1
|
Anderson MJM, Hayward AN, Smiley AT, Shi K, Pawlak MR, Aird EJ, Grant E, Greenberg L, Aihara H, Evans RL, Ulens C, Gordon WR. Molecular basis of proteolytic cleavage regulation by the extracellular matrix receptor dystroglycan. Structure 2024; 32:1984-1996.e5. [PMID: 39305901 PMCID: PMC11560575 DOI: 10.1016/j.str.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024]
Abstract
The dystrophin-glycoprotein-complex (DGC), anchored by the transmembrane protein dystroglycan, functions to mechanically link the extracellular matrix and actin cytoskeleton. Breaking this connection is associated with diseases such as muscular dystrophy, yet cleavage of dystroglycan by matrix-metalloproteinases (MMPs) remains an understudied mechanism to disrupt the DGC. We determined the crystal structure of the membrane-adjacent domain (amino acids 491-722) of E. coli expressed human dystroglycan to understand MMP cleavage regulation. The structural model includes tandem immunoglobulin-like (IGL) and sperm/enterokinase/agrin-like (SEAL) domains, which support proteolysis in diverse receptors to facilitate mechanotransduction, membrane protection, and viral entry. The structure reveals a C-terminal extension that buries the MMP site by packing into a hydrophobic pocket, a unique mechanism of MMP cleavage regulation. We further demonstrate structure-guided and disease-associated mutations disrupt proteolytic regulation using a cell-surface proteolysis assay. Thus disrupted proteolysis is a potentially relevant mechanism for "breaking" the DGC link to contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Michael J M Anderson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Amanda N Hayward
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Adam T Smiley
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Matthew R Pawlak
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Eric J Aird
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA; Currently at Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Eva Grant
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Lauren Greenberg
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Robert L Evans
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Christopher Ulens
- Department of Cellular and Molecular Medicine, Karolinksa University Leuven, 3000 Leuven, Belgium
| | - Wendy R Gordon
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Zhong X, Yan GG, Chaturvedi A, Li X, Gao Y, Girgenrath M, Corcoran CJ, Diblasio-Smith L, LaVallie ER, de Rham T, Zhou J, Abel M, Riegel L, Lim SK, Bloom L, Lin L, D’Antona AM. Metabolic Engineering of Glycofusion Bispecific Antibodies for α-Dystroglycanopathies. Antibodies (Basel) 2024; 13:83. [PMID: 39449325 PMCID: PMC11503271 DOI: 10.3390/antib13040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/14/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Background: α-dystroglycanopathies are congenital muscular dystrophies in which genetic mutations cause the decrease or absence of a unique and complex O-linked glycan called matriglycan. This hypoglycosylation of O-linked matriglycan on the α-dystroglycan (α-DG) protein subunit abolishes or reduces the protein binding to extracellular ligands such as laminins in skeletal muscles, leading to compromised survival of muscle cells after contraction. Methods: Surrogate molecular linkers reconnecting laminin-211 and the dystroglycan β-subunit through bispecific antibodies can be engineered to improve muscle function in the α-dystroglycanopathies. This study reports the metabolic engineering of a novel glycofusion bispecific (GBi) antibody that fuses the mucin-like domain of the α-DG to the light chain of an anti-β-DG subunit antibody. Results: Transient HEK production with the co-transfection of LARGE1, the glycoenzyme responsible for the matriglycan modification, produced the GBi antibody only with a light matriglycan modification and a weak laminin-211 binding activity. However, when a sugar feed mixture of uridine, galactose, and manganese ion (Mn2+) was added to the culture medium, the GBi antibody produced exhibited a dramatically enhanced matriglycan modification and a much stronger laminin-binding activity. Conclusions: Further investigation has revealed that Mn2+ in the sugar feeds played a critical role in increasing the matriglycan modification of the GBi antibody, key for the function of the resulting bispecific antibody.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Guoying Grace Yan
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Apurva Chaturvedi
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Xiuling Li
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Yijie Gao
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Mahasweta Girgenrath
- Rare Disease Research Unit, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA
| | - Chris J. Corcoran
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Liz Diblasio-Smith
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Edward R. LaVallie
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Teresse de Rham
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Jing Zhou
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Molica Abel
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Logan Riegel
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Sean K.H. Lim
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Laird Bloom
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Laura Lin
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| | - Aaron M. D’Antona
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA (Y.G.); (C.J.C.)
| |
Collapse
|
3
|
Lam P, Zygmunt DA, Ashbrook A, Bennett M, Vetter TA, Martin PT. Dual FKRP/FST gene therapy normalizes ambulation, increases strength, decreases pathology, and amplifies gene expression in LGMDR9 mice. Mol Ther 2024; 32:2604-2623. [PMID: 38910327 PMCID: PMC11405156 DOI: 10.1016/j.ymthe.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/12/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
Recent clinical studies of single gene replacement therapy for neuromuscular disorders have shown they can slow or stop disease progression, but such therapies have had little impact on reversing muscle disease that was already present. To reverse disease in patients with muscular dystrophy, new muscle mass and strength must be rebuilt at the same time that gene replacement prevents subsequent disease. Here, we show that treatment of FKRPP448L mice with a dual FKRP/FST gene therapy packaged into a single adeno-associated virus (AAV) vector can build muscle strength and mass that exceed levels found in wild-type mice and can induce normal ambulation endurance in a 1-h walk test. Dual FKRP/FST therapy also showed more even increases in muscle mass and amplified muscle expression of both genes relative to either single gene therapy alone. These data suggest that treatment with single AAV-bearing dual FKRP/FST gene therapies can overcome loss of ambulation by improving muscle strength at the same time it prevents subsequent muscle damage. This design platform could be used to create therapies for other forms of muscular dystrophy that may improve patient outcomes.
Collapse
Affiliation(s)
- Patricia Lam
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Deborah A Zygmunt
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Anna Ashbrook
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Macey Bennett
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Tatyana A Vetter
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Paul T Martin
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA; Department of Pediatrics, and Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
4
|
Wohlgemuth RP, Brashear SE, Smith LR. Alignment, cross linking, and beyond: a collagen architect's guide to the skeletal muscle extracellular matrix. Am J Physiol Cell Physiol 2023; 325:C1017-C1030. [PMID: 37661921 PMCID: PMC10635663 DOI: 10.1152/ajpcell.00287.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/27/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
The muscle extracellular matrix (ECM) forms a complex network of collagens, proteoglycans, and other proteins that produce a favorable environment for muscle regeneration, protect the sarcolemma from contraction-induced damage, and provide a pathway for the lateral transmission of contractile force. In each of these functions, the structure and organization of the muscle ECM play an important role. Many aspects of collagen architecture, including collagen alignment, cross linking, and packing density affect the regenerative capacity, passive mechanical properties, and contractile force transmission pathways of skeletal muscle. The balance between fortifying the muscle ECM and maintaining ECM turnover and compliance is highly dependent on the integrated organization, or architecture, of the muscle matrix, especially related to collagen. While muscle ECM remodeling patterns in response to exercise and disease are similar, in that collagen synthesis can increase in both cases, one outcome leads to a stronger muscle and the other leads to fibrosis. In this review, we provide a comprehensive analysis of the architectural features of each layer of muscle ECM: epimysium, perimysium, and endomysium. Further, we detail the importance of muscle ECM architecture to biomechanical function in the context of exercise or fibrosis, including disease, injury, and aging. We describe how collagen architecture is linked to active and passive muscle biomechanics and which architectural features are acutely dynamic and adapt over time. Future studies should investigate the significance of collagen architecture in muscle stiffness, ECM turnover, and lateral force transmission in the context of health and fibrosis.
Collapse
Affiliation(s)
- Ross P Wohlgemuth
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
| | - Sarah E Brashear
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
| | - Lucas R Smith
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California, United States
- Department of Physical Medicine and Rehabilitation, University of California, Davis, California, United States
| |
Collapse
|
5
|
Ishii MN, Quinton M, Kamiguchi H. A highly sensitive and quantitative assay for dystrophin protein using Single Molecule Count Technology. Neuromuscul Disord 2023; 33:737-743. [PMID: 37666691 DOI: 10.1016/j.nmd.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease characterized by progressive muscle loss caused by mutations in dystrophin, resulting in decreased dystrophin levels. Dystrophin protein expression is a biomarker used to evaluate treatments that restore patient dystrophin levels. Currently, a semiquantitative assay using western blotting, which normalizes dystrophin expression to that of a control population, is used for regulatory filing. However, the current methods are limited in terms of sensitivity, quantification, and reproducibility. To address this, a highly sensitive and quantitative sandwich immune assay using Single Molecule Counting technology was established, with recombinant dystrophin protein as the calibrator. Capture and detection antibodies were selected to detect full-length dystrophin. Using this optimized assay, dystrophin levels in muscle samples from Myotonic Dystrophy (n = 9) and DMD (n = 8) subjects were 93.2 ± 31.9 (range: 49.4-145.3) and 14.5 ± 6.8 (range: 6.18-22.6) fmol/total protein mg, respectively. The lowest concentration of dystrophin measured in the DMD samples was 5 times higher than that in the lower limit of quantitation, a level not detected by western blotting. These data indicate that this assay accurately and sensitively measured dystrophin protein and may be useful in clinical trials assessing dystrophin restoration therapies.
Collapse
Affiliation(s)
- Misawa Niki Ishii
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 251-0012, 26-1, 2-chome, Higashimuraoka, Fujisawa, Kanagawa, Tokyo, Japan.
| | - Maria Quinton
- Neuroscience Drug Discovery Unit, Takeda Pharmaceuticals, 40 Lansdowne Street, Cambridge MA 02139 USA
| | - Hidenori Kamiguchi
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 251-0012, 26-1, 2-chome, Higashimuraoka, Fujisawa, Kanagawa, Tokyo, Japan
| |
Collapse
|
6
|
Le Guiner C, Xiao X, Larcher T, Lafoux A, Huchet C, Toumaniantz G, Adjali O, Anegon I, Remy S, Grieger J, Li J, Farrokhi V, Neubert H, Owens J, McIntyre M, Moullier P, Samulski RJ. Evaluation of an AAV9-mini-dystrophin gene therapy candidate in a rat model of Duchenne muscular dystrophy. Mol Ther Methods Clin Dev 2023; 30:30-47. [PMID: 37746247 PMCID: PMC10512999 DOI: 10.1016/j.omtm.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/15/2023] [Indexed: 09/26/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disease caused by loss-of-function mutations in the dystrophin gene and is characterized by muscle wasting and early mortality. Adeno-associated virus-mediated gene therapy is being investigated as a treatment for DMD. In the nonclinical study documented here, we determined the effective dose of fordadistrogene movaparvovec, a clinical candidate adeno-associated virus serotype 9 vector carrying a human mini-dystrophin transgene, after single intravenous injection in a dystrophin-deficient (DMDmdx) rat model of DMD. Overall, we found that transduction efficiency, number of muscle fibers expressing the human mini-dystrophin polypeptide, improvement of the skeletal and cardiac muscle tissue architecture, correction of muscle strength and fatigability, and improvement of diastolic and systolic cardiac function were directly correlated with the amount of vector administered. The effective dose was then tested in older DMDmdx rats with a more dystrophic phenotype similar to the pathology observed in older patients with DMD. Except for a less complete rescue of muscle function in the oldest cohort, fordadistrogene movaparvovec was also found to be therapeutically effective in older DMDmdx rats, suggesting that this product may be appropriate for evaluation in patients with DMD at all stages of disease.
Collapse
Affiliation(s)
- Caroline Le Guiner
- Nantes Université, CHU Nantes, INSERM, TaRGeT, UMR 1089, Translational Research for Gene Therapies, 44200 Nantes, France
| | - Xiao Xiao
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599-7352, USA
| | | | - Aude Lafoux
- Therassay Platform, Capacités, Nantes Université, 44007 Nantes, France
| | - Corinne Huchet
- Nantes Université, CHU Nantes, INSERM, TaRGeT, UMR 1089, Translational Research for Gene Therapies, 44200 Nantes, France
- Therassay Platform, Capacités, Nantes Université, 44007 Nantes, France
| | - Gilles Toumaniantz
- Therassay Platform, Capacités, Nantes Université, 44007 Nantes, France
- Nantes Université, CHU Nantes, CNRS, L’Institut du Thorax, 44007 Nantes, France
| | - Oumeya Adjali
- Nantes Université, CHU Nantes, INSERM, TaRGeT, UMR 1089, Translational Research for Gene Therapies, 44200 Nantes, France
| | - Ignacio Anegon
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, 44093 Nantes, France
| | - Séverine Remy
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, 44093 Nantes, France
| | - Josh Grieger
- Bamboo Therapeutics, Pfizer, Chapel Hill, NC 27514, USA
| | - Juan Li
- Gene Therapy Center, Eshelman School of Pharmacy DPMP, University of North Carolina, Chapel Hill, NC 27599-7352, USA
| | | | | | | | | | - Philippe Moullier
- Nantes Université, CHU Nantes, INSERM, TaRGeT, UMR 1089, Translational Research for Gene Therapies, 44200 Nantes, France
| | - R. Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599-7352, USA
| |
Collapse
|
7
|
Shavlakadze T, Xiong K, Mishra S, McEwen C, Gadi A, Wakai M, Salmon H, Stec MJ, Negron N, Ni M, Wei Y, Atwal GS, Bai Y, Glass DJ. Age-related gene expression signatures from limb skeletal muscles and the diaphragm in mice and rats reveal common and species-specific changes. Skelet Muscle 2023; 13:11. [PMID: 37438807 DOI: 10.1186/s13395-023-00321-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND As a result of aging, skeletal muscle undergoes atrophy and a decrease in function. This age-related skeletal muscle weakness is known as "sarcopenia". Sarcopenia is part of the frailty observed in humans. In order to discover treatments for sarcopenia, it is necessary to determine appropriate preclinical models and the genes and signaling pathways that change with age in these models. METHODS AND RESULTS To understand the changes in gene expression that occur as a result of aging in skeletal muscles, we generated a multi-time-point gene expression signature throughout the lifespan of mice and rats, as these are the most commonly used species in preclinical research and intervention testing. Gastrocnemius, tibialis anterior, soleus, and diaphragm muscles from male and female C57Bl/6J mice and male Sprague Dawley rats were analyzed at ages 6, 12, 18, 21, 24, and 27 months, plus an additional 9-month group was used for rats. More age-related genes were identified in rat skeletal muscles compared with mice; this was consistent with the finding that rat muscles undergo more robust age-related decline in mass. In both species, pathways associated with innate immunity and inflammation linearly increased with age. Pathways linked with extracellular matrix remodeling were also universally downregulated. Interestingly, late downregulated pathways were exclusively found in the rat limb muscles and these were linked to metabolism and mitochondrial respiration; this was not seen in the mouse. CONCLUSIONS This extensive, side-by-side transcriptomic profiling shows that the skeletal muscle in rats is impacted more by aging compared with mice, and the pattern of decline in the rat may be more representative of the human. The observed changes point to potential therapeutic interventions to avoid age-related decline in skeletal muscle function.
Collapse
Affiliation(s)
- Tea Shavlakadze
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Kun Xiong
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Shawn Mishra
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Corissa McEwen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Abhilash Gadi
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Matthew Wakai
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Hunter Salmon
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Michael J Stec
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Nicole Negron
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Min Ni
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Yi Wei
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Gurinder S Atwal
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Yu Bai
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - David J Glass
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA.
| |
Collapse
|
8
|
Ishii MN, Nakashima M, Kamiguchi H, Zach N, Kuboki R, Baba R, Hirakawa T, Suzuki K, Quinton M. Urine titin as a novel biomarker for Duchenne muscular dystrophy. Neuromuscul Disord 2023; 33:302-308. [PMID: 36871413 DOI: 10.1016/j.nmd.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/10/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Duchenne muscular dystrophy (DMD) is the most severe form of muscular dystrophy that is caused by lack of dystrophin, a critical structural protein in skeletal muscle. DMD treatments, and quantitative biomarkers to assess the efficacy of potential treatments, are urgently needed. Previous evidence has shown that titin, a muscle cell protein, is increased in the urine of patients with DMD, suggesting its usefulness as a DMD biomarker. Here, we demonstrated that the elevated titin in urine is directly associated with the lack of dystrophin and urine titin responses to drug treatment. We performed a drug intervention study using mdx mice, a DMD mouse model. We showed that mdx mice, which lack dystrophin due to a mutation in exon 23 of the Dmd gene, have elevated urine titin. Treatment with an exon skipper that targets exon 23 rescued muscle dystrophin level and dramatically decreased urine titin in mdx mice and correlates with dystrophin expression. We also demonstrated that titin levels were significantly increased in the urine of patients with DMD. This suggests that elevated urine titin level might be a hallmark of DMD and a useful pharmacodynamic marker for therapies designed to restore dystrophin levels.
Collapse
Affiliation(s)
- Misawa Niki Ishii
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Tokyo, 251-0012, 26-1, 2-chome, Higashimuraoka, Fujisawa, Kanagawa, Japan.
| | - Masato Nakashima
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Tokyo, 251-0012, 26-1, 2-chome, Higashimuraoka, Fujisawa, Kanagawa, Japan
| | - Hidenori Kamiguchi
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Tokyo, 251-0012, 26-1, 2-chome, Higashimuraoka, Fujisawa, Kanagawa, Japan
| | - Neta Zach
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, US, 350 Massachusetts Ave Cambridge, MA 02139, United Kingdom
| | - Ryosuke Kuboki
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Tokyo, 251-0012, 26-1, 2-chome, Higashimuraoka, Fujisawa, Kanagawa, Japan
| | - Rina Baba
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Tokyo, 251-0012, 26-1, 2-chome, Higashimuraoka, Fujisawa, Kanagawa, Japan
| | - Takeshi Hirakawa
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Tokyo, 251-0012, 26-1, 2-chome, Higashimuraoka, Fujisawa, Kanagawa, Japan
| | - Kazunori Suzuki
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Tokyo, 251-0012, 26-1, 2-chome, Higashimuraoka, Fujisawa, Kanagawa, Japan
| | - Maria Quinton
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, US, 350 Massachusetts Ave Cambridge, MA 02139, United Kingdom
| |
Collapse
|
9
|
Argenziano M, Pota V, Di Paola A, Tortora C, Marrapodi MM, Giliberti G, Roberti D, Pace MC, Rossi F. CB2 Receptor as Emerging Anti-Inflammatory Target in Duchenne Muscular Dystrophy. Int J Mol Sci 2023; 24:3345. [PMID: 36834757 PMCID: PMC9964283 DOI: 10.3390/ijms24043345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a very severe X-linked dystrophinopathy. It is due to a mutation in the DMD gene and causes muscular degeneration in conjunction with several secondary co-morbidities, such cardiomyopathy and respiratory failure. DMD is characterized by a chronic inflammatory state, and corticosteroids represent the main therapy for these patients. To contradict drug-related side effects, there is need for novel and more safe therapeutic strategies. Macrophages are immune cells stringently involved in both physiological and pathological inflammatory processes. They express the CB2 receptor, one of the main elements of the endocannabinoid system, and have been proposed as an anti-inflammatory target in several inflammatory and immune diseases. We observed a lower expression of the CB2 receptor in DMD-associated macrophages, hypothesizing its involvement in the pathogenesis of this pathology. Therefore, we analyzed the effect of JWH-133, a CB2 receptor selective agonist, on DMD-associated primary macrophages. Our study describes the beneficial effect of JWH-133 in counteracting inflammation by inhibiting pro-inflammatory cytokines release and by directing macrophages' phenotype toward the M2 anti-inflammatory one.
Collapse
Affiliation(s)
- Maura Argenziano
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| | - Vincenzo Pota
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
- Centro Clinico NeMO, Via Leonardo Bianchi, 80131 Naples, Italy
| | - Alessandra Di Paola
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| | - Chiara Tortora
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| | - Giulia Giliberti
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| | - Domenico Roberti
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| | - Maria Caterina Pace
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
- Centro Clinico NeMO, Via Leonardo Bianchi, 80131 Naples, Italy
| | - Francesca Rossi
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Via Luigi De Crecchio, 80138 Naples, Italy
| |
Collapse
|
10
|
Schüler SC, Liu Y, Dumontier S, Grandbois M, Le Moal E, Cornelison DDW, Bentzinger CF. Extracellular matrix: Brick and mortar in the skeletal muscle stem cell niche. Front Cell Dev Biol 2022; 10:1056523. [PMID: 36523505 PMCID: PMC9745096 DOI: 10.3389/fcell.2022.1056523] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022] Open
Abstract
The extracellular matrix (ECM) is an interconnected macromolecular scaffold occupying the space between cells. Amongst other functions, the ECM provides structural support to tissues and serves as a microenvironmental niche that conveys regulatory signals to cells. Cell-matrix adhesions, which link the ECM to the cytoskeleton, are dynamic multi-protein complexes containing surface receptors and intracellular effectors that control various downstream pathways. In skeletal muscle, the most abundant tissue of the body, each individual muscle fiber and its associated muscle stem cells (MuSCs) are surrounded by a layer of ECM referred to as the basal lamina. The core scaffold of the basal lamina consists of self-assembling polymeric laminins and a network of collagens that tether proteoglycans, which provide lateral crosslinking, establish collateral associations with cell surface receptors, and serve as a sink and reservoir for growth factors. Skeletal muscle also contains the fibrillar collagenous interstitial ECM that plays an important role in determining tissue elasticity, connects the basal laminae to each other, and contains matrix secreting mesenchymal fibroblast-like cell types and blood vessels. During skeletal muscle regeneration fibroblast-like cell populations expand and contribute to the transitional fibronectin-rich regenerative matrix that instructs angiogenesis and MuSC function. Here, we provide a comprehensive overview of the role of the skeletal muscle ECM in health and disease and outline its role in orchestrating tissue regeneration and MuSC function.
Collapse
Affiliation(s)
- Svenja C. Schüler
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Yuguo Liu
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Simon Dumontier
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michel Grandbois
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Emmeran Le Moal
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - DDW Cornelison
- Division of Biological Sciences Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - C. Florian Bentzinger
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
11
|
Draicchio F, Behrends V, Tillin NA, Hurren NM, Sylow L, Mackenzie R. Involvement of the extracellular matrix and integrin signalling proteins in skeletal muscle glucose uptake. J Physiol 2022; 600:4393-4408. [PMID: 36054466 PMCID: PMC9826115 DOI: 10.1113/jp283039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/03/2022] [Indexed: 01/11/2023] Open
Abstract
Whole-body euglycaemia is partly maintained by two cellular processes that encourage glucose uptake in skeletal muscle, the insulin- and contraction-stimulated pathways, with research suggesting convergence between these two processes. The normal structural integrity of the skeletal muscle requires an intact actin cytoskeleton as well as integrin-associated proteins, and thus those structures are likely fundamental for effective glucose uptake in skeletal muscle. In contrast, excessive extracellular matrix (ECM) remodelling and integrin expression in skeletal muscle may contribute to insulin resistance owing to an increased physical barrier causing reduced nutrient and hormonal flux. This review explores the role of the ECM and the actin cytoskeleton in insulin- and contraction-mediated glucose uptake in skeletal muscle. This is a clinically important area of research given that defects in the structural integrity of the ECM and integrin-associated proteins may contribute to loss of muscle function and decreased glucose uptake in type 2 diabetes.
Collapse
Affiliation(s)
- Fulvia Draicchio
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Volker Behrends
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Neale A. Tillin
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Nicholas M. Hurren
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| | - Lykke Sylow
- Molecular Metabolism in Cancer & Ageing Research GroupDepartment of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Richard Mackenzie
- School of Life and Health SciencesWhitelands CollegeUniversity of RoehamptonLondonUK
| |
Collapse
|
12
|
Insight into the Mammalian Aquaporin Interactome. Int J Mol Sci 2022; 23:ijms23179615. [PMID: 36077012 PMCID: PMC9456110 DOI: 10.3390/ijms23179615] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
Aquaporins (AQPs) are a family of transmembrane water channels expressed in all living organisms. AQPs facilitate osmotically driven water flux across biological membranes and, in some cases, the movement of small molecules (such as glycerol, urea, CO2, NH3, H2O2). Protein-protein interactions play essential roles in protein regulation and function. This review provides a comprehensive overview of the current knowledge of the AQP interactomes and addresses the molecular basis and functional significance of these protein-protein interactions in health and diseases. Targeting AQP interactomes may offer new therapeutic avenues as targeting individual AQPs remains challenging despite intense efforts.
Collapse
|
13
|
Kreko-Pierce T, Pugh JR. Altered Synaptic Transmission and Excitability of Cerebellar Nuclear Neurons in a Mouse Model of Duchenne Muscular Dystrophy. Front Cell Neurosci 2022; 16:926518. [PMID: 35865113 PMCID: PMC9294606 DOI: 10.3389/fncel.2022.926518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is generally regarded as a muscle-wasting disease. However, human patients and animal models of DMD also frequently display non-progressive cognitive deficits and high comorbidity with neurodevelopmental disorders, suggesting impaired central processing. Previous studies have identified the cerebellar circuit, and aberrant inhibitory transmission in Purkinje cells, in particular, as a potential site of dysfunction in the central nervous system (CNS). In this work, we investigate potential dysfunction in the output of the cerebellum, downstream of Purkinje cell (PC) activity. We examined synaptic transmission and firing behavior of excitatory projection neurons of the cerebellar nuclei, the primary output of the cerebellar circuit, in juvenile wild-type and mdx mice, a common mouse model of DMD. Using immunolabeling and electrophysiology, we found a reduced number of PC synaptic contacts, but no change in postsynaptic GABAA receptor expression or clustering in these cells. Furthermore, we found that the replenishment rate of synaptic vesicles in Purkinje terminals is reduced in mdx neurons, suggesting that dysfunction at these synapses may be primarily presynaptic. We also found changes in the excitability of cerebellar nuclear neurons. Specifically, we found greater spontaneous firing but reduced evoked firing from a hyperpolarized baseline in mdx neurons. Analysis of action potential waveforms revealed faster repolarization and greater after-hyperpolarization of evoked action potentials in mdx neurons, suggesting an increased voltage- or calcium- gated potassium current. We did not find evidence of dystrophin protein or messenger RNA (mRNA) expression in wild-type nuclear neurons, suggesting that the changes observed in these cells are likely due to the loss of dystrophin in presynaptic PCs. Together, these data suggest that the loss of dystrophin reduces the dynamic range of synaptic transmission and firing in cerebellar nuclear neurons, potentially disrupting the output of the cerebellar circuit to other brain regions and contributing to cognitive and neurodevelopmental deficits associated with DMD.
Collapse
Affiliation(s)
- Tabita Kreko-Pierce
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jason R. Pugh
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
14
|
Howard ZM, Gomatam CK, Piepho AB, Rafael-Fortney JA. Mineralocorticoid Receptor Signaling in the Inflammatory Skeletal Muscle Microenvironments of Muscular Dystrophy and Acute Injury. Front Pharmacol 2022; 13:942660. [PMID: 35837290 PMCID: PMC9273774 DOI: 10.3389/fphar.2022.942660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a striated muscle degenerative disease due to loss of functional dystrophin protein. Loss of dystrophin results in susceptibility of muscle membranes to damage, leading to muscle degeneration and continuous inflammation and fibrosis that further exacerbate pathology. Long-term glucocorticoid receptor (GR) agonist treatment, the current standard-of-care for DMD, modestly improves prognosis but has serious side effects. The mineralocorticoid receptor (MR), a ligand-activated transcription factor present in many cell types, has been implicated as a therapeutic target for DMD. MR antagonists (MRAs) have fewer side effects than GR agonists and are used clinically for heart failure. MRA efficacy has recently been demonstrated for DMD cardiomyopathy and in preclinical studies, MRAs also alleviate dystrophic skeletal muscle pathology. MRAs lead to improvements in muscle force and membrane stability and reductions in degeneration, inflammation, and fibrosis in dystrophic muscles. Myofiber-specific MR knockout leads to most of these improvements, supporting an MR-dependent mechanism of action, but MRAs additionally stabilize myofiber membranes in an MR-independent manner. Immune cell MR signaling in dystrophic and acutely injured normal muscle contributes to wound healing, and myeloid-specific MR knockout is detrimental. More research is needed to fully elucidate MR signaling in striated muscle microenvironments. Direct comparisons of genomic and non-genomic effects of glucocorticoids and MRAs on skeletal muscles and heart will contribute to optimal temporal use of these drugs, since they compete for binding conserved receptors. Despite the advent of genetic medicines, therapies targeting inflammation and fibrosis will be necessary to achieve optimal patient outcomes.
Collapse
|
15
|
Naito-Matsui Y. Physiological Significance of Animal- and Tissue-specific Sialic Acid Composition. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2036.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Naito-Matsui Y. Physiological Significance of Animal- and Tissue-specific Sialic Acid Composition. TRENDS GLYCOSCI GLYC 2022. [DOI: 10.4052/tigg.2036.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Tokuoka H, Imae R, Nakashima H, Manya H, Masuda C, Hoshino S, Kobayashi K, Lefeber DJ, Matsumoto R, Okada T, Endo T, Kanagawa M, Toda T. CDP-ribitol prodrug treatment ameliorates ISPD-deficient muscular dystrophy mouse model. Nat Commun 2022; 13:1847. [PMID: 35422047 PMCID: PMC9010444 DOI: 10.1038/s41467-022-29473-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/17/2022] [Indexed: 01/05/2023] Open
Abstract
Ribitol-phosphate modification is crucial for the functional maturation of α-dystroglycan. Its dysfunction is associated with muscular dystrophy, cardiomyopathy, and central nervous system abnormalities; however, no effective treatments are currently available for diseases caused by ribitol-phosphate defects. In this study, we demonstrate that prodrug treatments can ameliorate muscular dystrophy caused by defects in isoprenoid synthase domain containing (ISPD), which encodes an enzyme that synthesizes CDP-ribitol, a donor substrate for ribitol-phosphate modification. We generated skeletal muscle-selective Ispd conditional knockout mice, leading to a pathogenic reduction in CDP-ribitol levels, abnormal glycosylation of α-dystroglycan, and severe muscular dystrophy. Adeno-associated virus-mediated gene replacement experiments suggested that the recovery of CDP-ribitol levels rescues the ISPD-deficient pathology. As a prodrug treatment strategy, we developed a series of membrane-permeable CDP-ribitol derivatives, among which tetraacetylated CDP-ribitol ameliorated the dystrophic pathology. In addition, the prodrug successfully rescued abnormal α-dystroglycan glycosylation in patient fibroblasts. Consequently, our findings provide proof-of-concept for supplementation therapy with CDP-ribitol and could accelerate the development of therapeutic agents for muscular dystrophy and other diseases caused by glycosylation defects.
Collapse
Affiliation(s)
- Hideki Tokuoka
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan ,grid.31432.370000 0001 1092 3077Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Rieko Imae
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Hitomi Nakashima
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Hiroshi Manya
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Chiaki Masuda
- grid.410821.e0000 0001 2173 8328Department of Biochemistry and Molecular Biology, Nippon Medical School, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Shunsuke Hoshino
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Kazuhiro Kobayashi
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Dirk J. Lefeber
- grid.10417.330000 0004 0444 9382Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Riki Matsumoto
- grid.31432.370000 0001 1092 3077Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan
| | - Takashi Okada
- grid.26999.3d0000 0001 2151 536XDivision of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639 Japan
| | - Tamao Endo
- grid.417092.9Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015 Japan
| | - Motoi Kanagawa
- grid.31432.370000 0001 1092 3077Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017 Japan ,grid.255464.40000 0001 1011 3808Department of Cell Biology and Molecular Medicine, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 Japan
| | - Tatsushi Toda
- grid.26999.3d0000 0001 2151 536XDepartment of Neurology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|
18
|
Tavasoli M, Lahire S, Sokolenko S, Novorolsky R, Reid SA, Lefsay A, Otley MOC, Uaesoontrachoon K, Rowsell J, Srinivassane S, Praest M, MacKinnon A, Mammoliti MS, Maloney AA, Moraca M, Pedro Fernandez-Murray J, McKenna M, Sinal CJ, Nagaraju K, Robertson GS, Hoffman EP, McMaster CR. Mechanism of action and therapeutic route for a muscular dystrophy caused by a genetic defect in lipid metabolism. Nat Commun 2022; 13:1559. [PMID: 35322809 PMCID: PMC8943011 DOI: 10.1038/s41467-022-29270-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 02/23/2022] [Indexed: 12/01/2022] Open
Abstract
CHKB encodes one of two mammalian choline kinase enzymes that catalyze the first step in the synthesis of the membrane phospholipid phosphatidylcholine. In humans and mice, inactivation of the CHKB gene (Chkb in mice) causes a recessive rostral-to-caudal muscular dystrophy. Using Chkb knockout mice, we reveal that at no stage of the disease is phosphatidylcholine level significantly altered. We observe that in affected muscle a temporal change in lipid metabolism occurs with an initial inability to utilize fatty acids for energy via mitochondrial β-oxidation resulting in shunting of fatty acids into triacyglycerol as the disease progresses. There is a decrease in peroxisome proliferator-activated receptors and target gene expression specific to Chkb−/− affected muscle. Treatment of Chkb−/− myocytes with peroxisome proliferator-activated receptor agonists enables fatty acids to be used for β-oxidation and prevents triacyglyerol accumulation, while simultaneously increasing expression of the compensatory choline kinase alpha (Chka) isoform, preventing muscle cell injury. Mutations in the CHKB gene cause muscular dystrophy. Here, the authors show that in mouse models of the disease changes in lipid metabolism are associated with decreased PPAR signaling, and show PPAR agonists can rescue expression of injury markers in myocytes in vitro.
Collapse
Affiliation(s)
- Mahtab Tavasoli
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Sarah Lahire
- University of Reims Champagne-Ardenne, Reims, France
| | - Stanislav Sokolenko
- Department of Process Engineering & Applied Science, Dalhousie University, Halifax, NS, Canada
| | - Robyn Novorolsky
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Sarah Anne Reid
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Abir Lefsay
- Mass Spectrometry Core Facility, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | - Kanneboyina Nagaraju
- Agada Biosciences Inc., Halifax, NS, Canada.,School of Pharmacy and Pharmaceutical Sciences, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| | - George S Robertson
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.,Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Eric P Hoffman
- Agada Biosciences Inc., Halifax, NS, Canada.,School of Pharmacy and Pharmaceutical Sciences, Binghamton University, State University of New York (SUNY), Binghamton, NY, USA
| | | |
Collapse
|
19
|
Antson H, Tõnissoo T, Shimmi O. The developing wing crossvein of Drosophila melanogaster: a fascinating model for signaling and morphogenesis. Fly (Austin) 2022; 16:118-127. [PMID: 35302430 PMCID: PMC8942417 DOI: 10.1080/19336934.2022.2040316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Drosophila wing has been used as a model for studying tissue growth, morphogenesis and pattern formation. The wing veins of Drosophila are composed of two distinct structures, longitudinal veins and crossveins. Although positional information of longitudinal veins is largely defined in the wing imaginal disc during the larval stage, crossvein primordial cells appear to be naive until the early pupal stage. Here, we first review how wing crossveins have been investigated in the past. Then, the developmental mechanisms underlying crossvein formation are summarized. This review focuses on how a conserved trafficking mechanism of BMP ligands is utilized for crossvein formation, and how various co-factors play roles in sustaining BMP signalling. Recent findings further reveal that crossvein development serves as an excellent model to address how BMP signal and dynamic cellular processes are coupled. This comprehensive review illustrates the uniqueness, scientific value and future perspectives of wing crossvein development as a model.
Collapse
Affiliation(s)
- Hanna Antson
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tambet Tõnissoo
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Osamu Shimmi
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Sharma K, Singhapakdi K, Maertens P. Echoencephalography of encephalopathy due to congenital lymphocytic choriomeningitis virus. J Neuroimaging 2022; 32:412-419. [PMID: 35297514 DOI: 10.1111/jon.12989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Kamal Sharma
- Department of Pediatrics, University of South Alabama, Mobile, Alabama, USA
| | - Kanya Singhapakdi
- Department of Pediatrics, University of South Alabama, Mobile, Alabama, USA
| | - Paul Maertens
- Department of Neurology, Child Neurology Division, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
21
|
Pennington H, Lee J. Lassa virus glycoprotein complex review: insights into its unique fusion machinery. Biosci Rep 2022; 42:BSR20211930. [PMID: 35088070 PMCID: PMC8844875 DOI: 10.1042/bsr20211930] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Lassa virus (LASV), an arenavirus endemic to West Africa, causes Lassa fever-a lethal hemorrhagic fever. Entry of LASV into the host cell is mediated by the glycoprotein complex (GPC), which is the only protein located on the viral surface and comprises three subunits: glycoprotein 1 (GP1), glycoprotein 2 (GP2), and a stable signal peptide (SSP). The LASV GPC is a class one viral fusion protein, akin to those found in viruses such as human immunodeficiency virus (HIV), influenza, Ebola virus (EBOV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These viruses are enveloped and utilize membrane fusion to deliver their genetic material to the host cell. Like other class one fusion proteins, LASV-mediated membrane fusion occurs through an orchestrated sequence of conformational changes in its GPC. The receptor-binding subunit, GP1, first engages with a host cell receptor then undergoes a unique receptor switch upon delivery to the late endosome. The acidic pH and change in receptor result in the dissociation of GP1, exposing the fusion subunit, GP2, such that fusion can occur. These events ultimately lead to the formation of a fusion pore so that the LASV genetic material is released into the host cell. Interestingly, the mature GPC retains its SSP as a third subunit-a feature that is unique to arenaviruses. Additionally, the fusion domain contains two separate fusion peptides, instead of a standard singular fusion peptide. Here, we give a comprehensive review of the LASV GPC components and their unusual features.
Collapse
Affiliation(s)
- Hallie N. Pennington
- Department of Chemistry and Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, MD 20740, U.S.A
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, College of Computer, Mathematics, and Natural Science, University of Maryland College Park, College Park, MD 20740, U.S.A
| |
Collapse
|
22
|
Tsukui R, Yamamoto T, Okamura Y, Kato Y, Shibata N. Fukutin regulates tau phosphorylation and synaptic function: Novel properties of fukutin in neurons. Neuropathology 2022; 42:28-39. [PMID: 35026860 PMCID: PMC9305503 DOI: 10.1111/neup.12797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 12/13/2022]
Abstract
Fukutin, a product of the causative gene of Fukuyama congenital muscular dystrophy (FCMD), is known to be responsible for basement membrane formation. Patients with FCMD exhibit not only muscular dystrophy but also central nervous system abnormalities, including polymicrogyria and neurofibrillary tangles (NFTs) in the cerebral cortex. The formation of NFTs cannot be explained by basement membrane disorganization. To determine the involvement of fukutin in the NFT formation, we performed molecular pathological investigations using autopsied human brains and cultured neurons of a cell line (SH-SY5Y). In human brains, NFTs, identified with an antibody against phosphorylated tau (p-tau), were observed in FCMD patients but not age-matched control subjects and were localized in cortical neurons lacking somatic immunoreactivity for glutamic acid decarboxylase (GAD), a marker of inhibitory neurons. In FCMD brains, NFTs were mainly distributed in lesions of polymicrogyria. Immunofluorescence staining revealed the colocalization of immunoreactivities for p-tau and phosphorylated glycogen synthase kinase-3β (GSK-3β), a potential tau kinase, in the somatic cytoplasm of SH-SY5Y cells; both the immunoreactivities were increased by fukutin knockdown and reduced by fukutin overexpression. Western blot analysis using SH-SY5Y cells revealed consistent results. Enzyme-linked immunosorbent assay (ELISA) confirmed the binding affinity of fukutin to tau and GSK-3β in SH-SY5Y cells. In the human brains, the density of GAD-immunoreactive neurons in the frontal cortex was significantly higher in the FCMD group than in the control group. GAD immunoreactivity on Western blots of SH-SY5Y cells was significantly increased by fukutin knockdown. On immunofluorescence staining, immunoreactivities for fukutin and GAD were colocalized in the somatic cytoplasm of the human brains and SH-SY5Y cells, whereas those for fukutin and synaptophysin were colocalized in the neuropil of the human brains and the cytoplasm of SH-SY5Y cells. ELISA confirmed the binding affinity of fukutin to GAD and synaptophysin in SH-SY5Y cells. The present results provide in vivo and in vitro evidence for novel properties of fukutin as follows: (i) there is an inverse relationship between fukutin expression and GSK-3β/tau phosphorylation in neurons; (ii) fukutin binds to GSK-3β and tau; (iii) tau phosphorylation occurs in non-GAD-immunoreactive neurons in FCMD brains; (iv) neuronal GAD expression is upregulated in the absence of fukutin; and (v) fukutin binds to GAD and synaptophysin in presynaptic vesicles of neurons.
Collapse
Affiliation(s)
- Ryota Tsukui
- Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.,Division of Human Pathology & Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomoko Yamamoto
- Division of Human Pathology & Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan.,Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yukinori Okamura
- Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.,Division of Human Pathology & Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoichiro Kato
- Division of Human Pathology & Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan
| | - Noriyuki Shibata
- Division of Human Pathology & Pathological Neuroscience, Department of Pathology, Tokyo Women's Medical University, Tokyo, Japan.,Department of Surgical Pathology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
23
|
Nikonova E, Mukherjee A, Kamble K, Barz C, Nongthomba U, Spletter ML. Rbfox1 is required for myofibril development and maintaining fiber type-specific isoform expression in Drosophila muscles. Life Sci Alliance 2022; 5:5/4/e202101342. [PMID: 34996845 PMCID: PMC8742874 DOI: 10.26508/lsa.202101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
Protein isoform transitions confer muscle fibers with distinct properties and are regulated by differential transcription and alternative splicing. RNA-binding Fox protein 1 (Rbfox1) can affect both transcript levels and splicing, and is known to contribute to normal muscle development and physiology in vertebrates, although the detailed mechanisms remain obscure. In this study, we report that Rbfox1 contributes to the generation of adult muscle diversity in Drosophila Rbfox1 is differentially expressed among muscle fiber types, and RNAi knockdown causes a hypercontraction phenotype that leads to behavioral and eclosion defects. Misregulation of fiber type-specific gene and splice isoform expression, notably loss of an indirect flight muscle-specific isoform of Troponin-I that is critical for regulating myosin activity, leads to structural defects. We further show that Rbfox1 directly binds the 3'-UTR of target transcripts, regulates the expression level of myogenic transcription factors myocyte enhancer factor 2 and Salm, and both modulates expression of and genetically interacts with the CELF family RNA-binding protein Bruno1 (Bru1). Rbfox1 and Bru1 co-regulate fiber type-specific alternative splicing of structural genes, indicating that regulatory interactions between FOX and CELF family RNA-binding proteins are conserved in fly muscle. Rbfox1 thus affects muscle development by regulating fiber type-specific splicing and expression dynamics of identity genes and structural proteins.
Collapse
Affiliation(s)
- Elena Nikonova
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried-Planegg, Germany
| | - Amartya Mukherjee
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Ketaki Kamble
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Christiane Barz
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried-Planegg, Germany
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Maria L Spletter
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried-Planegg, Germany
| |
Collapse
|
24
|
Molecular and cellular basis of genetically inherited skeletal muscle disorders. Nat Rev Mol Cell Biol 2021; 22:713-732. [PMID: 34257452 PMCID: PMC9686310 DOI: 10.1038/s41580-021-00389-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
Neuromuscular disorders comprise a diverse group of human inborn diseases that arise from defects in the structure and/or function of the muscle tissue - encompassing the muscle cells (myofibres) themselves and their extracellular matrix - or muscle fibre innervation. Since the identification in 1987 of the first genetic lesion associated with a neuromuscular disorder - mutations in dystrophin as an underlying cause of Duchenne muscular dystrophy - the field has made tremendous progress in understanding the genetic basis of these diseases, with pathogenic variants in more than 500 genes now identified as underlying causes of neuromuscular disorders. The subset of neuromuscular disorders that affect skeletal muscle are referred to as myopathies or muscular dystrophies, and are due to variants in genes encoding muscle proteins. Many of these proteins provide structural stability to the myofibres or function in regulating sarcolemmal integrity, whereas others are involved in protein turnover, intracellular trafficking, calcium handling and electrical excitability - processes that ensure myofibre resistance to stress and their primary activity in muscle contraction. In this Review, we discuss how defects in muscle proteins give rise to muscle dysfunction, and ultimately to disease, with a focus on pathologies that are most common, best understood and that provide the most insight into muscle biology.
Collapse
|
25
|
Awano H, Saito Y, Shimizu M, Sekiguchi K, Niijima S, Matsuo M, Maegaki Y, Izumi I, Kikuchi C, Ishibashi M, Okazaki T, Komaki H, Iijima K, Nishino I. FKRP mutations cause congenital muscular dystrophy 1C and limb-girdle muscular dystrophy 2I in Asian patients. J Clin Neurosci 2021; 92:215-221. [PMID: 34509255 DOI: 10.1016/j.jocn.2021.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/18/2021] [Accepted: 08/15/2021] [Indexed: 11/19/2022]
Abstract
Mutation in the fukutin-related protein (FKRP) gene causes alpha-dystroglycanopathies, a group of autosomal recessive disorders associated with defective glycosylated alpha-dystroglycan (α-DG). The disease phenotype shows a broad spectrum, from the most severe congenital form involving brain and eye anomalies to milder limb-girdle form. FKRP-related alpha-dystroglycanopathies are common in European countries. However, a limited number of patients have been reported in Asian countries. Here, we presented the clinical, pathological, and genetic findings of nine patients with FKRP mutations identified at a single muscle repository center in Japan. Three and six patients were diagnosed with congenital muscular dystrophy type 1C and limb-girdle muscular dystrophy 2I, respectively. None of our Asian patients showed the most severe form of alpha-dystroglycanopathy. While all patients showed a reduction in glycosylated α-DG levels, to variable degrees, these levels did not correlate to clinical severity. Fifteen distinct pathogenic mutations were identified in our cohort, including five novel mutations. Unlike in the populations belonging to European countries, no common mutation was found in our cohort.
Collapse
Affiliation(s)
- Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo, Kobe, Hyogo 650-0017, Japan.
| | - Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi-cho, Kodaira, Tokyo 187-8502, Japan
| | - Mamiko Shimizu
- Shimizu Children's Clinic, 3-152 Komaki, Komaki, Aichi 485-0041, Japan
| | - Kenji Sekiguchi
- Division of Neurology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo, Kobe, Hyogo 650-0017, Japan
| | - Shinichi Niijima
- Department of Pediatrics, Juntendo University, Nerima Hospital, 3-1-10 Takanodai, Nerima, Tokyo 177-8521, Japan
| | - Masafumi Matsuo
- Research Center for Locomotion Biology, Kobe Gakuin Univesity, 518 Arise, Ikawadani-cho, Nishi, Kobe, Hyogo 651-2180, Japan
| | - Yoshihiro Maegaki
- Division of Child Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8504, Japan
| | - Isho Izumi
- Ibaraki Children's Hospital, 3-3-1 Futabadai, Mito, Ibaraki 311-4145, Japan
| | - Chiya Kikuchi
- Department of Pediatrics, National Hospital Organization Ehime Medical Center, 366 Yokogawara, Toon, Ehime 791-0281, Japan
| | - Masato Ishibashi
- Department of Neurology, Faculty of Medicine, Oita University, 1-1 Hasamamachi-idaigaoka, Yufu, Oita 879-5593, Japan
| | - Tetsuya Okazaki
- Department of Clinical Genetics, Tottori University Hospital, 36-1 Nishi-cho, Yonago, Tottori 683-8504, Japan
| | - Hirofumi Komaki
- Translational Medical Center, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi-cho, Kodaira, Tokyo 187-8502, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo, Kobe, Hyogo 650-0017, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawa-Higashi-cho, Kodaira, Tokyo 187-8502, Japan
| |
Collapse
|
26
|
Dong X, Hui T, Chen J, Yu Z, Ren D, Zou S, Wang S, Fei E, Jiao H, Lai X. Metformin Increases Sarcolemma Integrity and Ameliorates Neuromuscular Deficits in a Murine Model of Duchenne Muscular Dystrophy. Front Physiol 2021; 12:642908. [PMID: 34012406 PMCID: PMC8126699 DOI: 10.3389/fphys.2021.642908] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disease characterized by progressive muscle weakness and wasting. Stimulation of AMP-activated protein kinase (AMPK) has been demonstrated to increase muscle function and protect muscle against damage in dystrophic mice. Metformin is a widely used anti-hyperglycemic drug and has been shown to be an indirect activator of AMPK. Based on these findings, we sought to determine the effects of metformin on neuromuscular deficits in mdx murine model of DMD. In this study, we found metformin treatment increased muscle strength accompanied by elevated twitch and tetanic force of tibialis anterior (TA) muscle in mdx mice. Immunofluorescence and electron microscopy analysis of metformin-treated mdx muscles revealed an improvement in muscle fiber membrane integrity. Electrophysiological studies showed the amplitude of miniature endplate potentials (mEPP) was increased in treated mice, indicating metformin also improved neuromuscular transmission of the mdx mice. Analysis of mRNA and protein levels from muscles of treated mice showed an upregulation of AMPK phosphorylation and dystrophin-glycoprotein complex protein expression. In conclusion, metformin can indeed improve muscle function and diminish neuromuscular deficits in mdx mice, suggesting its potential use as a therapeutic drug in DMD patients.
Collapse
Affiliation(s)
- Xia Dong
- School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China
| | - Tiankun Hui
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Jie Chen
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Zheng Yu
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China
| | - Dongyan Ren
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Suqi Zou
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Shunqi Wang
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Erkang Fei
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Huifeng Jiao
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Xinsheng Lai
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Decoding DMD transcriptional networks using single-nucleus RNA sequencing. Proc Natl Acad Sci U S A 2020; 117:32192-32194. [PMID: 33268493 DOI: 10.1073/pnas.2022205117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Chemello F, Wang Z, Li H, McAnally JR, Liu N, Bassel-Duby R, Olson EN. Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing. Proc Natl Acad Sci U S A 2020; 117:29691-29701. [PMID: 33148801 PMCID: PMC7703557 DOI: 10.1073/pnas.2018391117] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle disorder characterized by cycles of degeneration and regeneration of multinucleated myofibers and pathological activation of a variety of other muscle-associated cell types. The extent to which different nuclei within the shared cytoplasm of a myofiber may display transcriptional diversity and whether individual nuclei within a multinucleated myofiber might respond differentially to DMD pathogenesis is unknown. Similarly, the potential transcriptional diversity among nonmuscle cell types within dystrophic muscle has not been explored. Here, we describe the creation of a mouse model of DMD caused by deletion of exon 51 of the dystrophin gene, which represents a prevalent disease-causing mutation in humans. To understand the transcriptional abnormalities and heterogeneity associated with myofiber nuclei, as well as other mononucleated cell types that contribute to the muscle pathology associated with DMD, we performed single-nucleus transcriptomics of skeletal muscle of mice with dystrophin exon 51 deletion. Our results reveal distinctive and previously unrecognized myonuclear subtypes within dystrophic myofibers and uncover degenerative and regenerative transcriptional pathways underlying DMD pathogenesis. Our findings provide insights into the molecular underpinnings of DMD, controlled by the transcriptional activity of different types of muscle and nonmuscle nuclei.
Collapse
Affiliation(s)
- Francesco Chemello
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zhaoning Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hui Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - John R McAnally
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
29
|
Morpholino Oligomer-Induced Dystrophin Isoforms to Map the Functional Domains in the Dystrophin Protein. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:263-272. [PMID: 33230432 PMCID: PMC7516190 DOI: 10.1016/j.omtn.2020.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
Dystrophin plays a crucial role in maintaining sarcolemma stability during muscle contractions, and mutations that prevent the expression of a functional protein cause Duchenne muscular dystrophy (DMD). Antisense oligonucleotide-mediated manipulation of pre-messenger RNA splicing to bypass Duchenne-causing mutations and restore functional dystrophin expression has entered the clinic for the most common DMD mutations. The rationale of "exon skipping" is based upon genotype-phenotype correlations observed in Becker muscular dystrophy, a milder allelic disorder generally characterized by in-frame deletions and internally truncated but semi-functional dystrophin isoforms. However, there is a lack of genotype-phenotype correlations downstream of DMD exon 55, as deletions in this region are rare and most single exon deletions would disrupt the reading frame. Consequently, the amenability of mutations in this region of the DMD gene to exon skipping strategies remains unknown. Here, we induced "Becker muscular dystrophy-like" in-frame dystrophin isoforms in vivo by intraperitoneal injection of peptide-conjugated phosphorodiamidate morpholino oligomers targeting selected exons. The dystrophin isoform encoded by the transcript lacking exons 56+57 appears to be more functional than that encoded by the 58+59-deleted transcript, as determined by higher dystrophin expression, stabilized β-dystroglycan, and less severe dystrophic pathology, indicating some potential for the strategy to address Duchenne-causing mutations affecting these exons.
Collapse
|
30
|
Alfaro GF, Novak TE, Rodning SP, Moisá SJ. Preconditioning beef cattle for long-duration transportation stress with rumen-protected methionine supplementation: A nutrigenetics study. PLoS One 2020; 15:e0235481. [PMID: 32614880 PMCID: PMC7332072 DOI: 10.1371/journal.pone.0235481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/16/2020] [Indexed: 01/03/2023] Open
Abstract
In general, beef cattle long-distance transportation from cow-calf operations to feedlots or from feedlots to abattoirs is a common situation in the beef industry. The aim of this study was to determine the effect of rumen-protected methionine (RPM) supplementation on a proposed gene network for muscle fatigue, creatine synthesis (CKM), and reactive oxygen species (ROS) metabolism after a transportation simulation in a test track. Angus × Simmental heifers (n = 18) were stratified by body weight (408 ± 64 kg; BW) and randomly assigned to dietary treatments: 1) control diet (CTRL) or 2) control diet + 8 gr/hd/day of top-dressed rumen-protected methionine (RPM). After an adaptation period to Calan gates, animals received the mentioned dietary treatment consisting of Bermuda hay ad libitum and a soy hulls and corn gluten feed based supplement. After 45 days of supplementation, animals were loaded onto a trailer and transported for 22 hours (long-term transportation). Longissimus muscle biopsies, BW and blood samples were obtained on day 0 (Baseline), 43 (Pre-transport; PRET), and 46 (Post-transport; POST). Heifers' average daily gain did not differ between baseline and PRET. Control heifer's shrink was 10% of BW while RPM heifers shrink was 8%. Serum cortisol decreased, and glucose and creatine kinase levels increased after transportation, but no differences were observed between treatments. Messenger RNA was extracted from skeletal muscle tissue and gene expression analysis was performed by RT-qPCR. Results showed that AHCY and DNMT3A (DNA methylation), SSPN (Sarcoglycan complex), and SOD2 (Oxidative Stress-ROS) were upregulated in CTRL between baseline and PRET and, decreased between pre and POST while they remained constant for RPM. Furthermore, CKM was not affected by treatments. In conclusion, RPM supplementation may affect ROS production and enhance DNA hypermethylation, after a long-term transportation.
Collapse
Affiliation(s)
- Gastón F. Alfaro
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Taylor E. Novak
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Soren P. Rodning
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Sonia J. Moisá
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| |
Collapse
|
31
|
Dietinger V, García de Durango CR, Wiechmann S, Boos SL, Michl M, Neumann J, Hermeking H, Kuster B, Jung P. Wnt-driven LARGE2 mediates laminin-adhesive O-glycosylation in human colonic epithelial cells and colorectal cancer. Cell Commun Signal 2020; 18:102. [PMID: 32586342 PMCID: PMC7315491 DOI: 10.1186/s12964-020-00561-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Wnt signaling drives epithelial self-renewal and disease progression in human colonic epithelium and colorectal cancer (CRC). Characterization of Wnt effector pathways is key for our understanding of these processes and for developing therapeutic strategies that aim to preserve tissue homeostasis. O-glycosylated cell surface proteins, such as α-dystroglycan (α-DG), mediate cellular adhesion to extracellular matrix components. We revealed a Wnt/LARGE2/α-DG signaling pathway which triggers this mode of colonic epithelial cell-to-matrix interaction in health and disease. METHODS Next generation sequencing upon shRNA-mediated silencing of adenomatous polyposis coli (APC), and quantitative chromatin immunoprecipitation (qChIP) combined with CRISPR/Cas9-mediated transcription factor binding site targeting characterized LARGE2 as a Wnt target gene. Quantitative mass spectrometry analysis on size-fractionated, glycoprotein-enriched samples revealed functional O-glycosylation of α-DG by LARGE2 in CRC. The biology of Wnt/LARGE2/α-DG signaling was assessed by affinity-based glycoprotein enrichment, laminin overlay, CRC-to-endothelial cell adhesion, and transwell migration assays. Experiments on primary tissue, human colonic (tumor) organoids, and bioinformatic analysis of CRC cohort data confirmed the biological relevance of our findings. RESULTS Next generation sequencing identified the LARGE2 O-glycosyltransferase encoding gene as differentially expressed upon Wnt activation in CRC. Silencing of APC, conditional expression of oncogenic β-catenin and endogenous β-catenin-sequestration affected LARGE2 expression. The first intron of LARGE2 contained a CTTTGATC motif essential for Wnt-driven LARGE2 expression, showed occupation by the Wnt transcription factor TCF7L2, and Wnt activation triggered LARGE2-dependent α-DG O-glycosylation and laminin-adhesion in CRC cells. Colonic crypts and organoids expressed LARGE2 mainly in stem cell-enriched subpopulations. In human adenoma organoids, activity of the LARGE2/α-DG axis was Wnt-dose dependent. LARGE2 expression was elevated in CRC and correlated with the Wnt-driven molecular subtype and intestinal stem cell features. O-glycosylated α-DG represented a Wnt/LARGE2-dependent feature in CRC cell lines and patient-derived tumor organoids. Modulation of LARGE2/α-DG signaling affected CRC cell migration through laminin-coated membranes and adhesion to endothelial cells. CONCLUSIONS We conclude that the LARGE2 O-glycosyltransferase-encoding gene represents a direct target of canonical Wnt signaling and mediates functional O-glycosylation of α-dystroglycan (α-DG) in human colonic stem/progenitor cells and Wnt-driven CRC. Our work implies that aberrant Wnt activation augments CRC cell-matrix adhesion by increasing LARGE/α-DG-mediated laminin-adhesiveness. Video abstract.
Collapse
Affiliation(s)
- Vanessa Dietinger
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Cira R García de Durango
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Svenja Wiechmann
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Sophie L Boos
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marlies Michl
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jens Neumann
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Heiko Hermeking
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bernhard Kuster
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany.,Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany.,Bavarian Center for Biomolecular Mass Spectrometry, Freising, Germany
| | - Peter Jung
- German Cancer Research Center (DKFZ), Heidelberg, Germany. .,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany. .,DKTK Research Group, Oncogenic Signaling Pathways of Colorectal Cancer, Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany. .,DKTK AG Oncogenic Signal Transduction Pathways in Colorectal/Pancreatic Cancer, Deutsches Krebsforschungszentrum (DKFZ) Heidelberg, DKTK Partnerstandort München, Institut für Pathologie der Ludwig-Maximilians-Universität (LMU) München, Thalkirchner Straße 36, D-80337, Munich, Germany.
| |
Collapse
|
32
|
Rodgers BD, Bishaw Y, Kagel D, Ramos JN, Maricelli JW. Micro-dystrophin Gene Therapy Partially Enhances Exercise Capacity in Older Adult mdx Mice. Mol Ther Methods Clin Dev 2020; 17:122-132. [PMID: 31909085 PMCID: PMC6939027 DOI: 10.1016/j.omtm.2019.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/20/2019] [Indexed: 01/09/2023]
Abstract
Micro-dystrophin (μDys) gene therapeutics can improve striated muscle structure and function in different animal models of Duchenne muscular dystrophy. Most studies, however, used young mdx mice that lack a pronounced dystrophic phenotype, short treatment periods, and limited muscle function tests. We, therefore, determined the relative efficacy of two previously described μDys gene therapeutics (rAAV6:μDysH3 and rAAV6:μDys5) in 6-month-old mdx mice using a 6-month treatment regimen and forced exercise. Forelimb and hindlimb grip strength, metabolic rate (VO2 max), running efficiency (energy expenditure), and serum creatine kinase levels similarly improved in mdx mice treated with either vector. Both vectors produced nearly identical dose-responses in all assays. They also partially prevented the degenerative effects of repeated high-intensity exercise on muscle histology, although none of the metrics examined was restored to normal wild-type levels. Moreover, neither vector had any consistent effect on respiration while exercising. These data together suggest that, although μDys gene therapy can improve isolated and systemic muscle function, it may be only partially effective when dystrophinopathies are advanced or when muscle structure is significantly challenged, as with high-intensity exercise. This further suggests that restoring muscle function to near-normal levels will likely require ancillary or combinatorial treatments capable of enhancing muscle strength.
Collapse
Affiliation(s)
- Buel D. Rodgers
- School of Molecular Biosciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| | - Yemeserach Bishaw
- School of Molecular Biosciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| | - Denali Kagel
- School of Molecular Biosciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| | - Julian N. Ramos
- Department of Neurology, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, WA 98195, USA
- Molecular and Cellular Biology Program, University of Washington School of Medicine, Seattle, WA, USA
| | - Joseph W. Maricelli
- School of Molecular Biosciences, Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
33
|
Kuwabara N, Imae R, Manya H, Tanaka T, Mizuno M, Tsumoto H, Kanagawa M, Kobayashi K, Toda T, Senda T, Endo T, Kato R. Crystal structures of fukutin-related protein (FKRP), a ribitol-phosphate transferase related to muscular dystrophy. Nat Commun 2020; 11:303. [PMID: 31949166 PMCID: PMC6965139 DOI: 10.1038/s41467-019-14220-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
α-Dystroglycan (α-DG) is a highly-glycosylated surface membrane protein. Defects in the O-mannosyl glycan of α-DG cause dystroglycanopathy, a group of congenital muscular dystrophies. The core M3 O-mannosyl glycan contains tandem ribitol-phosphate (RboP), a characteristic feature first found in mammals. Fukutin and fukutin-related protein (FKRP), whose mutated genes underlie dystroglycanopathy, sequentially transfer RboP from cytidine diphosphate-ribitol (CDP-Rbo) to form a tandem RboP unit in the core M3 glycan. Here, we report a series of crystal structures of FKRP with and without donor (CDP-Rbo) and/or acceptor [RboP-(phospho-)core M3 peptide] substrates. FKRP has N-terminal stem and C-terminal catalytic domains, and forms a tetramer both in crystal and in solution. In the acceptor complex, the phosphate group of RboP is recognized by the catalytic domain of one subunit, and a phosphate group on O-mannose is recognized by the stem domain of another subunit. Structure-based functional studies confirmed that the dimeric structure is essential for FKRP enzymatic activity. Fukutin-related protein (FKRP) catalyses the addition of ribitol-phosphate (RboP) to the O-mannosyl glycan of α-dystroglycan and mutations in FKRP cause dystroglycanopathy. Here the authors provide insights into its oligomerization and recognition of the substrates, CDP-Rbo and the RboP-(phospho-)core M3 glycan, by determining the crystal structures of human FKRP.
Collapse
Affiliation(s)
- Naoyuki Kuwabara
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan
| | - Rieko Imae
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Tomohiro Tanaka
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Mamoru Mizuno
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, Itabashi-ku, Tokyo, 173-0003, Japan
| | - Hiroki Tsumoto
- Proteome Research, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Motoi Kanagawa
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kazuhiro Kobayashi
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Tatsushi Toda
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.,Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan.,School of High Energy Accelerator Science, SOKENDAI, Tsukuba, Ibaraki, 305-0801, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Ryuichi Kato
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan. .,School of High Energy Accelerator Science, SOKENDAI, Tsukuba, Ibaraki, 305-0801, Japan.
| |
Collapse
|
34
|
Schiller S, Rosewich H, Grünewald S, Gärtner J. Inborn errors of metabolism leading to neuronal migration defects. J Inherit Metab Dis 2020; 43:145-155. [PMID: 31747049 DOI: 10.1002/jimd.12194] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022]
Abstract
The development and organisation of the human brain start in the embryonic stage and is a highly complex orchestrated process. It depends on series of cellular mechanisms that are precisely regulated by multiple proteins, signalling pathways and non-protein-coding genes. A crucial process during cerebral cortex development is the migration of nascent neuronal cells to their appropriate positions and their associated differentiation into layer-specific neurons. Neuronal migration defects (NMD) comprise a heterogeneous group of neurodevelopmental disorders including monogenetic disorders and residual syndromes due to damaging factors during prenatal development like infections, maternal diabetes mellitus or phenylketonuria, trauma, and drug use. Multifactorial causes are also possible. Classification into lissencephaly, polymicrogyria, schizencephaly, and neuronal heterotopia is based on the visible morphologic cortex anomalies. Characteristic clinical features of NMDs are severe psychomotor developmental delay, severe intellectual disability, intractable epilepsy, and dysmorphisms. Neurometabolic disorders only form a small subgroup within the large group of NMDs. The prototypes are peroxisomal biogenesis disorders, peroxisomal ß-oxidation defects and congenital disorders of O-glycosylation. The rapid evolution of biotechnology has resulted in an ongoing identification of metabolic and non-metabolic disease genes for NMDs. Nevertheless, we are far away from understanding the specific role of cortical genes and metabolites on spatial and temporal regulation of human cortex development and associated malformations. This limited understanding of the pathogenesis hinders the attempt for therapeutic approaches. In this article, we provide an overview of the most important cortical malformations and potential underlying neurometabolic disorders.
Collapse
Affiliation(s)
- Stina Schiller
- Department of Paediatrics and Adolescent Medicine, University Medical Centre Göttingen, Georg August University Göttingen, Göttingen, Germany
| | - Hendrik Rosewich
- Department of Paediatrics and Adolescent Medicine, University Medical Centre Göttingen, Georg August University Göttingen, Göttingen, Germany
| | - Stephanie Grünewald
- Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, London, UK
| | - Jutta Gärtner
- Department of Paediatrics and Adolescent Medicine, University Medical Centre Göttingen, Georg August University Göttingen, Göttingen, Germany
| |
Collapse
|
35
|
Kanagawa M, Toda T. Muscular Dystrophy with Ribitol-Phosphate Deficiency: A Novel Post-Translational Mechanism in Dystroglycanopathy. J Neuromuscul Dis 2019; 4:259-267. [PMID: 29081423 PMCID: PMC5701763 DOI: 10.3233/jnd-170255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Muscular dystrophy is a group of genetic disorders characterized by progressive muscle weakness. In the early 2000s, a new classification of muscular dystrophy, dystroglycanopathy, was established. Dystroglycanopathy often associates with abnormalities in the central nervous system. Currently, at least eighteen genes have been identified that are responsible for dystroglycanopathy, and despite its genetic heterogeneity, its common biochemical feature is abnormal glycosylation of alpha-dystroglycan. Abnormal glycosylation of alpha-dystroglycan reduces its binding activities to ligand proteins, including laminins. In just the last few years, remarkable progress has been made in determining the sugar chain structures and gene functions associated with dystroglycanopathy. The normal sugar chain contains tandem structures of ribitol-phosphate, a pentose alcohol that was previously unknown in humans. The dystroglycanopathy genes fukutin, fukutin-related protein (FKRP), and isoprenoid synthase domain-containing protein (ISPD) encode essential enzymes for the synthesis of this structure: fukutin and FKRP transfer ribitol-phosphate onto sugar chains of alpha-dystroglycan, and ISPD synthesizes CDP-ribitol, a donor substrate for fukutin and FKRP. These findings resolved long-standing questions and established a disease subgroup that is ribitol-phosphate deficient, which describes a large population of dystroglycanopathy patients. Here, we review the history of dystroglycanopathy, the properties of the sugar chain structure of alpha-dystroglycan, dystroglycanopathy gene functions, and therapeutic strategies.
Collapse
Affiliation(s)
- Motoi Kanagawa
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan.,Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
36
|
Cloutier G, Sallenbach-Morrissette A, Beaulieu JF. Non-integrin laminin receptors in epithelia. Tissue Cell 2019; 56:71-78. [DOI: 10.1016/j.tice.2018.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
|
37
|
Souttou S, Benabdesselam R, Siqueiros-Marquez L, Sifi M, Deliba M, Vacca O, Charles-Messance H, Vaillend C, Rendon A, Guillonneau X, Dorbani-Mamine L. Expression and localization of dystrophins and β-dystroglycan in the hypothalamic supraoptic nuclei of rat from birth to adulthood. Acta Histochem 2019; 121:218-226. [PMID: 30595391 DOI: 10.1016/j.acthis.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/19/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Dystrophins (Dps) are the sub-membranous proteins that work via the dystrophin-associated proteins complex, which comprises β-dystroglycan (β-DG), a cell surface receptor for extracellular matrix. Recently, we have revealed β-DG decrease and central function impairment of supraoptic nucleus (SON) in Dp71 deficient adult mice, opening the question on the profiles of Dps and β-DG during SON development. At birth and the age of 10, 20 and 60 days, we examined the expression by RT-PCR and Western-blotting, and the distribution by immunohistochemistry of Dps and β-DG. Also, we analyzed, by immunohistochemistry and Western-blotting, the neuropeptide, arginine vasopressin (AVP), in the SON at the different ages. At birth, Dp71 and to a lesser extends, Dp140 and Dp427, and also β-DG are revealed in the SON. They are localized in the magnocellular neurons (MCNs), astrocytes and vessels. From birth to adulthood, the AVP raise in the SON coincides with the progressive increase of Dp71 level while the level of Dp140 and Dp427 increased only at D20, D10 post-natal development, respectively, and β-DG expression did not change. Moreover, the location of Dps or/and β-DG in the cell compartments was modified during development: at D10, Dps appeared in the astrocytes end-feet surrounding MCNs, and at D20, Dps and β-DG codistributed in the astrocytes end-feet, surrounding MCNs and vessels. Such a distribution marks the first steps of post-natal SON development and may be considered essential in the establishment of structural plasticity mechanisms in SON, where astrocyte end-feet, vessels, magnocellular neurons, are physiologically associated. The disappearance of β-DG in the MCNs nucleus marks the adulthood SON and suggests that the complex of Dps associating β-DG is required for the nucleoskeleton function in the post-natal development.
Collapse
|
38
|
Sudo A, Kanagawa M, Kondo M, Ito C, Kobayashi K, Endo M, Minami Y, Aiba A, Toda T. Temporal requirement of dystroglycan glycosylation during brain development and rescue of severe cortical dysplasia via gene delivery in the fetal stage. Hum Mol Genet 2019; 27:1174-1185. [PMID: 29360985 PMCID: PMC6159531 DOI: 10.1093/hmg/ddy032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 11/13/2022] Open
Abstract
Congenital muscular dystrophies (CMDs) are characterized by progressive weakness and degeneration of skeletal muscle. In several forms of CMD, abnormal glycosylation of α-dystroglycan (α-DG) results in conditions collectively known as dystroglycanopathies, which are associated with central nervous system involvement. We recently demonstrated that fukutin, the gene responsible for Fukuyama congenital muscular dystrophy, encodes the ribitol-phosphate transferase essential for dystroglycan function. Brain pathology in patients with dystroglycanopathy typically includes cobblestone lissencephaly, mental retardation, and refractory epilepsy; however, some patients exhibit average intelligence, with few or almost no structural defects. Currently, there is no effective treatment for dystroglycanopathy, and the mechanisms underlying the generation of this broad clinical spectrum remain unknown. Here, we analysed four distinct mouse models of dystroglycanopathy: two brain-selective fukutin conditional knockout strains (neuronal stem cell-selective Nestin-fukutin-cKO and forebrain-selective Emx1-fukutin-cKO), a FukutinHp strain with the founder retrotransposal insertion in the fukutin gene, and a spontaneous Large-mutant Largemyd strain. These models exhibit variations in the severity of brain pathology, replicating the clinical heterogeneity of dystroglycanopathy. Immunofluorescence analysis of the developing cortex suggested that residual glycosylation of α-DG at embryonic day 13.5 (E13.5), when cortical dysplasia is not yet apparent, may contribute to subsequent phenotypic heterogeneity. Surprisingly, delivery of fukutin or Large into the brains of mice at E12.5 prevented severe brain malformation in Emx1-fukutin-cKO and Largemyd/myd mice, respectively. These findings indicate that spatiotemporal persistence of functionally glycosylated α-DG may be crucial for brain development and modulation of glycosylation during the fetal stage could be a potential therapeutic strategy for dystroglycanopathy.
Collapse
Affiliation(s)
- Atsushi Sudo
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Motoi Kanagawa
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Mai Kondo
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Chiyomi Ito
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kazuhiro Kobayashi
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Mitsuharu Endo
- Division of Cell Physiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.,Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
39
|
Loureiro ME, D'Antuono A, López N. Virus⁻Host Interactions Involved in Lassa Virus Entry and Genome Replication. Pathogens 2019; 8:pathogens8010017. [PMID: 30699976 PMCID: PMC6470645 DOI: 10.3390/pathogens8010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 01/08/2023] Open
Abstract
Lassa virus (LASV) is the causative agent of Lassa fever, a human hemorrhagic disease associated with high mortality and morbidity rates, particularly prevalent in West Africa. Over the past few years, a significant amount of novel information has been provided on cellular factors that are determinant elements playing a role in arenavirus multiplication. In this review, we focus on host proteins that intersect with the initial steps of the LASV replication cycle: virus entry and genome replication. A better understanding of relevant virus⁻host interactions essential for sustaining these critical steps may help to identify possible targets for the rational design of novel therapeutic approaches against LASV and other arenaviruses that cause severe human disease.
Collapse
Affiliation(s)
- María Eugenia Loureiro
- Centro de Virología Animal (CEVAN), CONICET-SENASA, Av Sir Alexander Fleming 1653, Martínez, Provincia de Buenos Aires B1640CSI, Argentina.
| | - Alejandra D'Antuono
- Centro de Virología Animal (CEVAN), CONICET-SENASA, Av Sir Alexander Fleming 1653, Martínez, Provincia de Buenos Aires B1640CSI, Argentina.
| | - Nora López
- Centro de Virología Animal (CEVAN), CONICET-SENASA, Av Sir Alexander Fleming 1653, Martínez, Provincia de Buenos Aires B1640CSI, Argentina.
| |
Collapse
|
40
|
Grarup N, Moltke I, Andersen MK, Bjerregaard P, Larsen CVL, Dahl-Petersen IK, Jørsboe E, Tiwari HK, Hopkins SE, Wiener HW, Boyer BB, Linneberg A, Pedersen O, Jørgensen ME, Albrechtsen A, Hansen T. Identification of novel high-impact recessively inherited type 2 diabetes risk variants in the Greenlandic population. Diabetologia 2018; 61:2005-2015. [PMID: 29926116 PMCID: PMC6096637 DOI: 10.1007/s00125-018-4659-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS In a recent study using a standard additive genetic model, we identified a TBC1D4 loss-of-function variant with a large recessive impact on risk of type 2 diabetes in Greenlanders. The aim of the current study was to identify additional genetic variation underlying type 2 diabetes using a recessive genetic model, thereby increasing the power to detect variants with recessive effects. METHODS We investigated three cohorts of Greenlanders (B99, n = 1401; IHIT, n = 3115; and BBH, n = 547), which were genotyped using Illumina MetaboChip. Of the 4674 genotyped individuals passing quality control, 4648 had phenotype data available, and type 2 diabetes association analyses were performed for 317 individuals with type 2 diabetes and 2631 participants with normal glucose tolerance. Statistical association analyses were performed using a linear mixed model. RESULTS Using a recessive genetic model, we identified two novel loci associated with type 2 diabetes in Greenlanders, namely rs870992 in ITGA1 on chromosome 5 (OR 2.79, p = 1.8 × 10-8), and rs16993330 upstream of LARGE1 on chromosome 22 (OR 3.52, p = 1.3 × 10-7). The LARGE1 variant did not reach the conventional threshold for genome-wide significance (p < 5 × 10-8) but did withstand a study-wide Bonferroni-corrected significance threshold. Both variants were common in Greenlanders, with minor allele frequencies of 23% and 16%, respectively, and were estimated to have large recessive effects on risk of type 2 diabetes in Greenlanders, compared with additively inherited variants previously observed in European populations. CONCLUSIONS/INTERPRETATION We demonstrate the value of using a recessive genetic model in a historically small and isolated population to identify genetic risk variants. Our findings give new insights into the genetic architecture of type 2 diabetes, and further support the existence of high-effect genetic risk factors of potential clinical relevance, particularly in isolated populations. DATA AVAILABILITY The Greenlandic MetaboChip-genotype data are available at European Genome-Phenome Archive (EGA; https://ega-archive.org/ ) under the accession EGAS00001002641.
Collapse
Affiliation(s)
- Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Ida Moltke
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Mette K Andersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Peter Bjerregaard
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
- Greenland Centre for Health Research, University of Greenland, Nuuk, Greenland
| | - Christina V L Larsen
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
- Greenland Centre for Health Research, University of Greenland, Nuuk, Greenland
| | - Inger K Dahl-Petersen
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Emil Jørsboe
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Scarlett E Hopkins
- Center for Alaska Native Health Research, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Howard W Wiener
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bert B Boyer
- Center for Alaska Native Health Research, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Allan Linneberg
- Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Marit E Jørgensen
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
- Greenland Centre for Health Research, University of Greenland, Nuuk, Greenland
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Anders Albrechtsen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark.
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
- Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
41
|
Detection of variants in dystroglycanopathy-associated genes through the application of targeted whole-exome sequencing analysis to a large cohort of patients with unexplained limb-girdle muscle weakness. Skelet Muscle 2018; 8:23. [PMID: 30060766 PMCID: PMC6066920 DOI: 10.1186/s13395-018-0170-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022] Open
Abstract
Background Dystroglycanopathies are a clinically and genetically heterogeneous group of disorders that are typically characterised by limb-girdle muscle weakness. Mutations in 18 different genes have been associated with dystroglycanopathies, the encoded proteins of which typically modulate the binding of α-dystroglycan to extracellular matrix ligands by altering its glycosylation. This results in a disruption of the structural integrity of the myocyte, ultimately leading to muscle degeneration. Methods Deep phenotypic information was gathered using the PhenoTips online software for 1001 patients with unexplained limb-girdle muscle weakness from 43 different centres across 21 European and Middle Eastern countries. Whole-exome sequencing with at least 250 ng DNA was completed using an Illumina exome capture and a 38 Mb baited target. Genes known to be associated with dystroglycanopathies were analysed for disease-causing variants. Results Suspected pathogenic variants were detected in DPM3, ISPD, POMT1 and FKTN in one patient each, in POMK in two patients, in GMPPB in three patients, in FKRP in eight patients and in POMT2 in ten patients. This indicated a frequency of 2.7% for the disease group within the cohort of 1001 patients with unexplained limb-girdle muscle weakness. The phenotypes of the 27 patients were highly variable, yet with a fundamental presentation of proximal muscle weakness and elevated serum creatine kinase. Conclusions Overall, we have identified 27 patients with suspected pathogenic variants in dystroglycanopathy-associated genes. We present evidence for the genetic and phenotypic diversity of the dystroglycanopathies as a disease group, while also highlighting the advantage of incorporating next-generation sequencing into the diagnostic pathway of rare diseases. Electronic supplementary material The online version of this article (10.1186/s13395-018-0170-1) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
LARGE, an intellectual disability-associated protein, regulates AMPA-type glutamate receptor trafficking and memory. Proc Natl Acad Sci U S A 2018; 115:7111-7116. [PMID: 29915039 DOI: 10.1073/pnas.1805060115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the human LARGE gene result in severe intellectual disability and muscular dystrophy. How LARGE mutation leads to intellectual disability, however, is unclear. In our proteomic study, LARGE was found to be a component of the AMPA-type glutamate receptor (AMPA-R) protein complex, a main player for learning and memory in the brain. Here, our functional study of LARGE showed that LARGE at the Golgi apparatus (Golgi) negatively controlled AMPA-R trafficking from the Golgi to the plasma membrane, leading to down-regulated surface and synaptic AMPA-R targeting. In LARGE knockdown mice, long-term potentiation (LTP) was occluded by synaptic AMPA-R overloading, resulting in impaired contextual fear memory. These findings indicate that the fine-tuning of AMPA-R trafficking by LARGE at the Golgi is critical for hippocampus-dependent memory in the brain. Our study thus provides insights into the pathophysiology underlying cognitive deficits in brain disorders associated with intellectual disability.
Collapse
|
43
|
Rubio-Fernández M, Uribe ML, Vicente-Tejedor J, Germain F, Susín-Lara C, Quereda C, Montoliu L, de la Villa P, Martín-Nieto J, Cruces J. Impairment of photoreceptor ribbon synapses in a novel Pomt1 conditional knockout mouse model of dystroglycanopathy. Sci Rep 2018; 8:8543. [PMID: 29867208 PMCID: PMC5986861 DOI: 10.1038/s41598-018-26855-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/16/2018] [Indexed: 11/09/2022] Open
Abstract
Hypoglycosylation of α-dystroglycan (α-DG) resulting from deficiency of protein O-mannosyltransferase 1 (POMT1) may cause severe neuromuscular dystrophies with brain and eye anomalies, named dystroglycanopathies. The retinal involvement of these disorders motivated us to generate a conditional knockout (cKO) mouse experiencing a Pomt1 intragenic deletion (exons 3-4) during the development of photoreceptors, mediated by the Cre recombinase expressed from the cone-rod homeobox (Crx) gene promoter. In this mouse, retinal α-DG was unglycosylated and incapable of binding laminin. Retinal POMT1 deficiency caused significant impairments in both electroretinographic recordings and optokinetic reflex in Pomt1 cKO mice, and immunohistochemical analyses revealed the absence of β-DG and of the α-DG-interacting protein, pikachurin, in the outer plexiform layer (OPL). At the ultrastructural level, noticeable alterations were observed in the ribbon synapses established between photoreceptors and bipolar cells. Therefore, O-mannosylation of α-DG in the retina carried out by POMT1 is crucial for the establishment of proper synapses at the OPL and transmission of visual information from cones and rods to their postsynaptic neurons.
Collapse
Affiliation(s)
- Marcos Rubio-Fernández
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Mary Luz Uribe
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080, Alicante, Spain
| | - Javier Vicente-Tejedor
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, 28805, Madrid, Spain
| | - Francisco Germain
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, 28805, Madrid, Spain
| | - Cristina Susín-Lara
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Cristina Quereda
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080, Alicante, Spain
| | - Lluis Montoliu
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pedro de la Villa
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, 28805, Madrid, Spain
| | - José Martín-Nieto
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03080, Alicante, Spain.,Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Universidad de Alicante, 03080, Alicante, Spain
| | - Jesús Cruces
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Facultad de Medicina, Universidad Autónoma de Madrid, 28029, Madrid, Spain.
| |
Collapse
|
44
|
Cell endogenous activities of fukutin and FKRP coexist with the ribitol xylosyltransferase, TMEM5. Biochem Biophys Res Commun 2018; 497:1025-1030. [PMID: 29477842 DOI: 10.1016/j.bbrc.2018.02.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/19/2018] [Indexed: 01/28/2023]
Abstract
Dystroglycanopathies are a group of muscular dystrophies that are caused by abnormal glycosylation of dystroglycan; currently 18 causative genes are known. Functions of the dystroglycanopathy genes fukutin, fukutin-related protein (FKRP), and transmembrane protein 5 (TMEM5) were most recently identified; fukutin and FKRP are ribitol-phosphate transferases and TMEM5 is a ribitol xylosyltransferase. In this study, we show that fukutin, FKRP, and TMEM5 form a complex while maintaining each of their enzyme activities. Immunoprecipitation and immunofluorescence experiments demonstrated protein interactions between these 3 proteins. A protein complex consisting of endogenous fukutin and FKRP, and exogenously expressed TMEM5 exerts activities of each enzyme. Our data showed for the first time that endogenous fukutin and FKRP enzyme activities coexist with TMEM5 enzyme activity, and suggest the possibility that formation of this enzyme complex may contribute to specific and prompt biosynthesis of glycans that are required for dystroglycan function.
Collapse
|
45
|
Cho EB, Yoo W, Yoon SK, Yoon JB. β-dystroglycan is regulated by a balance between WWP1-mediated degradation and protection from WWP1 by dystrophin and utrophin. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2199-2213. [PMID: 29635000 DOI: 10.1016/j.bbadis.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 01/07/2023]
Abstract
Dystroglycan is a ubiquitous membrane protein that functions as a mechanical connection between the extracellular matrix and cytoskeleton. In skeletal muscle, dystroglycan plays an indispensable role in regulating muscle regeneration; a malfunction in dystroglycan is associated with muscular dystrophy. The regulation of dystroglycan stability is poorly understood. Here, we report that WWP1, a member of NEDD4 E3 ubiquitin ligase family, promotes ubiquitination and subsequent degradation of β-dystroglycan. Our results indicate that dystrophin and utrophin protect β-dystroglycan from WWP1-mediated degradation by competing with WWP1 for the shared binding site at the cytosolic tail of β-dystroglycan. In addition, we show that a missense mutation (arginine 440 to glutamine) in WWP1-which is known to cause muscular dystrophy in chickens-increases the ubiquitin ligase-mediated ubiquitination of both β-dystroglycan and WWP1. The R440Q missense mutation in WWP1 decreases HECT domain-mediated intramolecular interactions to relieve autoinhibition of the enzyme. Our results provide new insight into the regulation of β-dystroglycan degradation by WWP1 and other Nedd4 family members and improves our understanding of dystroglycan-related disorders.
Collapse
Affiliation(s)
- Eun-Bee Cho
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Wonjin Yoo
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Sungjoo Kim Yoon
- Department of Medical Lifesciences, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Jong-Bok Yoon
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
46
|
Skare Ø, Lie RT, Haaland ØA, Gjerdevik M, Romanowska J, Gjessing HK, Jugessur A. Analysis of Parent-of-Origin Effects on the X Chromosome in Asian and European Orofacial Cleft Triads Identifies Associations with DMD, FGF13, EGFL6, and Additional Loci at Xp22.2. Front Genet 2018. [PMID: 29520293 PMCID: PMC5827165 DOI: 10.3389/fgene.2018.00025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Although both the mother's and father's alleles are present in the offspring, they may not operate at the same level. These parent-of-origin (PoO) effects have not yet been explored on the X chromosome, which motivated us to develop new methods for detecting such effects. Orofacial clefts (OFCs) exhibit sex-specific differences in prevalence and are examples of traits where a search for various types of effects on the X chromosome might be relevant. Materials and Methods: We upgraded our R-package Haplin to enable genome-wide analyses of PoO effects, as well as power simulations for different statistical models. 14,486 X-chromosome SNPs in 1,291 Asian and 1,118 European case-parent triads of isolated OFCs were available from a previous GWAS. For each ethnicity, cleft lip with or without cleft palate (CL/P) and cleft palate only (CPO) were analyzed separately using two X-inactivation models and a sliding-window approach to haplotype analysis. In addition, we performed analyses restricted to female offspring. Results: Associations were identified in "Dystrophin" (DMD, Xp21.2-p21.1), "Fibroblast growth factor 13" (FGF13, Xq26.3-q27.1) and "EGF-like domain multiple 6" (EGFL6, Xp22.2), with biologically plausible links to OFCs. Unlike EGFL6, the other associations on chromosomal region Xp22.2 had no apparent connections to OFCs. However, the Xp22.2 region itself is of potential interest because it contains genes for clefting syndromes [for example, "Oral-facial-digital syndrome 1" (OFD1) and "Midline 1" (MID1)]. Overall, the identified associations were highly specific for ethnicity, cleft subtype and X-inactivation model, except for DMD in which associations were identified in both CPO and CL/P, in the model with X-inactivation and in Europeans only. Discussion/Conclusion: The specificity of the associations for ethnicity, cleft subtype and X-inactivation model underscores the utility of conducting subanalyses, despite the ensuing need to adjust for additional multiple testing. Further investigations are needed to confirm the associations with DMD, EGF16, and FGF13. Furthermore, chromosomal region Xp22.2 appears to be a hotspot for genes implicated in clefting syndromes and thus constitutes an exciting direction to pursue in future OFCs research. More generally, the new methods presented here are readily adaptable to the study of X-linked PoO effects in other outcomes that use a family-based design.
Collapse
Affiliation(s)
- Øivind Skare
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Rolv T Lie
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Oslo, Norway
| | - Øystein A Haaland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Miriam Gjerdevik
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| | - Julia Romanowska
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Håkon K Gjessing
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Oslo, Norway
| | - Astanand Jugessur
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.,Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Oslo, Norway.,Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
47
|
Kanagawa M, Toda T. Ribitol-phosphate—a newly identified posttranslational glycosylation unit in mammals: structure, modification enzymes and relationship to human diseases. J Biochem 2018; 163:359-369. [DOI: 10.1093/jb/mvy020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/23/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Motoi Kanagawa
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Tatsushi Toda
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
48
|
Muscular Dystrophies and Cancer Cachexia: Similarities in Chronic Skeletal Muscle Degeneration. J Funct Morphol Kinesiol 2017. [DOI: 10.3390/jfmk2040039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
49
|
Rehwaldt JD, Rodgers BD, Lin DC. Skeletal muscle contractile properties in a novel murine model for limb girdle muscular dystrophy 2i. J Appl Physiol (1985) 2017; 123:1698-1707. [PMID: 28860175 DOI: 10.1152/japplphysiol.00744.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Limb-girdle muscular dystrophy (LGMD) 2i results from mutations in fukutin-related protein and aberrant α-dystroglycan glycosylation. Although this significantly compromises muscle function and ambulation, the comprehensive characteristics of contractile dysfunction are unknown. Therefore, we quantified the in situ contractile properties of the medial gastrocnemius in young adult P448L mice, an affected muscle of a novel model of LGMD2i. Normalized maximal twitch force, tetanic force, and power were significantly smaller in P448L mice, compared with sex-matched, wild-type mice. These differences were consistent with the replacement of contractile fibers by passive tissue. The shape of the active force-length relationships were similar in both groups, regardless of sex, consistent with an intact sarcomeric structure in P448L mice. Passive force-length curves normalized to maximal isometric force were steeper in P448L mice, and passive elements contribute disproportionately more to total contractile force in P448L mice. Sex differences were mostly noted in the force-velocity curves, as normalized values for maximal and optimal velocities were significantly slower in P448L males, compared with wild-type, but not in P448L females. This suggests that the dystrophic phenotype, which may include possible changes in cross-bridge kinetics and fiber-type proportions, progresses more quickly in P448L males. These results together indicate that active force and power generation are compromised in both sexes of P448L mice, while passive forces increase. More importantly, the results identified several functional markers of disease pathophysiology that could aid in developing and assessment of novel therapeutics for LGMD2i and possibly other dystroglycanopathies as well. NEW & NOTEWORTHY Comprehensive assessments of muscle contractile function have, until now, never been performed in an animal model for any dystroglycanopathy. This study suggests that skeletal muscle contractile properties are significantly compromised in a recently developed model for limb-girdle muscular dystrophy 2i, the P448L mouse. It further identifies novel pathological markers of muscle function that are suitable for developing therapeutics and for better understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Jordan D Rehwaldt
- Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington
| | - Buel D Rodgers
- Department of Animal Sciences, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| | - David C Lin
- Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington.,Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington.,Washington Center for Muscle Biology, Washington State University , Pullman, Washington
| |
Collapse
|
50
|
Manya H, Endo T. Glycosylation with ribitol-phosphate in mammals: New insights into the O-mannosyl glycan. Biochim Biophys Acta Gen Subj 2017; 1861:2462-2472. [PMID: 28711406 DOI: 10.1016/j.bbagen.2017.06.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND O-mannosyl glycans have been found in a limited number of glycoproteins of the brain, nerves, and skeletal muscles, particularly in α-dystroglycan (α-DG). Defects in O-mannosyl glycan on α-DG are the primary cause of a group of congenital muscular dystrophies, which are collectively termed α-dystroglycanopathy. Recent studies have revealed various O-mannosyl glycan structures, which can be classified as core M1, core M2, and core M3 glycans. Although many dystroglycanopathy genes are involved in core M3 processing, the structure and biosynthesis of core M3 glycan remains only partially understood. SCOPE OF REVIEW This review presents recent findings about the structure, biosynthesis, and pathology of O-mannosyl glycans. MAJOR CONCLUSIONS Recent studies have revealed that the entire structure of core M3 glycan, including ribitol-5-phosphate, is a novel structure in mammals; its unique biosynthetic pathway has been elucidated by the identification of new causative genes for α-dystroglycanopathies and their functions. GENERAL SIGNIFICANCE O-mannosyl glycan has a novel, unique structure that is important for the maintenance of brain and muscle functions. These findings have opened up a new field in glycoscience. These studies will further contribute to the understanding of the pathomechanism of α-dystroglycanopathy and the development of glycotherapeutics. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan.
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan.
| |
Collapse
|