1
|
Zhu Z, Geng Y, Ma L, Yao K, Chang R, Ma Y, Li J. Association between CBS gene T833C, G919A and 844ins68 polymorphisms in the 8th exon region and coronary artery disease: a meta-analysis. Clin Exp Hypertens 2024; 46:2328147. [PMID: 38488417 DOI: 10.1080/10641963.2024.2328147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Several studies indicate that the cystathionine β-synthase (CBS) gene T833C, G919A and 844ins68 polymorphisms in the 8th exon region may be correlated with coronary artery disease (CAD) susceptibility, but the results have been inconsistent and inconclusive. Thus, a meta-analysis was conducted to provide a comprehensive estimate of these associations. METHODS On the basis of searches in the PubMed, EMBASE, Cochrane Library, Wanfang, VIP, and CNKI databases, we selected 14 case - control studies including 2123 cases and 2368 controls for this meta-analysis. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated accordingly using a fixed-effect or random-effect model. RESULTS The results indicated an increased risk between the CBS T833C gene polymorphisms and susceptibility to CAD under the dominant model (CC+CT vs. TT: OR = 1.92, 95% CI: 1.11 ~ 3.32), recessive model (CC vs. CT+TT: OR = 1.88, 95% CI: 1.17 ~ 3.03), and homozygous model (CC vs. TT: OR = 2.46, 95% CI: 1.04 ~ 5.83). In these three genetic models, no significant association was identified for CBS G919A (AA+AG vs. GG: OR = 1.48, 95% CI: 0.45 ~ 4.82),(AA vs. AG+GG: OR = 1.58, 95% CI: 0.93 ~ 2.70),(AA vs. GG: OR = 1.66, 95% CI: 0.40 ~ 6.92) or CBS 844ins68 (II+ID vs. DD: OR = 1.04, 95% CI: 0.80 ~ 1.35),(II vs. ID+DD: OR = 1.09, 95% CI: 0.51 ~ 2.36),(II vs. DD: OR = 1.10, 95% CI: 0.51 ~ 2.39). CONCLUSIONS This meta-analysis suggests that the CBS T833C gene polymorphism is significantly associated with the risk of CAD and it shows a stronger association in Asian populations. Individuals with the C allele of the CBS gene T833C polymorphism might be particularly susceptible to CAD.
Collapse
Affiliation(s)
- Zijiang Zhu
- Department of thoracic surgery, Gansu Provincial Central Hospital (Gansu Provincial Maternity and Child-care Hospital), Lanzhou, China
| | - Yuhan Geng
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Long Ma
- Department of thoracic surgery, Gansu Provincial Central Hospital (Gansu Provincial Maternity and Child-care Hospital), Lanzhou, China
- Department of thoracic surgery, Gansu University of Chinese Medicine, Lanzhou, China
| | - Keying Yao
- School of Second Clinical Medical, Lanzhou University, Lanzhou, China
| | - Ruitong Chang
- Department of thoracic surgery, Gansu Provincial Central Hospital (Gansu Provincial Maternity and Child-care Hospital), Lanzhou, China
| | - Yongming Ma
- Department of thoracic surgery, Gansu Provincial Central Hospital (Gansu Provincial Maternity and Child-care Hospital), Lanzhou, China
- Department of thoracic surgery, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jialong Li
- Department of thoracic surgery, Gansu Provincial Central Hospital (Gansu Provincial Maternity and Child-care Hospital), Lanzhou, China
| |
Collapse
|
2
|
Zhu C, Chen C, Weaver DE, Lukesh JC. Esterase-Activated Hydrogen Sulfide Donors with Self-Reporting Fluorescence Properties and Highly Tunable Rates of Delivery. ACS Chem Biol 2024; 19:1910-1917. [PMID: 39162330 DOI: 10.1021/acschembio.4c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Hydrogen sulfide (H2S) has emerged as a significant biomolecule with diverse activities, akin to other gaseous signaling molecules such as nitric oxide (NO) and carbon monoxide (CO). In the present study, we report on the development of esterase-activated donors that track their direct cellular donation of H2S by enlisting a cyclization reaction onto a thioamide that forms a fluorogenic byproduct. This simple donor design provides a noninvasive method for monitoring the biological delivery and activity of H2S, along with access to a library of compounds with highly variable rates of H2S delivery. These studies culminated with the identification of a slow-release, yet highly efficient, donor (ZL-DMA-Ph) that was shown to self-report its gradual and continuous cellular donation of H2S for up to 24 h which, in addition to better mimicking the natural biosynthesis of H2S, provided impressive cytoprotection in a cellular cardiotoxicity model, even at submicromolar concentrations. In total, these findings indicate that the esterase-triggered fluorogenic donors identified in this study will offer new opportunities for exploring the chemical biology and therapeutic potential of exogenous H2S supplementation.
Collapse
Affiliation(s)
- Changlei Zhu
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27101, United States
| | - Chen Chen
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27101, United States
| | - Devin E Weaver
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27101, United States
| | - John C Lukesh
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27101, United States
| |
Collapse
|
3
|
Misra R, Bhuyan HJ, Dutta A, Bhabak KP. Recent Developments On Activatable Turn-On Fluorogenic Donors of Hydrogen Sulfide (H 2S). ChemMedChem 2024; 19:e202400251. [PMID: 38746978 DOI: 10.1002/cmdc.202400251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Indexed: 06/28/2024]
Abstract
Hydrogen sulfide (H2S) is considered the third member of the gasotransmitter family, along with nitric oxide (NO) and carbon monoxide (CO). Besides its role in physiological and pathophysiological conditions, the promising therapeutic potential of this small-molecule makes it advantageous for various pharmaceutical applications. The endogenous production of H2S at a lower concentration is crucial in maintaining redox balance and cellular homeostasis, and the dysregulation leads to various disease states. In the event of H2S deficiency, the exogenous donation of H2S could help maintain the optimal cellular concentration of H2S and cellular homeostasis. Over the last several years, researchers have developed numerous small-molecule non-fluorogenic organosulfur compounds as H2S donors and investigated their pharmacological potentials. However, reports on stimuli-responsive turn-on fluorogenic donors of H2S have appeared recently. Interestingly, the fluorogenic H2S donors offer additional advantages with the non-invasive real-time monitoring of the H2S release utilizing the simultaneous turn-on fluorogenic processes. The review summarizes the recent developments in turn-on fluorogenic donors of H2S and the potential biological applications that have developed over the years.
Collapse
Affiliation(s)
- Roopjyoti Misra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Hirak Jyoti Bhuyan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Amlan Dutta
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Krishna P Bhabak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
4
|
Hankins RA, Lukesh JC. An Examination of Chemical Tools for Hydrogen Selenide Donation and Detection. Molecules 2024; 29:3863. [PMID: 39202942 PMCID: PMC11356831 DOI: 10.3390/molecules29163863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Hydrogen selenide (H2Se) is an emerging biomolecule of interest with similar properties to that of other gaseous signaling molecules (i.e., gasotransmitters that include nitric oxide, carbon monoxide, and hydrogen sulfide). H2Se is enzymatically generated in humans where it serves as a key metabolic intermediate in the production of selenoproteins and other selenium-containing biomolecules. However, beyond its participation in biosynthetic pathways, its involvement in cellular signaling or other biological mechanisms remains unclear. To uncover its true biological significance, H2Se-specific chemical tools capable of functioning under physiological conditions are required but lacking in comparison to those that exist for other gasotransmitters. Recently, researchers have begun to fill this unmet need by developing new H2Se-releasing compounds, along with pioneering methods for selenide detection and quantification. In combination, the chemical tools highlighted in this review have the potential to spark groundbreaking explorations into the chemical biology of H2Se, which may lead to its branding as the fourth official gasotransmitter.
Collapse
Affiliation(s)
| | - John C. Lukesh
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, 455 Vine Street, Winston-Salem, NC 27101, USA
| |
Collapse
|
5
|
Al-Sadeq DW, Thanassoulas A, Theodoridou M, Nasrallah GK, Nomikos M. Pathogenic Homocystinuria-Associated T236N Mutation Dramatically Alters the Biochemical Properties of Cystathionine Beta-Synthase Protein. Biomedicines 2024; 12:929. [PMID: 38790892 PMCID: PMC11118236 DOI: 10.3390/biomedicines12050929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Cystathione beta-synthase (CBS) T236N is a novel mutation associated with pyridoxine non-responsiveness, which presents a significant difficulty in the medical treatment of homocystinuria. Reported severe phenotypes in homocystinuria patients highlight the urgent requirement to comprehend the molecular mechanisms underlying mutation pathogenicity for the advancement of the disease. METHODOLOGY In this study, we used a multidisciplinary approach to investigate the molecular properties of bacterially expressed and purified recombinant CBST236N protein, which we directly compared to those of the wild-type (CBSWT) protein. RESULTS Our data revealed a profound impact of the p.T236N mutation on CBS enzymatic activity, with a dramatic reduction of ~96% compared to the CBSWT protein. Circular dichroism (CD) experiments indicated that the p.T236N mutation did not significantly alter the secondary structure of the protein. However, CD spectra unveiled distinct differences in the thermal stability of CBSWT and CBST236N mutant protein species. In addition, chemical denaturation experiments further highlighted that the CBSWT protein exhibited greater thermodynamic stability than the CBST236N mutant, suggesting a destabilizing effect of this mutation. CONCLUSIONS Our findings provide an explanation of the pathogenicity of the p.T236N mutation, shedding light on its role in severe homocystinuria phenotypes. This study contributes to a deeper understanding of CBS deficiency and may improve the development of targeted therapeutic strategies for affected individuals.
Collapse
Affiliation(s)
- Duaa W. Al-Sadeq
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (D.W.A.-S.); (G.K.N.)
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | | | - Maria Theodoridou
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (D.W.A.-S.); (G.K.N.)
| | - Gheyath K. Nasrallah
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (D.W.A.-S.); (G.K.N.)
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| |
Collapse
|
6
|
McCorvie TJ, Adamoski D, Machado RAC, Tang J, Bailey HJ, Ferreira DSM, Strain-Damerell C, Baslé A, Ambrosio ALB, Dias SMG, Yue WW. Architecture and regulation of filamentous human cystathionine beta-synthase. Nat Commun 2024; 15:2931. [PMID: 38575566 PMCID: PMC10995199 DOI: 10.1038/s41467-024-46864-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Cystathionine beta-synthase (CBS) is an essential metabolic enzyme across all domains of life for the production of glutathione, cysteine, and hydrogen sulfide. Appended to the conserved catalytic domain of human CBS is a regulatory domain that modulates activity by S-adenosyl-L-methionine (SAM) and promotes oligomerisation. Here we show using cryo-electron microscopy that full-length human CBS in the basal and SAM-bound activated states polymerises as filaments mediated by a conserved regulatory domain loop. In the basal state, CBS regulatory domains sterically block the catalytic domain active site, resulting in a low-activity filament with three CBS dimers per turn. This steric block is removed when in the activated state, one SAM molecule binds to the regulatory domain, forming a high-activity filament with two CBS dimers per turn. These large conformational changes result in a central filament of SAM-stabilised regulatory domains at the core, decorated with highly flexible catalytic domains. Polymerisation stabilises CBS and reduces thermal denaturation. In PC-3 cells, we observed nutrient-responsive CBS filamentation that disassembles when methionine is depleted and reversed in the presence of SAM. Together our findings extend our understanding of CBS enzyme regulation, and open new avenues for investigating the pathogenic mechanism and therapeutic opportunities for CBS-associated disorders.
Collapse
Affiliation(s)
- Thomas J McCorvie
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK.
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| | - Douglas Adamoski
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-970, Campinas, Brazil
| | - Raquel A C Machado
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-970, Campinas, Brazil
| | - Jiazhi Tang
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Henry J Bailey
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
- Faculty of Medicine, Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt, Germany
| | - Douglas S M Ferreira
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Claire Strain-Damerell
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Arnaud Baslé
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Andre L B Ambrosio
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, SP, Brazil
| | - Sandra M G Dias
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, 13083-970, Campinas, Brazil
| | - Wyatt W Yue
- Nuffield Department of Clinical Medicine, Centre for Medicines Discovery, University of Oxford, Oxford, OX3 7DQ, UK.
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
7
|
Youness RA, Habashy DA, Khater N, Elsayed K, Dawoud A, Hakim S, Nafea H, Bourquin C, Abdel-Kader RM, Gad MZ. Role of Hydrogen Sulfide in Oncological and Non-Oncological Disorders and Its Regulation by Non-Coding RNAs: A Comprehensive Review. Noncoding RNA 2024; 10:7. [PMID: 38250807 PMCID: PMC10801522 DOI: 10.3390/ncrna10010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Recently, myriad studies have defined the versatile abilities of gasotransmitters and their synthesizing enzymes to play a "Maestro" role in orchestrating several oncological and non-oncological circuits and, thus, nominated them as possible therapeutic targets. Although a significant amount of work has been conducted on the role of nitric oxide (NO) and carbon monoxide (CO) and their inter-relationship in the field of oncology, research about hydrogen sulfide (H2S) remains in its infancy. Recently, non-coding RNAs (ncRNAs) have been reported to play a dominating role in the regulation of the endogenous machinery system of H2S in several pathological contexts. A growing list of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are leading the way as upstream regulators for H2S biosynthesis in different mammalian cells during the development and progression of human diseases; therefore, their targeting can be of great therapeutic benefit. In the current review, the authors shed the light onto the biosynthetic pathways of H2S and their regulation by miRNAs and lncRNAs in various oncological and non-oncological disorders.
Collapse
Affiliation(s)
- Rana A. Youness
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
| | - Danira Ashraf Habashy
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
- Clinical Pharmacy Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Nour Khater
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Kareem Elsayed
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Alyaa Dawoud
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Sousanna Hakim
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Heba Nafea
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Carole Bourquin
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Reham M. Abdel-Kader
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Mohamed Z. Gad
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| |
Collapse
|
8
|
Corona-Trejo A, Gonsebatt ME, Trejo-Solis C, Campos-Peña V, Quintas-Granados LI, Villegas-Vázquez EY, Daniel Reyes-Hernández O, Hernández-Abad VJ, Figueroa-González G, Silva-Adaya D. Transsulfuration pathway: a targeting neuromodulator in Parkinson's disease. Rev Neurosci 2023; 34:915-932. [PMID: 37409540 DOI: 10.1515/revneuro-2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/04/2023] [Indexed: 07/07/2023]
Abstract
The transsulfuration pathway (TSP) is a metabolic pathway involving sulfur transfer from homocysteine to cysteine. Transsulfuration pathway leads to many sulfur metabolites, principally glutathione, H2S, taurine, and cysteine. Key enzymes of the TSP, such as cystathionine β-synthase and cystathionine γ-lyase, are essential regulators at multiple levels in this pathway. TSP metabolites are implicated in many physiological processes in the central nervous system and other tissues. TSP is important in controlling sulfur balance and optimal cellular functions such as glutathione synthesis. Alterations in the TSP and related pathways (transmethylation and remethylation) are altered in several neurodegenerative diseases, including Parkinson's disease, suggesting their participation in the pathophysiology and progression of these diseases. In Parkinson's disease many cellular processes are comprised mainly those that regulate redox homeostasis, inflammation, reticulum endoplasmic stress, mitochondrial function, oxidative stress, and sulfur content metabolites of TSP are involved in these damage processes. Current research on the transsulfuration pathway in Parkinson's disease has primarily focused on the synthesis and function of certain metabolites, particularly glutathione. However, our understanding of the regulation of other metabolites of the transsulfuration pathway, as well as their relationships with other metabolites, and their synthesis regulation in Parkinson´s disease remain limited. Thus, this paper highlights the importance of studying the molecular dynamics in different metabolites and enzymes that affect the transsulfuration in Parkinson's disease.
Collapse
Affiliation(s)
- Andrea Corona-Trejo
- Carrera de Biología, Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| | | | - Edgar Yebrán Villegas-Vázquez
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230 Mexico City, Mexico
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Vicente Jesús Hernández-Abad
- Laboratorio de Investigación Farmacéutica, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla de 5 de mayo s/n, Col, Ejército de Oriente, 09230 Mexico City, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230 Mexico City, Mexico
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| |
Collapse
|
9
|
Vázquez C, Encalada R, Belmont-Díaz J, Rivera M, Alvarez S, Nogueda-Torres B, Saavedra E. Metabolic control analysis of the transsulfuration pathway and the compensatory role of the cysteine transport in Trypanosoma cruzi. Biosystems 2023; 234:105066. [PMID: 37898397 DOI: 10.1016/j.biosystems.2023.105066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Trypanosoma cruzi is the causal agent of American Trypanosomiasis or Chagas Disease in humans. The current drugs for its treatment benznidazole and nifurtimox have inconveniences of toxicity and efficacy; therefore, the search for new therapies continues. Validation through genetic strategies of new drug targets against the parasite metabolism have identified numerous essential genes. Target validation can be further narrowed by applying Metabolic Control Analysis (MCA) to determine the flux control coefficients of the pathway enzymes. That coefficient is a quantitative value that represents the degree in which an enzyme/transporter determines the flux of a metabolic pathway; those with the highest coefficients can be promising drug targets. Previous studies have demonstrated that cysteine (Cys) is a key precursor for the synthesis of trypanothione, the main antioxidant metabolite in the parasite. In this research, MCA was applied in an ex vivo system to the enzymes of the reverse transsulfuration pathway (RTP) for Cys synthesis composed by cystathionine beta synthase (CBS) and cystathionine gamma lyase (CGL). The results indicated that CGL has 90% of the control of the pathway flux. Inhibition of CGL with propargylglycine (PAG) decreased the levels of Cys and trypanothione and depleted those of glutathione in epimastigotes (proliferative stage in the insect vector); these metabolite changes were prevented by supplementing with Cys, suggesting a compensatory role of the Cys transport (CysT). Indeed, Cys supplementation (but not PAG treatment) increased the activity of the CysT in epimastigotes whereas in trypomastigotes (infective stage in mammals) CysT was increased when they were incubated with PAG. Our results suggested that CGL could be a potential drug target given its high control on the RTP flux and its effects on the parasite antioxidant defense. However, the redundant Cys supply pathways in the parasite may require inhibition of the CysT as well. Our findings also suggest differential responses of the Cys supply pathways in different parasite stages.
Collapse
Affiliation(s)
- Citlali Vázquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico; Posgrado en Ciencias Químico Biológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11350, Mexico
| | - Rusely Encalada
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Javier Belmont-Díaz
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Moisés Rivera
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Samantha Alvarez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico
| | - Benjamín Nogueda-Torres
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11350, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Mexico.
| |
Collapse
|
10
|
Hu Q, Zhu C, Hankins RA, Murmello AR, Marrs GS, Lukesh JC. An ROS-Responsive Donor That Self-Reports Its H 2S Delivery by Forming a Benzoxazole-Based Fluorophore. J Am Chem Soc 2023; 145:25486-25494. [PMID: 37950698 DOI: 10.1021/jacs.3c10446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
Hydrogen sulfide (H2S), an endogenous signaling molecule, is known to play a pivotal role in neuroprotection, vasodilation, and hormonal regulation. To further explore the biological effects of H2S, refined donors that facilitate its biological delivery, especially under specific (patho) physiological conditions, are needed. In the present study, we demonstrate that ortho-substituted, aryl boronate esters provide two unique and distinct pathways for H2S release from thioamide-based donors: Lewis acid-facilitated hydrolysis and reactive oxygen species (ROS)-induced oxidation/cyclization. Through a detailed structure-activity relationship study, donors that resist hydrolysis and release H2S solely via the latter mechanism were identified, which have the added benefit of providing a potentially useful heterocycle as the lone byproduct of this novel chemistry. To highlight this, we developed an ROS-activated donor (QH642) that simultaneously synthesizes a benzoxazole-based fluorophore en route to its H2S delivery. A distinct advantage of this design over earlier self-reporting donors is that fluorophore formation is possible only if H2S has been discharged from the donor. This key feature eliminates the potential for false positives and provides a more accurate depiction of reaction progress and donor delivery of H2S, including in complex cellular environments.
Collapse
Affiliation(s)
- Qiwei Hu
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Changlei Zhu
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Rynne A Hankins
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Allison R Murmello
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| | - Glen S Marrs
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - John C Lukesh
- Department of Chemistry, Wake Forest University, Wake Downtown Campus, Winston-Salem, North Carolina 27101, United States
| |
Collapse
|
11
|
Kumar M. Hydrogen sulfide: From a toxic gas to a potential therapy for COVID-19 and inflammatory disorders. Nitric Oxide 2023; 140-141:8-15. [PMID: 37648016 DOI: 10.1016/j.niox.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
COVID-19 has been shown to induce inflammatory disorders and CNS manifestations. Swift and efficient treatment strategies are urgently warranted for the management of COVID, inflammatory and neurological disorders. Hydrogen sulfide (H2S) has been associated with several clinical disorders due to its potential to influence a broad range of biological signalling pathways. According to recent clinical studies, COVID patients with lower physiological H2S had higher fatality rates. These findings clearly demonstrate an inverse correlation between H2S levels and the severity of COVID-19. H2S has been proposed as a protective molecule because of its antioxidant, anti-inflammatory, and antiviral properties. Various H2S-releasing prodrugs, hybrids and natural compounds have been tested for their therapeutic efficacy in viral infections and inflammatory disorders. In this review, I am highlighting the rationale for using H2S-based interventions for the management of COVID-19 and post-infection inflammatory disorders including neuroinflammation. I am also proposing therepurposing of existing H2S-releasing prodrugs, developing new NO-H2S-hybrids, targeting H2S metabolic pathways, and using H2S-producing dietary supplements as viable defensive strategies against SARS-CoV-2 infection and COVID-19 pathologies.
Collapse
Affiliation(s)
- Mohit Kumar
- Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, S.A.S Nagar, Punjab, 140306, India.
| |
Collapse
|
12
|
Ziegler SG, Kim J, Ehmsen JT, Vernon HJ. Inborn errors of amino acid metabolism - from underlying pathophysiology to therapeutic advances. Dis Model Mech 2023; 16:dmm050233. [PMID: 37994477 PMCID: PMC10690057 DOI: 10.1242/dmm.050233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023] Open
Abstract
Amino acids are organic molecules that serve as basic substrates for protein synthesis and have additional key roles in a diverse array of cellular functions, including cell signaling, gene expression, energy production and molecular biosynthesis. Genetic defects in the synthesis, catabolism or transport of amino acids underlie a diverse class of diseases known as inborn errors of amino acid metabolism. Individually, these disorders are rare, but collectively, they represent an important group of potentially treatable disorders. In this Clinical Puzzle, we discuss the pathophysiology, clinical features and management of three disorders that showcase the diverse clinical presentations of disorders of amino acid metabolism: phenylketonuria, lysinuric protein intolerance and homocystinuria due to cystathionine β-synthase (CBS) deficiency. Understanding the biochemical perturbations caused by defects in amino acid metabolism will contribute to ongoing development of diagnostic and management strategies aimed at improving the morbidity and mortality associated with this diverse group of disorders.
Collapse
Affiliation(s)
- Shira G. Ziegler
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiyoung Kim
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jeffrey T. Ehmsen
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hilary J. Vernon
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Spezzini J, Piragine E, d'Emmanuele di Villa Bianca R, Bucci M, Martelli A, Calderone V. Hydrogen sulfide and epigenetics: Novel insights into the cardiovascular effects of this gasotransmitter. Br J Pharmacol 2023; 180:1793-1802. [PMID: 37005728 DOI: 10.1111/bph.16083] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/20/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
Epigenetics studies the heritable modifications of genome expression that do not affect the nucleotide sequence. Epigenetic modifications can be divided into: DNA methylation, histone modifications, and modulation of genome expression by non-coding RNAs. Alteration of these mechanisms can alter the phenotype, and can lead to disease onset. The endogenous gasotransmitter hydrogen sulfide (H2 S) plays pleiotropic roles in many systems, including the cardiovascular (CV) system, and its mechanism of action mainly includes S-persulfidation of cysteine residues. Recent evidence suggests that many H2 S-mediated biological activities are based on the epigenetic regulation of cellular function, with effects ranging from DNA methylation to modification of histones and regulation of non-coding RNAs. This review describes the role of H2 S-regulating epigenetic mechanisms, providing a panorama of the current literature, and offers a novel scenario for the development of H2 S-releasing 'epidrugs' with a potential clinical use in the prevention and treatment of many CV and non-CV disorders.
Collapse
Affiliation(s)
| | | | | | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | |
Collapse
|
14
|
Washington J, Ritch R, Liu Y. Homocysteine and Glaucoma. Int J Mol Sci 2023; 24:10790. [PMID: 37445966 DOI: 10.3390/ijms241310790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 07/15/2023] Open
Abstract
Elevated levels of homocysteine (Hcy), a non-proteinogenic amino acid, may lead to a host of manifestations across the biological systems, particularly the nervous system. Defects in Hcy metabolism have been associated with many neurodegenerative diseases including glaucoma, i.e., the leading cause of blindness. However, the pathophysiology of elevated Hcy and its eligibility as a risk factor for glaucoma remain unclear. We aimed to provide a comprehensive review of the relationship between elevated Hcy levels and glaucoma. Through a systemic search of the PubMed and Google Scholar databases, we found that elevated Hcy might play an important role in the pathogenesis of glaucoma. Further research will be necessary to help clarify the specific contribution of elevated Hcy in the pathogenesis of glaucoma. A discovery and conceptual understanding of Hcy-associated glaucoma could be the keys to providing better therapeutic treatment, if not prophylactic treatment, for this disease.
Collapse
Affiliation(s)
- Joshua Washington
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert Ritch
- New York Eye & Ear Infirmary, New York, NY 10003, USA
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- James & Jean Culver Vision Discovery Institute, 4 Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
15
|
Hoskins I, Sun S, Cote A, Roth FP, Cenik C. satmut_utils: a simulation and variant calling package for multiplexed assays of variant effect. Genome Biol 2023; 24:82. [PMID: 37081510 PMCID: PMC10116734 DOI: 10.1186/s13059-023-02922-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
The impact of millions of individual genetic variants on molecular phenotypes in coding sequences remains unknown. Multiplexed assays of variant effect (MAVEs) are scalable methods to annotate relevant variants, but existing software lacks standardization, requires cumbersome configuration, and does not scale to large targets. We present satmut_utils as a flexible solution for simulation and variant quantification. We then benchmark MAVE software using simulated and real MAVE data. We finally determine mRNA abundance for thousands of cystathionine beta-synthase variants using two experimental methods. The satmut_utils package enables high-performance analysis of MAVEs and reveals the capability of variants to alter mRNA abundance.
Collapse
Affiliation(s)
- Ian Hoskins
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Song Sun
- The Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Atina Cote
- The Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Frederick P Roth
- The Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
16
|
Zhai Y, Chen L, Zhao Q, Zheng ZH, Chen ZN, Bian H, Yang X, Lu HY, Lin P, Chen X, Chen R, Sun HY, Fan LN, Zhang K, Wang B, Sun XX, Feng Z, Zhu YM, Zhou JS, Chen SR, Zhang T, Chen SY, Chen JJ, Zhang K, Wang Y, Chang Y, Zhang R, Zhang B, Wang LJ, Li XM, He Q, Yang XM, Nan G, Xie RH, Yang L, Yang JH, Zhu P. Cysteine carboxyethylation generates neoantigens to induce HLA-restricted autoimmunity. Science 2023; 379:eabg2482. [PMID: 36927018 DOI: 10.1126/science.abg2482] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Autoimmune diseases such as ankylosing spondylitis (AS) can be driven by emerging neoantigens that disrupt immune tolerance. Here, we developed a workflow to profile posttranslational modifications involved in neoantigen formation. Using mass spectrometry, we identified a panel of cysteine residues differentially modified by carboxyethylation that required 3-hydroxypropionic acid to generate neoantigens in patients with AS. The lysosomal degradation of integrin αIIb [ITGA2B (CD41)] carboxyethylated at Cys96 (ITGA2B-ceC96) generated carboxyethylated peptides that were presented by HLA-DRB1*04 to stimulate CD4+ T cell responses and induce autoantibody production. Immunization of HLA-DR4 transgenic mice with the ITGA2B-ceC96 peptide promoted colitis and vertebral bone erosion. Thus, metabolite-induced cysteine carboxyethylation can give rise to pathogenic neoantigens that lead to autoreactive CD4+ T cell responses and autoantibody production in autoimmune diseases.
Collapse
Affiliation(s)
- Yue Zhai
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Qian Zhao
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Zhao-Hui Zheng
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Zhi-Nan Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Huijie Bian
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xu Yang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Huan-Yu Lu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Peng Lin
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xi Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ruo Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Hao-Yang Sun
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Lin-Ni Fan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Kun Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Bin Wang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiu-Xuan Sun
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Zhuan Feng
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Meng Zhu
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jian-Sheng Zhou
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Shi-Rui Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Tao Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Si-Yu Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jun-Jie Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Kui Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yan Wang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Chang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Rui Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Bei Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Li-Juan Wang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiao-Min Li
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Qian He
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiang-Min Yang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Gang Nan
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Rong-Hua Xie
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Liu Yang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jing-Hua Yang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
17
|
H2S Donors with Cytoprotective Effects in Models of MI/R Injury and Chemotherapy-Induced Cardiotoxicity. Antioxidants (Basel) 2023; 12:antiox12030650. [PMID: 36978898 PMCID: PMC10045576 DOI: 10.3390/antiox12030650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous signaling molecule that greatly influences several important (patho)physiological processes related to cardiovascular health and disease, including vasodilation, angiogenesis, inflammation, and cellular redox homeostasis. Consequently, H2S supplementation is an emerging area of interest, especially for the treatment of cardiovascular-related diseases. To fully unlock the medicinal properties of hydrogen sulfide, however, the development and refinement of H2S releasing compounds (or donors) are required to augment its bioavailability and to better mimic its natural enzymatic production. Categorizing donors by the biological stimulus that triggers their H2S release, this review highlights the fundamental chemistry and releasing mechanisms of a range of H2S donors that have exhibited promising protective effects in models of myocardial ischemia-reperfusion (MI/R) injury and cancer chemotherapy-induced cardiotoxicity, specifically. Thus, in addition to serving as important investigative tools that further advance our knowledge and understanding of H2S chemical biology, the compounds highlighted in this review have the potential to serve as vital therapeutic agents for the treatment (or prevention) of various cardiomyopathies.
Collapse
|
18
|
Zhang Y, Jing M, Cai C, Zhu S, Zhang C, Wang Q, Zhai Y, Ji X, Wu D. Role of hydrogen sulphide in physiological and pathological angiogenesis. Cell Prolif 2022; 56:e13374. [PMID: 36478328 PMCID: PMC9977675 DOI: 10.1111/cpr.13374] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The role of hydrogen sulphide (H2 S) in angiogenesis has been widely demonstrated. Vascular endothelial growth factor (VEGF) plays an important role in H2 S-induced angiogenesis. H2 S promotes angiogenesis by upregulating VEGF via pro-angiogenic signal transduction. The involved signalling pathways include the mitogen-activated protein kinase pathway, phosphoinositide-3 kinase pathway, nitric oxide (NO) synthase/NO pathway, signal transducer and activator of transcription 3 (STAT3) pathway, and adenosine triphosphate (ATP)-sensitive potassium (KATP ) channels. H2 S has been shown to contribute to tumour angiogenesis, diabetic wound healing, angiogenesis in cardiac and cerebral ischaemic tissues, and physiological angiogenesis during the menstrual cycle and pregnancy. Furthermore, H2 S can exert an anti-angiogenic effect by inactivating Wnt/β-catenin signalling or blocking the STAT3 pathway in tumours. Therefore, H2 S plays a double-edged sword role in the process of angiogenesis. The regulation of H2 S production is a promising therapeutic approach for angiogenesis-associated diseases. Novel H2 S donors and/or inhibitors can be developed in the treatment of angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Yan‐Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Mi‐Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Chun‐Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Shuai‐Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Chao‐Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Qi‐Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Yuan‐Kun Zhai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina,Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical SciencesHenan UniversityKaifengHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina,School of StomatologyHenan UniversityKaifengHenanChina
| |
Collapse
|
19
|
Hankins RA, Carter ME, Zhu C, Chen C, Lukesh JC. Enol-mediated delivery of H 2Se from γ-keto selenides: mechanistic insight and evaluation. Chem Sci 2022; 13:13094-13099. [PMID: 36425500 PMCID: PMC9667953 DOI: 10.1039/d2sc03533b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/19/2022] [Indexed: 08/22/2024] Open
Abstract
Like hydrogen sulfide (H2S), its chalcogen congener, hydrogen selenide (H2Se), is an emerging molecule of interest given its endogenous expression and purported biological activity. However, unlike H2S, detailed investigations into the chemical biology of H2Se are limited and little is known about its innate physiological functions, cellular targets, and therapeutic potential. The obscurity surrounding these fundamental questions is largely due to a lack of small molecule donors that can effectively increase the bioavailability of H2Se through their continuous liberation of the transient biomolecule under physiologically relevant conditions. Driven by this unmet demand for H2Se-releasing moieties, we report that γ-keto selenides provide a useful platform for H2Se donation via an α-deprotonation/β-elimination pathway that is highly dependent on both pH and alpha proton acidity. These attributes afforded a small library of donors with highly variable rates of release (higher alpha proton acidity = faster selenide liberation), which is accelerated under neutral to slightly basic conditions-a feature that is unique and complimentary to previously reported H2Se donors. We also demonstrate the impressive anticancer activity of γ-keto selenides in both HeLa and HCT116 cells in culture, which is likely to stimulate additional interest and research into the biological activity and anticancer effects of H2Se. Collectively, these results indicate that γ-keto selenides provide a highly versatile and effective framework for H2Se donation.
Collapse
Affiliation(s)
- Rynne A Hankins
- Department of Chemistry, Wake Forest University Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Molly E Carter
- Department of Chemistry, Wake Forest University Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Changlei Zhu
- Department of Chemistry, Wake Forest University Wake Downtown Campus Winston-Salem NC 27101 USA
| | - Chen Chen
- Department of Chemistry, Wake Forest University Wake Downtown Campus Winston-Salem NC 27101 USA
| | - John C Lukesh
- Department of Chemistry, Wake Forest University Wake Downtown Campus Winston-Salem NC 27101 USA
| |
Collapse
|
20
|
Hydrogen Sulfide and Its Donors: Keys to Unlock the Chains of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms232012202. [PMID: 36293058 PMCID: PMC9603526 DOI: 10.3390/ijms232012202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogen sulfide (H2S) has emerged as the third “gasotransmitters” and has a crucial function in the diversity of physiological functions in mammals. In particular, H2S is considered indispensable in preventing the development of liver inflammation in the case of excessive caloric ingestion. Note that the concentration of endogenous H2S was usually low, making it difficult to discern the precise biological functions. Therefore, exogenous delivery of H2S is conducive to probe the physiological and pathological roles of this gas in cellular and animal studies. In this review, the production and metabolic pathways of H2S in vivo, the types of donors currently used for H2S release, and study evidence of H2S improvement effects on nonalcoholic fatty liver disease are systematically introduced.
Collapse
|
21
|
Yan X, He M, Huang H, Wang Q, Hu Y, Wang X, Jin M, Wang Y, Xia Y, Li Y, Chen G, Cheng J, Jia J. Endogenous H 2S targets mitochondria to promote continual phagocytosis of erythrocytes by microglia after intracerebral hemorrhage. Redox Biol 2022; 56:102442. [PMID: 35998432 PMCID: PMC9420393 DOI: 10.1016/j.redox.2022.102442] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Hematoma clearance, which is achieved largely by phagocytosis of erythrocytes in the hemorrhagic brain, limits injury and facilitates recovery following intracerebral hemorrhage (ICH). Efficient phagocytosis critically depends on the capacity of a single phagocyte to phagocytize dead cells continually. However, the mechanism underlying continual phagocytosis following ICH remains unclear. We aimed to investigate the mechanism in this study. By using ICH models, we found that the gasotransmitter hydrogen sulfide (H2S) is an endogenous modulator of continual phagocytosis following ICH. The expression of the H2S synthase cystathionine β-synthase (CBS) and CBS-derived H2S were elevated in brain-resident phagocytic microglia following ICH, which consequently promoted continual phagocytosis of erythrocytes by microglia. Microglia-specific deletion of CBS delayed spontaneous hematoma clearance via an H2S-mediated mechanism following ICH. Mechanistically, oxidation of CBS-derived endogenous H2S by sulfide-quinone oxidoreductase initiated reverse electron transfer at mitochondrial complex I, leading to superoxide production. Complex I-derived superoxide, in turn, activated uncoupling protein 2 (UCP2) to promote microglial phagocytosis of erythrocytes. Functionally, complex I and UCP2 were required for spontaneous hematoma clearance following ICH. Moreover, hyperhomocysteinemia, an established risk factor for stroke, impaired ICH-enhanced CBS expression and delayed hematoma resolution, while supplementing exogenous H2S accelerated hematoma clearance in mice with hyperhomocysteinemia. The results suggest that the microglial CBS-H2S-complex I axis is critical to continual phagocytosis following ICH and can be targeted to treat ICH. CBS-derived H2S is elevated in brain-resident phagocytic microglia following ICH. CBS-derived H2S promotes continual erythrophagocytosis and hematoma clearance. CBS-derived H2S promotes microglial phagocytosis via complex I-derived ROS. Hyperhomocysteinemia inhibits CBS expression to delay hematoma resolution. The CBS-H2S-complex I axis can be targeted to treat ICH.
Collapse
Affiliation(s)
- Xiaoling Yan
- Clinical Research Center of Neurological Disease of the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215123, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases & Institute of Neuroscience, Soochow University, Suzhou, 215123, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Meijun He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hui Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qi Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Yu Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Xiaoying Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Meng Jin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yi Wang
- Clinical Research Center of Neurological Disease of the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215123, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases & Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Yiqing Xia
- Clinical Research Center of Neurological Disease of the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215123, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases & Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Yi Li
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215123, China.
| | - Jian Cheng
- Clinical Research Center of Neurological Disease of the Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215123, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases & Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Jia Jia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
22
|
Li C, Gui G, Zhang L, Qin A, Zhou C, Zha X. Overview of Methionine Adenosyltransferase 2A (MAT2A) as an Anticancer Target: Structure, Function, and Inhibitors. J Med Chem 2022; 65:9531-9547. [PMID: 35796517 DOI: 10.1021/acs.jmedchem.2c00395] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Methionine adenosyltransferase 2A (MAT2A) is a rate-limiting enzyme in the methionine cycle that primarily catalyzes the synthesis of S-adenosylmethionine (SAM) from methionine and adenosine triphosphate (ATP). MAT2A has been recognized as a therapeutic target for the treatment of cancers. Recently, a few MAT2A inhibitors have been reported, and three entered clinical trials to treat solid tumorsor lymphoma with MTAP loss. This review aims to summarize the current understanding of the roles of MAT2A in cancer and the discovery of MAT2A inhibitors. Furthermore, a perspective on the use of MAT2A inhibitors for the treatment of cancer is also discussed. We hope to provide guidance for future drug design and optimization via analysis of the binding modes of known MAT2A inhibitors.
Collapse
Affiliation(s)
- Chunzheng Li
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Gang Gui
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Li Zhang
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Anqi Qin
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
23
|
Bhatt A, Mukhopadhyaya A, Ali ME. α-Helix in Cystathionine β-Synthase Enzyme Acts as an Electron Reservoir. J Phys Chem B 2022; 126:4754-4760. [PMID: 35687358 DOI: 10.1021/acs.jpcb.2c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The modulation of electron density at the Pyridoxal 5'-phosphate (PLP) catalytic center, because of charge transfer across the α-helix/PLP interface, is the determining factor for the enzymatic activities in the human Cystathionine β-Synthase (hCBS) enzyme. Applying density functional theory calculations, in conjunction with the real space density analysis, we investigated the charge density delocalization across the entire heme-α-helix-PLP electron communication channels. The electron delocalization due to hydrogen bonds at the heme/α-helix and α-helix/PLP interfaces are found to be extended over a very long range, as a result of redistribution of electron densities of the cofactors. Moreover, the internal hydrogen bonds of α-helix that are crucial for its secondary structure also participate in the electron redistribution through the structured hydrogen-bond network. α-Helix is found to accumulate the electron density at the ground state from both of the cofactors and behaves as an electron reservoir for catalytic reaction at the electrophilic center of PLP.
Collapse
Affiliation(s)
- Aashish Bhatt
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab-140306, India
| | - Aritra Mukhopadhyaya
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab-140306, India
| | - Md Ehesan Ali
- Institute of Nano Science and Technology, Sector-81, Mohali, Punjab-140306, India
| |
Collapse
|
24
|
Song ZL, Zhao L, Ma T, Osama A, Shen T, He Y, Fang J. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med Res Rev 2022; 42:1930-1977. [PMID: 35657029 DOI: 10.1002/med.21913] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022]
Abstract
Following the discovery of nitric oxide (NO) and carbon monoxide (CO), hydrogen sulfide (H2 S) has been identified as the third gasotransmitter in humans. Increasing evidence have shown that H2 S is of preventive or therapeutic effects on diverse pathological complications. As a consequence, it is of great significance to develop suitable approaches of H2 S-based therapeutics for biomedical applications. H2 S-releasing agents (H2 S donors) play important roles in exploring and understanding the physiological functions of H2 S. More importantly, accumulating studies have validated the theranostic potential of H2 S donors in extensive repertoires of in vitro and in vivo disease models. Thus, it is imperative to summarize and update the literatures in this field. In this review, first, the background of H2 S on its chemical and biological aspects is concisely introduced. Second, the studies regarding the H2 S-releasing compounds are categorized and described, and accordingly, their H2 S-donating mechanisms, biological applications, and therapeutic values are also comprehensively delineated and discussed. Necessary comparisons between related H2 S donors are presented, and the drawbacks of many typical H2 S donors are analyzed and revealed. Finally, several critical challenges encountered in the development of multifunctional H2 S donors are discussed, and the direction of their future development as well as their biomedical applications is proposed. We expect that this review will reach extensive audiences across multiple disciplines and promote the innovation of H2 S biomedicine.
Collapse
Affiliation(s)
- Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Tao Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Tong Shen
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yilin He
- Botanical Agrochemicals Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
25
|
Tran JU, Brown BL. Structural Basis for Allostery in PLP-dependent Enzymes. Front Mol Biosci 2022; 9:884281. [PMID: 35547395 PMCID: PMC9081730 DOI: 10.3389/fmolb.2022.884281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are found ubiquitously in nature and are involved in a variety of biological pathways, from natural product synthesis to amino acid and glucose metabolism. The first structure of a PLP-dependent enzyme was reported over 40 years ago, and since that time, there is a steady wealth of structural and functional information revealed for a wide array of these enzymes. A functional mechanism that is gaining more appreciation due to its relevance in drug design is that of protein allostery, where binding of a protein or ligand at a distal site influences the structure, organization, and function at the active site. Here, we present a review of current structure-based mechanisms of allostery for select members of each PLP-dependent enzyme family. Knowledge of these mechanisms may have a larger potential for identifying key similarities and differences among enzyme families that can eventually be exploited for therapeutic development.
Collapse
Affiliation(s)
- Jenny U. Tran
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Breann L. Brown
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
26
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
27
|
Ding H, Chang J, He F, Gai S, Yang P. Hydrogen Sulfide: An Emerging Precision Strategy for Gas Therapy. Adv Healthc Mater 2022; 11:e2101984. [PMID: 34788499 DOI: 10.1002/adhm.202101984] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/06/2021] [Indexed: 12/13/2022]
Abstract
Advances in nanotechnology have enabled the rapid development of stimuli-responsive therapeutic nanomaterials for precision gas therapy. Hydrogen sulfide (H2 S) is a significant gaseous signaling molecule with intrinsic biochemical properties, which exerts its various physiological effects under both normal and pathological conditions. Various nanomaterials with H2 S-responsive properties, as new-generation therapeutic agents, are explored to guide therapeutic behaviors in biological milieu. The cross disciplinary of H2 S is an emerging scientific hotspot that studies the chemical properties, biological mechanisms, and therapeutic effects of H2 S. This review summarizes the state-of-art research on H2 S-related nanomedicines. In particular, recent advances in H2 S therapeutics for cancer, such as H2 S-mediated gas therapy and H2 S-related synergistic therapies (combined with chemotherapy, photodynamic therapy, photothermal therapy, and chemodynamic therapy) are highlighted. Versatile imaging techniques for real-time monitoring H2 S during biological diagnosis are reviewed. Finally, the biosafety issues, current challenges, and potential possibilities in the evolution of H2 S-based therapy that facilitate clinical translation to patients are discussed.
Collapse
Affiliation(s)
- He Ding
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Jinhu Chang
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| |
Collapse
|
28
|
Genetics and Epigenetics of One-Carbon Metabolism Pathway in Autism Spectrum Disorder: A Sex-Specific Brain Epigenome? Genes (Basel) 2021; 12:genes12050782. [PMID: 34065323 PMCID: PMC8161134 DOI: 10.3390/genes12050782] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition affecting behavior and communication, presenting with extremely different clinical phenotypes and features. ASD etiology is composite and multifaceted with several causes and risk factors responsible for different individual disease pathophysiological processes and clinical phenotypes. From a genetic and epigenetic side, several candidate genes have been reported as potentially linked to ASD, which can be detected in about 10–25% of patients. Folate gene polymorphisms have been previously associated with other psychiatric and neurodegenerative diseases, mainly focused on gene variants in the DHFR gene (5q14.1; rs70991108, 19bp ins/del), MTHFR gene (1p36.22; rs1801133, C677T and rs1801131, A1298C), and CBS gene (21q22.3; rs876657421, 844ins68). Of note, their roles have been scarcely investigated from a sex/gender viewpoint, though ASD is characterized by a strong sex gap in onset-risk and progression. The aim of the present review is to point out the molecular mechanisms related to intracellular folate recycling affecting in turn remethylation and transsulfuration pathways having potential effects on ASD. Brain epigenome during fetal life necessarily reflects the sex-dependent different imprint of the genome-environment interactions which effects are difficult to decrypt. We here will focus on the DHFR, MTHFR and CBS gene-triad by dissecting their roles in a sex-oriented view, primarily to bring new perspectives in ASD epigenetics.
Collapse
|
29
|
Sumi MP, Guru SA, Mir R, Bhat MA, Sahu S, Girish MP, Saxena A. Molecular evaluation of exon 8 cystathionine rs5742905T T>C gene polymorphism and determination of its frequency, distribution pattern, and association with susceptibility to Coronary Artery Disease. In North Indian Population. Cardiovasc Hematol Disord Drug Targets 2021; 21:115-122. [PMID: 33719952 DOI: 10.2174/1871529x21666210315121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The protein coded by cystathionine β synthase (CBS) gene act as a catalyzer, converts homocysteine to cystathionine. Impairment of CBS gene leads to homocystinuria by cystathionine β synthase deficiency which is linked to Coronary Artery Disease. A number of polymorphisms study have been performed in cystathione β synthase gene. In the current study we planned to analyze the influence of CBS T833C gene polymorphism and its association with Coronary Artery Disease development and its progression in the north Indian population. MATERIALS AND METHOD The present study comprises 100 angiographically confirmed CAD patients and 100 age and sex-matched healthy controls. A ≥ 50% luminal stenosis at one major coronary artery was considered for the inclusion criteria of the cases. The investigation of T833C polymorphism in the CBS gene was performed by PCR- RFLP technique. RESULT In result, we found that homozygous mutant (CC ) and heterozygous (TC) genotypes of CBS T833C gene polymorphism, were significantly higher in CAD patients as compared to healthy subjects. We also observed a substantial increased CAD risk exists in dominant, codominant inheritance and allele specific models for the CBS T833C gene polymorphism. We, analyzed the differential distribution with respect to disease severity, but there was no significant association (p=0.96). CONCLUSION In conclusion, this study demonstrates that CBS T833C gene polymorphism plays a key role in developing coronary artery disease and its progression.
Collapse
Affiliation(s)
- Mamta P Sumi
- Department of Biochemistry, Maulana Azad Medical College, University of Delhi. India
| | - Sameer Ahmad Guru
- Department of Biochemistry and Multidisciplinary Research Unit (MRU), MAMC, University of Delhi. India
| | - Rashid Mir
- Prince Fahd Bin Sultan Research chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk . Saudi Arabia
| | - Musadiq A Bhat
- Institute of Pharmacology and Toxicology-Neuropharmacology, University of Zurich Winterthurerstrasse, Zurich. Switzerland
| | - Samantak Sahu
- Department of Physical Medicine and Rehabilitation, All India Institute of Medical Science. India
| | - M P Girish
- iDepartment of Cardiology, GB Pant Hospital, University of Delhi. India
| | - Alpana Saxena
- Department of Biochemistry, Maulana Azad Medical College, University of Delhi. India
| |
Collapse
|
30
|
Trends in H 2S-Donors Chemistry and Their Effects in Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10030429. [PMID: 33799669 PMCID: PMC8002049 DOI: 10.3390/antiox10030429] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gasotransmitter recently emerged as an important regulatory mediator of numerous human cell functions in health and in disease. In fact, much evidence has suggested that hydrogen sulfide plays a significant role in many physio-pathological processes, such as inflammation, oxidation, neurophysiology, ion channels regulation, cardiovascular protection, endocrine regulation, and tumor progression. Considering the plethora of physiological effects of this gasotransmitter, the protective role of H2S donors in different disease models has been extensively studied. Based on the growing interest in H2S-releasing compounds and their importance as tools for biological and pharmacological studies, this review is an exploration of currently available H2S donors, classifying them by the H2S-releasing-triggered mechanism and highlighting those potentially useful as promising drugs in the treatment of cardiovascular diseases.
Collapse
|
31
|
Masi L, Ferrari S, Javaid MK, Papapoulos S, Pierroz DD, Brandi ML. Bone fragility in patients affected by congenital diseases non skeletal in origin. Orphanet J Rare Dis 2021; 16:11. [PMID: 33407701 PMCID: PMC7789665 DOI: 10.1186/s13023-020-01611-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bone tissue represents a large systemic compartment of the human body, with an active metabolism, that controls mineral deposition and removal, and where several factors may play a role. For these reasons, several non-skeletal diseases may influence bone metabolism. It is of a crucial importance to classify these disorders in order to facilitate diagnosis and clinical management. This article reports a taxonomic classification of non-skeletal rare congenital disorders, which have an impact on bone metabolism METHODS: The International Osteoporosis Foundation (IOF) Skeletal Rare Diseases Working Group (SRD-WG), comprised of basic and clinical scientists, has decided to review the taxonomy of non-skeletal rare disorders that may alter bone physiology. RESULTS The taxonomy of non-skeletal rare congenital disorders which impact bone comprises a total of 6 groups of disorders that may influence the activity of bone cells or the characteristics of bone matrix. CONCLUSIONS This paper provides the first comprehensive taxonomy of non-skeletal rare congenital disorders with impact on bone physiology.
Collapse
Affiliation(s)
- L Masi
- Metabolic Bone Diseases Unit, University Hospital of Florence, AOU-Careggi, Florence, Italy
| | - S Ferrari
- Division of Bone Diseases, Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - M K Javaid
- Oxford NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK
| | - S Papapoulos
- Center for Bone Quality, Leiden University Medical Center, Leiden, The Netherlands
| | - D D Pierroz
- International Osteoporosis Foundation (IOF), Rue Juste-Olivier 9, 1260, Nyon, Switzerland
| | - M L Brandi
- Fondazione Italiana Ricerca sulle Malattie dell'Osso, Florence, Italy.
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
32
|
Santonicola P, Germoglio M, d'Abbusco DS, Adamo A. Functional characterization of Caenorhabditis elegans cbs-2 gene during meiosis. Sci Rep 2020; 10:20913. [PMID: 33262405 PMCID: PMC7708620 DOI: 10.1038/s41598-020-78006-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/18/2020] [Indexed: 11/19/2022] Open
Abstract
Cystathionine β-synthase (CBS) is a eukaryotic enzyme that maintains the cellular homocysteine homeostasis and catalyzes the conversion of homocysteine to L-cystathionine and Hydrogen sulfide, via the trans-sulfuration pathway. In Caenorhabditis elegans, two cbs genes are present: cbs-1 functions similarly as to human CBS, and cbs-2, whose roles are instead unknown. In the present study we performed a phenotypic characterization of the cbs-2 mutant. The null cbs-2 mutant is viable, fertile and shows the wild-type complement of six bivalents in most oocyte nuclei, which is indicative of a correct formation of crossover recombination. In absence of synaptonemal complex formation (syp-2 mutant), loss of cbs-2 leads to chromosome fragmentation, suggesting that cbs-2 is essential during inter-sister repair. Interestingly, although proficient in the activation of the DNA damage checkpoint after exposure to genotoxic stress, the cbs-2 mutant is defective in DNA damage-induced apoptosis in meiotic germ cells. These results suggest possible functions for CBS-2 in meiosis, distinct from a role in the trans-sulfuration pathway. We propose that the C. elegans CBS-2 protein is required for both inter-sister repair and execution of DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Pamela Santonicola
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Marcello Germoglio
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Domenico Scotto d'Abbusco
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Adele Adamo
- Institute of Biosciences and BioResources, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy.
| |
Collapse
|
33
|
Lv H, Xu J, Bo T, Wang W. Characterization of Cystathionine β-Synthase TtCbs1 and Cysteine Synthase TtCsa1 Involved in Cysteine Biosynthesis in Tetrahymena thermophila. J Eukaryot Microbiol 2020; 68:e12834. [PMID: 33190347 DOI: 10.1111/jeu.12834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 12/19/2022]
Abstract
Cysteine is implicated in important biological processes. It is synthesized through two different pathways. Cystathionine β-synthase and cystathionine γ-lyase participate in the reverse transsulfuration pathway, while serine acetyltransferase and cysteine synthase function in the de novo pathway. Two evolutionarily related pyridoxal 5'-phosphate-dependent enzymes, cystathionine β-synthase TtCBS1 (TTHERM_00558300) and cysteine synthase TtCSA1 (TTHERM_00239430), were identified from a freshwater protozoan Tetrahymena thermophila. TtCbs1 contained the N-terminal heme binding domain, catalytic domain, and C-terminal regulatory domain, whereas TtCsa1 consisted of two α/β domains. The catalytic core of the two enzymes is similar. TtCBS1 and TtCSA1 showed high expression levels in the vegetative growth stage and decreased during the sexual developmental stage. TtCbs1 and TtCsa1 were localized in the cytoplasm throughout different developmental stages. His-TtCbs1 and His-TtCsa1 were expressed and purified in vitro. TtCbs1 catalyzed the canonical reaction with the highest velocity and possessed serine sulfhydrylase activity. TtCsa1 showed cysteine synthase activity with high Km for O-acetylserine and low Km for sulfide and also had serine sulfhydrylase activity toward serine. Both TtCbs1 and TtCsa1 catalyzed hydrogen sulfide producing. TtCBS1 knockdown and TtCSA1 knockout mutants affected cysteine and glutathione synthesis. TtCbs1 and TtCsa1 are involved in cysteine synthesis through two different pathways in T. thermophila.
Collapse
Affiliation(s)
- Hongrui Lv
- School of Life Science, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Jing Xu
- School of Life Science, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
34
|
Rahman MA, Glasgow JN, Nadeem S, Reddy VP, Sevalkar RR, Lancaster JR, Steyn AJC. The Role of Host-Generated H 2S in Microbial Pathogenesis: New Perspectives on Tuberculosis. Front Cell Infect Microbiol 2020; 10:586923. [PMID: 33330130 PMCID: PMC7711268 DOI: 10.3389/fcimb.2020.586923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, hydrogen sulfide (H2S) was considered primarily as a poisonous gas and environmental hazard. However, with the discovery of prokaryotic and eukaryotic enzymes for H2S production, breakdown, and utilization, H2S has emerged as an important signaling molecule in a wide range of physiological and pathological processes. Hence, H2S is considered a gasotransmitter along with nitric oxide (•NO) and carbon monoxide (CO). Surprisingly, despite having overlapping functions with •NO and CO, the role of host H2S in microbial pathogenesis is understudied and represents a gap in our knowledge. Given the numerous reports that followed the discovery of •NO and CO and their respective roles in microbial pathogenesis, we anticipate a rapid increase in studies that further define the importance of H2S in microbial pathogenesis, which may lead to new virulence paradigms. Therefore, this review provides an overview of sulfide chemistry, enzymatic production of H2S, and the importance of H2S in metabolism and immunity in response to microbial pathogens. We then describe our current understanding of the role of host-derived H2S in tuberculosis (TB) disease, including its influences on host immunity and bioenergetics, and on Mycobacterium tuberculosis (Mtb) growth and survival. Finally, this review discusses the utility of H2S-donor compounds, inhibitors of H2S-producing enzymes, and their potential clinical significance.
Collapse
Affiliation(s)
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ritesh R Sevalkar
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jack R Lancaster
- Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Adrie J C Steyn
- Africa Health Research Institute, Durban, South Africa.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States.,Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
35
|
Citi V, Martelli A, Brancaleone V, Brogi S, Gojon G, Montanaro R, Morales G, Testai L, Calderone V. Anti-inflammatory and antiviral roles of hydrogen sulfide: Rationale for considering H 2 S donors in COVID-19 therapy. Br J Pharmacol 2020; 177:4931-4941. [PMID: 32783196 PMCID: PMC7436626 DOI: 10.1111/bph.15230] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/19/2020] [Accepted: 08/02/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-Cov-2 demands rapid, safe and effective therapeutic options. In the last decades, the endogenous gasotransmitter hydrogen sulfide (H2 S) has emerged as modulator of several biological functions and its deficiency has been associated with different disorders. Therefore, many H2 S-releasing agents have been developed as potential therapeutic tools for diseases related with impaired H2 S production and/or activity. Some of these compounds are in advanced clinical trials. Presently, the pivotal role of H2 S in modulating the inflammatory response and pro-inflammatory cytokine cascade is well recognized, and the usefulness of some H2 S-donors for the treatment of acute lung inflammation has been reported. Recent data is elucidating several mechanisms of action, which may account for antiviral effects of H2 S. Noteworthy, some preliminary clinical results suggest an inverse relationship between endogenous H2 S levels and severity of COVID-19. Therefore, repurposing of H2 S-releasing drugs may be a potential therapeutic opportunity for treatment of COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
| | | | | | - Simone Brogi
- Department of PharmacyUniversity of PisaPisaItaly
| | | | | | | | - Lara Testai
- Department of PharmacyUniversity of PisaPisaItaly
| | | |
Collapse
|
36
|
Anturaniemi J, Zaldívar-López S, Savelkoul HFJ, Elo K, Hielm-Björkman A. The Effect of Atopic Dermatitis and Diet on the Skin Transcriptome in Staffordshire Bull Terriers. Front Vet Sci 2020; 7:552251. [PMID: 33178726 PMCID: PMC7596200 DOI: 10.3389/fvets.2020.552251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Canine atopic dermatitis (CAD) has a hereditary basis that is modified by interactions with the environment, including diet. Differentially expressed genes in non-lesional skin, determined by RNA sequencing before and after a dietary intervention, were compared between dogs with naturally occurring CAD (n = 4) and healthy dogs (n = 4). The dogs were fed either a common commercial heat-processed high carbohydrate food (kibble diet) (n = 4), or a non-processed high fat food (raw meat-based diet) (n = 4). At the end of the diet intervention, 149 differentially expressed transcripts were found between the atopic and healthy dogs. The main canonical pathways altered by the dysregulation of these genes were angiopoietin signaling, epidermal growth factor signaling, activation of angiogenesis, and alterations in keratinocyte proliferation and lipid metabolism. On the other hand, 33 differently expressed transcripts were found between the two diet groups, of which 8 encode genes that are annotated in the current version of the dog genome: immunoglobulin heavy constant mu (IGHM), immunoglobulin lambda-like polypeptide 5 (IGLL5), B-cell antigen receptor complex-associated protein beta chain (CD79B), polymeric immunoglobulin receptor (PIGR), cystathionine β-synthase (CBS), argininosuccinate synthase 1 (ASS1), secretory leukocyte peptidase inhibitor (SLPI), and mitochondrial ribosome recycling factor (MRRF). All genes were upregulated in the raw diet group. In conclusion the findings of this study suggest alterations in lipid and keratinocyte metabolism as well as angiogenesis in the skin of atopic dogs. Additionally, a possible enhancement of innate immunity and decrease in oxidative stress was seen in raw food fed dogs, which could have an important role in preventing hypersensitivities and disturbed immunity at young age.
Collapse
Affiliation(s)
- Johanna Anturaniemi
- Faculty of Veterinary Medicine, Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| | - Sara Zaldívar-López
- Genomics and Animal Breeding Group, Department of Genetics, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University, Wageningen, Netherlands
| | - Kari Elo
- Faculty of Agriculture and Forestry, Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Anna Hielm-Björkman
- Faculty of Veterinary Medicine, Department of Equine and Small Animal Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Catalytic specificity of the Lactobacillus plantarum cystathionine γ-lyase presumed by the crystallographic analysis. Sci Rep 2020; 10:14886. [PMID: 32913258 PMCID: PMC7483736 DOI: 10.1038/s41598-020-71756-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
The reverse transsulfuration pathway, which is composed of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CGL), plays a role to synthesize l-cysteine using l-serine and the sulfur atom in l-methionine. A plant-derived lactic acid bacterium Lactobacillus plantarum SN35N has been previously found to harbor the gene cluster encoding the CBS- and CGL-like enzymes. In addition, it has been demonstrated that the L. plantarum CBS can synthesize cystathionine from O-acetyl-l-serine and l-homocysteine. The aim of this study is to characterize the enzymatic functions of the L. plantarum CGL. We have found that the enzyme has the high γ-lyase activity toward cystathionine to generate l-cysteine, together with the β-lyase activity toward l-cystine to generate l-cysteine persulfide. By the crystallographic analysis of the inactive CGL K194A mutant complexed with cystathionine, we have found the residues which recognize the distal amino and carboxyl groups of cystathionine or l-cystine. The PLP-bound substrates at the active site may take either the binding pose for the γ- or β-elimination reaction, with the former being the major reaction in the case of cystathionine.
Collapse
|
38
|
Flores-Flores M, Moreno-García L, Castro-Martínez F, Nahmad M. Cystathionine β-synthase Deficiency Impairs Vision in the Fruit Fly, Drosophila melanogaster. Curr Eye Res 2020; 46:600-605. [PMID: 32865440 DOI: 10.1080/02713683.2020.1818262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Deficiency in Cystathionine β-synthase (CBS) leads to an abnormal accumulation of homocysteine and results in classical homocystinuria, a multi-systemic disorder that affects connective tissue, muscles, the central nervous system, and the eyes. However, the genetic players and mechanisms underlying vision alterations in patients with homocystinuria are little understood. MATERIALS AND METHODS The fruit fly, Drosophila melanogaster, is a useful system to investigate the genetic basis of several human diseases, but no study to date has used Drosophila as model of homocystinuria. Here, we use Drosophila genetic tools to down-regulate CBS expression and evaluate its behavioral response to light. RESULTS We show that CBS-deficient flies do not display the normal stereotypical behavior of attraction towards a luminous source, known as phototaxis. This behavior cannot be attributed to a motor or olfactory deficiency, but it is most likely related to a lower visual acuity. CBS-deficient flies are overall smaller, but smaller eyes do not explain their lack of phototactic response. CONCLUSIONS The vision phenotype of CBS knock-down flies is consistent with severe myopia in homocystinuria patients. We propose to use Drosophila as a model to investigate ocular manifestations underlying homocystinuria.
Collapse
Affiliation(s)
- Marycruz Flores-Flores
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies, Mexico City, Mexico
| | - Leonardo Moreno-García
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies, Mexico City, Mexico
| | - Felipe Castro-Martínez
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies, Mexico City, Mexico
| | - Marcos Nahmad
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies, Mexico City, Mexico
| |
Collapse
|
39
|
Enzymatic Regulation and Biological Functions of Reactive Cysteine Persulfides and Polysulfides. Biomolecules 2020; 10:biom10091245. [PMID: 32867265 PMCID: PMC7563103 DOI: 10.3390/biom10091245] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 01/15/2023] Open
Abstract
Cysteine persulfide (CysSSH) and cysteine polysulfides (CysSSnH, n > 1) are cysteine derivatives that have sulfane sulfur atoms bound to cysteine thiol. Advances in analytical methods that detect and quantify persulfides and polysulfides have shown that CysSSH and related species such as glutathione persulfide occur physiologically and are prevalent in prokaryotes, eukaryotes, and mammals in vivo. The chemical properties and abundance of these compounds suggest a central role for reactive persulfides in cell-regulatory processes. CysSSH and related species have been suggested to act as powerful antioxidants and cellular protectants and may serve as redox signaling intermediates. It was recently shown that cysteinyl-tRNA synthetase (CARS) is a new cysteine persulfide synthase. In addition, we discovered that CARS is involved in protein polysulfidation that is coupled with translation. Mitochondrial activity in biogenesis and bioenergetics is supported and upregulated by CysSSH derived from mitochondrial CARS. In this review article, we discuss the mechanisms of the biosynthesis of CysSSH and related persulfide species, with a particular focus on the roles of CARS. We also review the antioxidative and anti-inflammatory actions of persulfides.
Collapse
|
40
|
Estrogen Receptors and Estrogen-Induced Uterine Vasodilation in Pregnancy. Int J Mol Sci 2020; 21:ijms21124349. [PMID: 32570961 PMCID: PMC7352873 DOI: 10.3390/ijms21124349] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Normal pregnancy is associated with dramatic increases in uterine blood flow to facilitate the bidirectional maternal–fetal exchanges of respiratory gases and to provide sole nutrient support for fetal growth and survival. The mechanism(s) underlying pregnancy-associated uterine vasodilation remain incompletely understood, but this is associated with elevated estrogens, which stimulate specific estrogen receptor (ER)-dependent vasodilator production in the uterine artery (UA). The classical ERs (ERα and ERβ) and the plasma-bound G protein-coupled ER (GPR30/GPER) are expressed in UA endothelial cells and smooth muscle cells, mediating the vasodilatory effects of estrogens through genomic and/or nongenomic pathways that are likely epigenetically modified. The activation of these three ERs by estrogens enhances the endothelial production of nitric oxide (NO), which has been shown to play a key role in uterine vasodilation during pregnancy. However, the local blockade of NO biosynthesis only partially attenuates estrogen-induced and pregnancy-associated uterine vasodilation, suggesting that mechanisms other than NO exist to mediate uterine vasodilation. In this review, we summarize the literature on the role of NO in ER-mediated mechanisms controlling estrogen-induced and pregnancy-associated uterine vasodilation and our recent work on a “new” UA vasodilator hydrogen sulfide (H2S) that has dramatically changed our view of how estrogens regulate uterine vasodilation in pregnancy.
Collapse
|
41
|
Dillon KM, Carrazzone RJ, Matson JB, Kashfi K. The evolving landscape for cellular nitric oxide and hydrogen sulfide delivery systems: A new era of customized medications. Biochem Pharmacol 2020; 176:113931. [PMID: 32224139 PMCID: PMC7263970 DOI: 10.1016/j.bcp.2020.113931] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/20/2020] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are industrial toxins or pollutants; however, both are produced endogenously and have important biological roles in most mammalian tissues. The recognition that these gasotransmitters have a role in physiological and pathophysiological processes has presented opportunities to harness their intracellular effects either through inhibition of their production; or more commonly, through inducing their levels and or delivering them by various modalities. In this review article, we have focused on an array of NO and H2S donors, their hybrids with other established classes of drugs, and the various engineered delivery platforms such a fibers, polymers, nanoparticles, hydrogels, and others. In each case, we have reviewed the rationale for their development.
Collapse
Affiliation(s)
- Kearsley M Dillon
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ryan J Carrazzone
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, 160 Convent Avenue, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, NY, USA.
| |
Collapse
|
42
|
Zuhra K, Augsburger F, Majtan T, Szabo C. Cystathionine-β-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020; 10:E697. [PMID: 32365821 PMCID: PMC7277093 DOI: 10.3390/biom10050697] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Cystathionine-β-synthase (CBS), the first (and rate-limiting) enzyme in the transsulfuration pathway, is an important mammalian enzyme in health and disease. Its biochemical functions under physiological conditions include the metabolism of homocysteine (a cytotoxic molecule and cardiovascular risk factor) and the generation of hydrogen sulfide (H2S), a gaseous biological mediator with multiple regulatory roles in the vascular, nervous, and immune system. CBS is up-regulated in several diseases, including Down syndrome and many forms of cancer; in these conditions, the preclinical data indicate that inhibition or inactivation of CBS exerts beneficial effects. This article overviews the current information on the expression, tissue distribution, physiological roles, and biochemistry of CBS, followed by a comprehensive overview of direct and indirect approaches to inhibit the enzyme. Among the small-molecule CBS inhibitors, the review highlights the specificity and selectivity problems related to many of the commonly used "CBS inhibitors" (e.g., aminooxyacetic acid) and provides a comprehensive review of their pharmacological actions under physiological conditions and in various disease models.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Fiona Augsburger
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, 1702 Fribourg, Switzerland; (K.Z.); (F.A.)
| |
Collapse
|
43
|
Peleli M, Bibli SI, Li Z, Chatzianastasiou A, Varela A, Katsouda A, Zukunft S, Bucci M, Vellecco V, Davos CH, Nagahara N, Cirino G, Fleming I, Lefer DJ, Papapetropoulos A. Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase. Biochem Pharmacol 2020; 176:113833. [PMID: 32027885 DOI: 10.1016/j.bcp.2020.113833] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/30/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE Hydrogen sulfide (H2S) is a physiological mediator that regulates cardiovascular homeostasis. Three major enzymes contribute to the generation of endogenously produced H2S, namely cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). Although the biological roles of CSE and CBS have been extensively investigated in the cardiovascular system, very little is known about that of 3-MST. In the present study we determined the importance of 3-MST in the heart and blood vessels, using a genetic model with a global 3-MST deletion. RESULTS 3-MST is the most abundant transcript in the mouse heart, compared to CSE and CBS. 3-MST was mainly localized in smooth muscle cells and cardiomyocytes, where it was present in both the mitochondria and the cytosol. Levels of serum and cardiac H2S species were not altered in adult young (2-3 months old) 3-MST-/- mice compared to WT animals. No significant changes in the expression of CSE and CBS were observed. Additionally, 3-MST-/- mice had normal left ventricular structure and function, blood pressure and vascular reactivity. Interestingly, genetic ablation of 3-MST protected mice against myocardial ischemia reperfusion injury, and abolished the protection offered by ischemic pre- and post-conditioning. 3-MST-/- mice showed lower expression levels of thiosulfate sulfurtransferase, lower levels of cellular antioxidants and elevated basal levels of cardiac reactive oxygen species. In parallel, 3-MST-/- mice showed no significant alterations in endothelial NO synthase or downstream targets. Finally, in a separate cohort of older 3-MST-/- mice (18 months old), a hypertensive phenotype associated with cardiac hypertrophy and NO insufficiency was observed. CONCLUSIONS Overall, genetic ablation of 3-MST impacts on the mouse cardiovascular system in an age-dependent manner. Loss of 3-MST exerts a cardioprotective role in young adult mice, while with aging it predisposes them to hypertension and cardiac hypertrophy.
Collapse
Affiliation(s)
- Maria Peleli
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece; Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Sofia-Iris Bibli
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Zhen Li
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Athanasia Chatzianastasiou
- "George P. Livanos and Marianthi Simou" Laboratories, First Department of Pulmonary and Critical Care Medicine, Evangelismos Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aimilia Varela
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Antonia Katsouda
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Sven Zukunft
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - Mariarosaria Bucci
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Valentina Vellecco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Constantinos H Davos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| | | | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Frankfurt am Main, Germany
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Andreas Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece; Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
44
|
Vellecco V, Martelli A, Bibli IS, Vallifuoco M, Manzo OL, Panza E, Citi V, Calderone V, de Dominicis G, Cozzolino C, Basso EM, Mariniello M, Fleming I, Mancini A, Bucci M, Cirino G. Anomalous K v 7 channel activity in human malignant hyperthermia syndrome unmasks a key role for H 2 S and persulfidation in skeletal muscle. Br J Pharmacol 2020; 177:810-823. [PMID: 31051045 PMCID: PMC7024712 DOI: 10.1111/bph.14700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/05/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Human malignant hyperthermia (MH) syndrome is induced by volatile anaesthetics and involves increased levels of cystathionine β-synthase (CBS)-derived H2 S within skeletal muscle. This increase contributes to skeletal muscle hypercontractility. Kv 7 channels, expressed in skeletal muscle, may be a molecular target for H2 S. Here, we have investigated the role of Kv 7 channels in MH. EXPERIMENTAL APPROACH Skeletal muscle biopsies were obtained from MH-susceptible (MHS) and MH-negative (MHN) patients. Immunohistochemistry, RT-PCR, Western blot, and in vitro contracture test (IVCT) were carried out. Development and characterization of primary human skeletal muscle cells (PHSKMC) and evaluation of cell membrane potential were also performed. The persulfidation state of Kv 7 channels and polysulfide levels were measured. KEY RESULTS Kv 7 channels were similarly expressed in MHN and MHS biopsies. The IVCT revealed an anomalous contractility of MHS biopsies following exposure to the Kv 7 channel opener retigabine. Incubation of negative biopsies with NaHS, prior to retigabine addition, led to an MHS-like positive response. MHS-derived PHSKMC challenged with retigabine showed a paradoxical depolarizing effect, compared with the canonical hyperpolarizing effect. CBS expression and activity were increased in MHS biopsies, resulting in a major polysulfide bioavailability. Persulfidation of Kv 7.4 channels was significantly higher in MHS than in MHN biopsies. CONCLUSIONS AND IMPLICATIONS In skeletal muscle of MHS patients, CBS-derived H2 S induced persulfidation of Kv 7 channels. This post-translational modification switches the hyperpolarizing activity into depolarizing. This mechanism can contribute to the pathological skeletal muscle hypercontractility typical of MH syndrome. LINKED ARTICLES This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Valentina Vellecco
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| | | | - Iris Sofia Bibli
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe University Frankfurt am MainFrankfurt am MainGermany
- German Center of Cardiovascular Research (DZHK), partner site RheinMainFrankfurt am MainGermany
| | | | - Onorina L. Manzo
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Elisabetta Panza
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| | | | | | | | | | | | | | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular MedicineGoethe University Frankfurt am MainFrankfurt am MainGermany
- German Center of Cardiovascular Research (DZHK), partner site RheinMainFrankfurt am MainGermany
| | | | - Mariarosaria Bucci
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - Giuseppe Cirino
- Department of Pharmacy, School of MedicineUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
45
|
Kumar A, Bellstedt P, Wiedemann C, Wißbrock A, Imhof D, Ramachandran R, Ohlenschläger O. NMR experiments on the transient interaction of the intrinsically disordered N-terminal peptide of cystathionine-β-synthase with heme. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106561. [PMID: 31345774 DOI: 10.1016/j.jmr.2019.07.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
The N-terminal segment of human cystathionine-β-synthase (CBS(1-40)) constitutes an intrinsically disordered protein stretch that transiently interacts with heme. We illustrate that the HCBCACON experimental protocol provides an efficient alternative approach for probing transient interactions of intrinsically disordered proteins with heme in situations where the applicability of the conventional [1H, 15N]-HSQC experiment may be limited. This experiment starting with the excitation of protein side chain protons delivers information about the proline residues and thereby makes it possible to use these residues in interaction mapping experiments. Employing this approach in conjunction with site-specific mutation we show that transient heme binding is mediated by the Cys15-Pro16 motif of CBS(1-40).
Collapse
Affiliation(s)
- Amit Kumar
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany
| | - Peter Bellstedt
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Humboldtstr. 10, D-07743 Jena, Germany
| | - Christoph Wiedemann
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, D-06120 Halle, Germany
| | - Amelie Wißbrock
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Ramadurai Ramachandran
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany
| | - Oliver Ohlenschläger
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, D-07745 Jena, Germany.
| |
Collapse
|
46
|
Saande CJ, Pritchard SK, Worrall DM, Snavely SE, Nass CA, Neuman JC, Luchtel RA, Dobiszewski S, Miller JW, Vailati-Riboni M, Loor JJ, Schalinske KL. Dietary Egg Protein Prevents Hyperhomocysteinemia via Upregulation of Hepatic Betaine-Homocysteine S-Methyltransferase Activity in Folate-Restricted Rats. J Nutr 2019; 149:1369-1376. [PMID: 31111947 DOI: 10.1093/jn/nxz069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/19/2019] [Accepted: 03/20/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Hyperhomocysteinemia is associated with increased cardiovascular disease risk. Whole eggs contain several nutrients known to affect homocysteine regulation, including sulfur amino acids, choline, and B vitamins. OBJECTIVE The aim of this study was to determine the effect of whole eggs and egg components (i.e., egg protein and choline) with respect to 1) homocysteine balance and 2) the hepatic expression and activity of betaine-homocysteine S-methyltransferase (BHMT) and cystathionine β-synthase (CBS) in a folate-restricted (FR) rat model of hyperhomocysteinemia. METHODS Male Sprague Dawley rats (n = 48; 6 wk of age) were randomly assigned to a casein-based diet (C; n = 12), a casein-based diet supplemented with choline (C + Cho; 1.3%, wt:wt; n = 12), an egg protein-based diet (EP; n = 12), or a whole egg-based diet (WE; n = 12). At week 2, half of the rats in each of the 4 dietary groups were provided an FR (0 g folic acid/kg) diet and half continued on the folate-sufficient (FS; 0.2 g folic acid/kg) diet for an additional 6 wk. All diets contained 20% (wt:wt) total protein. Serum homocysteine was measured by HPLC and BHMT and CBS expression and activity were evaluated using real-time quantitative polymerase chain reaction, Western blot, and enzyme activity. A 2-factor ANOVA was used for statistical comparisons. RESULTS Rats fed FR-C exhibited a 53% increase in circulating homocysteine concentrations compared with rats fed FS-C (P < 0.001). In contrast, serum homocysteine did not differ between rats fed FS-C and FR-EP (P = 0.078). Hepatic BHMT activity was increased by 45% and 40% by the EP (P < 0.001) and WE (P = 0.002) diets compared with the C diets, respectively. CONCLUSIONS Dietary intervention with egg protein prevented elevated circulating homocysteine concentrations in a rat model of hyperhomocysteinemia, due in part to upregulation of hepatic BHMT. These data may support the inclusion of egg protein for dietary recommendations targeting hyperhomocysteinemia prevention.
Collapse
Affiliation(s)
- Cassondra J Saande
- Department of Food Science and Human Nutrition.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA
| | - Samantha K Pritchard
- Department of Food Science and Human Nutrition.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA
| | | | | | | | - Joshua C Neuman
- Department of Food Science and Human Nutrition.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA
| | - Rebecca A Luchtel
- Department of Food Science and Human Nutrition.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA
| | - Sarah Dobiszewski
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Joshua W Miller
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Mario Vailati-Riboni
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kevin L Schalinske
- Department of Food Science and Human Nutrition.,Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA
| |
Collapse
|
47
|
Devi S, Tarique KF, Ali MF, Abdul Rehman SA, Gourinath S. Identification and characterization of Helicobacter pylori O-acetylserine-dependent cystathionine β-synthase, a distinct member of the PLP-II family. Mol Microbiol 2019; 112:718-739. [PMID: 31132312 DOI: 10.1111/mmi.14315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 02/02/2023]
Abstract
O-acetylserine sulfhydrylase (OASS) and cystathionine β-synthase (CBS) are members of the PLP-II family, and involved in L-cysteine production. OASS produces L-cysteine via a de novo pathway while CBS participates in the reverse transsulfuration pathway. O-acetylserine-dependent CBS (OCBS) was previously identified as a new member of the PLP-II family, which are predominantly seen in bacteria. The bacterium Helicobacter pylori possess only one OASS (hp0107) gene and we showed that the protein coded by this gene actually functions as an OCBS and utilizes L-homocysteine and O-acetylserine (OAS) to produce cystathionine. HpOCBS did not show CBS activity with the substrate L-serine and required OAS exclusively. The HpOCBS structure in complex with methionine showed a closed cleft state, explaining the initial mode of substrate binding. Sequence and structural analyses showed differences between the active sites of OCBS and CBS, and explain their different substrate preferences. We identified three hydrophobic residues near the active site of OCBS, corresponding to one serine and two tyrosine residues in CBSs. Mutational studies were performed on HpOCBS and Saccharomyces cerevisiae CBS. A ScCBS double mutant (Y158F/Y226V) did not display activity with L-serine, indicating indispensability of these polar residues for selecting substrate L-serine, however, did show activity with OAS.
Collapse
Affiliation(s)
- Suneeta Devi
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Khaja Faisal Tarique
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,Public Health Research Institute, Rutgers, Newark, NJ, USA
| | - Mohammad Farhan Ali
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Syed Arif Abdul Rehman
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Samudrala Gourinath
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
48
|
Wang C, Xu G, Wen Q, Peng X, Chen H, Zhang J, Xu S, Zhang C, Zhang M, Ma J, Hui Z, Wu G, Ma M. CBS promoter hypermethylation increases the risk of hypertension and stroke. Clinics (Sao Paulo) 2019; 74:e630. [PMID: 30916171 PMCID: PMC6438132 DOI: 10.6061/clinics/2019/e630] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 11/07/2018] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Cystathionine β-synthase is a major enzyme in the metabolism of plasma homocysteine. Hyperhomocysteinemia is positively associated with hypertension and stroke. The present study was performed to examine the possible effects of Cystathionine β-synthase promoter methylation on the development of hypertension and stroke. METHODS Using quantitative methylation-specific PCR, we determined the Cystathionine β-synthase methylation levels in 218 healthy individuals and 132 and 243 age- and gender-matched stroke and hypertensive patients, respectively. The relative changes in Cystathionine β-synthase promoter methylation were analyzed using the 2-ΔΔCt method. The percent of the methylated reference of Cystathionine β-synthase was used to represent the Cystathionine β-synthase promoter methylation levels. RESULTS In this study, the Cystathionine β-synthase promoter methylation levels of hypertensive and stroke participants were both higher than that of the healthy individuals (median percentages of the methylated reference were 50.61%, 38.05% and 30.53%, respectively, all p<0.001). Multivariable analysis showed that Cystathionine β-synthase promoter hypermethylation increased the risk of hypertension [odds ratio, OR (95% confidence interval, CI)=1.035 (1.025-1.045)] and stroke [OR (95% CI)=1.015 (1.003-1.028)]. The area under the curve of Cystathionine β-synthase promoter methylation was 0.844 (95% CI: 0.796-0.892) in male patients with hypertension and 0.722 (95% CI: 0.653-0.799) in male patients with stroke. CONCLUSION Cystathionine β-synthase promoter hypermethylation increases the risk of hypertension and stroke, especially in male patients.
Collapse
Affiliation(s)
- Changyi Wang
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, China
- College of Traditional Chinese Medicine of Jinan University, Institute of Integrated Traditional Chinese and Western Medicine of Jinan University, Guangzhou, China
- Department of Cardiology. The Eighth Affiliated Hospital of Sun Yat-sen University. Shenzhen, China
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Guodong Xu
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - Qi Wen
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Xiaolin Peng
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Hongen Chen
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Jingwen Zhang
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Shan Xu
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Chunhui Zhang
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Min Zhang
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Jianping Ma
- Department of Non-communicable Disease Prevention and Control, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Zhaohui Hui
- Shenzhen Xili People's Hospital, Shenzhen, China
| | - Guifu Wu
- Department of Cardiology. The Eighth Affiliated Hospital of Sun Yat-sen University. Shenzhen, China
- Corresponding authors. E-mail: /
| | - Min Ma
- College of Traditional Chinese Medicine of Jinan University, Institute of Integrated Traditional Chinese and Western Medicine of Jinan University, Guangzhou, China
- Corresponding authors. E-mail: /
| |
Collapse
|
49
|
Liang J, Han Q, Tan Y, Ding H, Li J. Current Advances on Structure-Function Relationships of Pyridoxal 5'-Phosphate-Dependent Enzymes. Front Mol Biosci 2019; 6:4. [PMID: 30891451 PMCID: PMC6411801 DOI: 10.3389/fmolb.2019.00004] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 01/25/2019] [Indexed: 12/23/2022] Open
Abstract
Pyridoxal 5′-phosphate (PLP) functions as a coenzyme in many enzymatic processes, including decarboxylation, deamination, transamination, racemization, and others. Enzymes, requiring PLP, are commonly termed PLP-dependent enzymes, and they are widely involved in crucial cellular metabolic pathways in most of (if not all) living organisms. The chemical mechanisms for PLP-mediated reactions have been well elaborated and accepted with an emphasis on the pure chemical steps, but how the chemical steps are processed by enzymes, especially by functions of active site residues, are not fully elucidated. Furthermore, the specific mechanism of an enzyme in relation to the one for a similar class of enzymes seems scarcely described or discussed. This discussion aims to link the specific mechanism described for the individual enzyme to the same types of enzymes from different species with aminotransferases, decarboxylases, racemase, aldolase, cystathionine β-synthase, aromatic phenylacetaldehyde synthase, et al. as models. The structural factors that contribute to the reaction mechanisms, particularly active site residues critical for dictating the reaction specificity, are summarized in this review.
Collapse
Affiliation(s)
- Jing Liang
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Qian Han
- Laboratory of Tropical Veterinary Medicine and Vector Biology, Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources, Institute of Agriculture and Forestry, Hainan University, Haikou, China
| | - Yang Tan
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haizhen Ding
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jianyong Li
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
50
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|