1
|
Scranton K, John S, Angelini M, Steccanella F, Umar S, Zhang R, Goldhaber JI, Olcese R, Ottolia M. Cardiac function is regulated by the sodium-dependent inhibition of the sodium-calcium exchanger NCX1. Nat Commun 2024; 15:3831. [PMID: 38714663 PMCID: PMC11076594 DOI: 10.1038/s41467-024-47850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/15/2024] [Indexed: 05/10/2024] Open
Abstract
The Na+-Ca2+ exchanger (NCX1) is the dominant Ca2+ extrusion mechanism in cardiac myocytes. NCX1 activity is inhibited by intracellular Na+ via a process known as Na+-dependent inactivation. A central question is whether this inactivation plays a physiological role in heart function. Using CRISPR/Cas9, we inserted the K229Q mutation in the gene (Slc8a1) encoding for NCX1. This mutation removes the Na+-dependent inactivation while preserving transport properties and other allosteric regulations. NCX1 mRNA levels, protein expression, and protein localization are unchanged in K229Q male mice. However, they exhibit reduced left ventricular ejection fraction and fractional shortening, while displaying a prolonged QT interval. K229Q ventricular myocytes show enhanced NCX1 activity, resulting in action potential prolongation, higher incidence of aberrant action potentials, a faster decline of Ca2+ transients, and depressed cell shortening. The results demonstrate that NCX1 Na+-dependent inactivation plays an essential role in heart function by affecting both cardiac excitability and contractility.
Collapse
Affiliation(s)
- Kyle Scranton
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Scott John
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marina Angelini
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Federica Steccanella
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Soban Umar
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rui Zhang
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua I Goldhaber
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Riccardo Olcese
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michela Ottolia
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Verma K, Kumar A, Kumar R, Kumar N, Kumar A, Bhardwaj AK, Verma RC, Sharma P. Host Plant Modulated Physio-Biochemical Process Enhances Adaptive Response of Sandalwood ( Santalum album L.) under Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1162. [PMID: 38674572 PMCID: PMC11054670 DOI: 10.3390/plants13081162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Salinity is one of the most significant abiotic stress that affects the growth and development of high-value tree species, including sandalwood, which can also be managed effectively on saline soils with the help of suitable host species. Therefore, the current investigation was conducted to understand the physiological processes and antioxidant mechanisms in sandalwood along the different salinity gradients to explore the host species that could support sandalwood growth in salt-affected agro-ecosystems. Sandalwood seedlings were grown with ten diverse host species with saline water irrigation gradients (ECiw~3, 6, and 9 dS m-1) and control (ECiw~0.82 dS m-1). Experimental findings indicate a decline in the chlorophyll content (13-33%), relative water content (3-23%), photosynthetic (27-61%) and transpiration rate (23-66%), water and osmotic potential (up to 137%), and ion dynamics (up to 61%) with increasing salinity levels. Conversely, the carotenoid content (23-43%), antioxidant activity (up to 285%), and membrane injury (82-205%) were enhanced with increasing salinity stress. Specifically, among the hosts, Dalbergia sissoo and Melia dubia showed a minimum reduction in chlorophyll content, relative water content, and plant water relation and gas exchange parameters of sandalwood plants. Surprisingly, most of the host tree species maintained K+/Na+ of sandalwood up to moderate water salinity of ECiw~6 dS m-1; however, a further increase in water salinity decreased the K+/Na+ ratio of sandalwood by many-fold. Salinity stress also enhanced the antioxidative enzyme activity, although the maximum increase was noted with host plants M. dubia, followed by D. sissoo and Azadirachta indica. Overall, the investigation concluded that sandalwood with the host D. sissoo can be successfully grown in nurseries using saline irrigation water and, with the host M. dubia, it can be grown using good quality irrigation water.
Collapse
Affiliation(s)
- Kamlesh Verma
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, Haryana, India; (K.V.); (N.K.); (A.K.); (A.K.B.)
- Department of Forestry, CCS Haryana Agricultural University, Hisar 125004, Haryana, India;
| | - Ashwani Kumar
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, Haryana, India; (K.V.); (N.K.); (A.K.); (A.K.B.)
| | - Raj Kumar
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, Haryana, India; (K.V.); (N.K.); (A.K.); (A.K.B.)
| | - Naresh Kumar
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, Haryana, India; (K.V.); (N.K.); (A.K.); (A.K.B.)
| | - Arvind Kumar
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, Haryana, India; (K.V.); (N.K.); (A.K.); (A.K.B.)
| | - Ajay Kumar Bhardwaj
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, Haryana, India; (K.V.); (N.K.); (A.K.); (A.K.B.)
| | - Ramesh Chander Verma
- Department of Forestry, CCS Haryana Agricultural University, Hisar 125004, Haryana, India;
| | - Prashant Sharma
- Department of Silviculture and Agroforestry, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan 173230, Himachal Pradesh, India;
| |
Collapse
|
3
|
Mishima T, Komano K, Tabaru M, Kofuji T, Saito A, Ugawa Y, Terao Y. Repetitive pulsed-wave ultrasound stimulation suppresses neural activity by modulating ambient GABA levels via effects on astrocytes. Front Cell Neurosci 2024; 18:1361242. [PMID: 38601023 PMCID: PMC11004293 DOI: 10.3389/fncel.2024.1361242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Ultrasound is highly biopermeable and can non-invasively penetrate deep into the brain. Stimulation with patterned low-intensity ultrasound can induce sustained inhibition of neural activity in humans and animals, with potential implications for research and therapeutics. Although mechanosensitive channels are involved, the cellular and molecular mechanisms underlying neuromodulation by ultrasound remain unknown. To investigate the mechanism of action of ultrasound stimulation, we studied the effects of two types of patterned ultrasound on synaptic transmission and neural network activity using whole-cell recordings in primary cultured hippocampal cells. Single-shot pulsed-wave (PW) or continuous-wave (CW) ultrasound had no effect on neural activity. By contrast, although repetitive CW stimulation also had no effect, repetitive PW stimulation persistently reduced spontaneous recurrent burst firing. This inhibitory effect was dependent on extrasynaptic-but not synaptic-GABAA receptors, and the effect was abolished under astrocyte-free conditions. Pharmacological activation of astrocytic TRPA1 channels mimicked the effects of ultrasound by increasing the tonic GABAA current induced by ambient GABA. Pharmacological blockade of TRPA1 channels abolished the inhibitory effect of ultrasound. These findings suggest that the repetitive PW low-intensity ultrasound used in our study does not have a direct effect on neural function but instead exerts its sustained neuromodulatory effect through modulation of ambient GABA levels via channels with characteristics of TRPA1, which is expressed in astrocytes.
Collapse
Affiliation(s)
- Tatsuya Mishima
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
| | - Kenta Komano
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Marie Tabaru
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takefumi Kofuji
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
- Radioisotope Laboratory, Kyorin University School of Medicine, Mitaka, Japan
| | - Ayako Saito
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuo Terao
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
| |
Collapse
|
4
|
Shireen T, Sachs F, Hua SZ. Physical memory of astrocytes. Brain Res 2022; 1796:148076. [PMID: 36084692 DOI: 10.1016/j.brainres.2022.148076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/02/2022]
Abstract
Traumatic brain injury (TBI) is a major risk factor for development of neurodegenerative disorders later in life. Short, repetitive, mechanical impacts can lead to pathology that appears days or months later. The cells have a physical "memory" of mechanical events. The origin of this memory is not known. To examine the properties of this memory, we used a microfluidic chip to apply programmed fluid shear pulses to adherent adult rat astrocytes. These caused a transient rise in intracellular Ca2+. In response to repeated stimuli, 6 to 24 hrs apart, the Ca2+ response increased. This effect lasted longer than 24 hrs. The Ca2+ responses were more sensitive to the number of repetitions than to the rest time between stimuli. We found that inhibiting the Ca2+ influx during conditioning stimulus did not eliminate the stress potentiation, suggesting that mechanical deformation during the primary injury is accountable for the later response. The mechanical mechanism that triggers this long term "memory" may act by plastic deformation of the cytoskeleton.
Collapse
Affiliation(s)
- Tasnim Shireen
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Frederick Sachs
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY 14260, USA
| | - Susan Z Hua
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA; Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
5
|
Afewerky HK, Li H, Zhang T, Li X, Mahaman YAR, Duan L, Qin P, Zheng J, Pei L, Lu Y. Sodium-calcium exchanger isoform-3 targeted Withania somnifera (L.) Dunal therapeutic intervention ameliorates cognition in the 5xFAD mouse model of Alzheimer's disease. Sci Rep 2022; 12:1537. [PMID: 35087161 PMCID: PMC8795410 DOI: 10.1038/s41598-022-05568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
The third isoform of the Na+-Ca2+ exchanger (NCX3) is crucial for a physiological fine-tuning of the Ca2+ fluxes in excitable tissues. In this view, the NCX3 accounts for the aberrant Ca2+ influx seen during neuronal excitotoxicity, such as in Alzheimer's disease (AD). However, little is known about NCX3 regulation and functional properties. Withania somnifera (L.) Dunal (W. somnifera), a traditional indigenous plant widely recognized for having numerous medicinal values, was undertaken to determine its potential therapeutic benefit against aggregated Aβ1-42-induced NCX3 dysregulation and the thereof cognition impairment in 5xFAD mice. The undertaken sourced dried roots of authenticated W. somnifera physicochemical compositional tests satisfied standards of pharmacognostic quality, and further phytochemical analysis of the roots methanol extract revealed the roots constitute several antioxidants. Following an intra-gastric gavage administration of synthesized W. somnifera roots methanolic extract from postnatal day 30 (P30) to P75, in vivo cognitional studies and then neurochemical examinations of the NCX3 expression level, Aβ plaque deposition, and antioxidant activities in the AD-associated brain regions of 4-month-old 5xFAD mice suggests that the oxidative stress normalizing effects of W. somnifera constituents, operating on the NCX3, may have a therapeutic role in the improvement of cognition in AD.
Collapse
Affiliation(s)
- Henok Kessete Afewerky
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- School of Allied Health Professions, Asmara College of Health Sciences, Asmara, Eritrea.
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.
| | - Hao Li
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongmei Zhang
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyan Li
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Duan
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengwei Qin
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiequn Zheng
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Pei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Youming Lu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Ottolia M, John S, Hazan A, Goldhaber JI. The Cardiac Na + -Ca 2+ Exchanger: From Structure to Function. Compr Physiol 2021; 12:2681-2717. [PMID: 34964124 DOI: 10.1002/cphy.c200031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ca2+ homeostasis is essential for cell function and survival. As such, the cytosolic Ca2+ concentration is tightly controlled by a wide number of specialized Ca2+ handling proteins. One among them is the Na+ -Ca2+ exchanger (NCX), a ubiquitous plasma membrane transporter that exploits the electrochemical gradient of Na+ to drive Ca2+ out of the cell, against its concentration gradient. In this critical role, this secondary transporter guides vital physiological processes such as Ca2+ homeostasis, muscle contraction, bone formation, and memory to name a few. Herein, we review the progress made in recent years about the structure of the mammalian NCX and how it relates to function. Particular emphasis will be given to the mammalian cardiac isoform, NCX1.1, due to the extensive studies conducted on this protein. Given the degree of conservation among the eukaryotic exchangers, the information highlighted herein will provide a foundation for our understanding of this transporter family. We will discuss gene structure, alternative splicing, topology, regulatory mechanisms, and NCX's functional role on cardiac physiology. Throughout this article, we will attempt to highlight important milestones in the field and controversial topics where future studies are required. © 2021 American Physiological Society. Compr Physiol 12:1-37, 2021.
Collapse
Affiliation(s)
- Michela Ottolia
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Scott John
- Department of Medicine (Cardiology), UCLA, Los Angeles, California, USA
| | - Adina Hazan
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Joshua I Goldhaber
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
7
|
Magli E, Fattorusso C, Persico M, Corvino A, Esposito G, Fiorino F, Luciano P, Perissutti E, Santagada V, Severino B, Tedeschi V, Pannaccione A, Pignataro G, Caliendo G, Annunziato L, Secondo A, Frecentese F. New Insights into the Structure-Activity Relationship and Neuroprotective Profile of Benzodiazepinone Derivatives of Neurounina-1 as Modulators of the Na +/Ca 2+ Exchanger Isoforms. J Med Chem 2021; 64:17901-17919. [PMID: 34845907 PMCID: PMC8713167 DOI: 10.1021/acs.jmedchem.1c01212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Due to the neuroprotective role of the Na+/Ca2+ exchanger (NCX) isoforms NCX1 and NCX3, we synthesized novel benzodiazepinone derivatives of the unique NCX activator Neurounina-1, named compounds 1-19. The derivatives are characterized by a benzodiazepinonic nucleus linked to five- or six-membered cyclic amines via a methylene, ethylene, or acetyl spacer. The compounds have been screened on NCX1/NCX3 isoform activities by a high-throughput screening approach, and the most promising were characterized by patch-clamp electrophysiology and Fura-2AM video imaging. We identified two novel modulators of NCX: compound 4, inhibiting NCX1 reverse mode, and compound 14, enhancing NCX1 and NCX3 activity. Compound 1 displayed neuroprotection in two preclinical models of brain ischemia. The analysis of the conformational and steric features led to the identification of the molecular volume required for selective NCX1 activation for mixed NCX1/NCX3 activation or for NCX1 inhibition, providing the first prototypal model for the design of optimized isoform modulators.
Collapse
Affiliation(s)
- Elisa Magli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Caterina Fattorusso
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Marco Persico
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Angela Corvino
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Gianluca Esposito
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Ferdinando Fiorino
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Paolo Luciano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Elisa Perissutti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Vincenzo Santagada
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Beatrice Severino
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Valentina Tedeschi
- Department of Neuroscience, Division of Pharmacology, University of Naples "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Anna Pannaccione
- Department of Neuroscience, Division of Pharmacology, University of Naples "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Giuseppe Pignataro
- Department of Neuroscience, Division of Pharmacology, University of Naples "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Giuseppe Caliendo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | | | - Agnese Secondo
- Department of Neuroscience, Division of Pharmacology, University of Naples "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Francesco Frecentese
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
8
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
9
|
Cracking the code of sodium/calcium exchanger (NCX) gating: Old and new complexities surfacing from the deep web of secondary regulations. Cell Calcium 2020; 87:102169. [PMID: 32070925 DOI: 10.1016/j.ceca.2020.102169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
Cell membranes spatially define gradients that drive the complexity of biological signals. To guarantee movements and exchanges of solutes between compartments, membrane transporters negotiate the passages of ions and other important molecules through lipid bilayers. The Na+/Ca2+ exchangers (NCXs) in particular play central roles in balancing Na+ and Ca2+ fluxes across diverse proteolipid borders in all eukaryotic cells, influencing cellular functions and fate by multiple means. To prevent progression from balance to disease, redundant regulatory mechanisms cooperate at multiple levels (transcriptional, translational, and post-translational) and guarantee that the activities of NCXs are finely-tuned to cell homeostatic requirements. When this regulatory network is disturbed by pathological forces, cells may approach the end of life. In this review, we will discuss the main findings, controversies and open questions about regulatory mechanisms that control NCX functions in health and disease.
Collapse
|
10
|
Spencer SA, Suárez-Pozos E, Escalante M, Myo YP, Fuss B. Sodium-Calcium Exchangers of the SLC8 Family in Oligodendrocytes: Functional Properties in Health and Disease. Neurochem Res 2020; 45:1287-1297. [PMID: 31927687 DOI: 10.1007/s11064-019-02949-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022]
Abstract
The solute carrier 8 (SLC8) family of sodium-calcium exchangers (NCXs) functions as an essential regulatory system that couples opposite fluxes of sodium and calcium ions across plasmalemmal membranes. NCXs, thereby, play key roles in maintaining an ion homeostasis that preserves cellular integrity. Hence, alterations in NCX expression and regulation have been found to lead to ionic imbalances that are often associated with intracellular calcium overload and cell death. On the other hand, intracellular calcium has been identified as a key driver for a multitude of downstream signaling events that are crucial for proper functioning of biological systems, thus highlighting the need for a tightly controlled balance. In the CNS, NCXs have been primarily characterized in the context of synaptic transmission and ischemic brain damage. However, a much broader picture is emerging. NCXs are expressed by virtually all cells of the CNS including oligodendrocytes (OLGs), the cells that generate the myelin sheath. With a growing appreciation of dynamic calcium signals in OLGs, NCXs are becoming increasingly recognized for their crucial roles in shaping OLG function under both physiological and pathophysiological conditions. In order to provide a current update, this review focuses on the importance of NCXs in cells of the OLG lineage. More specifically, it provides a brief introduction into plasmalemmal NCXs and their modes of activity, and it discusses the roles of OLG expressed NCXs in regulating CNS myelination and in contributing to CNS pathologies associated with detrimental effects on OLG lineage cells.
Collapse
Affiliation(s)
- Samantha A Spencer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA
| | - Edna Suárez-Pozos
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA
| | - Miguel Escalante
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA.,Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Yu Par Myo
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Box 980709, Richmond, VA, 23298, USA.
| |
Collapse
|
11
|
Scranton K, John S, Escobar A, Goldhaber JI, Ottolia M. Modulation of the cardiac Na +-Ca 2+ exchanger by cytoplasmic protons: Molecular mechanisms and physiological implications. Cell Calcium 2019; 87:102140. [PMID: 32070924 DOI: 10.1016/j.ceca.2019.102140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 01/31/2023]
Abstract
A precise temporal and spatial control of intracellular Ca2+ concentration is essential for a coordinated contraction of the heart. Following contraction, cardiac cells need to rapidly remove intracellular Ca2+ to allow for relaxation. This task is performed by two transporters: the plasma membrane Na+-Ca2+ exchanger (NCX) and the sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA). NCX extrudes Ca2+ from the cell, balancing the Ca2+entering the cytoplasm during systole through L-type Ca2+ channels. In parallel, following SR Ca2+ release, SERCA activity replenishes the SR, reuptaking Ca2+ from the cytoplasm. The activity of the mammalian exchanger is fine-tuned by numerous ionic allosteric regulatory mechanisms. Micromolar concentrations of cytoplasmic Ca2+ potentiate NCX activity, while an increase in intracellular Na+ levels inhibits NCX via a mechanism known as Na+-dependent inactivation. Protons are also powerful inhibitors of NCX activity. By regulating NCX activity, Ca2+, Na+ and H+ couple cell metabolism to Ca2+ homeostasis and therefore cardiac contractility. This review summarizes the recent progress towards the understanding of the molecular mechanisms underlying the ionic regulation of the cardiac NCX with special emphasis on pH modulation and its physiological impact on the heart.
Collapse
Affiliation(s)
- Kyle Scranton
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Scott John
- Department of Medicine (Cardiology), UCLA, Los Angeles, CA 90095, USA; Cardiovascular Research Laboratory, UCLA, Los Angeles, CA 90095, USA
| | - Ariel Escobar
- Department of Bioengineering, School of Engineering, UC Merced, Merced, CA 95343, USA
| | - Joshua I Goldhaber
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michela Ottolia
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, UCLA, Los Angeles, CA 90095, USA; Cardiovascular Research Laboratory, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Yuan J, Yuan C, Xie M, Yu L, Bruschweiler-Li L, Brüschweiler R. The Intracellular Loop of the Na +/Ca 2+ Exchanger Contains an "Awareness Ribbon"-Shaped Two-Helix Bundle Domain. Biochemistry 2018; 57:5096-5104. [PMID: 29898361 DOI: 10.1021/acs.biochem.8b00300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Na+/Ca2+ exchanger (NCX) is a ubiquitous single-chain membrane protein that plays a major role in regulating the intracellular Ca2+ homeostasis by the counter transport of Na+ and Ca2+ across the cell membrane. Other than its prokaryotic counterpart, which contains only the transmembrane domain and is self-sufficient as an active ion transporter, the eukaryotic NCX protein possesses in addition a large intracellular loop that senses intracellular calcium signals and controls the activation of ion transport across the membrane. This provides a necessary layer of regulation for the more complex function of eukaryotic cells. The Ca2+ sensor in the intracellular loop is known as the Ca2+-binding domain (CBD12). However, how the signaling of the allosteric intracellular Ca2+ binding propagates and results in transmembrane ion transportation still lacks a detailed explanation. Further structural and dynamics characterization of the intracellular loop flanking both sides of CBD12 is therefore imperative. Here, we report the identification and characterization of another structured domain that is N-terminal to CBD12 in the intracellular loop using solution nuclear magnetic resonance (NMR) spectroscopy. The atomistic structure of this domain reveals that two tandem long α-helices, connected by a short linker, form a stable crossover two-helix bundle (THB), resembling an "awareness ribbon". Considering the highly conserved amino acid sequence of the THB domain, the detailed structural and dynamics properties of the THB domain will be common among NCXs from different species and will contribute toward the understanding of the regulatory mechanism of eukaryotic Na+/Ca2+ exchangers.
Collapse
Affiliation(s)
- Jiaqi Yuan
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Chunhua Yuan
- Campus Chemical Instrument Center , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Mouzhe Xie
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Lei Yu
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Lei Bruschweiler-Li
- Campus Chemical Instrument Center , The Ohio State University , Columbus , Ohio 43210 , United States
| | - Rafael Brüschweiler
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States.,Campus Chemical Instrument Center , The Ohio State University , Columbus , Ohio 43210 , United States.,Department of Biological Chemistry and Pharmacology , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
13
|
An S. The emerging role of extracellular Ca
2+
in osteo/odontogenic differentiation and the involvement of intracellular Ca
2+
signaling: From osteoblastic cells to dental pulp cells and odontoblasts. J Cell Physiol 2018; 234:2169-2193. [DOI: 10.1002/jcp.27068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and EndodonticsGuanghua School of Stomatology, Hospital of Stomatology, Sun Yat‐sen UniversityGuangzhou China
- Guangdong Province Key Laboratory of StomatologySun Yat‐Sen UniversityGuangzhou China
| |
Collapse
|
14
|
Lariccia V, Amoroso S. Calcium- and ATP-dependent regulation of Na/Ca exchange function in BHK cells: Comparison of NCX1 and NCX3 exchangers. Cell Calcium 2018; 73:95-103. [PMID: 29705719 DOI: 10.1016/j.ceca.2018.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 12/27/2022]
Abstract
Na+/Ca2+ exchangers (NCX) mediate bidirectional Ca2+ fluxes across cell membranes and contribute to Ca2+ homeostasis in many cell types. Exchangers are regulated by gating reactions that depend on Na+ and Ca2+ binding to transport and regulatory sites. A Na+i-dependent inactivation is prominent in all isoforms, whereas Ca2+i-dependent regulation varies among isoforms. Here we characterize new details of NCX operation and describe differences and similarities between NCX3 and NCX1 regulation by intracellular Ca2+ and ATP. To compare isoforms, we employed BHK cells expressing NCX3 or NCX1 constitutively and exchange activity was analysed in whole-cell and excised patch recordings under "zero-trans" conditions (i.e., with only one transported ion species on each side). Using BHK cells with low cytoplasmic Ca2+ buffering, outward (reverse) currents, reflecting Ca2+ influx, are activated by applying extracellular Ca2+ (Cao) in the presence of Na+ on the cytoplasmic side. When firstly activated, peak outward NCX3 currents rapidly decay over seconds and then typically develop a secondary transient peak with slower kinetics, until Cao removal abolishes all outward current. The delayed rise of outward current is the signature of an activating process since peak outward NCX3 currents elicited at subsequent Cao bouts remain stimulated for minutes and slower decline towards a non-zero level during continued Cao application. Secondary transient peaks and current stimulation are suppressed by increasing the intracellular Ca2+ buffer capacity or by replacing cytoplasmic ATP with the analogues AMP-PNP or ATPγS. In BHK cells expressing NCX1, outward currents activated under identical settings decay to a steady-state level during single Cao application and are significantly larger, causing strong and long-lived run down of subsequent outward currents. NCX1 current run down is not prevented by increasing cytoplasmic Ca2+ buffering but secondary transient peaks in the outward current profile can be resolved in the presence of ATP. Finally, inward currents recorded in patches excised from NCX3-expressing cells reveal a proteolysis-sensitive, Ca-dependent inactivation process that is unusual for NCX1 forward activity. Together, our results suggest that NCX function is regulated more richly than appreciated heretofore, possibly including processes that are lost in excised membrane patches.
Collapse
Affiliation(s)
- Vincenzo Lariccia
- Department of Biomedical Science and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| | - Salvatore Amoroso
- Department of Biomedical Science and Public Health, School of Medicine, University "Politecnica delle Marche", Ancona, Italy.
| |
Collapse
|
15
|
Lubelwana Hafver T, Wanichawan P, Manfra O, de Souza GA, Lunde M, Martinsen M, Louch WE, Sejersted OM, Carlson CR. Mapping the in vitro interactome of cardiac sodium (Na + )-calcium (Ca 2+ ) exchanger 1 (NCX1). Proteomics 2017; 17. [PMID: 28755400 DOI: 10.1002/pmic.201600417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 07/03/2017] [Accepted: 07/26/2017] [Indexed: 11/07/2022]
Abstract
The sodium (Na+ )-calcium (Ca2+ ) exchanger 1 (NCX1) is an antiporter membrane protein encoded by the SLC8A1 gene. In the heart, it maintains cytosolic Ca2+ homeostasis, serving as the primary mechanism for Ca2+ extrusion during relaxation. Dysregulation of NCX1 is observed in end-stage human heart failure. In this study, we used affinity purification coupled with MS in rat left ventricle lysates to identify novel NCX1 interacting proteins in the heart. Two screens were conducted using: (1) anti-NCX1 against endogenous NCX1 and (2) anti-His (where His is histidine) with His-trigger factor-NCX1cyt recombinant protein as bait. The respective methods identified 112 and 350 protein partners, of which several were known NCX1 partners from the literature, and 29 occurred in both screens. Ten novel protein partners (DYRK1A, PPP2R2A, SNTB1, DMD, RABGGTA, DNAJB4, BAG3, PDE3A, POPDC2, STK39) were validated for binding to NCX1, and two partners (DYRK1A, SNTB1) increased NCX1 activity when expressed in HEK293 cells. A cardiac NCX1 protein-protein interaction map was constructed. The map was highly connected, containing distinct clusters of proteins with different biological functions, where "cell communication" and "signal transduction" formed the largest clusters. The NCX1 interactome was also significantly enriched with proteins/genes involved in "cardiovascular disease" which can be explored as novel drug targets in future research.
Collapse
Affiliation(s)
- Tandekile Lubelwana Hafver
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pimthanya Wanichawan
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ornella Manfra
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gustavo Antonio de Souza
- Department of Immunology and Centre for Immune Regulation, Oslo University Hospital HF Rikshospitalet, University of Oslo, Oslo, Norway.,The Brain Institute, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.,Bioinformatics Multidisciplinary Environment, Instituto Metrópole Digital, UFRN, Natal, RN, Brazil
| | - Marianne Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marita Martinsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - William Edward Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ole Mathias Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Cathrine Rein Carlson
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Essential role of the Na +-Ca2 + exchanger (NCX) in glutamate-enhanced cell survival in cardiac cells exposed to hypoxia/reoxygenation. Sci Rep 2017; 7:13073. [PMID: 29026150 PMCID: PMC5638850 DOI: 10.1038/s41598-017-13478-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
Abstract
Myocardial ischemia culminates in ATP production impairment, ionic derangement and cell death. The provision of metabolic substrates during reperfusion significantly increases heart tolerance to ischemia by improving mitochondrial performance. Under normoxia, glutamate contributes to myocardial energy balance as substrate for anaplerotic reactions, and we demonstrated that the Na+/Ca2+ exchanger1 (NCX1) provides functional support for both glutamate uptake and use for ATP synthesis. Here we investigated the role of NCX1 in the potential of glutamate to improve energy metabolism and survival of cardiac cells subjected to hypoxia/reoxygenation (H/R). Specifically, in H9c2-NCX1 myoblasts, ATP levels, mitochondrial activities and cell survival were significantly compromised after H/R challenge. Glutamate supplementation at the onset of the reoxygenation phase significantly promoted viability, improved mitochondrial functions and normalized the H/R-induced increase of NCX1 reverse-mode activity. The benefits of glutamate were strikingly lost in H9c2-WT (lacking NCX1 expression), or in H9c2-NCX1 and rat cardiomyocytes treated with either NCX or Excitatory Amino Acid Transporters (EAATs) blockers, suggesting that a functional interplay between these transporters is critically required for glutamate-induced protection. Collectively, these results revealed for the first time the key role of NCX1 for the beneficial effects of glutamate against H/R-induced cell injury.
Collapse
|
17
|
Smooth Muscle Phenotypic Diversity: Effect on Vascular Function and Drug Responses. ADVANCES IN PHARMACOLOGY 2017. [PMID: 28212802 DOI: 10.1016/bs.apha.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
At its simplest resistance to blood flow is regulated by changes in the state of contraction of the vascular smooth muscle (VSM), a function of the competing activities of the myosin kinase and phosphatase determining the phosphorylation and activity of the myosin ATPase motor protein. In contrast, the vascular system of humans and other mammals is incredibly complex and highly regulated. Much of this complexity derives from phenotypic diversity within the smooth muscle, reflected in very differing power outputs and responses to signaling pathways that regulate vessel tone, presumably having evolved over the millennia to optimize vascular function and its control. The highly regulated nature of VSM tone, described as pharmacomechanical coupling, likely underlies the many classes of drugs in clinical use to alter vascular tone through activation or inhibition of these signaling pathways. This review will first describe the phenotypic diversity within VSM, followed by presentation of specific examples of how molecular diversity in signaling, myofilament, and calcium cycling proteins impacts arterial smooth muscle function and drug responses.
Collapse
|
18
|
Giladi M, Tal I, Khananshvili D. Structural Features of Ion Transport and Allosteric Regulation in Sodium-Calcium Exchanger (NCX) Proteins. Front Physiol 2016; 7:30. [PMID: 26903880 PMCID: PMC4746289 DOI: 10.3389/fphys.2016.00030] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/19/2016] [Indexed: 01/14/2023] Open
Abstract
Na(+)/Ca(2+) exchanger (NCX) proteins extrude Ca(2+) from the cell to maintain cellular homeostasis. Since NCX proteins contribute to numerous physiological and pathophysiological events, their pharmacological targeting has been desired for a long time. This intervention remains challenging owing to our poor understanding of the underlying structure-dynamic mechanisms. Recent structural studies have shed light on the structure-function relationships underlying the ion-transport and allosteric regulation of NCX. The crystal structure of an archaeal NCX (NCX_Mj) along with molecular dynamics simulations and ion flux analyses, have assigned the ion binding sites for 3Na(+) and 1Ca(2+), which are being transported in separate steps. In contrast with NCX_Mj, eukaryotic NCXs contain the regulatory Ca(2+)-binding domains, CBD1 and CBD2, which affect the membrane embedded ion-transport domains over a distance of ~80 Å. The Ca(2+)-dependent regulation is ortholog, isoform, and splice-variant dependent to meet physiological requirements, exhibiting either a positive, negative, or no response to regulatory Ca(2+). The crystal structures of the two-domain (CBD12) tandem have revealed a common mechanism involving a Ca(2+)-driven tethering of CBDs in diverse NCX variants. However, dissociation kinetics of occluded Ca(2+) (entrapped at the two-domain interface) depends on the alternative-splicing segment (at CBD2), thereby representing splicing-dependent dynamic coupling of CBDs. The HDX-MS, SAXS, NMR, FRET, equilibrium (45)Ca(2+) binding and stopped-flow techniques provided insights into the dynamic mechanisms of CBDs. Ca(2+) binding to CBD1 results in a population shift, where more constraint conformational states become highly populated without global conformational changes in the alignment of CBDs. This mechanism is common among NCXs. Recent HDX-MS studies have demonstrated that the apo CBD1 and CBD2 are stabilized by interacting with each other, while Ca(2+) binding to CBD1 rigidifies local backbone segments of CBD2, but not of CBD1. The extent and strength of Ca(2+)-dependent rigidification at CBD2 is splice-variant dependent, showing clear correlations with phenotypes of matching NCX variants. Therefore, diverse NCX variants share a common mechanism for the initial decoding of the regulatory signal upon Ca(2+) binding at the interface of CBDs, whereas the allosteric message is shaped by CBD2, the dynamic features of which are dictated by the splicing segment.
Collapse
Affiliation(s)
- Moshe Giladi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Inbal Tal
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University Tel Aviv, Israel
| |
Collapse
|
19
|
Hafver TL, Hodne K, Wanichawan P, Aronsen JM, Dalhus B, Lunde PK, Lunde M, Martinsen M, Enger UH, Fuller W, Sjaastad I, Louch WE, Sejersted OM, Carlson CR. Protein Phosphatase 1c Associated with the Cardiac Sodium Calcium Exchanger 1 Regulates Its Activity by Dephosphorylating Serine 68-phosphorylated Phospholemman. J Biol Chem 2015; 291:4561-79. [PMID: 26668322 DOI: 10.1074/jbc.m115.677898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Indexed: 11/06/2022] Open
Abstract
The sodium (Na(+))-calcium (Ca(2+)) exchanger 1 (NCX1) is an important regulator of intracellular Ca(2+) homeostasis. Serine 68-phosphorylated phospholemman (pSer-68-PLM) inhibits NCX1 activity. In the context of Na(+)/K(+)-ATPase (NKA) regulation, pSer-68-PLM is dephosphorylated by protein phosphatase 1 (PP1). PP1 also associates with NCX1; however, the molecular basis of this association is unknown. In this study, we aimed to analyze the mechanisms of PP1 targeting to the NCX1-pSer-68-PLM complex and hypothesized that a direct and functional NCX1-PP1 interaction is a prerequisite for pSer-68-PLM dephosphorylation. Using a variety of molecular techniques, we show that PP1 catalytic subunit (PP1c) co-localized, co-fractionated, and co-immunoprecipitated with NCX1 in rat cardiomyocytes, left ventricle lysates, and HEK293 cells. Bioinformatic analysis, immunoprecipitations, mutagenesis, pulldown experiments, and peptide arrays constrained PP1c anchoring to the K(I/V)FF motif in the first Ca(2+) binding domain (CBD) 1 in NCX1. This binding site is also partially in agreement with the extended PP1-binding motif K(V/I)FF-X5-8Φ1Φ2-X8-9-R. The cytosolic loop of NCX1, containing the K(I/V)FF motif, had no effect on PP1 activity in an in vitro assay. Dephosphorylation of pSer-68-PLM in HEK293 cells was not observed when NCX1 was absent, when the K(I/V)FF motif was mutated, or when the PLM- and PP1c-binding sites were separated (mimicking calpain cleavage of NCX1). Co-expression of PLM and NCX1 inhibited NCX1 current (both modes). Moreover, co-expression of PLM with NCX1(F407P) (mutated K(I/V)FF motif) resulted in the current being completely abolished. In conclusion, NCX1 is a substrate-specifying PP1c regulator protein, indirectly regulating NCX1 activity through pSer-68-PLM dephosphorylation.
Collapse
Affiliation(s)
- Tandekile Lubelwana Hafver
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Kjetil Hodne
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway, the Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences (NMBU), 0454 Oslo, Norway
| | - Pimthanya Wanichawan
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Jan Magnus Aronsen
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the Bjørknes College, Oslo, Norway
| | - Bjørn Dalhus
- the Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0424 Oslo, Norway, the Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, 0424 Oslo, Norway and
| | - Per Kristian Lunde
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Marianne Lunde
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Marita Martinsen
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Ulla Helene Enger
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - William Fuller
- the Cardiovascular and Diabetes Medicine, School of Medicine, University of Dundee, Dundee, Scotland, United Kingdom DD1 9SY
| | - Ivar Sjaastad
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - William Edward Louch
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Ole Mathias Sejersted
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway
| | - Cathrine Rein Carlson
- From the Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway, the KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0316 Oslo, Norway,
| |
Collapse
|
20
|
Gengmao Z, Shihui L, Xing S, Yizhou W, Zipan C. The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress. Sci Rep 2015; 5:12696. [PMID: 26235534 PMCID: PMC4522604 DOI: 10.1038/srep12696] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/07/2015] [Indexed: 11/09/2022] Open
Abstract
Silicon(Si) is the only element which can enhance the resistance to multiple stresses. However, the role of silicon in medicinal plants under salt stress is not yet understood. This experiment was conducted to study the effects of silicon addition on the growth, osmotic adjustments, photosynthetic characteristics, chloroplast ultrastructure and Chlorogenic acid (CGA) production of Honeysuckle plant (Lonicera japonica L.) under salt-stressed conditions. Salinity exerted an adverse effect on the plant fresh weight and dry weight, whilst 0.5 g L(-1) K2SiO3 · nH2O addition obviously improved the plant growth. Although Na(+) concentration in plant organs was drastically increased with increasing salinity, higher levels of K(+)/Na(+) ratio was obtained after K2SiO3 · nH2O addition. Salinity stress induced the destruction of the chloroplast envelope; however, K2SiO3 · nH2O addition counteracted the adverse effect by salinity on the structure of the photosynthetic apparatus. K2SiO3 · nH2O addition also enhanced the activities of superoxide dismutase and catalase. To sum up, exogenous Si plays a key role in enhancing its resistance to salt stresses in physiological base, thereby improving the growth and CGA production of Honeysuckle plant.
Collapse
Affiliation(s)
- Zhao Gengmao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
- Jiangsu Provincial Key Lab of Marine Biology, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
| | - Li Shihui
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
| | - Sun Xing
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
| | - Wang Yizhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
| | - Chang Zipan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, P.R. China
| |
Collapse
|
21
|
Jin J, Lao AJ, Katsura M, Caputo A, Schweizer FE, Sokolow S. Involvement of the sodium-calcium exchanger 3 (NCX3) in ziram-induced calcium dysregulation and toxicity. Neurotoxicology 2014; 45:56-66. [PMID: 25284465 PMCID: PMC4267994 DOI: 10.1016/j.neuro.2014.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 09/22/2014] [Indexed: 11/25/2022]
Abstract
Ziram is a dimethyldithiocarbamate fungicide which can cause intraneuronal calcium (Ca(2+)) dysregulation and subsequently neuronal death. The signaling mechanisms underlying ziram-induced Ca(2+) dyshomeostasis and neurotoxicity are not fully understood. NCX3 is the third isoform of the sodium-calcium exchanger (NCX) family and plays an important role in regulating Ca(2+) homeostasis in excitable cells. We previously generated a mouse model deficient for the sodium-calcium exchanger 3 and showed that NCX3 is protective against ischemic damage. In the present study, we aim to examine whether NCX3 exerts a similar role against toxicological injury caused by the pesticide ziram. Our data show baby hamster kidney (BHK) cells stably transfected with NCX3 (BHK-NCX3) are more susceptible to ziram toxicity than cells transfected with the empty vector (BHK-WT). Increased toxicity in BHK-NCX3 was associated with a rapid rise in cytosolic Ca(2+) concentration [Ca(2+)]i induced by ziram. Profound mitochondrial dysfunction and ATP depletion were also observed in BHK-NCX3 cells following treatment with ziram. Lastly, primary dopaminergic neurons lacking NCX3 (NCX3(-/-)) were less sensitive to ziram neurotoxicity than wildtype control dopaminergic neurons. These results demonstrate that NCX3 genetic deletion protects against ziram-induced neurotoxicity and suggest NCX3 and its downstream molecular pathways as key factors involved in ziram toxicity. Our study identifies new molecular events through which pesticides (e.g. ziram) can lead to pathological features of degenerative diseases such as Parkinson's disease and indicates new targets to slow down neuronal degeneration.
Collapse
Affiliation(s)
- J Jin
- UCLA School of Nursing, Los Angeles, CA 90095, USA; Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China
| | - A J Lao
- UCLA School of Nursing, Los Angeles, CA 90095, USA
| | - M Katsura
- UCLA School of Nursing, Los Angeles, CA 90095, USA
| | - A Caputo
- Department of Neurobiology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - F E Schweizer
- Department of Neurobiology, UCLA School of Medicine, Los Angeles, CA 90095, USA; UCLA Brain Research Institute, USA
| | - S Sokolow
- UCLA School of Nursing, Los Angeles, CA 90095, USA; UCLA Brain Research Institute, USA; UCLA Center for the Advancement of Gerontological Nursing Sciences, USA; UCLA Clinical and Translational Science Institute, USA.
| |
Collapse
|
22
|
Scheff NN, Yilmaz E, Gold MS. The properties, distribution and function of Na(+)-Ca(2+) exchanger isoforms in rat cutaneous sensory neurons. J Physiol 2014; 592:4969-93. [PMID: 25239455 PMCID: PMC4259538 DOI: 10.1113/jphysiol.2014.278036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/10/2014] [Indexed: 11/08/2022] Open
Abstract
The Na(+)-Ca(2+) exchanger (NCX) appears to play an important role in the regulation of the high K(+)-evoked Ca(2+) transient in putative nociceptive dorsal root ganglion (DRG) neurons. The purpose of the present study was to (1) characterize the properties of NCX activity in subpopulations of DRG neurons, (2) identify the isoform(s) underlying NCX activity, and (3) begin to assess the function of the isoform(s) in vivo. In retrogradely labelled neurons from the glabrous skin of adult male Sprague-Dawley rats, NCX activity, as assessed with fura-2-based microfluorimetry, was only detected in putative nociceptive IB4+ neurons. There were two modes of NCX activity: one was evoked in response to relatively large and long lasting (∼325 nm for >12 s) increases in the concentration of intracellular Ca(2+) ([Ca(2+)]i), and a second was active at resting [Ca(2+)]i > ∼150 nm. There also were two modes of evoked activity: one that decayed relatively rapidly (<5 min) and a second that persisted (>10 min). Whereas mRNA encoding all three NCX isoforms (NCX1-3) was detected in putative nociceptive cutaneous neurons with single cell PCR, pharmacological analysis and small interfering RNA (siRNA) knockdown of each isoform in vivo suggested that NCX2 and 3 were responsible for NCX activity. Western blot analyses suggested that NCX isoforms were differentially distributed within sensory neurons. Functional assays of excitability, action potential propagation, and nociceptive behaviour suggest NCX activity has little influence on excitability per se, but instead influences axonal conduction velocity, resting membrane potential, and nociceptive threshold. Together these results indicate that the function of NCX in the regulation of [Ca(2+)]i in putative nociceptive neurons may be unique relative to other cells in which these exchanger isoforms have been characterized and it has the potential to influence sensory neuron properties at multiple levels.
Collapse
Affiliation(s)
- N N Scheff
- The Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Yilmaz
- The Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - M S Gold
- The Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, USA Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Jacob PF, Vaz SH, Ribeiro JA, Sebastião AM. P2Y1 receptor inhibits GABA transport through a calcium signalling-dependent mechanism in rat cortical astrocytes. Glia 2014; 62:1211-26. [PMID: 24733747 DOI: 10.1002/glia.22673] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/29/2014] [Accepted: 03/31/2014] [Indexed: 12/16/2022]
Abstract
Astrocytes express a variety of purinergic (P2) receptors, involved in astrocytic communication through fast increases in [Ca(2+) ]i . Of these, the metabotropic ATP receptors (P2Y) regulate cytoplasmic Ca(2+) levels through the PLC-PKC pathway. GABA transporters are a substrate for a number of Ca(2+) -related kinases, raising the possibility that calcium signalling in astrocytes impact the control of extracellular levels of the major inhibitory transmitter in the brain. To access this possibility we tested the influence of P2Y receptors upon GABA transport into astrocytes. Mature primary cortical astroglial-enriched cultures expressed functional P2Y receptors, as evaluated through Ca(2+) imaging, being P2Y1 the predominant P2Y receptor subtype. ATP (100 μM, for 1 min) caused an inhibition of GABA transport through either GAT-1 or GAT-3 transporters, decreasing the Vmax kinetic constant. ATP-induced inhibition of GATs activity was still evident in the presence of adenosine deaminase, precluding an adenosine-mediated effect. This, was mimicked by a specific agonist for the P2Y1,12,13 receptor (2-MeSADP). The effect of 2-MeSADP on GABA transport was blocked by the P2 (PPADS) and P2Y1 selective (MRS2179) receptor antagonists, as well as by the PLC inhibitor (U73122). 2-MeSADP failed to inhibit GABA transport in astrocytes where intracellular calcium had been chelated (BAPTA-AM) or where calcium stores were depleted (α-cyclopiazonic acid, CPA). In conclusion, P2Y1 receptors in astrocytes inhibit GABA transport through a mechanism dependent of P2Y1 -mediated calcium signalling, suggesting that astrocytic calcium signalling, which occurs as a consequence of neuronal firing, may operate a negative feedback loop to enhance extracellular levels of GABA.
Collapse
Affiliation(s)
- Pedro F Jacob
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal; Neurosciences Unit, Institute of Molecular Medicine University of Lisbon, Lisbon, Portugal
| | | | | | | |
Collapse
|
24
|
Han S, Wang CW, Wang WL, Jiang J. Mitogen-activated protein kinase 6 controls root growth in Arabidopsis by modulating Ca2+ -based Na+ flux in root cell under salt stress. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:26-34. [PMID: 24484955 DOI: 10.1016/j.jplph.2013.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/06/2013] [Accepted: 09/18/2013] [Indexed: 05/21/2023]
Abstract
Little is known about the role of mitogen-activated protein kinase 6 (MPK6) in Na(+) toxicity and inhibition of root growth in Arabidopsis under NaCl stress. In this study, we found that root elongation in seedlings of the loss-of-function mutants mpk6-2 and mpk6-3 was less sensitive to NaCl or Na-glutamate, but not to KCl or mannitol, as compared with that of wild-type (WT) seedlings. The less sensitive characteristic was eliminated by adding the Ca(2+) chelator EGTA or the Ca(2+) channel inhibitor LaCl3, but not the Ca(2+) ionophore A23187. This suggested that the tolerance of mpk6 to Na(+) toxicity was Ca(2+)-dependent. We measured plasma membrane (PM) Na(+)-conducted currents (NCCs) in root cells. Increased concentrations of NaCl increased the inward NCCs while decreased the outward NCCs in WT root cells, attended by a positive shift in membrane potential. In mpk6 root cells, NaCl significantly increased outward but not inward NCCs, accompanied by a negative shift in membrane potential. That is, mpk6 decreased NaCl-induced the Na(+) accumulation by modifying PM Na(+) flux in root cells. Observations of aequorin luminescence revealed a NaCl-induced increase of cytosolic Ca(2+) in mpk6 root cells, resulting from PM Ca(2+) influx. An increase of cytosolic Ca(2+) was required to alleviate the NaCl-increased Na(+) content and Na(+)/K(+) ratio in mpk6 roots. Together, these results show that mpk6 accumulated less Na(+) in response to NaCl because of the increased cytosolic Ca(2+) level in root cells; thus, its root elongation was less inhibited than that of WT by NaCl.
Collapse
Affiliation(s)
- Shuan Han
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, People's Republic of China
| | - Chi-wen Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, People's Republic of China
| | - Wen-le Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, People's Republic of China
| | - Jing Jiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, People's Republic of China.
| |
Collapse
|
25
|
Abstract
Here we provide the first genome-wide in vivo analysis of the Na+/Ca2+ exchanger family in the model system Caenorhabditis elegans. We source all members of this family within the Caenorhabditis genus and reconstruct their phylogeny across humans and Drosophila melanogaster. Next, we provide a description of the expression pattern for each exchanger gene in C. elegans, revealing a wide expression in a number of tissues and cell types including sensory neurons, interneurons, motor neurons, muscle cells, and intestinal tissue. Finally, we conduct a series of behavioral and functional analyses through mutant characterization in C. elegans. From these data we demonstrate that, similar to mammalian systems, the expression of Na+/Ca2+ exchangers in C. elegans is skewed toward excitable cells, and we propose that C. elegans may be an ideal model system for the study of Na+/Ca2+ exchangers.
Collapse
|