1
|
Zhong W, Olugbami JO, Rathakrishnan P, Mohanty I, Moore SG, Garg N, Oyelere AK, Turner TL, McShan AC, Agarwal V. Discovery and Folding Dynamics of a Fused Bicyclic Cysteine Knot Undecapeptide from the Marine Sponge Halichondria bowerbanki. J Org Chem 2024; 89:12748-12752. [PMID: 39189383 PMCID: PMC11382151 DOI: 10.1021/acs.joc.4c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
We describe the discovery and structure of an undecapeptide natural product from a marine sponge, termed halichondamide A, that is morphed into a fused bicyclic ring topology via two disulfide bonds. Molecular dynamics simulations allow us to posit that the installation of one disulfide bond biases the intermediate peptide conformation and predisposes the formation of the second disulfide bond. The natural product was found to be mildly cytotoxic against liver and breast cancer cell lines.
Collapse
Affiliation(s)
- Weimao Zhong
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Jeremiah O. Olugbami
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- Department
of Biochemistry, University of Ibadan, Ibadan, Oyo 200005, Nigeria
| | - Prashanth Rathakrishnan
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Ipsita Mohanty
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Samuel G. Moore
- Petit
Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Neha Garg
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Adegboyega K. Oyelere
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Thomas L. Turner
- Ecology,
Evolution, and Marine Biology Department, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Andrew C. McShan
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Vinayak Agarwal
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Aouji M, Zirari M, Imtara H, Rkhaila A, Bouhaddioui B, Mothana RA, Noman OM, Tarayrah M, Bengueddour R. Exploring the Chemical Composition, Antioxidant, and Antibacterial Properties of Helix aspersa Müller Flesh Crude Extract: A Comprehensive Investigation. ACS OMEGA 2024; 9:34754-34764. [PMID: 39157072 PMCID: PMC11325497 DOI: 10.1021/acsomega.4c04042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
Snail flesh is a highly nutritious and easily digestible food commonly integrated into the human diet. In this study, snails belonging to the Helix aspersa Müller species were used to determine their chemical composition and evaluate the antioxidant and antibacterial activities of their flesh using successive maceration extractions with three solvents of different polarities. Biomolecules were analyzed spectrophotometrically, and their chemical compositions were determined by using gas chromatography coupled with mass spectroscopy. The antioxidant activity was assessed using three tests: DPPH, iron-reducing power test, and total antioxidant activity. The ethanol extract was found to be the most effective, with a high yield and high biomolecule content compared with other extracts. The extracts showed a significant amount of antioxidants, ranging from 3.14 to 7.04 mg AAE g-1 of dry matter, according to the total antioxidant activity assay. The DPPH scavenging capacity showed a reduction of the radical, with inhibitory concentrations ranging from 507.07 to 829.49 μg mL-1. In contrast, the iron-reducing power ranged from 67.98 to 424.74 μg mL-1. All of the strains studied responded favorably to the antimicrobial effects of H. aspersa extracts, with a zone of inhibition ranging from 8.48 to 15.53 mm. Additionally, at approximately 15 mg mL-1, the ethanolic extract had the lowest minimum inhibitory concentration against Pseudomonas aeruginosa. H. aspersa Müller flesh is rich in biomolecules with antioxidant and antibacterial activities, which could justify its use as a natural product and in therapeutic applications in the food industry.
Collapse
Affiliation(s)
- Marouane Aouji
- Laboratory
of Natural Resources and Sustainable Development, Department of Biology,
Faculty of Sciences, Ibn Tofail University, BP 133, Kenitra 14000, Morocco
| | - Malak Zirari
- Laboratory
of Organic Chemistry Catalysis and Environment, Department of Chemistry,
Faculty of Sciences, Ibn Tofail University, BP 133, Kénitra 14000, Morocco
| | - Hamada Imtara
- Faculty
of Medicine, Arab American University Palestine, Jenin 44862, Palestine
| | - Amine Rkhaila
- Laboratory
of Plant, Animal and Agro-Industry Productions, Department of Biology,
Faculty of Sciences, Ibn Tofail University, BP 133, Kenitra 14000, Morocco
| | - Bouchra Bouhaddioui
- Laboratory
of Natural Resources and Sustainable Development, Department of Biology,
Faculty of Sciences, Ibn Tofail University, BP 133, Kenitra 14000, Morocco
| | - Ramzi A. Mothana
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Omar M. Noman
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mahmoud Tarayrah
- National
Center for Research in Human Genomics, 2 Rue Gaston Cŕemieux, Evry Courcouronnes 91000, France
| | - Rachid Bengueddour
- Laboratory
of Natural Resources and Sustainable Development, Department of Biology,
Faculty of Sciences, Ibn Tofail University, BP 133, Kenitra 14000, Morocco
| |
Collapse
|
3
|
A Novel Dimeric Conotoxin, FrXXA, from the Vermivorous Cone Snail Conus fergusoni, of the Eastern Pacific, Inhibits Nicotinic Acetylcholine Receptors. Toxins (Basel) 2022; 14:toxins14080510. [PMID: 35893752 PMCID: PMC9330476 DOI: 10.3390/toxins14080510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023] Open
Abstract
We isolated a new dimeric conotoxin with inhibitory activity against neuronal nicotinic acetylcholine receptors. Edman degradation and transcriptomic studies indicate a homodimeric conotoxin composed by two chains of 47 amino acid in length. It has the cysteine framework XX and 10 disulfide bonds. According to conotoxin nomenclature, it has been named as αD-FrXXA. The αD-FrXXA conotoxin inhibited the ACh-induced response on nAChR with a IC50 of 125 nM on hα7, 282 nM on hα3β2, 607 nM on α4β2, 351 nM on mouse adult muscle, and 447 nM on mouse fetal muscle. This is first toxin characterized from C. fergusoni and, at the same time, the second αD-conotoxin characterized from a species of the Eastern Pacific.
Collapse
|
4
|
Anapindi KDB, Romanova EV, Checco JW, Sweedler JV. Mass Spectrometry Approaches Empowering Neuropeptide Discovery and Therapeutics. Pharmacol Rev 2022; 74:662-679. [PMID: 35710134 DOI: 10.1124/pharmrev.121.000423] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The discovery of insulin in the early 1900s ushered in the era of research related to peptides acting as hormones and neuromodulators, among other regulatory roles. These essential gene products are found in all organisms, from the most primitive to the most evolved, and carry important biologic information that coordinates complex physiology and behavior; their misregulation has been implicated in a variety of diseases. The evolutionary origins of at least 30 neuropeptide signaling systems have been traced to the common ancestor of protostomes and deuterostomes. With the use of relevant animal models and modern technologies, we can gain mechanistic insight into orthologous and paralogous endogenous peptides and translate that knowledge into medically relevant insights and new treatments. Groundbreaking advances in medicine and basic science influence how signaling peptides are defined today. The precise mechanistic pathways for over 100 endogenous peptides in mammals are now known and have laid the foundation for multiple drug development pipelines. Peptide biologics have become valuable drugs due to their unique specificity and biologic activity, lack of toxic metabolites, and minimal undesirable interactions. This review outlines modern technologies that enable neuropeptide discovery and characterization, and highlights lessons from nature made possible by neuropeptide research in relevant animal models that is being adopted by the pharmaceutical industry. We conclude with a brief overview of approaches/strategies for effective development of peptides as drugs. SIGNIFICANCE STATEMENT: Neuropeptides, an important class of cell-cell signaling molecules, are involved in maintaining a range of physiological functions. Since the discovery of insulin's activity, over 100 bioactive peptides and peptide analogs have been used as therapeutics. Because these are complex molecules not easily predicted from a genome and their activity can change with subtle chemical modifications, mass spectrometry (MS) has significantly empowered peptide discovery and characterization. This review highlights contributions of MS-based research towards the development of therapeutic peptides.
Collapse
Affiliation(s)
- Krishna D B Anapindi
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| | - Elena V Romanova
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| | - James W Checco
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois (K.D.B.A., E.V.R., J.V.S.) and Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska (J.W.C.)
| |
Collapse
|
5
|
Ahmed I, Asgher M, Sher F, Hussain SM, Nazish N, Joshi N, Sharma A, Parra-Saldívar R, Bilal M, Iqbal HMN. Exploring Marine as a Rich Source of Bioactive Peptides: Challenges and Opportunities from Marine Pharmacology. Mar Drugs 2022; 20:208. [PMID: 35323507 PMCID: PMC8948685 DOI: 10.3390/md20030208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
This review highlights the underexplored potential and promises of marine bioactive peptides (MBPs) with unique structural, physicochemical, and biological activities to fight against the current and future human pathologies. A particular focus is given to the marine environment as a significant source to obtain or extract high-value MBPs from touched/untouched sources. For instance, marine microorganisms, including microalgae, bacteria, fungi, and marine polysaccharides, are considered prolific sources of amino acids at large, and peptides/polypeptides in particular, with fundamental structural sequence and functional entities of a carboxyl group, amine, hydrogen, and a variety of R groups. Thus, MBPs with tunable features, both structural and functional entities, along with bioactive traits of clinical and therapeutic value, are of ultimate interest to reinforce biomedical settings in the 21st century. On the other front, as the largest biome globally, the marine biome is the so-called "epitome of untouched or underexploited natural resources" and a considerable source with significant potentialities. Therefore, considering their biological and biomedical importance, researchers around the globe are redirecting and/or regaining their interests in valorizing the marine biome-based MBPs. This review focuses on the widespread bioactivities of MBPs, FDA-approved MBPs in the market, sustainable development goals (SDGs), and legislation to valorize marine biome to underlying the impact role of bioactive elements with the related pathways. Finally, a detailed overview of current challenges, conclusions, and future perspectives is also given to satisfy the stimulating demands of the pharmaceutical sector of the modern world.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast Campus, Gold Coast, QLD 4222, Australia;
- Department of Regional Science Operations, La Trobe Rural Health School, Albury-Wodonga, Flora Hill, VIC 3690, Australia
| | - Muhammad Asgher
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38000, Punjab, Pakistan;
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Syed Makhdoom Hussain
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Punjab, Pakistan;
| | - Nadia Nazish
- Department of Zoology, University of Sialkot, Sialkot 51040, Punjab, Pakistan;
| | - Navneet Joshi
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar 332311, India;
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Av. Epigmenio González No. 500, Fracc. San Pablo, Queretaro 76130, Mexico;
| | | | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, China;
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico;
| |
Collapse
|
6
|
Ebou A, Koua D, Addablah A, Kakou-Ngazoa S, Dutertre S. Combined Proteotranscriptomic-Based Strategy to Discover Novel Antimicrobial Peptides from Cone Snails. Biomedicines 2021; 9:344. [PMID: 33805497 PMCID: PMC8066717 DOI: 10.3390/biomedicines9040344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Despite their impressive diversity and already broad therapeutic applications, cone snail venoms have received less attention as a natural source in the investigation of antimicrobial peptides than other venomous animals such as scorpions, spiders, or snakes. Cone snails are among the largest genera (Conus sp.) of marine invertebrates, with more than seven hundred species described to date. These predatory mollusks use their sophisticated venom apparatus to capture prey or defend themselves. In-depth studies of these venoms have unraveled many biologically active peptides with pharmacological properties of interest in the field of pain management, the treatment of epilepsy, neurodegenerative diseases, and cardiac ischemia. Considering sequencing efficiency and affordability, cone snail venom gland transcriptome analyses could allow the discovery of new, promising antimicrobial peptides. We first present here the need for novel compounds like antimicrobial peptides as a viable alternative to conventional antibiotics. Secondly, we review the current knowledge on cone snails as a source of antimicrobial peptides. Then, we present the current state of the art in analytical methods applied to crude or milked venom followed by how antibacterial activity assay can be implemented for fostering cone snail antimicrobial peptides studies. We also propose a new innovative profile Hidden Markov model-based approach to annotate full venom gland transcriptomes and speed up the discovery of potentially active peptides from cone snails.
Collapse
Affiliation(s)
- Anicet Ebou
- Bioinformatic Team, Département Agriculture et Ressource Animales, UMRI 28, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro BP 1093, Ivory Coast;
| | - Dominique Koua
- Bioinformatic Team, Département Agriculture et Ressource Animales, UMRI 28, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro BP 1093, Ivory Coast;
| | - Audrey Addablah
- Plateforme de Biologie Moléculaire, Institut Pasteur de Côte d’Ivoire, Abidjan BP 490, Ivory Coast; (A.A.); (S.K.-N.)
| | - Solange Kakou-Ngazoa
- Plateforme de Biologie Moléculaire, Institut Pasteur de Côte d’Ivoire, Abidjan BP 490, Ivory Coast; (A.A.); (S.K.-N.)
| | - Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| |
Collapse
|
7
|
Abstract
Previous studies have indicated that each conotoxin precursor has a hyperconserved signal region, a rather conserved pro region and a hypervariable mature region, and nucleotide mutations are the main driven factor. However, in this study, we made an in-depth analysis on the M-superfamily conotoxin precursors and found that the diversity of the signal, pro and mature regions are more complicated than previous findings. Different conotoxin precursors can have same signal, pro and/or mature regions, especially different conotoxin precursors with same mature region but different signal and pro regions. In addition, insertions and deletions (indels) were detected in conotoxin precursors. Indels are infrequent in the signal region but frequent in the pro and mature regions. In contrast to deletions that dominate in the pro region, insertions dominate in the mature region. The number of amino acids is crucial for the physiological functions of mature conotoxins, therefore indels, especially insertions in the mature region, play an important role in the sequence and function diversity of conotoxins.
Collapse
Affiliation(s)
- Manyi Yang
- Department of Hepatobiliary and Pancreatic Surgery, NHC Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Maojun Zhou
- Department of Oncology, Laboratory of Structural Biology, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Identification of Conomarphin Variants in the Conus eburneus Venom and the Effect of Sequence and PTM Variations on Conomarphin Conformations. Mar Drugs 2020; 18:md18100503. [PMID: 33019526 PMCID: PMC7601563 DOI: 10.3390/md18100503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Marine cone snails belonging to the Conidae family make use of neuroactive peptides in their venom to capture prey. Here we report the proteome profile of the venom duct of Conus eburneus, a cone snail belonging to the Tesseliconus clade. Through tandem mass spectrometry and database searching against the C. eburneus transcriptome and the ConoServer database, we identified 24 unique conopeptide sequences in the venom duct. The majority of these peptides belong to the T and M gene superfamilies and are disulfide-bonded, with cysteine frameworks V, XIV, VI/VII, and III being the most abundant. All seven of the Cys-free peptides are conomarphin variants belonging to the M superfamily that eluted out as dominant peaks in the chromatogram. These conomarphins vary not only in amino acid residues in select positions along the backbone but also have one or more post-translational modifications (PTMs) such as proline hydroxylation, C-term amidation, and γ-carboxylation of glutamic acid. Using molecular dynamics simulations, the conomarphin variants were predicted to predominantly have hairpin-like or elongated structures in acidic pH. These two structures were found to have significant differences in electrostatic properties and the inclusion of PTMs seems to complement this disparity. The presence of polar PTMs (hydroxyproline and γ-carboxyglutamic acid) also appear to stabilize hydrogen bond networks in these conformations. Furthermore, these predicted structures are pH sensitive, becoming more spherical and compact at higher pH. The subtle conformational variations observed here might play an important role in the selection and binding of the peptides to their molecular targets.
Collapse
|
9
|
Abalde S, Tenorio MJ, Afonso CML, Zardoya R. Comparative transcriptomics of the venoms of continental and insular radiations of West African cones. Proc Biol Sci 2020; 287:20200794. [PMID: 32546094 DOI: 10.1098/rspb.2020.0794] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The transcriptomes of the venom glands of 13 closely related species of vermivorous cones endemic to West Africa from genera Africonus and Varioconus were sequenced and venom repertoires compared within a phylogenetic framework using one Kalloconus species as outgroup. The total number of conotoxin precursors per species varied between 108 and 221. Individuals of the same species shared about one-fourth of the total conotoxin precursors. The number of common sequences was drastically reduced in the pairwise comparisons between closely related species, and the phylogenetical signal was totally eroded at the inter-generic level (no sequence was identified as shared derived), due to the intrinsic high variability of these secreted peptides. A common set of four conotoxin precursor superfamilies (T, O1, O2 and M) was expanded in all studied cone species, and thus, they are considered the basic venom toolkit for hunting and defense in the West African vermivorous cone snails. Maximum-likelihood ancestral character reconstructions inferred shared conotoxin precursors preferentially at internal nodes close to the tips of the phylogeny (between individuals and between closely related species) as well as in the common ancestor of Varioconus. Besides the common toolkit, the two genera showed significantly distinct catalogues of conotoxin precursors in terms of type of superfamilies present and the abundance of members per superfamily, but had similar relative expression levels indicating functional convergence. Differential expression comparisons between vermivorous and piscivorous cones highlighted the importance of the A and S superfamilies for fish hunting and defense.
Collapse
Affiliation(s)
- Samuel Abalde
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain.,Departamento de Biología Animal, Facultad de Biología, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Manuel J Tenorio
- Departamento CMIM y Q. Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Carlos M L Afonso
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| |
Collapse
|
10
|
Liang J, Tae HS, Xu X, Jiang T, Adams DJ, Yu R. Dimerization of α-Conotoxins as a Strategy to Enhance the Inhibition of the Human α7 and α9α10 Nicotinic Acetylcholine Receptors. J Med Chem 2020; 63:2974-2985. [PMID: 32101438 DOI: 10.1021/acs.jmedchem.9b01536] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The affinity of α-conotoxins, a class of nicotinic acetylcholine receptor (nAChR) peptide inhibitors, can be enhanced by dendrimerization. It has been hypothesized that this improvement arose from simultaneous binding of the α-conotoxins to several spatially adjacent sites. We here engineered several α-conotoxin dimers using a linker length compatible between neighboring binding sites on the same receptor. Remarkably, the dimer of α-conotoxin PeIA compared to the monomer displayed an increase in potency by 11-fold (IC50 = 1.9 nM) for the human α9α10 nAChR. The dimerization of α-conotoxin RgIA# resulted in a dual inhibitor that targets both α9α10 and α7 nAChR subtypes with an IC50 = ∼50 nM. The RgIA# dimer is therapeutically interesting because it is the first dual inhibitor that potently and selectively inhibits these two nAChR subtypes, which are both involved in the etiology of several cancers. We propose that the dimerization of α-conotoxins is a simpler and efficient alternative strategy to dendrimers for enhancing the activity of α-conotoxins.
Collapse
Affiliation(s)
- Jiazhen Liang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Xiaoxiao Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.,Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| |
Collapse
|
11
|
Jimenez EC. Bromotryptophan and its Analogs in Peptides from Marine Animals. Protein Pept Lett 2019; 26:251-260. [PMID: 30663557 DOI: 10.2174/0929866526666190119170020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 01/29/2023]
Abstract
Bromotryptophan is a nonstandard amino acid that is rarely incorporated in ribosomally synthesized and post-translationally modified peptides (ribosomal peptides). Bromotryptophan and its analogs sometimes occur in non-ribosomal peptides. This paper presents an overview of ribosomal and non-ribosomal peptides that are known to contain bromotryptophan and its analogs. This work further covers the biological activities and therapeutic potential of some of these peptides.
Collapse
Affiliation(s)
- Elsie C Jimenez
- Department of Physical Sciences, College of Science, University of the Philippines Baguio, Baguio City 2600, Philippines
| |
Collapse
|
12
|
Mansbach RA, Travers T, McMahon BH, Fair JM, Gnanakaran S. Snails In Silico: A Review of Computational Studies on the Conopeptides. Mar Drugs 2019; 17:E145. [PMID: 30832207 PMCID: PMC6471681 DOI: 10.3390/md17030145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/26/2022] Open
Abstract
Marine cone snails are carnivorous gastropods that use peptide toxins called conopeptides both as a defense mechanism and as a means to immobilize and kill their prey. These peptide toxins exhibit a large chemical diversity that enables exquisite specificity and potency for target receptor proteins. This diversity arises in terms of variations both in amino acid sequence and length, and in posttranslational modifications, particularly the formation of multiple disulfide linkages. Most of the functionally characterized conopeptides target ion channels of animal nervous systems, which has led to research on their therapeutic applications. Many facets of the underlying molecular mechanisms responsible for the specificity and virulence of conopeptides, however, remain poorly understood. In this review, we will explore the chemical diversity of conopeptides from a computational perspective. First, we discuss current approaches used for classifying conopeptides. Next, we review different computational strategies that have been applied to understanding and predicting their structure and function, from machine learning techniques for predictive classification to docking studies and molecular dynamics simulations for molecular-level understanding. We then review recent novel computational approaches for rapid high-throughput screening and chemical design of conopeptides for particular applications. We close with an assessment of the state of the field, emphasizing important questions for future lines of inquiry.
Collapse
Affiliation(s)
- Rachael A Mansbach
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Benjamin H McMahon
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Jeanne M Fair
- Biosecurity and Public Health Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
13
|
Rong M, Zhou B, Zhou R, Liao Q, Zeng Y, Xu S, Liu Z. PPIP: Automated Software for Identification of Bioactive Endogenous Peptides. J Proteome Res 2019; 18:721-727. [PMID: 30540478 DOI: 10.1021/acs.jproteome.8b00718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Endogenous peptides play an important role in multiple biological processes in many species. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is an important technique for detecting these peptides on a large scale. We present PPIP, which is a dedicated peptidogenomics software for identifying endogenous peptides based on peptidomics and RNA-Seq data. This software automates the de novo transcript assembly based on RNA-Seq data, construction of a protein reference database based on the de novo assembled transcripts, peptide identification, function analysis, and HTML-based report generation. Different function components are integrated using Docker technology. The Docker image of PPIP is available at https://hub.docker.com/r/shawndp/ppip , and the source code under GPL-3 license is available at https://github.com/Shawn-Xu/PPIP . A user manual of PPIP is available at https://shawn-xu.github.io/PPIP .
Collapse
Affiliation(s)
- Mingqiang Rong
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences , Hunan Normal University , Changsha 410081 , Hunan , China
| | - Baojin Zhou
- Deepxomics Co., Ltd. , Shenzhen 518000 , China
| | - Ruo Zhou
- Deepxomics Co., Ltd. , Shenzhen 518000 , China
| | - Qiong Liao
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences , Hunan Normal University , Changsha 410081 , Hunan , China
| | - Yong Zeng
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences , Hunan Normal University , Changsha 410081 , Hunan , China
| | - Shaohang Xu
- Deepxomics Co., Ltd. , Shenzhen 518000 , China
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences , Hunan Normal University , Changsha 410081 , Hunan , China
| |
Collapse
|
14
|
Rationally Designed α-Conotoxin Analogues Maintained Analgesia Activity and Weakened Side Effects. Molecules 2019; 24:molecules24020337. [PMID: 30669328 PMCID: PMC6358911 DOI: 10.3390/molecules24020337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/05/2019] [Accepted: 01/17/2019] [Indexed: 11/16/2022] Open
Abstract
A lack of specificity is restricting the further application of conotoxin from Conus bullatus (BuIA). In this study, an analogue library of BuIA was established and virtual screening was used, which identified high α7 nicotinic acetylcholine receptor (nAChR)-selectivity analogues. The analogues were synthesized and tested for their affinity to functional human α7 nAChR and for the regulation of intracellular calcium ion capacity in neurons. Immunofluorescence, flow cytometry, and patch clamp results showed that the analogues maintained their capacity for calcium regulation. The results of the hot-plate model and paclitaxel-induced peripheral neuropathy model indicated that, when compared with natural BuIA, the analgesia activities of the analogues in different models were maintained. To analyze the adverse effects and toxicity of BuIA and its analogues, the tail suspension test, forced swimming test, and open field test were used. The results showed that the safety and toxicity of the analogues were significantly better than BuIA. The analogues of BuIA with an appropriate and rational mutation showed high selectivity and maintained the regulation of Ca2+ capacity in neurons and activities of analgesia, whereas the analogues demonstrated that the adverse effects of natural α-conotoxins could be reduced.
Collapse
|
15
|
Somay Doğan T, Iğci N, Biber A, Gerekçi S, Hüsnügil HH, Izbirak A, Özen C. Peptidomic characterization and bioactivity of Protoiurus kraepelini (Scorpiones: Iuridae) venom. Turk J Biol 2018; 42:490-497. [PMID: 30983865 PMCID: PMC6451847 DOI: 10.3906/biy-1804-35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Protoiurus kraepelini is a scorpion species found in parts of Turkey and Greece. In this study, the peptide profile of its venom was determined for the first time. The electrophoretic profile of the crude venom showed a protein distribution from 2 to 130 kDa. MALDI-TOF MS analysis of the venom peptide fraction yielded 27 peptides between 1059 and 4623 Da in mass. Several ion channelblocking and antimicrobial peptides were identified by peptide mass fingerprinting analysis. Cytotoxic and antimicrobial effects of the venom were also demonstrated on Jurkat cells and Escherichia coli, respectively. As the first peptidomic characterization study on P. kraepelini venom, this report lays the foundation for detailed future studies that may lead to the discovery of novel bioactive peptides.
Collapse
Affiliation(s)
- Tuğba Somay Doğan
- Central Laboratory, Middle East Technical University , Ankara , Turkey.,Department of Biology, Faculty of Science, Hacettepe University , Ankara , Turkey
| | - Naşit Iğci
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Nevşehir Hacı Bektaş Veli University , Nevşehir , Turkey.,Science and Technology Research and Application Center, Nevşehir Hacı Bektaş Veli University , Nevşehir , Turkey
| | - Ayşenur Biber
- Graduate Program of Biotechnology, Middle East Technical University , Ankara , Turkey
| | - Selin Gerekçi
- Graduate Program of Biotechnology, Middle East Technical University , Ankara , Turkey
| | - Hepşen Hazal Hüsnügil
- Graduate Program of Biotechnology, Middle East Technical University , Ankara , Turkey
| | - Afife Izbirak
- Department of Biology, Faculty of Science, Hacettepe University , Ankara , Turkey
| | - Can Özen
- Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University , Ankara , Turkey.,Central Laboratory, Middle East Technical University , Ankara , Turkey.,Graduate Program of Biotechnology, Middle East Technical University , Ankara , Turkey
| |
Collapse
|
16
|
Principe PP, Fisher WS. Spatial Distribution of Collections Yielding Marine Natural Products. JOURNAL OF NATURAL PRODUCTS 2018; 81:2307-2320. [PMID: 30299096 PMCID: PMC6729131 DOI: 10.1021/acs.jnatprod.8b00288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The societal benefits of coral reef ecosystems include shoreline protection, habitat provision for reef fish, tourism, and recreation. Rarely considered in valuation of reefs is the considerable contribution of marine natural products (MNPs) to both human health and the economy. To better understand the relation of MNP discovery with the characteristics and condition of coral reef ecosystems, we initiated a study to track the collection location and taxonomic identity of organisms that have provided pharmacological products. We reviewed collection information and associated data from 298 pharmacological products originating from marine biota during the past 47 years. The products were developed from 232 different marine species representing 15 phyla, and the 1296 collections of these specimens occurred across 69 countries and seven continents. Our evaluation of the collection data was hampered by sundry observational and reporting issues, including imprecise location descriptions and omission of collection dates. Nonetheless, the study provides an important synopsis and appraisal of years of study and exploration by the marine natural product community. Understanding and quantifying the benefits of MNP discovery will depend upon improved reporting of collections, including accurate taxonomic identification, collection dates, and locations.
Collapse
Affiliation(s)
- Peter P. Principe
- Exposure Methods & Measurements Division, National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North, Carolina 27711, United States
| | - William S. Fisher
- Gulf Ecology Division, National Health and Environmental Effects Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Gulf Breeze, Florida 32561, United States
| |
Collapse
|
17
|
Möller C, Dovell S, Melaun C, Marí F. Definition of the R-superfamily of conotoxins: Structural convergence of helix-loop-helix peptidic scaffolds. Peptides 2018; 107:75-82. [PMID: 30040981 DOI: 10.1016/j.peptides.2018.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 10/28/2022]
Abstract
The F14 conotoxins define a four-cysteine, three-loop conotoxin scaffold that produce tightly folded structures held together by two disulfide bonds with a CCCC arrangement (conotoxin framework 14). Here we describe the precursors of the F14 conotoxins from the venom of Conus anabathrum and Conus villepinii. Using transcriptomic and cDNA cloning analysis, the full-length of the precursors of flf14a and flf14b from the transcriptome of C. anabathrum revealed a unique signal sequence that defines the new conotoxin R-superfamily. Using the signal sequence as a primer, we cloned seven additional previously undescribed toxins of the R-superfamily from C. villepinii. The propeptide regions of the R-conotoxins are unusually long and with prevalent proline residues in repeating pentads which qualifies them as Pro-rich motifs (PRMs), which can be critical for protein-protein interactions or they can be cleaved to release short linear peptides that may be part of the envenomation mélange. Additionally, we determined the three-dimensional structure of vil14a by solution 1H-NMR and found that the structure of this conotoxin displays a cysteine-stabilized α-helix-loop-helix (Cs α/α) fold. The structure is well-defined over the helical regions (backbone RMSD for residues 2-13 and 17-26 is 0.63 ± 0.14 Å), with conformational flexibility in the triple Gly region of the second loop as well as the N- and C- termini. Structurally, the F14 conotoxins overlap with the Cs α/α scorpion toxins and other peptidic natural products, and in spite of their different exogenomic origins, there is convergence into this scaffold from several classes of living organisms that express these peptides.
Collapse
Affiliation(s)
- Carolina Möller
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | - Sanaz Dovell
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | - Christian Melaun
- Justus Liebig Universität Giessen, Institut für Allg. Zoologie und Entwicklungsbiologie, Giessen, Germany
| | - Frank Marí
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA; Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC 29412, USA.
| |
Collapse
|
18
|
Yu J, Zhu X, Zhang L, Kudryavtsev D, Kasheverov I, Lei Y, Zhangsun D, Tsetlin V, Luo S. Species specificity of rat and human α7 nicotinic acetylcholine receptors towards different classes of peptide and protein antagonists. Neuropharmacology 2018; 139:226-237. [DOI: 10.1016/j.neuropharm.2018.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/07/2018] [Accepted: 07/13/2018] [Indexed: 01/12/2023]
|
19
|
Abdelkrim J, Aznar-Cormano L, Fedosov AE, Kantor YI, Lozouet P, Phuong MA, Zaharias P, Puillandre N. Exon-Capture-Based Phylogeny and Diversification of the Venomous Gastropods (Neogastropoda, Conoidea). Mol Biol Evol 2018; 35:2355-2374. [DOI: 10.1093/molbev/msy144] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jawad Abdelkrim
- Outils et Méthodes de la Systématique Intégrative (OMSI) UMS 2700, Muséum National d’Histoire Naturelle, Paris, France
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 26, 75005 Paris, France
| | - Laetitia Aznar-Cormano
- Outils et Méthodes de la Systématique Intégrative (OMSI) UMS 2700, Muséum National d’Histoire Naturelle, Paris, France
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 26, 75005 Paris, France
| | - Alexander E Fedosov
- A.N. Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninski prospect 33, 119071 Moscow, Russian Federation
| | - Yuri I Kantor
- A.N. Severtzov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninski prospect 33, 119071 Moscow, Russian Federation
| | - Pierre Lozouet
- Muséum National d’Histoire Naturelle, Direction des Collections, 55, rue Buffon, 75005 Paris, France
| | - Mark A Phuong
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Paul Zaharias
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 26, 75005 Paris, France
| | - Nicolas Puillandre
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 26, 75005 Paris, France
| |
Collapse
|
20
|
Therapeutic Properties and Biological Benefits of Marine-Derived Anticancer Peptides. Int J Mol Sci 2018; 19:ijms19030919. [PMID: 29558431 PMCID: PMC5877780 DOI: 10.3390/ijms19030919] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/07/2018] [Accepted: 03/16/2018] [Indexed: 01/01/2023] Open
Abstract
Various organisms exist in the oceanic environment. These marine organisms provide an abundant source of potential medicines. Many marine peptides possess anticancer properties, some of which have been evaluated for treatment of human cancer in clinical trials. Marine anticancer peptides kill cancer cells through different mechanisms, such as apoptosis, disruption of the tubulin-microtubule balance, and inhibition of angiogenesis. Traditional chemotherapeutic agents have side effects and depress immune responses. Thus, the research and development of novel anticancer peptides with low toxicity to normal human cells and mechanisms of action capable of avoiding multi-drug resistance may provide a new method for anticancer treatment. This review provides useful information on the potential of marine anticancer peptides for human therapy.
Collapse
|
21
|
Abalde S, Tenorio MJ, Afonso CML, Uribe JE, Echeverry AM, Zardoya R. Phylogenetic relationships of cone snails endemic to Cabo Verde based on mitochondrial genomes. BMC Evol Biol 2017; 17:231. [PMID: 29178825 PMCID: PMC5702168 DOI: 10.1186/s12862-017-1069-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/06/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Due to their great species and ecological diversity as well as their capacity to produce hundreds of different toxins, cone snails are of interest to evolutionary biologists, pharmacologists and amateur naturalists alike. Taxonomic identification of cone snails still relies mostly on the shape, color, and banding patterns of the shell. However, these phenotypic traits are prone to homoplasy. Therefore, the consistent use of genetic data for species delimitation and phylogenetic inference in this apparently hyperdiverse group is largely wanting. Here, we reconstruct the phylogeny of the cones endemic to Cabo Verde archipelago, a well-known radiation of the group, using mitochondrial (mt) genomes. RESULTS The reconstructed phylogeny grouped the analyzed species into two main clades, one including Kalloconus from West Africa sister to Trovaoconus from Cabo Verde and the other with a paraphyletic Lautoconus due to the sister group relationship of Africonus from Cabo Verde and Lautoconus ventricosus from Mediterranean Sea and neighboring Atlantic Ocean to the exclusion of Lautoconus endemic to Senegal (plus Lautoconus guanche from Mauritania, Morocco, and Canary Islands). Within Trovaoconus, up to three main lineages could be distinguished. The clade of Africonus included four main lineages (named I to IV), each further subdivided into two monophyletic groups. The reconstructed phylogeny allowed inferring the evolution of the radula in the studied lineages as well as biogeographic patterns. The number of cone species endemic to Cabo Verde was revised under the light of sequence divergence data and the inferred phylogenetic relationships. CONCLUSIONS The sequence divergence between continental members of the genus Kalloconus and island endemics ascribed to the genus Trovaoconus is low, prompting for synonymization of the latter. The genus Lautoconus is paraphyletic. Lautoconus ventricosus is the closest living sister group of genus Africonus. Diversification of Africonus was in allopatry due to the direct development nature of their larvae and mainly triggered by eustatic sea level changes during the Miocene-Pliocene. Our study confirms the diversity of cone endemic to Cabo Verde but significantly reduces the number of valid species. Applying a sequence divergence threshold, the number of valid species within the sampled Africonus is reduced to half.
Collapse
Affiliation(s)
- Samuel Abalde
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Manuel J Tenorio
- Departamento CMIM y Q. Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Carlos M L Afonso
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005 - 139, Faro, Portugal
| | - Juan E Uribe
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Ana M Echeverry
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Rafael Zardoya
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| |
Collapse
|
22
|
Jin A, Dekan Z, Smout MJ, Wilson D, Dutertre S, Vetter I, Lewis RJ, Loukas A, Daly NL, Alewood PF. Conotoxin Φ‐MiXXVIIA from the Superfamily G2 Employs a Novel Cysteine Framework that Mimics Granulin and Displays Anti‐Apoptotic Activity. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ai‐Hua Jin
- Institute for Molecular Bioscience The University of Queensland St Lucia Queensland 4072 Australia
| | - Zoltan Dekan
- Institute for Molecular Bioscience The University of Queensland St Lucia Queensland 4072 Australia
| | - Michael J. Smout
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM James Cook University Smithfield, Cairns QLD 4878 Australia
| | - David Wilson
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM James Cook University Smithfield, Cairns QLD 4878 Australia
| | - Sébastien Dutertre
- Institute for Molecular Bioscience The University of Queensland St Lucia Queensland 4072 Australia
- Institut des Biomolécules Max Mousseron, UMR 5247 Université Montpellier, CNRS Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| | - Irina Vetter
- Institute for Molecular Bioscience The University of Queensland St Lucia Queensland 4072 Australia
| | - Richard J. Lewis
- Institute for Molecular Bioscience The University of Queensland St Lucia Queensland 4072 Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM James Cook University Smithfield, Cairns QLD 4878 Australia
| | - Norelle L. Daly
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM James Cook University Smithfield, Cairns QLD 4878 Australia
| | - Paul F. Alewood
- Institute for Molecular Bioscience The University of Queensland St Lucia Queensland 4072 Australia
| |
Collapse
|
23
|
Omaga CA, Carpio LD, Imperial JS, Daly NL, Gajewiak J, Flores MS, Espino SS, Christensen S, Filchakova OM, López-Vera E, Raghuraman S, Olivera BM, Concepcion GP. Structure and Biological Activity of a Turripeptide from Unedogemmula bisaya Venom. Biochemistry 2017; 56:6051-6060. [PMID: 29090914 DOI: 10.1021/acs.biochem.7b00485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The turripeptide ubi3a was isolated from the venom of the marine gastropod Unedogemmula bisaya, family Turridae, by bioassay-guided purification; both native and synthetic ubi3a elicited prolonged tremors when injected intracranially into mice. The sequence of the peptide, DCCOCOAGAVRCRFACC-NH2 (O = 4-hydroxyproline) follows the framework III pattern for cysteines (CC-C-C-CC) in the M-superfamily of conopeptides. The three-dimensional structure determined by NMR spectroscopy indicated a disulfide connectivity that is not found in conopeptides with the cysteine framework III: C1-C4, C2-C6, C3-C5. The peptide inhibited the activity of the α9α10 nicotinic acetylcholine receptor with relatively low affinity (IC50, 10.2 μM). Initial Constellation Pharmacology data revealed an excitatory activity of ubi3a on a specific subset of mouse dorsal root ganglion neurons.
Collapse
Affiliation(s)
- Carla A Omaga
- Marine Science Institute, University of the Philippines , P. Velasquez Street, Diliman, Quezon City 1101, Philippines.,Department of Biology, University of Utah , 257S 1400 E, Salt Lake City, Utah 84112, United States.,Department of Chemistry, University of Utah , 315 1400 E, Salt Lake City, Utah 84112, United States
| | - Louie D Carpio
- Marine Science Institute, University of the Philippines , P. Velasquez Street, Diliman, Quezon City 1101, Philippines
| | - Julita S Imperial
- Department of Biology, University of Utah , 257S 1400 E, Salt Lake City, Utah 84112, United States
| | - Norelle L Daly
- Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University , Cairns, Queensland 4870, Australia
| | - Joanna Gajewiak
- Department of Biology, University of Utah , 257S 1400 E, Salt Lake City, Utah 84112, United States
| | - Malem S Flores
- Marine Science Institute, University of the Philippines , P. Velasquez Street, Diliman, Quezon City 1101, Philippines
| | - Samuel S Espino
- Department of Biology, University of Utah , 257S 1400 E, Salt Lake City, Utah 84112, United States.,Washington University School of Medicine , 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Sean Christensen
- Department of Biology, University of Utah , 257S 1400 E, Salt Lake City, Utah 84112, United States
| | - Olena M Filchakova
- Department of Biology, University of Utah , 257S 1400 E, Salt Lake City, Utah 84112, United States.,Biology Department, School of Science and Technology, Nazarbayev University , Qabanbay Batyr Avenue 53, Astana 010000, Kazakhstan
| | - Estuardo López-Vera
- Department of Biology, University of Utah , 257S 1400 E, Salt Lake City, Utah 84112, United States.,Instituto de Ciencias del Mar y Limnologia, Universidad Nacional Autonoma de Mexico , 04510 Coyoacan, DF, Mexico
| | - Shrinivasan Raghuraman
- Department of Biology, University of Utah , 257S 1400 E, Salt Lake City, Utah 84112, United States
| | - Baldomero M Olivera
- Department of Biology, University of Utah , 257S 1400 E, Salt Lake City, Utah 84112, United States
| | - Gisela P Concepcion
- Marine Science Institute, University of the Philippines , P. Velasquez Street, Diliman, Quezon City 1101, Philippines
| |
Collapse
|
24
|
Animal toxins for channelopathy treatment. Neuropharmacology 2017; 132:83-97. [PMID: 29080794 DOI: 10.1016/j.neuropharm.2017.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/09/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022]
Abstract
Ion channels are transmembrane proteins that allow passive flow of ions inside and/or outside of cells or cell organelles. Except mutations lead to nonfunctional protein production or abolished receptor entrance on the membrane surface an altered channel may have two principal conditions that can be corrected. The channel may conduct fewer ions through (loss-of-function mutations) or too many ions (gain-of-function mutations) compared to a normal channel. Toxins from animal venoms are specialised molecules that are generally oriented toward interactions with ion channels. This is a result of long coevolution between predators and their prey. On the molecular level, toxins activate or inhibit ion channels, so they are ideal molecules for restoring conductance in mutated channels. Another aspect of this long coevolution is that a broad variety of toxins have been fine tuned to recognize the channels of different species, keeping many amino acids substitution among sequences. Many peptide ligands with high selectivity to specific receptor subtypes have been isolated from animal venoms, some of which are absolutely non-toxic to humans and mammalians. It is expected that molecules that are selective to each known receptor can be found in animal venoms, but the pool of toxins currently does not override all receptors described as being involved in channelopathies. Modern investigating methods have enhanced the search process for selective ligands. One prominent method is a site-directed mutagenesis of existing toxins to change the selectivity or/and affinity to the selected receptor, which has shown positive results. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
|
25
|
Jin AH, Dekan Z, Smout MJ, Wilson D, Dutertre S, Vetter I, Lewis RJ, Loukas A, Daly NL, Alewood PF. Conotoxin Φ-MiXXVIIA from the Superfamily G2 Employs a Novel Cysteine Framework that Mimics Granulin and Displays Anti-Apoptotic Activity. Angew Chem Int Ed Engl 2017; 56:14973-14976. [PMID: 28984021 DOI: 10.1002/anie.201708927] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Indexed: 12/12/2022]
Abstract
Conotoxins are a large family of disulfide-rich peptides that contain unique cysteine frameworks that target a broad range of ion channels and receptors. We recently discovered the 33-residue conotoxin Φ-MiXXVIIA from Conus miles with a novel cysteine framework comprising three consecutive cysteine residues and four disulfide bonds. Regioselective chemical synthesis helped decipher the disulfide bond connectivity and the structure of Φ-MiXXVIIA was determined by NMR spectroscopy. The 3D structure displays a unique topology containing two β-hairpins that resemble the N-terminal domain of granulin. Similar to granulin, Φ-MiXXVIIA promotes cell proliferation (EC50 17.85 μm) while inhibiting apoptosis (EC50 2.2 μm). Additional framework XXVII sequences were discovered with homologous signal peptides that define the new conotoxin superfamily G2. The novel structure and biological activity of Φ-MiXXVIIA expands the repertoire of disulfide-rich conotoxins that recognize mammalian receptors.
Collapse
Affiliation(s)
- Ai-Hua Jin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Zoltan Dekan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Michael J Smout
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Smithfield, Cairns, QLD, 4878, Australia
| | - David Wilson
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Smithfield, Cairns, QLD, 4878, Australia
| | - Sébastien Dutertre
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia.,Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier, CNRS, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Smithfield, Cairns, QLD, 4878, Australia
| | - Norelle L Daly
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Smithfield, Cairns, QLD, 4878, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
26
|
Hua Y, Wang B, Zhao N, Lou W, Yang J. Synthesis and Functional Identification of Oligopeptides Derived from the α3/5-Conotoxins. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Abstract
Snakebite envenoming is a neglected tropical disease that kills >100,000 people and maims >400,000 people every year. Impoverished populations living in the rural tropics are particularly vulnerable; snakebite envenoming perpetuates the cycle of poverty. Snake venoms are complex mixtures of proteins that exert a wide range of toxic actions. The high variability in snake venom composition is responsible for the various clinical manifestations in envenomings, ranging from local tissue damage to potentially life-threatening systemic effects. Intravenous administration of antivenom is the only specific treatment to counteract envenoming. Analgesics, ventilator support, fluid therapy, haemodialysis and antibiotic therapy are also used. Novel therapeutic alternatives based on recombinant antibody technologies and new toxin inhibitors are being explored. Confronting snakebite envenoming at a global level demands the implementation of an integrated intervention strategy involving the WHO, the research community, antivenom manufacturers, regulatory agencies, national and regional health authorities, professional health organizations, international funding agencies, advocacy groups and civil society institutions.
Collapse
Affiliation(s)
- José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, PO Box 11501-2060, San José, Costa Rica
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | | | - Robert A Harrison
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David J Williams
- Charles Campbell Toxinology Centre, School of Medicine &Health Sciences, University of Papua New Guinea, Boroko, National Capital District, Papua New Guinea
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - David A Warrell
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Li Q, Barghi N, Lu A, Fedosov AE, Bandyopadhyay PK, Lluisma AO, Concepcion GP, Yandell M, Olivera BM, Safavi-Hemami H. Divergence of the Venom Exogene Repertoire in Two Sister Species of Turriconus. Genome Biol Evol 2017; 9:2211-2225. [PMID: 28922871 PMCID: PMC5604253 DOI: 10.1093/gbe/evx157] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
The genus Conus comprises approximately 700 species of venomous marine cone snails that are highly efficient predators of worms, snails, and fish. In evolutionary terms, cone snails are relatively young with the earliest fossil records occurring in the Lower Eocene, 55 Ma. The rapid radiation of cone snail species has been accompanied by remarkably high rates of toxin diversification. To shed light on the molecular mechanisms that accompany speciation, we investigated the toxin repertoire of two sister species, Conus andremenezi and Conus praecellens, that were until recently considered a single variable species. A total of 196 and 250 toxin sequences were identified in the venom gland transcriptomes of C. andremenezi and C. praecellens belonging to 25 and 29 putative toxin gene superfamilies, respectively. Comparative analysis with closely (Conus tribblei and Conus lenavati) and more distantly related species (Conus geographus) suggests that speciation is associated with significant diversification of individual toxin genes (exogenes) whereas the expression pattern of toxin gene superfamilies within lineages remains largely conserved. Thus, changes within individual toxin sequences can serve as a sensitive indicator for recent speciation whereas changes in the expression pattern of gene superfamilies are likely to reflect more dramatic differences in a species' interaction with its prey, predators, and competitors.
Collapse
Affiliation(s)
- Qing Li
- Eccles Institute of Human Genetics, University of Utah
| | - Neda Barghi
- Marine Science Institute, University of the Philippines-Diliman, Quezon City, Philippines
- Institute für Populationsgenetik, Vetmeduni, Vienna, 1210, Austria
| | - Aiping Lu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Alexander E. Fedosov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Science, Moscow, Russia
| | | | - Arturo O. Lluisma
- Marine Science Institute, University of the Philippines-Diliman, Quezon City, Philippines
- Philippine Genome Center, University of the Philippines, Quezon City, Philippines
| | - Gisela P. Concepcion
- Marine Science Institute, University of the Philippines-Diliman, Quezon City, Philippines
- Philippine Genome Center, University of the Philippines, Quezon City, Philippines
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah
- USTAR Center for Genetic Discovery, University of Utah
| | | | | |
Collapse
|
29
|
Ruiz-Torres V, Encinar JA, Herranz-López M, Pérez-Sánchez A, Galiano V, Barrajón-Catalán E, Micol V. An Updated Review on Marine Anticancer Compounds: The Use of Virtual Screening for the Discovery of Small-Molecule Cancer Drugs. Molecules 2017; 22:E1037. [PMID: 28644406 PMCID: PMC6152364 DOI: 10.3390/molecules22071037] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
Marine secondary metabolites are a promising source of unexploited drugs that have a wide structural diversity and have shown a variety of biological activities. These compounds are produced in response to the harsh and competitive conditions that occur in the marine environment. Invertebrates are considered to be among the groups with the richest biodiversity. To date, a significant number of marine natural products (MNPs) have been established as antineoplastic drugs. This review gives an overview of MNPs, both in research or clinical stages, from diverse organisms that were reported as being active or potentially active in cancer treatment in the past seventeen years (from January 2000 until April 2017) and describes their putative mechanisms of action. The structural diversity of MNPs is also highlighted and compared with the small-molecule anticancer drugs in clinical use. In addition, this review examines the use of virtual screening for MNP-based drug discovery and reveals that classical approaches for the selection of drug candidates based on ADMET (absorption, distribution, metabolism, excretion, and toxicity) filtering may miss potential anticancer lead compounds. Finally, we introduce a novel and publically accessible chemical library of MNPs for virtual screening purposes.
Collapse
Affiliation(s)
- Verónica Ruiz-Torres
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Jose Antonio Encinar
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - María Herranz-López
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Almudena Pérez-Sánchez
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Vicente Galiano
- Physics and Computer Architecture Department, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain.
| | - Enrique Barrajón-Catalán
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Vicente Micol
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III., Palma de Mallorca 07122, Spain (CB12/03/30038).
| |
Collapse
|
30
|
Cuny H, Yu R, Tae HS, Kompella SN, Adams DJ. α-Conotoxins active at α3-containing nicotinic acetylcholine receptors and their molecular determinants for selective inhibition. Br J Pharmacol 2017; 175:1855-1868. [PMID: 28477355 DOI: 10.1111/bph.13852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 01/22/2023] Open
Abstract
Neuronal α3-containing nicotinic acetylcholine receptors (nAChRs) in the peripheral nervous system (PNS) and non-neuronal tissues are implicated in a number of severe disease conditions ranging from cancer to cardiovascular diseases and chronic pain. However, despite the physiological characterization of mouse models and cell lines, the precise pathophysiology of nAChRs outside the CNS remains not well understood, in part because there is a lack of subtype-selective antagonists. α-Conotoxins isolated from cone snail venom exhibit characteristic individual selectivity profiles for nAChRs and, therefore, are excellent tools to study the determinants for nAChR-antagonist interactions. Given that human α3β4 subtype selective α-conotoxins are scarce and this is a major nAChR subtype in the PNS, the design of new peptides targeting this nAChR subtype is desirable. Recent studies using α-conotoxins RegIIA and AuIB, in combination with nAChR site-directed mutagenesis and computational modelling, have shed light onto specific nAChR residues, which determine the selectivity of the α-conotoxins for the human α3β2 and α3β4 subtypes. Publications describing the selectivity profile and binding sites of other α-conotoxins confirm that subtype-selective nAChR antagonists often work through common mechanisms by interacting with the same structural components and sites on the receptor. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Hartmut Cuny
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia.,Victor Chang Cardiac Research Institute, Developmental and Stem Cell Biology Division, Sydney, NSW, Australia
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Shiva N Kompella
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
31
|
Kondasinghe TD, Saraha HY, Odeesho SB, Stockdill JL. Direct palladium-mediated on-resin disulfide formation from Allocam protected peptides. Org Biomol Chem 2017; 15:2914-2918. [PMID: 28327729 PMCID: PMC5475270 DOI: 10.1039/c7ob00536a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of disulfide-containing polypeptides represents a long-standing challenge in peptide chemistry, and broadly applicable methods for the construction of disulfides are in constant demand. Few strategies exist for on-resin formation of disulfides directly from their protected counterparts. We present herein a novel strategy for the on-resin construction of disulfides directly from Allocam-protected cysteines. Our palladium-mediated approach is mild and uses readily available reagents, requiring no special equipment. No reduced peptide intermediates or S-allylated products are observed, and no residual palladium can be detected in the final products. The utility of this method is demonstrated through the synthesis of the C-carboxy analog of oxytocin.
Collapse
Affiliation(s)
| | - Hasina Y Saraha
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - Samantha B Odeesho
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | | |
Collapse
|
32
|
Abstract
Comparative data on the developing gastropod foregut suggest that this multicomponent feeding complex consists of two developmental modules. Modularity is revealed by delayed development of the buccal cavity and radular sac (“ventral module”) relative to the dorsal food channel (“dorsal module”) in gastropods with feeding larvae compared with those that may have never had a feeding larval stage. If nonfeeding larvae like those of extant patellogastropods and vetigastropods are ancestral for gastropods, then the uncoupling and heterochronic offset of dorsal and ventral foregut modules allowed the post-metamorphic dorsal food channel to be co-opted as a simple but functional esophagus for feeding larvae. Furthermore, by reducing energy cost per ovum, the heterochronic offset may have given mothers the evolutionary option of increasing fecundity or investing in protective egg encapsulation material. A second developmental innovation was spatial separation of the dorsal and ventral foregut modules, as illustrated by distal foregut development in buccinid neogastropods and venom gland development in cone snails. Spatial uncoupling may have enhanced the evolvability of gastropod foreguts by allowing phenotypic variants of ventral module components to be selected within post-metamorphic ecological settings, without needing to be first tested for compatibility with larval feeding. Finally, we describe a case in which foregut modularity has helped facilitate a highly derived life history in which encapsulated embryos ingest nurse eggs.
Collapse
Affiliation(s)
- Louise R. Page
- Department of Biology, University of Victoria, P.O. Box 3020 STN CSC, Victoria, BC V8W 2Y2, Canada
- Department of Biology, University of Victoria, P.O. Box 3020 STN CSC, Victoria, BC V8W 2Y2, Canada
| | - Brenda Hookham
- Department of Biology, University of Victoria, P.O. Box 3020 STN CSC, Victoria, BC V8W 2Y2, Canada
- Department of Biology, University of Victoria, P.O. Box 3020 STN CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
33
|
Hacker DE, Hoinka J, Iqbal ES, Przytycka TM, Hartman MCT. Highly Constrained Bicyclic Scaffolds for the Discovery of Protease-Stable Peptides via mRNA Display. ACS Chem Biol 2017; 12:795-804. [PMID: 28146347 DOI: 10.1021/acschembio.6b01006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Highly constrained peptides such as the knotted peptide natural products are promising medicinal agents because of their impressive biostability and potent activity. Yet, libraries of highly constrained peptides are challenging to prepare. Here, we present a method which utilizes two robust, orthogonal chemical steps to create highly constrained bicyclic peptide libraries. This technology was optimized to be compatible with in vitro selections by mRNA display. We performed side-by-side monocyclic and bicyclic selections against a model protein (streptavidin). Both selections resulted in peptides with mid-nanomolar affinity, and the bicyclic selection yielded a peptide with remarkable protease resistance.
Collapse
Affiliation(s)
- David E. Hacker
- Virginia Commonwealth University, Department of Chemistry, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
- National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| | - Jan Hoinka
- Virginia Commonwealth University, Department of Chemistry, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
- National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| | - Emil S. Iqbal
- Virginia Commonwealth University, Department of Chemistry, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
- National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| | - Teresa M. Przytycka
- Virginia Commonwealth University, Department of Chemistry, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
- National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| | - Matthew C. T. Hartman
- Virginia Commonwealth University, Department of Chemistry, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
- National Center for Biotechnology Information, 8600 Rockville Pike, Bethesda, Maryland 20894, United States
| |
Collapse
|
34
|
Venomics: integrative venom proteomics and beyond*. Biochem J 2017; 474:611-634. [DOI: 10.1042/bcj20160577] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/31/2016] [Accepted: 01/03/2017] [Indexed: 01/15/2023]
Abstract
Venoms are integrated phenotypes that evolved independently in, and are used for predatory and defensive purposes by, a wide phylogenetic range of organisms. The same principles that contribute to the evolutionary success of venoms, contribute to making the study of venoms of great interest in such diverse fields as evolutionary ecology and biotechnology. Evolution is profoundly contingent, and nature also reinvents itself continuosly. Changes in a complex phenotypic trait, such as venom, reflect the influences of prior evolutionary history, chance events, and selection. Reconstructing the natural history of venoms, particularly those of snakes, which will be dealt with in more detail in this review, requires the integration of different levels of knowledge into a meaningful and comprehensive evolutionary framework for separating stochastic changes from adaptive evolution. The application of omics technologies and other disciplines have contributed to a qualitative and quantitative advance in the road map towards this goal. In this review we will make a foray into the world of animal venoms, discuss synergies and complementarities of the different approaches used in their study, and identify current bottlenecks that prevent inferring the evolutionary mechanisms and ecological constraints that molded snake venoms to their present-day variability landscape.
Collapse
|
35
|
|
36
|
Román-González SA, Robles-Gómez EE, Reyes J, Bernáldez J, Cortés-Guzmán F, Martínez-Mayorga K, Lazcano-Pérez F, Licea A, Arreguín-Espinosa R. A 3D structural model of RsXXVIA, an ω-conotoxin. Struct Chem 2016. [DOI: 10.1007/s11224-016-0877-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Safavi-Hemami H, Lu A, Li Q, Fedosov AE, Biggs J, Showers Corneli P, Seger J, Yandell M, Olivera BM. Venom Insulins of Cone Snails Diversify Rapidly and Track Prey Taxa. Mol Biol Evol 2016; 33:2924-2934. [PMID: 27524826 PMCID: PMC5062327 DOI: 10.1093/molbev/msw174] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A specialized insulin was recently found in the venom of a fish-hunting cone snail, Conus geographus Here we show that many worm-hunting and snail-hunting cones also express venom insulins, and that this novel gene family has diversified explosively. Cone snails express a highly conserved insulin in their nerve ring; presumably this conventional signaling insulin is finely tuned to the Conus insulin receptor, which also evolves very slowly. By contrast, the venom insulins diverge rapidly, apparently in response to biotic interactions with prey and also possibly the cones' own predators and competitors. Thus, the inwardly directed signaling insulins appear to experience predominantly purifying sele\ction to target an internal receptor that seldom changes, while the outwardly directed venom insulins frequently experience directional selection to target heterospecific insulin receptors in a changing mix of prey, predators and competitors. Prey insulin receptors may often be constrained in ways that prevent their evolutionary escape from targeted venom insulins, if amino-acid substitutions that result in escape also degrade the receptor's signaling functions.
Collapse
Affiliation(s)
- Helena Safavi-Hemami
- Department of Biology, University of Utah, Salt Lake City, UT Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Aiping Lu
- School of Life Sciences and Technology, Institute of Protein Research, Tongji University, Shanghai, China
| | - Qing Li
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT
| | - Alexander E Fedosov
- A.N. Severtzov Institute of Ecology and Evolution, Russian Academy of Science, Leninsky Prospect, Moscow, Russia
| | - Jason Biggs
- University of Guam Marine Laboratory, Agana, Guam
| | | | - Jon Seger
- Department of Biology, University of Utah, Salt Lake City, UT
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, UT
| | | |
Collapse
|
38
|
Rodríguez de la Vega RC, Giraud T. Intragenome Diversity of Gene Families Encoding Toxin-like Proteins in Venomous Animals. Integr Comp Biol 2016; 56:938-949. [PMID: 27543626 DOI: 10.1093/icb/icw097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolution of venoms is the story of how toxins arise and of the processes that generate and maintain their diversity. For animal venoms these processes include recruitment for expression in the venom gland, neofunctionalization, paralogous expansions, and functional divergence. The systematic study of these processes requires the reliable identification of the venom components involved in antagonistic interactions. High-throughput sequencing has the potential of uncovering the entire set of toxins in a given organism, yet the existence of non-venom toxin paralogs and the misleading effects of partial census of the molecular diversity of toxins make necessary to collect complementary evidence to distinguish true toxins from their non-venom paralogs. Here, we analyzed the whole genomes of two scorpions, one spider and one snake, aiming at the identification of the full repertoires of genes encoding toxin-like proteins. We classified the entire set of protein-coding genes into paralogous groups and monotypic genes, identified genes encoding toxin-like proteins based on known toxin families, and quantified their expression in both venom-glands and pooled tissues. Our results confirm that genes encoding toxin-like proteins are part of multigene families, and that these families arise by recruitment events from non-toxin genes followed by limited expansions of the toxin-like protein coding genes. We also show that failing to account for sequence similarity with non-toxin proteins has a considerable misleading effect that can be greatly reduced by comparative transcriptomics. Our study overall contributes to the understanding of the evolutionary dynamics of proteins involved in antagonistic interactions.
Collapse
Affiliation(s)
- Ricardo C Rodríguez de la Vega
- Ecologie Systematique Evolution, UMR8079, CNRS, Univ. of Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| | - Tatiana Giraud
- Ecologie Systematique Evolution, UMR8079, CNRS, Univ. of Paris-Sud, AgroParisTech, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
39
|
Wu X, Huang Y, Kaas Q, Craik DJ. Cyclisation of Disulfide‐Rich Conotoxins in Drug Design Applications. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaosa Wu
- Institute for Molecular BioscienceThe University of Queensland306 Carmody Road (Building 80)4072BrisbaneAustralia
| | - Yen‐Hua Huang
- Institute for Molecular BioscienceThe University of Queensland306 Carmody Road (Building 80)4072BrisbaneAustralia
| | - Quentin Kaas
- Institute for Molecular BioscienceThe University of Queensland306 Carmody Road (Building 80)4072BrisbaneAustralia
| | - David J. Craik
- Institute for Molecular BioscienceThe University of Queensland306 Carmody Road (Building 80)4072BrisbaneAustralia
| |
Collapse
|
40
|
Lin Z, Torres JP, Tianero MD, Kwan JC, Schmidt EW. Origin of Chemical Diversity in Prochloron-Tunicate Symbiosis. Appl Environ Microbiol 2016; 82:3450-60. [PMID: 27037119 PMCID: PMC4959158 DOI: 10.1128/aem.00860-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Diversity-generating metabolism leads to the evolution of many different chemicals in living organisms. Here, by examining a marine symbiosis, we provide a precise evolutionary model of how nature generates a family of novel chemicals, the cyanobactins. We show that tunicates and their symbiotic Prochloron cyanobacteria share congruent phylogenies, indicating that Prochloron phylogeny is related to host phylogeny and not to external habitat or geography. We observe that Prochloron exchanges discrete functional genetic modules for cyanobactin secondary metabolite biosynthesis in an otherwise conserved genetic background. The module exchange leads to gain or loss of discrete chemical functional groups. Because the underlying enzymes exhibit broad substrate tolerance, discrete exchange of substrates and enzymes between Prochloron strains leads to the rapid generation of chemical novelty. These results have implications in choosing biochemical pathways and enzymes for engineered or combinatorial biosynthesis. IMPORTANCE While most biosynthetic pathways lead to one or a few products, a subset of pathways are diversity generating and are capable of producing thousands to millions of derivatives. This property is highly useful in biotechnology since it enables biochemical or synthetic biological methods to create desired chemicals. A fundamental question has been how nature itself creates this chemical diversity. Here, by examining the symbiosis between coral reef animals and bacteria, we describe the genetic basis of chemical variation with unprecedented precision. New compounds from the cyanobactin family are created by either varying the substrate or importing needed enzymatic functions from other organisms or via both mechanisms. This natural process matches successful laboratory strategies to engineer the biosynthesis of new chemicals and teaches a new strategy to direct biosynthesis.
Collapse
Affiliation(s)
- Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USAUniversity of Tennessee and Oak Ridge National Laboratory
| | - Joshua P Torres
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USAUniversity of Tennessee and Oak Ridge National Laboratory
| | - M Diarey Tianero
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USAUniversity of Tennessee and Oak Ridge National Laboratory
| | - Jason C Kwan
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USAUniversity of Tennessee and Oak Ridge National Laboratory
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USAUniversity of Tennessee and Oak Ridge National Laboratory
| |
Collapse
|
41
|
Verdes A, Anand P, Gorson J, Jannetti S, Kelly P, Leffler A, Simpson D, Ramrattan G, Holford M. From Mollusks to Medicine: A Venomics Approach for the Discovery and Characterization of Therapeutics from Terebridae Peptide Toxins. Toxins (Basel) 2016; 8:117. [PMID: 27104567 PMCID: PMC4848642 DOI: 10.3390/toxins8040117] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/21/2022] Open
Abstract
Animal venoms comprise a diversity of peptide toxins that manipulate molecular targets such as ion channels and receptors, making venom peptides attractive candidates for the development of therapeutics to benefit human health. However, identifying bioactive venom peptides remains a significant challenge. In this review we describe our particular venomics strategy for the discovery, characterization, and optimization of Terebridae venom peptides, teretoxins. Our strategy reflects the scientific path from mollusks to medicine in an integrative sequential approach with the following steps: (1) delimitation of venomous Terebridae lineages through taxonomic and phylogenetic analyses; (2) identification and classification of putative teretoxins through omics methodologies, including genomics, transcriptomics, and proteomics; (3) chemical and recombinant synthesis of promising peptide toxins; (4) structural characterization through experimental and computational methods; (5) determination of teretoxin bioactivity and molecular function through biological assays and computational modeling; (6) optimization of peptide toxin affinity and selectivity to molecular target; and (7) development of strategies for effective delivery of venom peptide therapeutics. While our research focuses on terebrids, the venomics approach outlined here can be applied to the discovery and characterization of peptide toxins from any venomous taxa.
Collapse
Affiliation(s)
- Aida Verdes
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
- Sackler Institute for Comparative Genomics, Invertebrate Zoology, American Museum of Natural History, Central Park West & 79th St, New York, NY 10024, USA.
| | - Prachi Anand
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
| | - Juliette Gorson
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
- Sackler Institute for Comparative Genomics, Invertebrate Zoology, American Museum of Natural History, Central Park West & 79th St, New York, NY 10024, USA.
| | - Stephen Jannetti
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
| | - Patrick Kelly
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
| | - Abba Leffler
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine 550 1st Avenue, New York, NY 10016, USA.
| | - Danny Simpson
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- Tandon School of Engineering, New York University 6 MetroTech Center, Brooklyn, NY 11201, USA.
| | - Girish Ramrattan
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
| | - Mandë Holford
- Hunter College, The City University of New York, Belfer Research Building, 413 E. 69th Street, New York, NY 10021, USA.
- The Graduate Center, City University of New York, 365 5th Ave, New York, NY 10016, USA.
- Sackler Institute for Comparative Genomics, Invertebrate Zoology, American Museum of Natural History, Central Park West & 79th St, New York, NY 10024, USA.
| |
Collapse
|
42
|
Peng C, Yao G, Gao BM, Fan CX, Bian C, Wang J, Cao Y, Wen B, Zhu Y, Ruan Z, Zhao X, You X, Bai J, Li J, Lin Z, Zou S, Zhang X, Qiu Y, Chen J, Coon SL, Yang J, Chen JS, Shi Q. High-throughput identification of novel conotoxins from the Chinese tubular cone snail (Conus betulinus) by multi-transcriptome sequencing. Gigascience 2016; 5:17. [PMID: 27087938 PMCID: PMC4832519 DOI: 10.1186/s13742-016-0122-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 04/07/2016] [Indexed: 01/06/2023] Open
Abstract
Background The venom of predatory marine cone snails mainly contains a diverse array of unique bioactive peptides commonly referred to as conopeptides or conotoxins. These peptides have proven to be valuable pharmacological probes and potential drugs because of their high specificity and affinity to important ion channels, receptors and transporters of the nervous system. Most previous studies have focused specifically on the conopeptides from piscivorous and molluscivorous cone snails, but little attention has been devoted to the dominant vermivorous species. Results The vermivorous Chinese tubular cone snail, Conus betulinus, is the dominant Conus species inhabiting the South China Sea. The transcriptomes of venom ducts and venom bulbs from a variety of specimens of this species were sequenced using both next-generation sequencing and traditional Sanger sequencing technologies, resulting in the identification of a total of 215 distinct conopeptides. Among these, 183 were novel conopeptides, including nine new superfamilies. It appeared that most of the identified conopeptides were synthesized in the venom duct, while a handful of conopeptides were identified only in the venom bulb and at very low levels. Conclusions We identified 215 unique putative conopeptide transcripts from the combination of five transcriptomes and one EST sequencing dataset. Variation in conopeptides from different specimens of C. betulinus was observed, which suggested the presence of intraspecific variability in toxin production at the genetic level. These novel conopeptides provide a potentially fertile resource for the development of new pharmaceuticals, and a pathway for the discovery of new conotoxins. Electronic supplementary material The online version of this article (doi:10.1186/s13742-016-0122-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Peng
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Ge Yao
- Research Institute of Pharmaceutical Chemistry, Beijing, 102205 China
| | - Bing-Miao Gao
- School of Pharmaceutical Sciences, Hainan Medical University, Haikou, 571199 China
| | - Chong-Xu Fan
- Research Institute of Pharmaceutical Chemistry, Beijing, 102205 China
| | - Chao Bian
- BGI-Shenzhen, Shenzhen, 518083 China ; Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, State Key Laboratory of Agricultural Genomics, Shenzhen, 518083 China
| | | | - Ying Cao
- Research Institute of Pharmaceutical Chemistry, Beijing, 102205 China
| | - Bo Wen
- BGI-Shenzhen, Shenzhen, 518083 China
| | | | - Zhiqiang Ruan
- BGI-Shenzhen, Shenzhen, 518083 China ; Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, State Key Laboratory of Agricultural Genomics, Shenzhen, 518083 China
| | | | - Xinxin You
- BGI-Shenzhen, Shenzhen, 518083 China ; Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, State Key Laboratory of Agricultural Genomics, Shenzhen, 518083 China
| | - Jie Bai
- BGI-Shenzhen, Shenzhen, 518083 China ; Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, State Key Laboratory of Agricultural Genomics, Shenzhen, 518083 China
| | - Jia Li
- BGI-Shenzhen, Shenzhen, 518083 China ; Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, State Key Laboratory of Agricultural Genomics, Shenzhen, 518083 China
| | | | | | - Xinhui Zhang
- BGI-Shenzhen, Shenzhen, 518083 China ; Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, State Key Laboratory of Agricultural Genomics, Shenzhen, 518083 China
| | - Ying Qiu
- BGI-Shenzhen, Shenzhen, 518083 China ; Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, State Key Laboratory of Agricultural Genomics, Shenzhen, 518083 China
| | - Jieming Chen
- BGI-Shenzhen, Shenzhen, 518083 China ; Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, State Key Laboratory of Agricultural Genomics, Shenzhen, 518083 China
| | - Steven L Coon
- Molecular Genomics Laboratory, National Institutes of Health, Bethesda, MD 20892 USA
| | - Jiaan Yang
- Micro Pharmatech Ltd, Wuhan, 430075 China
| | - Ji-Sheng Chen
- Research Institute of Pharmaceutical Chemistry, Beijing, 102205 China
| | - Qiong Shi
- BGI-Shenzhen, Shenzhen, 518083 China ; Shenzhen Key Laboratory of Marine Genomics, Guangdong Provincial Key Laboratory of Molecular Breeding in Marine Economic Animals, State Key Laboratory of Agricultural Genomics, Shenzhen, 518083 China ; BGI-Zhenjiang Institute of Hydrobiology, Zhenjiang, 212000 China
| |
Collapse
|
43
|
Carstens BB, Berecki G, Daniel JT, Lee HS, Jackson KAV, Tae H, Sadeghi M, Castro J, O'Donnell T, Deiteren A, Brierley SM, Craik DJ, Adams DJ, Clark RJ. Structure–Activity Studies of Cysteine‐Rich α‐Conotoxins that Inhibit High‐Voltage‐Activated Calcium Channels via GABA
B
Receptor Activation Reveal a Minimal Functional Motif. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bodil B. Carstens
- Institute for Molecular Biosciences The University of Queensland Brisbane Qld 4072 Australia
| | - Géza Berecki
- Health Innovations Research Institute RMIT University Melbourne Vic 3083 Australia
| | - James T. Daniel
- School of Biomedical Science The University of Queensland Brisbane Qld 4072 Australia
| | - Han Siean Lee
- School of Biomedical Science The University of Queensland Brisbane Qld 4072 Australia
| | - Kathryn A. V. Jackson
- School of Biomedical Science The University of Queensland Brisbane Qld 4072 Australia
| | - Han‐Shen Tae
- Health Innovations Research Institute RMIT University Melbourne Vic 3083 Australia
- Illawarra Health and Medical Research Institute (IHMRI) University of Wollongong Wollongong NSW 2522 Australia
| | - Mahsa Sadeghi
- Health Innovations Research Institute RMIT University Melbourne Vic 3083 Australia
- Illawarra Health and Medical Research Institute (IHMRI) University of Wollongong Wollongong NSW 2522 Australia
| | - Joel Castro
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases Discipline of Medicine The University of Adelaide South Australian Health and Medical Research Institute (SAHMRI) Adelaide SA 5000 Australia
| | - Tracy O'Donnell
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases Discipline of Medicine The University of Adelaide South Australian Health and Medical Research Institute (SAHMRI) Adelaide SA 5000 Australia
| | - Annemie Deiteren
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases Discipline of Medicine The University of Adelaide South Australian Health and Medical Research Institute (SAHMRI) Adelaide SA 5000 Australia
| | - Stuart M. Brierley
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases Discipline of Medicine The University of Adelaide South Australian Health and Medical Research Institute (SAHMRI) Adelaide SA 5000 Australia
| | - David J. Craik
- Institute for Molecular Biosciences The University of Queensland Brisbane Qld 4072 Australia
| | - David J. Adams
- Health Innovations Research Institute RMIT University Melbourne Vic 3083 Australia
- Illawarra Health and Medical Research Institute (IHMRI) University of Wollongong Wollongong NSW 2522 Australia
| | - Richard J. Clark
- School of Biomedical Science The University of Queensland Brisbane Qld 4072 Australia
| |
Collapse
|
44
|
Carstens BB, Berecki G, Daniel JT, Lee HS, Jackson KAV, Tae H, Sadeghi M, Castro J, O'Donnell T, Deiteren A, Brierley SM, Craik DJ, Adams DJ, Clark RJ. Structure–Activity Studies of Cysteine‐Rich α‐Conotoxins that Inhibit High‐Voltage‐Activated Calcium Channels via GABA
B
Receptor Activation Reveal a Minimal Functional Motif. Angew Chem Int Ed Engl 2016; 55:4692-6. [DOI: 10.1002/anie.201600297] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Bodil B. Carstens
- Institute for Molecular Biosciences The University of Queensland Brisbane Qld 4072 Australia
| | - Géza Berecki
- Health Innovations Research Institute RMIT University Melbourne Vic 3083 Australia
| | - James T. Daniel
- School of Biomedical Science The University of Queensland Brisbane Qld 4072 Australia
| | - Han Siean Lee
- School of Biomedical Science The University of Queensland Brisbane Qld 4072 Australia
| | - Kathryn A. V. Jackson
- School of Biomedical Science The University of Queensland Brisbane Qld 4072 Australia
| | - Han‐Shen Tae
- Health Innovations Research Institute RMIT University Melbourne Vic 3083 Australia
- Illawarra Health and Medical Research Institute (IHMRI) University of Wollongong Wollongong NSW 2522 Australia
| | - Mahsa Sadeghi
- Health Innovations Research Institute RMIT University Melbourne Vic 3083 Australia
- Illawarra Health and Medical Research Institute (IHMRI) University of Wollongong Wollongong NSW 2522 Australia
| | - Joel Castro
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases Discipline of Medicine The University of Adelaide South Australian Health and Medical Research Institute (SAHMRI) Adelaide SA 5000 Australia
| | - Tracy O'Donnell
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases Discipline of Medicine The University of Adelaide South Australian Health and Medical Research Institute (SAHMRI) Adelaide SA 5000 Australia
| | - Annemie Deiteren
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases Discipline of Medicine The University of Adelaide South Australian Health and Medical Research Institute (SAHMRI) Adelaide SA 5000 Australia
| | - Stuart M. Brierley
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases Discipline of Medicine The University of Adelaide South Australian Health and Medical Research Institute (SAHMRI) Adelaide SA 5000 Australia
| | - David J. Craik
- Institute for Molecular Biosciences The University of Queensland Brisbane Qld 4072 Australia
| | - David J. Adams
- Health Innovations Research Institute RMIT University Melbourne Vic 3083 Australia
- Illawarra Health and Medical Research Institute (IHMRI) University of Wollongong Wollongong NSW 2522 Australia
| | - Richard J. Clark
- School of Biomedical Science The University of Queensland Brisbane Qld 4072 Australia
| |
Collapse
|
45
|
Abstract
A conventional metabolic pathway leads to a specific product. In stark contrast, there are diversity-generating metabolic pathways that naturally produce different chemicals, sometimes of great diversity. We demonstrate that for one such pathway, tru, each ensuing metabolic step is slower, in parallel with the increasing potential chemical divergence generated as the pathway proceeds. Intermediates are long lived and accumulate progressively, in contrast with conventional metabolic pathways, in which the first step is rate-limiting and metabolic intermediates are short-lived. Understanding these fundamental differences enables several different practical applications, such as combinatorial biosynthesis, some of which we demonstrate here. We propose that these principles may provide a unifying framework underlying diversity-generating metabolism in many different biosynthetic pathways.
Collapse
|
46
|
Eisapoor SS, Jamili S, Shahbazzadeh D, Ghavam Mostafavi P, Pooshang Bagheri K. A New, High Yield, Rapid, and Cost-Effective Protocol to Deprotection of Cysteine-Rich Conopeptide, Omega-Conotoxin MVIIA. Chem Biol Drug Des 2016; 87:687-93. [DOI: 10.1111/cbdd.12702] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 11/22/2015] [Accepted: 11/24/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Seyed Sahand Eisapoor
- Department of Marine Biology; Faculty of Marine Sciences and Technologies, Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Shahla Jamili
- Department of Marine Biology; Faculty of Marine Sciences and Technologies, Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Delavar Shahbazzadeh
- Biotechnology Research Center; Medical Biotechnology Department; Venom and Biotherapeutics Molecules Lab; Pasteur Institute of Iran; Tehran Iran
| | - Pargol Ghavam Mostafavi
- Department of Marine Biology; Faculty of Marine Sciences and Technologies, Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Kamran Pooshang Bagheri
- Biotechnology Research Center; Medical Biotechnology Department; Venom and Biotherapeutics Molecules Lab; Pasteur Institute of Iran; Tehran Iran
| |
Collapse
|
47
|
Rivara M, Zuliani V. Novel sodium channel antagonists in the treatment of neuropathic pain. Expert Opin Investig Drugs 2015; 25:215-26. [PMID: 26576738 DOI: 10.1517/13543784.2016.1121992] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Effective and safe drugs for the treatment of neuropathic pain are still an unmet clinical need. Neuropathic pain, caused by a lesion or disease that affects the somatosensory system, is a debilitating and hampering condition that has a great economic cost and, above all, a tremendous impact on the quality of life. Sodium channels are one of the major players in generating and propagating action potentials. They represent an appealing target for researchers involved in the development of new and safer drugs useful in the treatment of neuropathic pain. The actual goal for researchers is to target sodium channels selectively to stop the abnormal signaling that characterizes neuropathic pain while leaving normal somatosensory functions intact. AREAS COVERED This review covers the most recent publications regarding sodium channel blockers and their development as new treatments for neuropathic pain. The main areas discussed are the natural sources of new blockers, such as venom extracts and the recent efforts from many pharmaceutical companies in the field. EXPERT OPINION There have been serious efforts by both the pharmaceutical industry and academia to develop new and safer therapeutic options for neuropathic pain. A number of different strategies have been undertaken; the main efforts directed towards the identification of selective blockers starting from both natural products or screening chemical libraries. At this time, researchers have identified and characterized selective compounds against NaV1.7 or NaV1.8 voltage-gated sodium channels but only time will tell if they reach the market.
Collapse
Affiliation(s)
- Mirko Rivara
- a Dipartimento di Farmacia , Università degli Studi di Parma , Via Area delle Scienze 27/A, I-43124 Parma , Italy
| | - Valentina Zuliani
- a Dipartimento di Farmacia , Università degli Studi di Parma , Via Area delle Scienze 27/A, I-43124 Parma , Italy
| |
Collapse
|
48
|
Barghi N, Concepcion GP, Olivera BM, Lluisma AO. Structural features of conopeptide genes inferred from partial sequences of the Conus tribblei genome. Mol Genet Genomics 2015; 291:411-22. [PMID: 26423067 DOI: 10.1007/s00438-015-1119-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 09/18/2015] [Indexed: 10/23/2022]
Abstract
The evolvability of venom components (in particular, the gene-encoded peptide toxins) in venomous species serves as an adaptive strategy allowing them to target new prey types or respond to changes in the prey field. The structure, organization, and expression of the venom peptide genes may provide insights into the molecular mechanisms that drive the evolution of such genes. Conus is a particularly interesting group given the high chemical diversity of their venom peptides, and the rapid evolution of the conopeptide-encoding genes. Conus genomes, however, are large and characterized by a high proportion of repetitive sequences. As a result, the structure and organization of conopeptide genes have remained poorly known. In this study, a survey of the genome of Conus tribblei was undertaken to address this gap. A partial assembly of C. tribblei genome was generated; the assembly, though consisting of a large number of fragments, accounted for 2160.5 Mb of sequence. A large number of repetitive genomic elements consisting of 642.6 Mb of retrotransposable elements, simple repeats, and novel interspersed repeats were observed. We characterized the structural organization and distribution of conotoxin genes in the genome. A significant number of conopeptide genes (estimated to be between 148 and 193) belonging to different superfamilies with complete or nearly complete exon regions were observed, ~60 % of which were expressed. The unexpressed conopeptide genes represent hidden but significant conotoxin diversity. The conotoxin genes also differed in the frequency and length of the introns. The interruption of exons by long introns in the conopeptide genes and the presence of repeats in the introns may indicate the importance of introns in facilitating recombination, evolution and diversification of conotoxins. These findings advance our understanding of the structural framework that promotes the gene-level molecular evolution of venom peptides.
Collapse
Affiliation(s)
- Neda Barghi
- Marine Science Institute, University of the Philippines-Diliman, 1101, Quezon City, Philippines.,Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Gisela P Concepcion
- Marine Science Institute, University of the Philippines-Diliman, 1101, Quezon City, Philippines.,Philippine Genome Center, University of the Philippines, 1101, Quezon City, Philippines
| | | | - Arturo O Lluisma
- Marine Science Institute, University of the Philippines-Diliman, 1101, Quezon City, Philippines. .,Philippine Genome Center, University of the Philippines, 1101, Quezon City, Philippines.
| |
Collapse
|
49
|
Carstens BB, Rosengren KJ, Gunasekera S, Schempp S, Bohlin L, Dahlström M, Clark RJ, Göransson U. Isolation, Characterization, and Synthesis of the Barrettides: Disulfide-Containing Peptides from the Marine Sponge Geodia barretti. JOURNAL OF NATURAL PRODUCTS 2015; 78:1886-1893. [PMID: 26222779 DOI: 10.1021/acs.jnatprod.5b00210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Two disulfide-containing peptides, barrettides A (1) and B (2), from the cold-water marine sponge Geodia barretti are described. Those 31 amino acid residue long peptides were sequenced using mass spectrometry methods and structurally characterized using NMR spectroscopy. The structure of 1 was confirmed by total synthesis using the solid-phase peptide synthesis approach that was developed. The two peptides were found to differ only at a single position in their sequence. The three-dimensional structure of 1 revealed that these peptides possess a unique fold consisting of a long β-hairpin structure that is cross-braced by two disulfide bonds in a ladder-like arrangement. The peptides are amphipathic in nature with the hydrophobic and charged residues clustered on separate faces of the molecule. The barrettides were found not to inhibit the growth of either Escherichia coli or Staphylococcus aureus but displayed antifouling activity against barnacle larvae (Balanus improvisus) without lethal effects in the concentrations tested.
Collapse
Affiliation(s)
| | | | - Sunithi Gunasekera
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Center, Uppsala University , Box 574, SE-751 23 Uppsala, Sweden
| | - Stefanie Schempp
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Center, Uppsala University , Box 574, SE-751 23 Uppsala, Sweden
| | - Lars Bohlin
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Center, Uppsala University , Box 574, SE-751 23 Uppsala, Sweden
| | - Mia Dahlström
- Department of Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden , Arvid Wallgrens Backe 20, SE-413 46 Göteborg, Sweden
| | | | - Ulf Göransson
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Center, Uppsala University , Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
50
|
Abiko K, Iwayama A, Shiomi K. Detection and some properties of a high molecular weight toxin in the hypobranchial gland of strawberry conch Strombus luhuanus. Toxicon 2015; 105:1-3. [PMID: 26299337 DOI: 10.1016/j.toxicon.2015.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/22/2015] [Accepted: 08/05/2015] [Indexed: 10/23/2022]
Abstract
The extract from the hypobranchial gland of strawberry conch Strombus luhuanus was found to be lethal to mice. There were no marked regional and seasonal variations in toxicity although a considerable individual variation was recognized. The toxin was thermostable and extractable with aqueous solvents but not with organic solvents. Behaviors in dialysis, ultrafiltration and column chromatography on various adsorbents suggested that the toxin is a high molecular weight acidic substance of 400-500 k.
Collapse
Affiliation(s)
- Keisuke Abiko
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo 108-8477, Japan
| | - Ayane Iwayama
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo 108-8477, Japan
| | - Kazuo Shiomi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan-4, Minato-ku, Tokyo 108-8477, Japan.
| |
Collapse
|