grid.33199.310000 0004 0368 7223Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Jing
- grid.33199.310000 0004 0368 7223Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Manfei Deng
- grid.33199.310000 0004 0368 7223Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Liu
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China
| | - Zhixiang Liu
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China
| | - Yin Shen
- grid.49470.3e0000 0001 2331 6153Eye Center, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yunyun Han
- grid.49470.3e0000 0001 2331 6153Eye Center, Renmin Hospital, Wuhan University, Wuhan, China
| | - Youming Lu
- grid.33199.310000 0004 0368 7223Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangmin Xu
- grid.266093.80000 0001 0668 7243Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Center for Neural Circuit Mapping, School of Medicine, University of California, Irvine, CA USA
| | - Todd C. Holmes
- grid.266093.80000 0001 0668 7243Center for Neural Circuit Mapping, School of Medicine, University of California, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA USA
| | - Minmin Luo
- grid.410717.40000 0004 0644 5086National Institute of Biological Sciences, Beijing, China ,grid.510934.a0000 0005 0398 4153Chinese Institute for Brain Research, Beijing, China
| | - Fei Zhao
- grid.510934.a0000 0005 0398 4153Chinese Institute for Brain Research, Beijing, China ,grid.24696.3f0000 0004 0369 153XSchool of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Min-Hua Luo
- grid.9227.e0000000119573309State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.9227.e0000000119573309Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China ,grid.266093.80000 0001 0668 7243Center for Neural Circuit Mapping, School of Medicine, University of California, Irvine, CA USA
| | - Wen-Bo Zeng
- grid.9227.e0000000119573309State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
9
|
Chen L, Yang C, Tang SB, Long QY, Chen JD, Wu M, Li LY. Inhibition of histone methyltransferase SETD8 represses DNA virus replication. CELL INSIGHT 2022; 1:100033. [PMID: 37193046 PMCID: PMC10120311 DOI: 10.1016/j.cellin.2022.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 05/18/2023]
Abstract
Multiple diseases, such as cancer and neural degeneration diseases, are related with the latent infection of DNA viruses. However, it is still difficult to clean up the latent DNA viruses and new anti-viral strategies are critical for disease treatment. Here, we screen a pool of small chemical molecules and identify UNC0379, an inhibitor for histone H4K20 methyltransferase SETD8, as an effective inhibitor for multiple DNA viruses. UNC0379 not only enhances the expression of anti-viral genes in THP-1 cells, but also repress DNA virus replication in multiple cell lines with defects in cGAS pathway. We prove that SETD8 promotes DNA virus replication in a manner dependent on its enzyme activity. Our results further indicated that SETD8 is required for PCNA stability, one factor critical for viral DNA replication. Viral infection stimulates the interaction between SETD8 and PCNA and thus enhances PCNA stability and viral DNA replication. Taken together, our study reveals a new mechanism for regulating viral DNA replication and provides a potential strategy for treatment of diseases related with DNA viruses.
Collapse
Affiliation(s)
- Lin Chen
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Renmin Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Chen Yang
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Renmin Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shan-Bo Tang
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Renmin Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qiao-Yun Long
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Renmin Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ji-Dong Chen
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Renmin Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Renmin Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, Renmin Hospital of Wuhan University, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
10
|
UL34 Deletion Restricts Human Cytomegalovirus Capsid Formation and Maturation. Int J Mol Sci 2022; 23:ijms23105773. [PMID: 35628580 PMCID: PMC9143689 DOI: 10.3390/ijms23105773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Over 50% of the world’s population is infected with Human Cytomegalovirus (HCMV). HCMV is responsible for serious complications in the immuno-compromised and is a leading cause of congenital birth defects. The molecular function of many HCMV proteins remains unknown, and a deeper understanding of the viral effectors that modulate virion maturation is required. In this study, we observed that UL34 is a viral protein expressed with leaky late kinetics that localises to the nucleus during infection. Deletion of UL34 from the HCMV genome (ΔUL34) did not abolish the spread of HCMV. Instead, over >100-fold fewer infectious virions were produced, so we report that UL34 is an augmenting gene. We found that ΔUL34 is dispensable for viral DNA replication, and its absence did not alter the expression of IE1, MCP, gB, UL26, UL83, or UL99 proteins. In addition, ΔUL34 infections were able to progress through the replication cycle to form a viral assembly compartment; however, virion maturation in the cytoplasm was abrogated. Further examination of the nucleus in ΔUL34 infections revealed replication compartments with aberrant morphology, containing significantly less assembled capsids, with almost none undergoing subsequent maturation. Therefore, this work lays the foundation for UL34 to be further investigated in the context of nuclear organization and capsid maturation during HCMV infection.
Collapse
|
11
|
Zhang X, Hao K, Li S, Meng L, Chen H, Wei F, Yu F, Xu J, Zhao Z. Channel catfish virus ORF25 and ORF63 genes are essential for viral replication in vitro. JOURNAL OF FISH DISEASES 2022; 45:655-666. [PMID: 35176182 DOI: 10.1111/jfd.13591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The channel catfish virus (CCV) is a lethal pathogen to aquatic animals that can provoke severe haemorrhagic disease in juvenile channel catfish. Although the CCV genome has been fully sequenced, the molecular mechanisms of CCV infection and pathogenesis are less well known. Genomic DNA replication is a necessary and key event for the CCV life cycle. In this study, the impacts of the putative helicase and primase encoded by viral ORF25 and ORF63 on CCV genome replication and infection were evaluated in channel catfish ovary (CCO) cells. The results showed that the number of CCV genome copies was decreased significantly in virus-infected CCO cells after knockdown of ORF25 and ORF63 using RNA interference. In contrast, the overexpression of ORF25 and ORF63 led to slight increase in the number of virus genome copies. Consistent with the above results, the present results also showed that the expressions of CCV true-late genes which strictly depend on viral DNA replication, were significantly increased or repressed by overexpression or RNA interference targeting viral ORF25 and ORF63 genes in virus-infected CCO cells. In addition, knockdown of ORF25 and ORF63 remarkably inhibited CCV-induced cytopathic effects and decreased progeny virus titres in CCO cells. Moreover, transmission electron microscopy observation of CCO cells infected with CCV accompanied by siRNA targeting the viral ORF25 and ORF63 genes showed that the number of virus particles was remarkably reduced. Taken together, these results indicated that ORF25 and ORF63 are essential for regulating CCV genome replication and CCV-induced infection. Our findings will provide an understanding of the replication mechanisms of CCV and contribute to the development of antiviral strategies for controlling CCV infection in channel catfish culture.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Kai Hao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Shuxin Li
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Lihui Meng
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Hongxun Chen
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Fucheng Wei
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Fei Yu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Jing Xu
- Jiangsu Cangdong Agricultural Development Co., Ltd, Nanjing, China
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| |
Collapse
|
12
|
López-Muñoz AD, Rastrojo A, Martín R, Alcamí A. Herpes simplex virus 2 (HSV-2) evolves faster in cell culture than HSV-1 by generating greater genetic diversity. PLoS Pathog 2021; 17:e1009541. [PMID: 34437654 PMCID: PMC8389525 DOI: 10.1371/journal.ppat.1009541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus type 1 and 2 (HSV-1 and HSV-2, respectively) are prevalent human pathogens of clinical relevance that establish long-life latency in the nervous system. They have been considered, along with the Herpesviridae family, to exhibit a low level of genetic diversity during viral replication. However, the high ability shown by these viruses to rapidly evolve under different selective pressures does not correlates with that presumed genetic stability. High-throughput sequencing has revealed that heterogeneous or plaque-purified populations of both serotypes contain a broad range of genetic diversity, in terms of number and frequency of minor genetic variants, both in vivo and in vitro. This is reminiscent of the quasispecies phenomenon traditionally associated with RNA viruses. Here, by plaque-purification of two selected viral clones of each viral subtype, we reduced the high level of genetic variability found in the original viral stocks, to more genetically homogeneous populations. After having deeply characterized the genetic diversity present in the purified viral clones as a high confidence baseline, we examined the generation of de novo genetic diversity under culture conditions. We found that both serotypes gradually increased the number of de novo minor variants, as well as their frequency, in two different cell types after just five and ten passages. Remarkably, HSV-2 populations displayed a much higher raise of nonconservative de novo minor variants than the HSV-1 counterparts. Most of these minor variants exhibited a very low frequency in the population, increasing their frequency over sequential passages. These new appeared minor variants largely impacted the coding diversity of HSV-2, and we found some genes more prone to harbor higher variability. These data show that herpesviruses generate de novo genetic diversity differentially under equal in vitro culture conditions. This might have contributed to the evolutionary divergence of HSV-1 and HSV-2 adapting to different anatomical niche, boosted by selective pressures found at each epithelial and neuronal tissue. Herpesviruses are highly human pathogens that establish latency in neurons of the peripheral nervous system. Colonization of nerve endings is required for herpes simplex virus (HSV) persistence and pathogenesis. HSV-1 global prevalence is much higher than HSV-2, in addition to their preferential tendency to infect the oronasal and genital areas, respectively. How these closely related viruses have been adapting and evolving to replicate and colonize these two different anatomical areas remains unclear. Herpesviruses were presumed to mutate much less than viruses with RNA genomes, due to the higher fidelity of the DNA polymerase and proofreading mechanisms when replicating. However, the worldwide accessibility and development of high-throughput sequencing technologies have revealed the heterogenicity and high diversity present in viral populations clinically isolated. Here we show that HSV-2 mutates much faster than HSV-1, when compared under similar and controlled cell culture conditions. This high mutation rate is translated into an increase in coding diversity, since the great majority of these new mutations lead to nonconservative changes in viral proteins. Understanding how herpesviruses differentially mutate under similar selective pressures is critical to prevent resistance to anti-viral drugs.
Collapse
Affiliation(s)
- Alberto Domingo López-Muñoz
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Rocío Martín
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Madrid, Spain
| |
Collapse
|
13
|
Shan T, Ye J, Jia J, Wang Z, Jiang Y, Wang Y, Wang Y, Zheng K, Ren Z. Viral UL8 Is Involved in the Antiviral Activity of Oleanolic Acid Against HSV-1 Infection. Front Microbiol 2021; 12:689607. [PMID: 34354687 PMCID: PMC8329587 DOI: 10.3389/fmicb.2021.689607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is highly prevalent in humans and can cause severe diseases, especially in immunocompromised adults and newborns, such as keratitis and herpes simplex encephalitis. At present, the clinical therapeutic drug against HSV-1 infection is acyclovir (ACV), and its extensive usage has led to the emergence of ACV-resistant strains. Therefore, it is urgent to explore novel therapeutic targets and anti-HSV-1 drugs. This study demonstrated that Oleanolic acid, a pentacyclic triterpenoid widely existing in natural product, had strong antiviral activity against both ACV-sensitive and -resistant HSV-1 strains in different cells. Mechanism studies showed that Oleanolic acid exerted its anti-HSV-1 activity in the immediate early stage of infection, which involved the dysregulation of viral UL8, a component of viral helicase-primase complex critical for viral replication. In addition, Oleanolic acid significantly ameliorated the skin lesions in an HSV-1 infection mediated zosteriform model. Together, our study suggested that Oleanolic acid could be a potential candidate for clinical therapy of HSV-1 infection-related diseases.
Collapse
Affiliation(s)
- Tianhao Shan
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ju Ye
- Key Laboratory of Plant Chemistry in Qinghai-Tibet Plateau, Qinghai University for Nationalities, Xining, China
| | - Jiaoyan Jia
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhaoyang Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuzhou Jiang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yiliang Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Wu Y, Yang Q, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Multifaceted Roles of ICP22/ORF63 Proteins in the Life Cycle of Human Herpesviruses. Front Microbiol 2021; 12:668461. [PMID: 34163446 PMCID: PMC8215345 DOI: 10.3389/fmicb.2021.668461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/05/2021] [Indexed: 01/03/2023] Open
Abstract
Herpesviruses are extremely successful parasites that have evolved over millions of years to develop a variety of mechanisms to coexist with their hosts and to maintain host-to-host transmission and lifelong infection by regulating their life cycles. The life cycle of herpesviruses consists of two phases: lytic infection and latent infection. During lytic infection, active replication and the production of numerous progeny virions occur. Subsequent suppression of the host immune response leads to a lifetime latent infection of the host. During latent infection, the viral genome remains in an inactive state in the host cell to avoid host immune surveillance, but the virus can be reactivated and reenter the lytic cycle. The balance between these two phases of the herpesvirus life cycle is controlled by broad interactions among numerous viral and cellular factors. ICP22/ORF63 proteins are among these factors and are involved in transcription, nuclear budding, latency establishment, and reactivation. In this review, we summarized the various roles and complex mechanisms by which ICP22/ORF63 proteins regulate the life cycle of human herpesviruses and the complex relationships among host and viral factors. Elucidating the role and mechanism of ICP22/ORF63 in virus-host interactions will deepen our understanding of the viral life cycle. In addition, it will also help us to understand the pathogenesis of herpesvirus infections and provide new strategies for combating these infections.
Collapse
Affiliation(s)
- Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiqi Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Shapiro M, Krug LT, MacCarthy T. Mutational pressure by host APOBEC3s more strongly affects genes expressed early in the lytic phase of herpes simplex virus-1 (HSV-1) and human polyomavirus (HPyV) infection. PLoS Pathog 2021; 17:e1009560. [PMID: 33930088 PMCID: PMC8115780 DOI: 10.1371/journal.ppat.1009560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/12/2021] [Accepted: 04/14/2021] [Indexed: 01/22/2023] Open
Abstract
Herpes-Simplex Virus 1 (HSV-1) infects most humans when they are young, sometimes with fatal consequences. Gene expression occurs in a temporal order upon lytic HSV-1 infection: immediate early (IE) genes are expressed, then early (E) genes, followed by late (L) genes. During this infection cycle, the HSV-1 genome has the potential for exposure to APOBEC3 (A3) proteins, a family of cytidine deaminases that cause C>U mutations on single-stranded DNA (ssDNA), often resulting in a C>T transition. We developed a computational model for the mutational pressure of A3 on the lytic cycle of HSV-1 to determine which viral kinetic gene class is most vulnerable to A3 mutations. Using in silico stochastic methods, we simulated the infectious cycle under varying intensities of A3 mutational pressure. We found that the IE and E genes are more vulnerable to A3 than L genes. We validated this model by analyzing the A3 evolutionary footprints in 25 HSV-1 isolates. We find that IE and E genes have evolved to underrepresent A3 hotspot motifs more so than L genes, consistent with greater selection pressure on IE and E genes. We extend this model to two-step infections, such as those of polyomavirus, and find that the same pattern holds for over 25 human Polyomavirus (HPyVs) genomes. Genes expressed earlier during infection are more vulnerable to mutations than those expressed later.
Collapse
Affiliation(s)
- Maxwell Shapiro
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
| | - Laurie T. Krug
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
16
|
Lee JH, Shim J, Kim SJ. Stunning symmetries involved in the self-assembly of the HSV-1 capsid. THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY 2021; 78:357-364. [PMID: 33584000 PMCID: PMC7871024 DOI: 10.1007/s40042-020-00044-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Herpes simplex virus-1 (HSV-1) is an enveloped dsDNA virus, infecting ~ 67% of humans. Here, we present the essential components of the HSV-1, focusing on stunning symmetries on the capsid. However, little is known about how the symmetries are involved dynamically in the self-assembly process. We suggest small angle X-ray scattering as a suitable method to capture the dynamics of self-assembly. Furthermore, our understanding of the viruses can be expanded by using an integrative approach that combines heterogeneous types of data, thus promoting new diagnostic tools and a cure for viral infections.
Collapse
Affiliation(s)
- Joo-hyeon Lee
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Jaehyu Shim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| | - Seung Joong Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Korea
| |
Collapse
|
17
|
Abstract
Gene drives are genetic modifications designed to propagate in a population with high efficiency. Current gene drive strategies rely on sexual reproduction and are thought to be restricted to sexual organisms. Here, we report on a gene drive system that allows the spread of an engineered trait in populations of DNA viruses and, in particular, herpesviruses. We describe the successful transmission of a gene drive sequence between distinct strains of human cytomegalovirus (human herpesvirus 5) and show that gene drive viruses can efficiently target and replace wildtype populations in cell culture experiments. Moreover, by targeting sequences necessary for viral replication, our results indicate that a viral gene drive can be used as a strategy to suppress a viral infection. Taken together, this work offers a proof of principle for the design of a gene drive in viruses. Current gene drive strategies are restricted to sexually reproducing species. Here the authors develop a gene drive in herpesviruses that allows the spread of an engineered trait through a viral population.
Collapse
Affiliation(s)
- Marius Walter
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
| |
Collapse
|
18
|
Ueda Y, Uta D, Tanbo S, Kawabata A, Kanayama S, Osaki M, Nozawa N, Matsumoto T, Andoh T. Inhibitory effect of amenamevir on acute herpetic pain and postherpetic neuralgia in mice infected with herpes simplex virus-1. J Dermatol Sci 2020; 98:50-57. [PMID: 32284168 DOI: 10.1016/j.jdermsci.2020.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/10/2020] [Indexed: 11/15/2022]
Abstract
BACKGROUND Amenamevir (AMNV) is a helicase-primase inhibitor with antiviral activity against herpesviruses [herpes simplex viruses (HSV)-1 and -2, and varicella-zoster virus], which are associated with the development of acute herpetic pain (AHP) and postherpetic neuralgia. However, the inhibitory effects of helicase-primase inhibitors on AHP and postherpetic neuralgia remain incompletely understood. OBJECTIVE In this study, we investigated the effects of AMNV on AHP and postherpetic pain (PHP) in HSV-1-infected mice accompanied by zosteriform-like skin lesions. METHODS HSV-1 was percutaneously infected on the femoral region of mice. AMNV was orally administered twice a day for 5 days. Pain-related response in the hind paw was evaluated using a paintbrush. The infiltration of inflammatory cells in dorsal root ganglion (DRG) and spinal cord (SC) was evaluated by hematoxylin and eosin staining. The viral load in DRG and the expression of pain-related genes in SC were measured by real-time PCR. RESULTS Pain response was begun to be observed from day 3 post-infection (pi) in HSV-1-infected mice. AMNV administered repeatedly from day 3 pi or day 4 pi, but not day 5 pi, showed an inhibitory effect on the development of AHP and the transition to PHP. Repeated AMNV administration inhibited inflammatory cell infiltration and increases in the viral load and the expression of pain-related genes (ATF-3, TNF-α, COX-2). CONCLUSION These results demonstrate that AMNV potently suppresses the development of AHP and the transition to PHP as a consequence of decreased viral load in DRG and reduced expression of pain-related genes in SC.
Collapse
Affiliation(s)
- Yuhki Ueda
- Kyoto R&D Center, Maruho Co., Ltd., Kyoto, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Soichiro Tanbo
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | - Miho Osaki
- Kyoto R&D Center, Maruho Co., Ltd., Kyoto, Japan
| | - Naoki Nozawa
- Kyoto R&D Center, Maruho Co., Ltd., Kyoto, Japan
| | | | - Tsugunobu Andoh
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| |
Collapse
|
19
|
Oladunni FS, Horohov DW, Chambers TM. EHV-1: A Constant Threat to the Horse Industry. Front Microbiol 2019; 10:2668. [PMID: 31849857 PMCID: PMC6901505 DOI: 10.3389/fmicb.2019.02668] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
Equine herpesvirus-1 (EHV-1) is one of the most important and prevalent viral pathogens of horses and a major threat to the equine industry throughout most of the world. EHV-1 primarily causes respiratory disease but viral spread to distant organs enables the development of more severe sequelae; abortion and neurologic disease. The virus can also undergo latency during which viral genes are minimally expressed, and reactivate to produce lytic infection at any time. Recently, there has been a trend of increasing numbers of outbreaks of a devastating form of EHV-1, equine herpesviral myeloencephalopathy. This review presents detailed information on EHV-1, from the discovery of the virus to latest developments on treatment and control of the diseases it causes. We also provide updates on recent EHV-1 research with particular emphasis on viral biology which enables pathogenesis in the natural host. The information presented herein will be useful in understanding EHV-1 and formulating policies that would help limit the spread of EHV-1 within horse populations.
Collapse
Affiliation(s)
- Fatai S. Oladunni
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
- Department of Veterinary Microbiology, University of Ilorin, Ilorin, Nigeria
| | - David W. Horohov
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Thomas M. Chambers
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
20
|
Saranathan N, Biswas B, Patra A, Vivekanandan P. G-quadruplexes may determine the landscape of recombination in HSV-1. BMC Genomics 2019; 20:382. [PMID: 31096907 PMCID: PMC6524338 DOI: 10.1186/s12864-019-5731-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Background Several lines of evidence suggest that recombination plays a central role in replication and evolution of herpes simplex virus-1 (HSV-1). G-quadruplex (G4)-motifs have been linked to recombination events in human and microbial genomes, but their role in recombination has not been studied in DNA viruses. Results The availability of near full-length sequences from 40 HSV-1 recombinant strains with exact position of the recombination breakpoints provided us with a unique opportunity to investigate the role of G4-motifs in recombination among herpes viruses. We mapped the G4-motifs in the parental and all the 40 recombinant strains. Interestingly, the genome-wide distribution of breakpoints closely mirrors the G4 densities in the HSV-1 genome; regions of the genome with higher G4 densities had higher number of recombination breakpoints. Biophysical characterization of oligonucleotides from a subset of predicted G4-motifs confirmed the formation of G-quadruplex structures. Our analysis also reveals that G4-motifs are enriched in regions flanking the recombination breakpoints. Interestingly, about 11% of breakpoints lie within a G4-motif, making these DNA secondary structures hotspots for recombination in the HSV-1 genome. Breakpoints within G4-motifs predominantly lie within G4-clusters rather than individual G4-motifs. Of note, we identified the terminal guanosine of G4-clusters at the boundaries of the UL (unique long) region on either side of the OriL (origin of replication within UL) represented the commonest breakpoint among the HSV-1 recombinants. Conclusion Our findings suggest a correlation between the HSV-1 recombination landscape and the distribution of G4-motifs and G4-clusters, with possible implications for the evolution of DNA viruses. Electronic supplementary material The online version of this article (10.1186/s12864-019-5731-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nandhini Saranathan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Banhi Biswas
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Anupam Patra
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
21
|
The DNase Activity of Kaposi's Sarcoma-Associated Herpesvirus SOX Protein Serves an Important Role in Viral Genome Processing during Lytic Replication. J Virol 2019; 93:JVI.01983-18. [PMID: 30728255 DOI: 10.1128/jvi.01983-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/28/2019] [Indexed: 01/18/2023] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) alkaline exonuclease SOX, encoded by open reading frame 37 (ORF37), is a bifunctional early-lytic-phase protein that possesses alkaline 5'-to-3' DNase activity and promotes host shutoff at the mRNA level during productive lytic infection. While the SOX protein is well characterized for drastically impairing cellular gene expression, little is known about the impact of its DNase activity on the KSHV genome and life cycle and the biology of KSHV infections. Here, we introduced a previously described DNase-inactivating Glu129His (Q129H) mutation into the ORF37 gene of the viral genome to generate ORF37-Q129H recombinant virus (the Q129H mutant) and investigated the effects of loss or inactivation of DNase activity on viral genome replication, cleavage, and packaging. For the first time, we provide experimental evidence that the DNase activity of the SOX protein does not affect viral latent/lytic DNA synthesis but is required for cleavage and processing of the KSHV genome during lytic replication. Interestingly, the Q129H mutation severely impaired intranuclear processing of progeny virions compared to the wild-type ORF37, as assessed by pulsed-field and Gardella gel electrophoresis, electron microscopy, and single-molecule analysis of replicating DNA (SMARD) assays. Complementation with ORF37-wt (wild type) or BGLF5 (the KSHV protein homolog in Epstein-Barr virus) in 293L/Q129H cells restored the viral genome encapsidation defects. Together, these results indicated that ORF37's proposed DNase activity is essential for viral genome processing and encapsidation and, hence, can be targeted for designing antiviral agents to block KSHV virion production.IMPORTANCE Kaposi's sarcoma (KS)-associated herpesvirus is the causative agent of multiple malignancies, predominantly in immunocompromised individuals, including HIV/AIDS patients. Reduced incidence of KS in HIV/AIDS patients receiving antiherpetic drugs to block lytic replication confirms the role of lytic DNA replication and gene products in KSHV-mediated tumorigenesis. Herpesvirus lytic replication results in the production of complex concatemeric DNA, which is cleaved into unit length viral DNA for packaging into the infectious virions. The conserved herpesviral alkaline exonucleases play an important role in viral genome cleavage and packaging. Here, by using the previously described Q129H mutant virus that selectively lacks DNase activity but retains host shutoff activity, we provide experimental evidence confirming that the DNase function of the KSHV SOX protein is essential for viral genome processing and packaging and capsid maturation into the cytoplasm during lytic replication in infected cells. This led to the identification of ORF37's DNase activity as a potential target for antiviral therapeutics.
Collapse
|
22
|
Schildgen O, Gräper S, Blümel J, Külshammer M, Matz B. Temperature-sensitive origin-binding protein as a tool for investigations of herpes simplex virus activities in vivo. J Gen Virol 2018; 100:105-117. [PMID: 30520714 DOI: 10.1099/jgv.0.001184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While it is fairly clear that herpes simplex virus (HSV) DNA replication requires at least seven virus-encoded proteins in concert with various host cell factors, the mode of this process in infected cells is still poorly understood. Using HSV-1 mutants bearing temperature-sensitive (ts) lesions in the UL9 gene, we previously found that the origin-binding protein (OBP), a product of the UL9 gene, is only needed in the first 6 hours post-infection. As this finding was just a simple support for the hypothesis of a biphasic replication mode, we became convinced through these earlier studies that the mutants tsR and tsS might represent suitable tools for more accurate investigations in vivo. However, prior to engaging in highly sophisticated research projects, knowledge of the biochemical features of the mutated versions of OBP appeared to be essential. The results of our present study demonstrate that (i) tsR is most appropriate for cell biological studies, where only immediate early and early HSV gene products are being expressed without the concomital viral DNA replication, and (ii) tsS is a prime candidate for the analysis of HSV DNA replication processes because of its reversibly thermosensitive OBP-ATPase, which allows one to switch on the initiation of DNA synthesis precisely.
Collapse
Affiliation(s)
- Oliver Schildgen
- †Present address: Kliniken der Stadt Köln gGmbH, Krankenhaus Merheim, Klinikum der Privaten Universität Witten/Herdecke, Institut für Pathologie, Ostmerheimer Strasse 200, D-51109 Köln, Germany.,Institute of Virology, University of Bonn, Bonn, Germany
| | - Sascha Gräper
- Institute of Virology, University of Bonn, Bonn, Germany.,‡Present address: Sanofi-Aventis, Industriepark Hoechst, Bldg. D681, D-65926 Frankfurt am Main, Germany
| | - Johannes Blümel
- Institute of Virology, University of Bonn, Bonn, Germany.,§Present address: Paul-Ehrlich-Institu, Paul-Ehrlich-Strasse 51-59, D-63225 Langen, Germany
| | | | - Bertfried Matz
- Institute of Virology, University of Bonn, Bonn, Germany
| |
Collapse
|
23
|
Döhner K, Ramos-Nascimento A, Bialy D, Anderson F, Hickford-Martinez A, Rother F, Koithan T, Rudolph K, Buch A, Prank U, Binz A, Hügel S, Lebbink RJ, Hoeben RC, Hartmann E, Bader M, Bauerfeind R, Sodeik B. Importin α1 is required for nuclear import of herpes simplex virus proteins and capsid assembly in fibroblasts and neurons. PLoS Pathog 2018; 14:e1006823. [PMID: 29304174 PMCID: PMC5773220 DOI: 10.1371/journal.ppat.1006823] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/18/2018] [Accepted: 12/16/2017] [Indexed: 01/28/2023] Open
Abstract
Herpesviruses are large DNA viruses which depend on many nuclear functions, and therefore on host transport factors to ensure specific nuclear import of viral and host components. While some import cargoes bind directly to certain transport factors, most recruit importin β1 via importin α. We identified importin α1 in a small targeted siRNA screen to be important for herpes simplex virus (HSV-1) gene expression. Production of infectious virions was delayed in the absence of importin α1, but not in cells lacking importin α3 or importin α4. While nuclear targeting of the incoming capsids, of the HSV-1 transcription activator VP16, and of the viral genomes were not affected, the nuclear import of the HSV-1 proteins ICP4 and ICP0, required for efficient viral transcription, and of ICP8 and pUL42, necessary for DNA replication, were reduced. Furthermore, quantitative electron microscopy showed that fibroblasts lacking importin α1 contained overall fewer nuclear capsids, but an increased proportion of mature nuclear capsids indicating that capsid formation and capsid egress into the cytoplasm were impaired. In neurons, importin α1 was also not required for nuclear targeting of incoming capsids, but for nuclear import of ICP4 and for the formation of nuclear capsid assembly compartments. Our data suggest that importin α1 is specifically required for the nuclear localization of several important HSV1 proteins, capsid assembly, and capsid egress into the cytoplasm, and may become rate limiting in situ upon infection at low multiplicity or in terminally differentiated cells such as neurons. Nuclear pore complexes are highly selective gateways that penetrate the nuclear envelope for bidirectional trafficking between the cytoplasm and the nucleoplasm. Viral and host cargoes have to engage specific transport factors to achieve active nuclear import and export. Like many human and animal DNA viruses, herpesviruses are critically dependent on many functions of the host cell nucleus. Alphaherpesviruses such as herpes simplex virus (HSV) cause many diseases upon productive infection in epithelial cells, fibroblasts and neurons. Here, we asked which nuclear transport factors of the host cells help HSV-1 to translocate viral components into the nucleus for viral gene expression, nuclear capsid assembly, capsid egress into the cytoplasm, and production of infectious virions. Our data show that HSV-1 requires the nuclear import factor importin α1 for efficient replication and virus assembly in fibroblasts and in mature neurons. To our knowledge this is the first time that a specific importin α isoform is shown to be required for herpesvirus infection. Our study fosters our understanding on how the different but highly homologous importin α isoforms could fulfill specific functions in vivo which are only understood for a very limited number of host and viral cargos.
Collapse
Affiliation(s)
- Katinka Döhner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Dagmara Bialy
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Fenja Anderson
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Franziska Rother
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Thalea Koithan
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Kathrin Rudolph
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anna Buch
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ute Prank
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anne Binz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Stefanie Hügel
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob C. Hoeben
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Enno Hartmann
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Rudolf Bauerfeind
- Research Core Unit Laser Microscopy, Hannover Medical School, Hannover, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
24
|
Tongo M, de Oliveira T, Martin DP. Patterns of genomic site inheritance in HIV-1M inter-subtype recombinants delineate the most likely genomic sites of subtype-specific adaptation. Virus Evol 2018; 4:vey015. [PMID: 29942655 PMCID: PMC6007327 DOI: 10.1093/ve/vey015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recombination between different HIV-1 group M (HIV-1M) subtypes is a major contributor to the ongoing genetic diversification of HIV-1M. However, it remains unclear whether the different genome regions of recombinants are randomly inherited from the different subtypes. To elucidate this, we analysed the distribution within 82 circulating and 201 unique recombinant forms (CRFs/URFs), of genome fragments derived from HIV-1M Subtypes A, B, C, D, F, and G and CRF01_AE. We found that viruses belonging to the analysed HIV-1M subtypes and CRF01_AE contributed certain genome fragments more frequently during recombination than other fragments. Furthermore, we identified statistically significant hot-spots of Subtype A sequence inheritance in genomic regions encoding portions of Gag and Nef, Subtype B in Pol, Tat and Env, Subtype C in Vif, Subtype D in Pol and Env, Subtype F in Gag, Subtype G in Vpu-Env and Nef, and CRF01_AE inheritance in Vpu and Env. The apparent non-randomness in the frequencies with which different subtypes have contributed specific genome regions to known HIV-1M recombinants is consistent with selection strongly impacting the survival of inter-subtype recombinants. We propose that hotspots of genomic region inheritance are likely to demarcate the locations of subtype-specific adaptive genetic variations.
Collapse
Affiliation(s)
- Marcel Tongo
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal (UKZN), 719 Umbilo Road, Durban 4001, South Africa
- Center of Research for Emerging and Re-Emerging Diseases (CREMER), Institute of Medical Research and Study of Medicinal Plants (IMPM), Yaoundé, Cameroon
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal (UKZN), 719 Umbilo Road, Durban 4001, South Africa
| | - Darren P Martin
- Division of Computational Biology, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
25
|
Dias MM, Zuza O, Riani LR, de Faria Pinto P, Pinto PLS, Silva MP, de Moraes J, Ataíde ACZ, de Oliveira Silva F, Cecílio AB, Da Silva Filho AA. In vitro schistosomicidal and antiviral activities of Arctium lappa L. (Asteraceae) against Schistosoma mansoni and Herpes simplex virus-1. Biomed Pharmacother 2017; 94:489-498. [PMID: 28780467 DOI: 10.1016/j.biopha.2017.07.116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023] Open
Abstract
Schistosomiasis and herpes diseases represent serious issues to the healthcare systems, infecting a large number of people worldwide, mainly in developing countries. Arctium lappa L. (Asteraceae), known as "bardana" and "burdock", is a medicinal plant popularly used for several purposes, including as antiseptic. In this study, we evaluated the in vitro schistosomicidal and antiherpes activities of the crude extract of A. lappa, which have not yet been described. Fruits of A. lappa L. were extracted by maceration with ethanol: H2O (96:4 v/v) in order to obtain the hydroalcoholic extract of A. lappa (AL). In vitro schistosomicidal assays were assessed against adult worms of Schistosoma mansoni, while the in vitro antiviral activity of AL was evaluated on replication of Herpes simplex virus type-1 (HSV-1). Cell viability was measured by MTT assay, using Vero cells and chemical composition of AL was determined by qualitative UPLC-ESI-QTOF-MS analysis. UPLC-ESI-QTOF-MS analysis of AL revealed the presence of dibenzylbutyrolactone lignans, such as arctiin and arctigenin. Results showed that AL was not cytotoxic to Vero cells even when tested at 400μg/mL. qPCR results indicated a significant viral load decreased for all tested concentrations of AL (400, 50, and 3.125μg/mL), which showed similar antiviral effect to acyclovir (50μg/mL) when tested at 400μg/mL. Also, AL (400, 200, and 100μg/mL) caused 100% mortality and significantly reduction on motor activity of all adult worms of S. mansoni. Confocal laser scanning microscopy showed tegumental morphological alterations and changes on the numbers of tubercles of S. mansoni worms in a dose-dependent manner after treatment with AL. This report provides the first evidence for the in vitro schistosomicidal and antiherpes activities of AL, opening the route to further schistosomicidal and antiviral studies with AL and their compounds, especially lignans.
Collapse
Affiliation(s)
- Mirna Meana Dias
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Ohana Zuza
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Lorena R Riani
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil
| | - Priscila de Faria Pinto
- Departament of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | - Marcos P Silva
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Josué de Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Ana Caroline Z Ataíde
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Fernanda de Oliveira Silva
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Alzira Batista Cecílio
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Ademar A Da Silva Filho
- Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, R. José Lourenço Kelmer s/n, Campus Universitário, 36036-900 Juiz de Fora, MG, Brazil.
| |
Collapse
|
26
|
Lieveld M, Carregosa A, Benoy I, Redzic N, Berth M, Vanden Broeck D. A high resolution melting (HRM) technology-based assay for cost-efficient clinical detection and genotyping of herpes simplex virus (HSV)-1 and HSV-2. J Virol Methods 2017; 248:181-186. [PMID: 28734843 DOI: 10.1016/j.jviromet.2017.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/30/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
Abstract
Genital herpes can be caused by two very similar viruses, herpes simplex virus (HSV)-1 or HSV-2. These two HSV types cannot be distinguished clinically, but genotyping is recommended in the first-episodes of genital herpes to guide counselling and management. Quantitative polymerase chain reaction (qPCR) is the preferred diagnostic method for HSV typing. However, commercial qPCR methods use expensive fluorescent labeled probes for detection. Furthermore, most low-cost methods are not able to differentiate between HSV-1 and -2. The aim of this study was to develop a high resolution melting (HRM) technology-based assay for sensitive HSV-1 and HSV-2 detection and genotyping. Using a panel of 46 clinical specimens, the performance of the HRM assay was compared to two commercial HSV tests: the HRM assay detected HSV in all 23 positive samples, with no false positive results (100% concordance with HSV I/II Real-TM assay). Additionally, the HRM assay correctly genotyped both HSV types in a subset of these clinical samples, as determined by the Realstar HSV PCR Kit. The HSV HRM assay provides a cost-effective alternative method to conventional more expensive assays and can be used in routine clinical specimens, in cases where it is particularly necessary to detect and distinguish HSV-1 from -2.
Collapse
Affiliation(s)
- M Lieveld
- International Centre for Reproductive Health, Department of Urogynaecology, Ghent University Hospital, Ghent, Belgium.
| | - A Carregosa
- International Centre for Reproductive Health, Department of Urogynaecology, Ghent University Hospital, Ghent, Belgium.
| | - I Benoy
- Algemeen Medisch Laboratorium, Sonic Healthcare, Antwerp, Belgium.
| | - N Redzic
- Algemeen Medisch Laboratorium, Sonic Healthcare, Antwerp, Belgium; AMBIOR, Laboratory for Cell Biology & Histology, University of Antwerp, Antwerp, Belgium.
| | - M Berth
- Algemeen Medisch Laboratorium, Sonic Healthcare, Antwerp, Belgium.
| | - D Vanden Broeck
- International Centre for Reproductive Health, Department of Urogynaecology, Ghent University Hospital, Ghent, Belgium; Algemeen Medisch Laboratorium, Sonic Healthcare, Antwerp, Belgium.
| |
Collapse
|
27
|
Li Z, Fang C, Su Y, Liu H, Lang F, Li X, Chen G, Lu D, Zhou J. Visualizing the replicating HSV-1 virus using STED super-resolution microscopy. Virol J 2016; 13:65. [PMID: 27062411 PMCID: PMC4826541 DOI: 10.1186/s12985-016-0521-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/03/2016] [Indexed: 01/27/2023] Open
Abstract
Background Replication of viral genome is the central event during the lytic infectious cycle of herpes simplex virus 1 (HSV-1). However, the details of HSV-1 replication process are still elusive due to the limitations of current molecular and conventional fluorescent microscopy methods. Stimulated emission depletion (STED) microscopy is one of the recently available super-resolution techniques allowing observation at sub-diffraction resolution. Methods To gain new insight into HSV-1 replication, we used a combination of stimulated emission depletion microscopy, fluorescence in situ hybridization (FISH) and immunofluorescence (IF) to observe the HSV-1 replication process. Results Using two colored probes labeling the same region of HSV-1 genome, the two probes highly correlated in both pre-replication and replicating genomes. In comparison, when probes from different regions were used, the average distance between the two probes increased after the virus enters replication, suggesting that the HSV-1 genome undergoes dynamic structure changes from a compact to a relaxed formation and occupies larger space as it enters replication. Using FISH and IF, viral single strand binding protein ICP8 was seen closely positioned with HSV-1 genome. In contrast, ICP8 and host RNA polymerase II were less related. This result suggests that ICP8 marked regions of DNA replication are spatially separated from regions of active transcription, represented by the elongating form of RNA polymerase II within the viral replication compartments. Comparing HSV-1 genomes at early stage of replication with that in later stage, we also noted overall increases among different values. These results suggest stimulated emission depletion microscopy is capable of investigating events during HSV-1 replication. Conclusion 1) Replicating HSV-1 genome could be observed by super-resolution microscopy; 2) Viral genome expands spatially during replication; 3) Viral replication and transcription are partitioned into different sub-structures within the replication compartments.
Collapse
Affiliation(s)
- Zhuoran Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, NO. 32 Jiaochang Donglu, Kunming, Yunnan, 650223, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ce Fang
- Leica Microsystems Trading Limited, Shanghai, 201206, People's Republic of China
| | - Yuanyuan Su
- Leica Microsystems Trading Limited, Shanghai, 201206, People's Republic of China
| | - Hongmei Liu
- Leica Microsystems Trading Limited, Shanghai, 201206, People's Republic of China
| | - Fengchao Lang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, NO. 32 Jiaochang Donglu, Kunming, Yunnan, 650223, People's Republic of China
| | - Xin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, NO. 32 Jiaochang Donglu, Kunming, Yunnan, 650223, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guijun Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, NO. 32 Jiaochang Donglu, Kunming, Yunnan, 650223, People's Republic of China
| | - Danfeng Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, NO. 32 Jiaochang Donglu, Kunming, Yunnan, 650223, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jumin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, NO. 32 Jiaochang Donglu, Kunming, Yunnan, 650223, People's Republic of China.
| |
Collapse
|
28
|
Piccirillo A, Lavezzo E, Niero G, Moreno A, Massi P, Franchin E, Toppo S, Salata C, Palù G. Full Genome Sequence-Based Comparative Study of Wild-Type and Vaccine Strains of Infectious Laryngotracheitis Virus from Italy. PLoS One 2016; 11:e0149529. [PMID: 26890525 PMCID: PMC4758665 DOI: 10.1371/journal.pone.0149529] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 02/02/2016] [Indexed: 02/07/2023] Open
Abstract
Infectious laryngotracheitis (ILT) is an acute and highly contagious respiratory disease of chickens caused by an alphaherpesvirus, infectious laryngotracheitis virus (ILTV). Recently, full genome sequences of wild-type and vaccine strains have been determined worldwide, but none was from Europe. The aim of this study was to determine and analyse the complete genome sequences of five ILTV strains. Sequences were also compared to reveal the similarity of strains across time and to discriminate between wild-type and vaccine strains. Genomes of three ILTV field isolates from outbreaks occurred in Italy in 1980, 2007 and 2011, and two commercial chicken embryo origin (CEO) vaccines were sequenced using the 454 Life Sciences technology. The comparison with the Serva genome showed that 35 open reading frames (ORFs) differed across the five genomes. Overall, 54 single nucleotide polymorphisms (SNPs) and 27 amino acid differences in 19 ORFs and two insertions in the UL52 and ORFC genes were identified. Similarity among the field strains and between the field and the vaccine strains ranged from 99.96% to 99.99%. Phylogenetic analysis revealed a close relationship among them, as well. This study generated data on genomic variation among Italian ILTV strains revealing that, even though the genetic variability of the genome is well conserved across time and between wild-type and vaccine strains, some mutations may help in differentiating among them and may be involved in ILTV virulence/attenuation. The results of this study can contribute to the understanding of the molecular bases of ILTV pathogenicity and provide genetic markers to differentiate between wild-type and vaccine strains.
Collapse
Affiliation(s)
- Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Legnaro (Padua), Italy
- * E-mail:
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padua (DMM), Padua, Italy
| | - Giulia Niero
- Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Legnaro (Padua), Italy
| | - Ana Moreno
- Department of Virology, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Brescia, Italy
| | - Paola Massi
- Department of Diagnostics, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Forlì, Italy
| | - Elisa Franchin
- Department of Molecular Medicine, University of Padua (DMM), Padua, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padua (DMM), Padua, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua (DMM), Padua, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua (DMM), Padua, Italy
| |
Collapse
|
29
|
The linear plastid chromosomes of maize: terminal sequences, structures, and implications for DNA replication. Curr Genet 2015; 62:431-42. [PMID: 26650613 DOI: 10.1007/s00294-015-0548-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 11/15/2015] [Accepted: 11/22/2015] [Indexed: 01/13/2023]
Abstract
The structure of a chromosomal DNA molecule may influence the way in which it is replicated and inherited. For decades plastid DNA (ptDNA) was believed to be circular, with breakage invoked to explain linear forms found upon extraction from the cell. Recent evidence indicates that ptDNA in vivo consists of linear molecules with discrete termini, although these ends were not characterized. We report the sequences of two terminal regions, End1 and End2, for maize (Zea mays L.) ptDNA. We describe structural features of these terminal regions and similarities found in other plant ptDNAs. The terminal sequences are within inverted repeat regions (leading to four genomic isomers) and adjacent to origins of replication. Conceptually, stem-loop structures may be formed following melting of the double-stranded DNA ends. Exonuclease digestion indicates that the ends in maize are unobstructed, but tobacco (Nicotiana tabacum L.) ends may have a 5'-protein. If the terminal structure of ptDNA molecules influences the retention of ptDNA, the unprotected molecular ends in mature leaves of maize may be more susceptible to degradation in vivo than the protected ends in tobacco. The terminal sequences and cumulative GC skew profiles are nearly identical for maize, wheat (Triticum aestivum L.) and rice (Oryza sativa L.), with less similarity among other plants. The linear structure is now confirmed for maize ptDNA and inferred for other plants and suggests a virus-like recombination-dependent replication mechanism for ptDNA. Plastid transformation vectors containing the terminal sequences may increase the chances of success in generating transplastomic cereals.
Collapse
|
30
|
Willems L, Gillet NA. APOBEC3 Interference during Replication of Viral Genomes. Viruses 2015; 7:2999-3018. [PMID: 26110583 PMCID: PMC4488724 DOI: 10.3390/v7062757] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/26/2015] [Accepted: 06/04/2015] [Indexed: 01/05/2023] Open
Abstract
Co-evolution of viruses and their hosts has reached a fragile and dynamic equilibrium that allows viral persistence, replication and transmission. In response, infected hosts have developed strategies of defense that counteract the deleterious effects of viral infections. In particular, single-strand DNA editing by Apolipoprotein B Editing Catalytic subunits proteins 3 (APOBEC3s) is a well-conserved mechanism of mammalian innate immunity that mutates and inactivates viral genomes. In this review, we describe the mechanisms of APOBEC3 editing during viral replication, the viral strategies that prevent APOBEC3 activity and the consequences of APOBEC3 modulation on viral fitness and host genome integrity. Understanding the mechanisms involved reveals new prospects for therapeutic intervention.
Collapse
Affiliation(s)
- Luc Willems
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA) of University of Liège (ULg), B34, 1 avenue de L'Hôpital, Sart-Tilman Liège 4000, Belgium.
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 13 avenue Maréchal Juin, Gembloux 5030, Belgium.
| | - Nicolas Albert Gillet
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA) of University of Liège (ULg), B34, 1 avenue de L'Hôpital, Sart-Tilman Liège 4000, Belgium.
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 13 avenue Maréchal Juin, Gembloux 5030, Belgium.
| |
Collapse
|
31
|
Pérez-Losada M, Arenas M, Galán JC, Palero F, González-Candelas F. Recombination in viruses: mechanisms, methods of study, and evolutionary consequences. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2015; 30:296-307. [PMID: 25541518 PMCID: PMC7106159 DOI: 10.1016/j.meegid.2014.12.022] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 02/08/2023]
Abstract
Recombination is a pervasive process generating diversity in most viruses. It joins variants that arise independently within the same molecule, creating new opportunities for viruses to overcome selective pressures and to adapt to new environments and hosts. Consequently, the analysis of viral recombination attracts the interest of clinicians, epidemiologists, molecular biologists and evolutionary biologists. In this review we present an overview of three major areas related to viral recombination: (i) the molecular mechanisms that underlie recombination in model viruses, including DNA-viruses (Herpesvirus) and RNA-viruses (Human Influenza Virus and Human Immunodeficiency Virus), (ii) the analytical procedures to detect recombination in viral sequences and to determine the recombination breakpoints, along with the conceptual and methodological tools currently used and a brief overview of the impact of new sequencing technologies on the detection of recombination, and (iii) the major areas in the evolutionary analysis of viral populations on which recombination has an impact. These include the evaluation of selective pressures acting on viral populations, the application of evolutionary reconstructions in the characterization of centralized genes for vaccine design, and the evaluation of linkage disequilibrium and population structure.
Collapse
Affiliation(s)
- Marcos Pérez-Losada
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Portugal; Computational Biology Institute, George Washington University, Ashburn, VA 20147, USA
| | - Miguel Arenas
- Centre for Molecular Biology "Severo Ochoa", Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan Carlos Galán
- Servicio de Microbiología, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; CIBER en Epidemiología y Salud Pública, Spain
| | - Ferran Palero
- CIBER en Epidemiología y Salud Pública, Spain; Unidad Mixta Infección y Salud Pública, FISABIO-Universitat de València, Valencia, Spain
| | - Fernando González-Candelas
- CIBER en Epidemiología y Salud Pública, Spain; Unidad Mixta Infección y Salud Pública, FISABIO-Universitat de València, Valencia, Spain.
| |
Collapse
|
32
|
Panas MD, Schulte T, Thaa B, Sandalova T, Kedersha N, Achour A, McInerney GM. Viral and cellular proteins containing FGDF motifs bind G3BP to block stress granule formation. PLoS Pathog 2015; 11:e1004659. [PMID: 25658430 PMCID: PMC4450067 DOI: 10.1371/journal.ppat.1004659] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 01/06/2015] [Indexed: 02/08/2023] Open
Abstract
The Ras-GAP SH3 domain-binding proteins (G3BP) are essential regulators of the formation of stress granules (SG), cytosolic aggregates of proteins and RNA that are induced upon cellular stress, such as virus infection. Many viruses, including Semliki Forest virus (SFV), block SG induction by targeting G3BP. In this work, we demonstrate that the G3BP-binding motif of SFV nsP3 consists of two FGDF motifs, in which both phenylalanine and the glycine residue are essential for binding. In addition, we show that binding of the cellular G3BP-binding partner USP10 is also mediated by an FGDF motif. Overexpression of wt USP10, but not a mutant lacking the FGDF-motif, blocks SG assembly. Further, we identified FGDF-mediated G3BP binding site in herpes simplex virus (HSV) protein ICP8, and show that ICP8 binding to G3BP also inhibits SG formation, which is a novel function of HSV ICP8. We present a model of the three-dimensional structure of G3BP bound to an FGDF-containing peptide, likely representing a binding mode shared by many proteins to target G3BP.
Collapse
Affiliation(s)
- Marc D. Panas
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tim Schulte
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Bastian Thaa
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tatiana Sandalova
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Gerald M. McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
33
|
Deng Z, Kim ET, Vladimirova O, Dheekollu J, Wang Z, Newhart A, Liu D, Myers JL, Hensley SE, Moffat J, Janicki SM, Fraser NW, Knipe DM, Weitzman MD, Lieberman PM. HSV-1 remodels host telomeres to facilitate viral replication. Cell Rep 2014; 9:2263-78. [PMID: 25497088 DOI: 10.1016/j.celrep.2014.11.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 10/12/2014] [Accepted: 11/11/2014] [Indexed: 12/23/2022] Open
Abstract
Telomeres protect the ends of cellular chromosomes. We show here that infection with herpes simplex virus 1 (HSV-1) results in chromosomal structural aberrations at telomeres and the accumulation of telomere dysfunction-induced DNA damage foci (TIFs). At the molecular level, HSV-1 induces transcription of telomere repeat-containing RNA (TERRA), followed by the proteolytic degradation of the telomere protein TPP1 and loss of the telomere repeat DNA signal. The HSV-1-encoded E3 ubiquitin ligase ICP0 is required for TERRA transcription and facilitates TPP1 degradation. Small hairpin RNA (shRNA) depletion of TPP1 increases viral replication, indicating that TPP1 inhibits viral replication. Viral replication protein ICP8 forms foci that coincide with telomeric proteins, and ICP8-null virus failed to degrade telomere DNA signal. These findings suggest that HSV-1 reorganizes telomeres to form ICP8-associated prereplication foci and to promote viral genomic replication.
Collapse
Affiliation(s)
- Zhong Deng
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Eui Tae Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | - Zhuo Wang
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Dongmei Liu
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | - Jennifer Moffat
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Nigel W Fraser
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M Knipe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | |
Collapse
|
34
|
Muylaert I, Zhao Z, Elias P. UL52 primase interactions in the herpes simplex virus 1 helicase-primase are affected by antiviral compounds and mutations causing drug resistance. J Biol Chem 2014; 289:32583-92. [PMID: 25278021 PMCID: PMC4239612 DOI: 10.1074/jbc.m114.609453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/29/2014] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) UL5/8/52 helicase-primase complex is required for DNA unwinding at the replication fork and synthesis of primers during virus replication, and it has become a promising novel target for antiviral therapy. Using molecular cloning, we have identified three separate domains of UL52. Co-immunoprecipitation experiments in extracts from cells transiently expressing HA-tagged UL5, FLAG-UL8, and enhanced GFP-tagged UL52 domains revealed that the N-terminal domain of UL52 primase binds UL5 helicase and the middle domain interacts with the UL8 accessory protein. In addition, an interaction between the single strand DNA-binding protein ICP8 and the UL52 middle domain was observed. The complex between UL5 and UL52 was stabilized by the antiviral compound BAY 54-6322, and mutations providing resistance to the drug obliterate this effect. Our results also suggest a mechanism for accommodating conformational strain resulting from movement of UL5 and UL52 in opposite directions on the lagging strand template, and they identify molecular complexes that can be further examined by structural biology techniques to resolve the mechanism of primer synthesis during herpesvirus replication. Finally, they help to explain the mechanism of action of a novel class of antiviral compounds currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Isabella Muylaert
- From the Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Box 440, SE-405 30 Gothenburg, Sweden
| | - Zhiyuan Zhao
- From the Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Box 440, SE-405 30 Gothenburg, Sweden
| | - Per Elias
- From the Institute of Biomedicine, Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Box 440, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
35
|
Rupesh KR, Smith A, Boehmer PE. Ligand induced stabilization of the melting temperature of the HSV-1 single-strand DNA binding protein using the thermal shift assay. Biochem Biophys Res Commun 2014; 454:604-8. [PMID: 25449284 DOI: 10.1016/j.bbrc.2014.10.145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/29/2014] [Indexed: 11/16/2022]
Abstract
We have adapted the thermal shift assay to measure the ligand binding properties of the herpes simplex virus-1 single-strand DNA binding protein, ICP8. By measuring SYPRO Orange fluorescence in microtiter plates using a fluorescence-enabled thermal cycler, we have quantified the effects of oligonucleotide ligands on the melting temperature of ICP8. We found that single-stranded oligomers raise the melting temperature of ICP8 in a length- and concentration-dependent manner, ranging from 1°C for (dT)5 to a maximum of 9°C with oligomers ⩾10 nucleotides, with an apparent Kd of <1μM for (dT)20. Specifically, the results indicate that ICP8 is capable of interacting with oligomers as short as 5 nucleotides. Moreover, the observed increases in melting temperature of up to 9°C, indicates that single-strand DNA binding significantly stabilizes the structure of ICP8. This assay may be applied to investigate the ligand binding proteins of other single-strand DNA binding proteins and used as a high-throughput screen to identify compounds with therapeutic potential that inhibit single-strand DNA binding. As proof of concept, the single-strand DNA binding agent ciprofloxacin reduces the ligand induced stabilization of the melting temperature of ICP8 in a dose-dependent manner.
Collapse
Affiliation(s)
- Kanchi Ravi Rupesh
- Department of Basic Medical Sciences, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004-2157, USA
| | - Aaron Smith
- Department of Basic Medical Sciences, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004-2157, USA
| | - Paul E Boehmer
- Department of Basic Medical Sciences, The University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004-2157, USA.
| |
Collapse
|
36
|
Tang KW, Norberg P, Holmudden M, Elias P, Liljeqvist JÅ. Rad51 and Rad52 are involved in homologous recombination of replicating herpes simplex virus DNA. PLoS One 2014; 9:e111584. [PMID: 25365323 PMCID: PMC4218770 DOI: 10.1371/journal.pone.0111584] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 10/04/2014] [Indexed: 12/27/2022] Open
Abstract
Replication of herpes simplex virus 1 is coupled to recombination, but the molecular mechanisms underlying this process are poorly characterized. The role of Rad51 and Rad52 recombinases in viral recombination was examined in human fibroblast cells 1BR.3.N (wild type) and in GM16097 with replication defects caused by mutations in DNA ligase I. Intermolecular recombination between viruses, tsS and tsK, harboring genetic markers gave rise to ∼17% recombinants in both cell lines. Knock-down of Rad51 and Rad52 by siRNA reduced production of recombinants to 11% and 5%, respectively, in wild type cells and to 3% and 5%, respectively, in GM16097 cells. The results indicate a specific role for Rad51 and Rad52 in recombination of replicating herpes simplex virus 1 DNA. Mixed infections using clinical isolates with restriction enzyme polymorphisms in the US4 and US7 genes revealed recombination frequencies of 0.7%/kbp in wild type cells and 4%/kbp in GM16097 cells. Finally, tandem repeats in the US7 gene remained stable upon serial passage, indicating a high fidelity of recombination in infected cells.
Collapse
Affiliation(s)
- Ka-Wei Tang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Norberg
- Department of Infectious Diseases, Section of Virology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Holmudden
- Department of Infectious Diseases, Section of Virology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Elias
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan-Åke Liljeqvist
- Department of Infectious Diseases, Section of Virology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
37
|
Abstract
The purpose of this review is to explore recombination strategies in DNA viruses. Homologous recombination is a universal genetic process that plays multiple roles in the biology of all organisms, including viruses. Recombination and DNA replication are interconnected, with recombination being essential for repairing DNA damage and supporting replication of the viral genome. Recombination also creates genetic diversity, and viral recombination mechanisms have important implications for understanding viral origins as well as the dynamic nature of viral-host interactions. Both bacteriophage λ and herpes simplex virus (HSV) display high rates of recombination, both utilizing their own proteins and commandeering cellular proteins to promote recombination reactions. We focus primarily on λ and HSV, as they have proven amenable to both genetic and biochemical analysis and have recently been shown to exhibit some surprising similarities that will guide future studies.
Collapse
Affiliation(s)
- Sandra K. Weller
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - James A. Sawitzke
- Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702
| |
Collapse
|
38
|
Kazlauskas D, Venclovas C. Herpesviral helicase-primase subunit UL8 is inactivated B-family polymerase. ACTA ACUST UNITED AC 2014; 30:2093-7. [PMID: 24747220 DOI: 10.1093/bioinformatics/btu204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Herpesviruses are large DNA viruses causing a variety of diseases in humans and animals. To develop effective treatment, it is important to understand the mechanisms of their replication. One of the components of the herpesviral DNA replication system is a helicase-primase complex, consisting of UL5 (helicase), UL52 (primase) and UL8. UL8 is an essential herpesviral protein involved in multiple protein-protein interactions. Intriguingly, so far no UL8 homologs outside of herpesviruses could be identified. Moreover, nothing is known about its structure or domain organization. RESULTS Here, combining sensitive homology detection methods and homology modeling, we found that the UL8 protein family is related to B-family polymerases. In the course of evolution, UL8 has lost the active site and has undergone a reduction of DNA-binding motifs. The loss of active site residues explains the failure to detect any catalytic activity of UL8. A structural model of human herpes virus 1 UL8 constructed as part of the study is consistent with the mutation data targeting its interaction with primase UL52. It also provides a platform for studying multiple interactions that UL8 is involved in. The two other components of helicase-primase complex show evolutionary links with a newly characterized human primase that also has DNA polymerase activity (PrimPol) and the Pif1 helicase, respectively. The role of these enzymes in recovering stalled replication forks suggests mechanistic and functional similarities with herpesviral proteins. CONTACT venclovas@ibt.lt SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Darius Kazlauskas
- Institute of Biotechnology, Vilnius University, Graičiūno 8, LT-02241 Vilnius, Lithuania
| | - Ceslovas Venclovas
- Institute of Biotechnology, Vilnius University, Graičiūno 8, LT-02241 Vilnius, Lithuania
| |
Collapse
|
39
|
PNKP knockdown by RNA interference inhibits herpes simplex virus-1 replication in astrocytes. Virol Sin 2013; 28:345-51. [PMID: 24213989 DOI: 10.1007/s12250-013-3350-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/24/2013] [Indexed: 10/26/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) is a major pathogen that causes various central nervous system (CNS) diseases, including herpes simplex encephalitis and meningitis. According to recent studies, PNKP significantly affects the proliferation of HSV-1 in astrocytes. Here, we used viral proliferation curves to confirm the significant inhibitory effects of PNKP on HSV-1 proliferation. PNKP downregulation was also confirmed by analyzing the transcription of viral genes. We found that PNKP downregulation affects the viral DNA copy number. This study preliminarily confirms that PNKP affects viral proliferation by affecting HSV-1 genome cyclization. These results also suggest that astrocytes play a specific role in preventing HSV-1 infection.
Collapse
|
40
|
Shadrick WR, Ndjomou J, Kolli R, Mukherjee S, Hanson AM, Frick DN. Discovering new medicines targeting helicases: challenges and recent progress. ACTA ACUST UNITED AC 2013; 18:761-81. [PMID: 23536547 PMCID: PMC4427233 DOI: 10.1177/1087057113482586] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Helicases are ubiquitous motor proteins that separate and/or rearrange nucleic acid duplexes in reactions fueled by adenosine triphosphate (ATP) hydrolysis. Helicases encoded by bacteria, viruses, and human cells are widely studied targets for new antiviral, antibiotic, and anticancer drugs. This review summarizes the biochemistry of frequently targeted helicases. These proteins include viral enzymes from herpes simplex virus, papillomaviruses, polyomaviruses, coronaviruses, the hepatitis C virus, and various flaviviruses. Bacterial targets examined include DnaB-like and RecBCD-like helicases. The human DEAD-box protein DDX3 is the cellular antiviral target discussed, and cellular anticancer drug targets discussed are the human RecQ-like helicases and eIF4A. We also review assays used for helicase inhibitor discovery and the most promising and common helicase inhibitor chemotypes, such as nucleotide analogues, polyphenyls, metal ion chelators, flavones, polycyclic aromatic polymers, coumarins, and various DNA binding pharmacophores. Also discussed are common complications encountered while searching for potent helicase inhibitors and possible solutions for these problems.
Collapse
Affiliation(s)
- William R Shadrick
- Department of Chemistry & Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | | | | | | | |
Collapse
|
41
|
Chono K, Katsumata K, Suzuki H, Shiraki K. Synergistic activity of amenamevir (ASP2151) with nucleoside analogs against herpes simplex virus types 1 and 2 and varicella-zoster virus. Antiviral Res 2012; 97:154-60. [PMID: 23261844 DOI: 10.1016/j.antiviral.2012.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/29/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
Abstract
ASP2151 (amenamevir) is a helicase-primase complex inhibitor with antiviral activity against herpes simplex virus HSV-1, HSV-2, and varicella-zoster virus (VZV). To assess combination therapy of ASP2151 with existing antiherpes agents against HSV-1, HSV-2, and VZV, we conducted in vitro and in vivo studies of two-drug combinations. The combination activity effect of ASP2151 with nucleoside analogs acyclovir (ACV), penciclovir (PCV), or vidarabine (VDB) was tested via plaque-reduction assay and MTS assay, and the data were analyzed using isobolograms and response surface modeling. In vivo combination therapy of ASP2151 with valaciclovir (VACV) was studied in an HSV-1-infected zosteriform spread mouse model. The antiviral activity of ASP2151 combined with ACV and PCV against ACV-susceptible HSV-1, HSV-2, and VZV showed a statistically significant synergistic effect (P<0.05). ASP2151 with VDB was observed to have additive effects against ACV-susceptible HSV-2 and synergistic effects against VZV. In the mouse model of zosteriform spread, the inhibition of disease progression via combination therapy was more potent than that of either drugs as monotherapy (P<0.05). These results indicate that the combination therapies of ASP2151 with ACV and PCV have synergistic antiherpes effects against HSV and VZV infections and may be feasible in case of severe disease, such as herpes encephalitis or in patients with immunosuppression.
Collapse
Affiliation(s)
- Koji Chono
- Drug Discovery Research, Astellas Pharma Inc., Tokyo, Japan
| | | | | | | |
Collapse
|
42
|
Cayrou C, Coulombe P, Puy A, Rialle S, Kaplan N, Segal E, Méchali M. New insights into replication origin characteristics in metazoans. Cell Cycle 2012; 11:658-67. [PMID: 22373526 DOI: 10.4161/cc.11.4.19097] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We recently reported the identification and characterization of DNA replication origins (Oris) in metazoan cell lines. Here, we describe additional bioinformatic analyses showing that the previously identified GC-rich sequence elements form origin G-rich repeated elements (OGREs) that are present in 67% to 90% of the DNA replication origins from Drosophila to human cells, respectively. Our analyses also show that initiation of DNA synthesis takes place precisely at 160 bp (Drosophila) and 280 bp (mouse) from the OGRE. We also found that in most CpG islands, an OGRE is positioned in opposite orientation on each of the two DNA strands and detected two sites of initiation of DNA synthesis upstream or downstream of each OGRE. Conversely, Oris not associated with CpG islands have a single initiation site. OGRE density along chromosomes correlated with previously published replication timing data. Ori sequences centered on the OGRE are also predicted to have high intrinsic nucleosome occupancy. Finally, OGREs predict G-quadruplex structures at Oris that might be structural elements controlling the choice or activation of replication origins.
Collapse
|
43
|
Abstract
Herpes simplex virus (HSV) encodes seven proteins necessary for viral DNA synthesis-UL9 (origin-binding protein), ICP8 (single-strand DNA [ssDNA]-binding protein), UL30/UL42 (polymerase), and UL5/UL8/UL52 (helicase/primase). It is our intention to provide an up-to-date analysis of our understanding of the structures of these replication proteins and how they function during HSV replication. The potential roles of host repair and recombination proteins will also be discussed.
Collapse
Affiliation(s)
- Sandra K Weller
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3205, USA.
| | | |
Collapse
|
44
|
Muylaert I, Zhao Z, Andersson T, Elias P. Identification of conserved amino acids in the herpes simplex virus type 1 UL8 protein required for DNA synthesis and UL52 primase interaction in the virus replisome. J Biol Chem 2012; 287:33142-52. [PMID: 22851167 DOI: 10.1074/jbc.m112.356782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have used oriS-dependent transient replication assays to search for species-specific interactions within the herpes simplex virus replisome. Hybrid replisomes derived from herpes simplex virus type 1 (HSV-1) and equine herpesvirus type 1 (EHV-1) failed to support DNA replication in cells. Moreover, the replisomes showed a preference for their cognate origin of replication. The results demonstrate that the herpesvirus replisome behaves as a molecular machine relying on functionally important interactions. We then searched for functional interactions in the replisome context by subjecting HSV-1 UL8 protein to extensive mutagenesis. 52 mutants were made by replacing single or clustered charged amino acids with alanines. Four mutants showed severe replication defects. Mutant A23 exhibited a lethal phenotype, and mutants A49, A52 and A53 had temperature-sensitive phenotypes. Mutants A49 and A53 did not interact with UL52 primase as determined by co-immunoprecipitation experiments. Using GFP-tagged UL8, we demonstrate that all mutants were unable to support formation of ICP8-containing nuclear replication foci. Extended mutagenesis suggested that a highly conserved motif corresponding to mutant A49 serves an important role for establishing a physical contact between UL8 and UL52. The replication-defective mutations affected conserved amino acids, and similar phenotypes were observed when the corresponding mutations were introduced into EHV-1 UL8.
Collapse
Affiliation(s)
- Isabella Muylaert
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | |
Collapse
|
45
|
Genome sequence comparison of two United States live attenuated vaccines of infectious laryngotracheitis virus (ILTV). Virus Genes 2012; 44:470-4. [DOI: 10.1007/s11262-012-0728-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/14/2012] [Indexed: 10/28/2022]
|
46
|
Nicoll MP, Proença JT, Efstathiou S. The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev 2012; 36:684-705. [PMID: 22150699 PMCID: PMC3492847 DOI: 10.1111/j.1574-6976.2011.00320.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/24/2011] [Accepted: 11/28/2011] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex virus type 1 is a neurotropic herpesvirus that establishes latency within sensory neurones. Following primary infection, the virus replicates productively within mucosal epithelial cells and enters sensory neurones via nerve termini. The virus is then transported to neuronal cell bodies where latency can be established. Periodically, the virus can reactivate to resume its normal lytic cycle gene expression programme and result in the generation of new virus progeny that are transported axonally back to the periphery. The ability to establish lifelong latency within the host and to periodically reactivate to facilitate dissemination is central to the survival strategy of this virus. Although incompletely understood, this review will focus on the mechanisms involved in the regulation of latency that centre on the functions of the virus-encoded latency-associated transcripts (LATs), epigenetic regulation of the latent virus genome and the molecular events that precipitate reactivation. This review considers current knowledge and hypotheses relating to the mechanisms involved in the establishment, maintenance and reactivation herpes simplex virus latency.
Collapse
Affiliation(s)
- Michael P Nicoll
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
47
|
Kobiler O, Brodersen P, Taylor MP, Ludmir EB, Enquist LW. Herpesvirus replication compartments originate with single incoming viral genomes. mBio 2011; 2:e00278-11. [PMID: 22186611 PMCID: PMC3269065 DOI: 10.1128/mbio.00278-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 11/28/2011] [Indexed: 12/24/2022] Open
Abstract
Previously we described a method to estimate the average number of virus genomes expressed in an infected cell. By analyzing the color spectrum of cells infected with a mixture of isogenic pseudorabies virus (PRV) recombinants expressing three fluorophores, we estimated that fewer than seven incoming genomes are expressed, replicated, and packaged into progeny per cell. In this report, we expand this work and describe experiments demonstrating the generality of the method, as well as providing more insight into herpesvirus replication. We used three isogenic PRV recombinants, each expressing a fluorescently tagged VP26 fusion protein (VP26 is a capsid protein) under the viral VP26 late promoter. We calculated a similar finite limit on the number of expressed viral genomes, indicating that this method is independent of the promoter used to transcribe the fluorophore genes, the time of expression of the fluorophore (early versus late), and the insertion site of the fluorophore gene in the PRV genome (UL versus US). Importantly, these VP26 fusion proteins are distributed equally in punctate virion assembly structures in each nucleus, which improves the signal-to-noise ratio when determining the color spectrum of each cell. To understand how the small number of genomes are distributed among the replication compartments, we used a two-color fluorescent in situ hybridization assay. Most viral replication compartments in the nucleus occupy unique nuclear territories, implying that they arose from single genomes. Our experiments suggest a correlation between the small number of expressed viral genomes and the limited number of replication compartments.
Collapse
Affiliation(s)
- O Kobiler
- Department of Molecular Biology and the Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| | | | | | | | | |
Collapse
|
48
|
The lytic phase of epstein-barr virus requires a viral genome with 5-methylcytosine residues in CpG sites. J Virol 2011; 86:447-58. [PMID: 22031942 DOI: 10.1128/jvi.06314-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus which has been studied intensively for its role in certain human tumors. It also serves as a model of herpesviral latency because it establishes an immediate, latent infection in human B cells. When EBV infects quiescent, primary B cells it induces their continuous proliferation to yield growth-transformed B-cell lines in vitro. The lytic or productive phase of EBV's life cycle is induced by the expression of the viral BZLF1 gene in latently infected cells. The BZLF1 protein is a transactivator, which selectively binds to two classes of distinct DNA sequence motifs. One class is similar to the motifs that are bound by members of the AP-1 transcription factor family to which BZLF1 belongs. The second class, which contains CpG motifs, is predominant in viral promoters of early lytic genes and is BZLF1's preferred or exclusive target sequence when methylated. The BZLF1 gene is transiently expressed in newly infected B cells but fails to induce EBV's lytic cycle, potentially because the virion DNA is unmethylated. Here we report that the lack of 5-methylcytosine residues in CpG sites of virion DNA prevents the expression of essential lytic genes indispensable for viral DNA amplification during productive infection. This finding indicates that BZLF1 transactivates these promoters in a methylation-dependent fashion and explains how progeny virus synthesis is abrogated in newly infected B cells. Our data also reveal that viral lytic DNA synthesis precludes CpG methylation of virion DNA during EBV's lytic, productive cycle, which can be overcome by the ectopic expression of a prokaryotic cytosine methyltransferase to yield CpG-methylated virion DNA. Upon infection of B cells, randomly CpG-methylated virion DNA induces high expression of essential lytic genes in contrast to virion DNA free of 5-methylcytosine residues. Our data suggest that unmethylated virion DNA is part of EBV's strategy to prevent the viral lytic phase in newly infected B cells, allowing it to establish its characteristic latent infection in them.
Collapse
|
49
|
Recombination-dependent concatemeric viral DNA replication. Virus Res 2011; 160:1-14. [PMID: 21708194 DOI: 10.1016/j.virusres.2011.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/07/2011] [Accepted: 06/10/2011] [Indexed: 11/24/2022]
Abstract
The initiation of viral double stranded (ds) DNA replication involves proteins that recruit and load the replisome at the replication origin (ori). Any block in replication fork progression or a programmed barrier may act as a factor for ori-independent remodelling and assembly of a new replisome at the stalled fork. Then replication initiation becomes dependent on recombination proteins, a process called recombination-dependent replication (RDR). RDR, which is recognized as being important for replication restart and stability in all living organisms, plays an essential role in the replication cycle of many dsDNA viruses. The SPP1 virus, which infects Bacillus subtilis cells, serves as a paradigm to understand the links between replication and recombination in circular dsDNA viruses. SPP1-encoded initiator and replisome assembly proteins control the onset of viral replication and direct the recruitment of host-encoded replisomal components at viral oriL. SPP1 uses replication fork reactivation to switch from ori-dependent θ-type (circle-to-circle) replication to σ-type RDR. Replication fork arrest leads to a double strand break that is processed by viral-encoded factors to generate a D-loop into which a new replisome is assembled, leading to σ-type viral replication. SPP1 RDR proteins are compared with similar proteins encoded by other viruses and their possible in vivo roles are discussed.
Collapse
|