1
|
Bare A, Thomas J, Etoroma D, Lee SG. Functional analysis of phosphoethanolamine N-methyltransferase in plants and parasites: Essential S-adenosylmethionine-dependent methyltransferase in choline and phospholipid metabolism. Methods Enzymol 2023; 680:101-137. [PMID: 36710008 DOI: 10.1016/bs.mie.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phospholipids play an essential role as a barrier between cell content and the extracellular environment and regulate various cell signaling processes. Phosphatidylcholine (PtdCho) is one of the most abundant phospholipids in plant, animal, and some prokaryote cell membranes. In plants and some parasites, the biosynthesis of PtdCho begins with the amino acid serine, followed mainly through a phosphoethanolamine N-methyltransferase (PMT)-mediated biosynthetic pathway to phosphocholine (pCho). Because the PMT-mediated pathway, referred to as the phosphobase methylation pathway, produces a series of important primary and specialized metabolites for plant development and stress response, understanding the PMT enzyme is a key aspect of engineering plants with improved stress tolerance and fortified nutrients. Importantly, given the very limited phylogenetic distribution of PMTs, functional analysis and the identification of inhibitors targeting PMTs have potential and positive impacts in humans and in veterinary and agricultural fields. Here, we describe detailed basic knowledge and practical research methods to enable the systematic study of the biochemical and biophysical functions of PMT. The research methods described in this chapter are also applicable to the studies of other ubiquitous S-adenosyl-l-methionine (SAM)-dependent methyltransferases in all kingdoms.
Collapse
Affiliation(s)
- Alex Bare
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Jaime Thomas
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel Etoroma
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Soon Goo Lee
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, United States.
| |
Collapse
|
2
|
Ngo AH, Angkawijaya AE, Lin YC, Liu YC, Nakamura Y. The phospho-base N-methyltransferases PMT1 and PMT2 produce phosphocholine for leaf growth in phosphorus-starved Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2985-2994. [PMID: 35560207 DOI: 10.1093/jxb/erab436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/04/2021] [Indexed: 06/15/2023]
Abstract
Phosphorus (P) is an essential nutrient for plants. Membrane lipid remodeling is an adaptive mechanism for P-starved plants that replaces membrane phospholipids with non-P galactolipids, presumably to retrieve scarce P sources and maintain membrane integrity. Whereas metabolic pathways to convert phospholipids to galactolipids are well-established, the mechanism by which phospholipid biosynthesis is involved in this process remains elusive. Here, we report that phospho-base N-methyltransferases 1 and 2 (PMT1 and PMT2), which convert phosphoethanolamine to phosphocholine (PCho), are transcriptionally induced by P starvation. Shoots of seedlings of pmt1 pmt2 double mutant showed defective growth upon P starvation; however, membrane lipid profiles were unaffected. We found that P-starved pmt1 pmt2 with defective leaf growth had reduced PCho content, and the growth defect was rescued by exogenous supplementation of PCho. We propose that PMT1 and PMT2 are induced by P starvation to produce PCho mainly for leaf growth maintenance, rather than for phosphatidylcholine biosynthesis, in membrane lipid remodeling.
Collapse
Affiliation(s)
- Anh H Ngo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | - Ying-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Chi Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Japan
| |
Collapse
|
3
|
Liu YC, Tan YR, Chang CW, Nguyen VC, Kanehara K, Kobayashi K, Nakamura Y. Functional divergence of a pair of Arabidopsis phospho-base methyltransferases, PMT1 and PMT3, conferred by distinct N-terminal sequences. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1198-1212. [PMID: 35306708 DOI: 10.1111/tpj.15741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
In seed plants, phospho-base N-methyltransferase (PMT) catalyzes a key step in the biosynthesis pathway of phosphatidylcholine (PC), the most abundant phospholipid class. Arabidopsis thaliana possesses three copies of PMT, with PMT1 and PMT3 play a primary role because the pmt1 pmt3 double mutant shows considerably reduced PC content with a pale seedling phenotype. Although the function of PMT1 and PMT3 may be redundant because neither of the parental single mutants showed a similar mutant phenotype, major developmental defects and possible functional divergence of these PMTs underlying the pale pmt1 pmt3 seedling phenotype are unknown. Here, we show the major developmental defect of the pale seedlings in xylem of the hypocotyl with partial impairments in chloroplast development and photosynthetic activity in leaves. Although PMT1 and PMT3 are localized at the endoplasmic reticulum, their tissue-specific expression pattern was distinct in hypocotyls and roots. Intriguingly, the function of PMT3 but not PMT1 requires its characteristic N-terminal sequence in addition to the promoter because truncation of the N-terminal sequence of PMT3 or substitution with PMT1 driven by the PMT3 promoter failed to rescue the pale pmt1 pmt3 seedling phenotype. Thus, PMT3 function requires the N-terminal sequence in addition to its promoter, whereas the PMT1 function is defined by the promoter.
Collapse
Affiliation(s)
- Yu-Chi Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yue-Rong Tan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chin-Wen Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Van C Nguyen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Koichi Kobayashi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8531, Japan
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, Osaka, 599-8531, Japan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
| |
Collapse
|
4
|
Choi SH, Jeon B, Kim N, Wu HH, Ko TP, Ruszczycky MW, Isiorho EA, Liu YN, Keatinge-Clay AT, Tsai MD, Liu HW. Evidence for an Enzyme-Catalyzed Rauhut-Currier Reaction during the Biosynthesis of Spinosyn A. J Am Chem Soc 2021; 143:20291-20295. [PMID: 34813308 DOI: 10.1021/jacs.1c09482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The catalog of enzymes known to catalyze the nucleophile-assisted formation of C-C bonds is extremely small, and there is presently no definitive example of a biological Rauhut-Currier reaction. Biosynthesis of the polyketide insecticide spinosyn A in Saccharopolyspora spinosa involves a [4 + 2]-cycloaddition and a subsequent intramolecular C-C bond formation catalyzed by SpnF and SpnL, respectively. Isotope tracer experiments and kinetic isotope effects, however, imply that the SpnL-catalyzed reaction proceeds without initial deprotonation of the substrate. The crystal structure of SpnL exhibits high similarity to SAM-dependent methyltransferases as well as SpnF. The residue Cys60 is also shown to reside in the SpnL active site, and the Cys60Ala SpnL mutant is found to be devoid of activity. Moreover, SpnL is covalently modified at Cys60 and irreversibly inactivated when it is coincubated with a fluorinated substrate analogue designed as a suicide inactivator of nucleophile-assisted C-C bond formation. These results suggest that SpnL catalyzes a biological Rauhut-Currier reaction.
Collapse
Affiliation(s)
- Sei-Hyun Choi
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Byungsun Jeon
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Namho Kim
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hsin-Hui Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Mark W Ruszczycky
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Eta A Isiorho
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yung-Nan Liu
- Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrian T Keatinge-Clay
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Hung-Wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Tannert M, Balcke GU, Tissier A, Köck M. At4g29530 is a phosphoethanolamine phosphatase homologous to PECP1 with a role in flowering time regulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1072-1083. [PMID: 34098589 DOI: 10.1111/tpj.15367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/28/2021] [Indexed: 05/25/2023]
Abstract
Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the most abundant phospholipids in membranes. The biosynthesis of phospholipids occurs mainly via the Kennedy pathway. Recent studies have shown that through this pathway, choline (Cho) moieties are synthesized through the methylation of phosphoethanolamine (PEtn) to phosphocholine (PCho) by phospho-base N-methyltransferase. In Arabidopsis thaliana, the phosphoethanolamine/phosphocholine phosphatase1 (PECP1) is described as an enzyme that regulates the synthesis of PCho by decreasing the PEtn level during phosphate starvation to avoid the energy-consuming methylation step. By homology search, we identified a gene (At4g29530) encoding a putative PECP1 homolog from Arabidopsis with a currently unknown biological function in planta. We found that At4g29530 is not induced by phosphate starvation, and is mainly expressed in leaves and flowers. The analysis of null mutants and overexpression lines revealed that PEtn, rather than PCho, is the substrate in vivo, as in PECP1. Hydrophilic interaction chromatography-coupled mass spectrometry analysis of head group metabolites shows an increased PEtn level and decreased ethanolamine level in null mutants. At4g29530 null mutants have an early flowering phenotype, which is corroborated by a higher PC/PE ratio. Furthermore, we found an increased PCho level. The choline level was not changed, so the results corroborate that the PEtn-dependent pathway is the main route for the generation of Cho moieties. We assume that the PEtn-hydrolyzing enzyme participates in fine-tuning the metabolic pathway, and helps prevent the energy-consuming biosynthesis of PCho through the methylation pathway.
Collapse
Affiliation(s)
- Martin Tannert
- Biocenter, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle (Saale), 06120, Germany
| | - Gerd Ulrich Balcke
- Department Cell and Metabolic Biology, Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Alain Tissier
- Department Cell and Metabolic Biology, Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Margret Köck
- Biocenter, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle (Saale), 06120, Germany
| |
Collapse
|
6
|
Ji X, Wu X, Chen W, Yuan Q, Shen Y, Chi Y. Cloning and Functional Identification of Phosphoethanolamine Methyltransferase in Soybean ( Glycine max). FRONTIERS IN PLANT SCIENCE 2021; 12:612158. [PMID: 34386021 PMCID: PMC8353235 DOI: 10.3389/fpls.2021.612158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Phosphoethanolamine methyltransferase (PEAMT), a kind of S-adenosylmethionine-dependent methyltransferases, plays an essential role in many biological processes of plants, such as cell metabolism, stress response, and signal transduction. It is the key rate-limiting enzyme that catalyzes the three-step methylation of ethanolamine-phosphate (P-EA) to phosphocholine (P-Cho). To understand the unique function of PEAMT in soybean (Glycine max) lipid synthesis, we cloned two phosphoethanolamine methyltransferase genes GmPEAMT1 and GmPEAMT2, and performed functional identification. Both GmPEAMT1 and GmPEAMT2 contain two methyltransferase domains. GmPEAMT1 has the closest relationship with MtPEAMT2, and GmPEAMT2 has the closest relationship with CcPEAMT. GmPEAMT1 and GmPEAMT2 are located in the nucleus and endoplasmic reticulum. There are many light response elements and plant hormone response elements in the promoters of GmPEAMT1 and GmPEAMT2, indicating that they may be involved in plant stress response. The yeast cho2 opi3 mutant, co-expressing Arabidopsis thaliana phospholipid methyltransferase (PLMT) and GmPEAMT1 or GmPEAMT2, can restore normal growth, indicating that GmPEAMTs can catalyze the methylation of phosphoethanolamine to phosphate monomethylethanolamine. The heterologous expression of GmPEAMT1 and GmPEAMT2 can partially restore the short root phenotype of the Arabidopsis thaliana peamt1 mutant, suggesting GmPEAMTs have similar but different functions to AtPEAMT1.
Collapse
|
7
|
Nakamura Y. Headgroup biosynthesis of phosphatidylcholine and phosphatidylethanolamine in seed plants. Prog Lipid Res 2021; 82:101091. [PMID: 33503494 DOI: 10.1016/j.plipres.2021.101091] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 12/23/2022]
Abstract
Phospholipid biosynthesis is crucial for plant growth and development. It involves attachment of fatty acids to a phospho-diacylglycerol backbone and modification of the phospho-group into an amino alcohol. The biochemistry and molecular biology of the former has been well established, but a number of enzymes responsible for the latter have only recently been cloned and functionally characterized in Arabidopsis and some other model plant species. The metabolism involving the polar head groups of phospholipids established by past biochemical studies can now be validated by available gene knockout models. Moreover, gene knockout studies have revealed emerging functions of phospholipids in regulating plant growth and development. This review aims to revisit the old questions of polar headgroup biosynthesis of plant phosphatidylcholine and phosphatidylethanolamine by giving an overview of recent advances in the field and beyond.
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
8
|
Lee SG, Chung MS, DeMarsilis AJ, Holland CK, Jaswaney RV, Jiang C, Kroboth JHP, Kulshrestha K, Marcelo RZW, Meyyappa VM, Nelson GB, Patel JK, Petronio AJ, Powers SK, Qin PR, Ramachandran M, Rayapati D, Rincon JA, Rocha A, Ferreira JGRN, Steinbrecher MK, Yao K, Zhang EJ, Zou AJ, Gang M, Sparks M, Cascella B, Cruz W, Jez JM. Structural and biochemical analysis of phosphoethanolamine methyltransferase from the pine wilt nematode Bursaphelenchus xylophilus. Mol Biochem Parasitol 2020; 238:111291. [PMID: 32479776 DOI: 10.1016/j.molbiopara.2020.111291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 11/28/2022]
Abstract
In free-living and parasitic nematodes, the methylation of phosphoethanolamine to phosphocholine provides a key metabolite to sustain phospholipid biosynthesis for growth and development. Because the phosphoethanolamine methyltransferases (PMT) of nematodes are essential for normal growth and development, these enzymes are potential targets of inhibitor design. The pine wilt nematode (Bursaphelenchus xylophilus) causes extensive damage to trees used for lumber and paper in Asia. As a first step toward testing BxPMT1 as a potential nematicide target, we determined the 2.05 Å resolution x-ray crystal structure of the enzyme as a dead-end complex with phosphoethanolamine and S-adenosylhomocysteine. The three-dimensional structure of BxPMT1 served as a template for site-directed mutagenesis to probe the contribution of active site residues to catalysis and phosphoethanolamine binding using steady-state kinetic analysis. Biochemical analysis of the mutants identifies key residues on the β1d-α6 loop (W123F, M126I, and Y127F) and β1e-α7 loop (S155A, S160A, H170A, T178V, and Y180F) that form the phosphobase binding site and suggest that Tyr127 facilitates the methylation reaction in BxPMT1.
Collapse
Affiliation(s)
- Soon Goo Lee
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Michelle S Chung
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Antea J DeMarsilis
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Cynthia K Holland
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Rohit V Jaswaney
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Cherry Jiang
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Jakob H P Kroboth
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Kevin Kulshrestha
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Raymundo Z W Marcelo
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Vidhya M Meyyappa
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Grant B Nelson
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Janki K Patel
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Alex J Petronio
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Samantha K Powers
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Peter R Qin
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Mythili Ramachandran
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Divya Rayapati
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - John A Rincon
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Andreia Rocha
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | | | - Micah K Steinbrecher
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Kaisen Yao
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Eric J Zhang
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Angela J Zou
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Margery Gang
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Melanie Sparks
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Barrie Cascella
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Wilhelm Cruz
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, United States.
| |
Collapse
|
9
|
Ngo AH, Kanehara K, Nakamura Y. Non-specific phospholipases C, NPC2 and NPC6, are required for root growth in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:825-835. [PMID: 31400172 DOI: 10.1111/tpj.14494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/28/2019] [Accepted: 08/06/2019] [Indexed: 05/25/2023]
Abstract
Mutants in lipid metabolism often show a lethal phenotype during reproduction that prevents investigating a specific role of the lipid during different developmental processes. We focused on two non-specific phospholipases C, NPC2 and NPC6, whose double knock-out causes a gametophyte-lethal phenotype. To investigate the role of NPC2 and NPC6 during vegetative growth, we produced transgenic knock-down mutant lines that circumvent the lethal effect during gametogenesis. Despite no defect observed in leaves, root growth was significantly retarded, with abnormal cellular architecture in root columella cells. Furthermore, the short root phenotype was rescued by exogenous supplementation of phosphocholine, a product of non-specific phospholipase C (NPC) -catalyzed phosphatidylcholine hydrolysis. The expression of phospho-base N-methyltransferase 1 (PMT1), which produces phosphocholine and is required for root growth, was induced in the knock-down mutant lines and was attenuated after phosphocholine supplementation. These results suggest that NPC2 and NPC6 may be involved in root growth by producing phosphocholine via metabolic interaction with a PMT-catalyzed pathway, which highlights a tissue-specific role of NPC enzymes in vegetative growth beyond the gametophyte-lethal phenotype.
Collapse
Affiliation(s)
- Anh H Ngo
- Institute of Plant and Microbial Biology, Academia Sinica, 128 sec.2 Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, 128 sec.2 Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, 128 sec.2 Academia Rd., Nankang, Taipei, 11529, Taiwan
| |
Collapse
|
10
|
Zou Y, Zhang X, Tan Y, Huang JB, Zheng Z, Tao LZ. Phosphoethanolamine N-methyltransferase 1 contributes to maintenance of root apical meristem by affecting ROS and auxin-regulated cell differentiation in Arabidopsis. THE NEW PHYTOLOGIST 2019; 224:258-273. [PMID: 31246280 DOI: 10.1111/nph.16028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
The continuous growth of roots requires the balance between cell division and differentiation. Reactive oxygen species (ROS) and auxin are important regulators of root development by affecting cell division and differentiation. The mechanism controlling the coordination of cell division and differentiation is not well understood. Using a forward genetic screen, we isolated a mutant, defective primary root 2 (dpr2), defective in root apical meristem (RAM) maintenance. The DPR2 gene encodes phosphoethanolamine N-methyltransferase 1 (PEAMT1) that catalyzes phosphocholine biosynthesis in Arabidopsis. We characterized the primary root phenotypes of dpr2 using various marker lines, using histochemical and pharmacological analysis to probe early root development. Loss-of-function of DPR2/PEAMT1 resulted in RAM consumption by affecting root stem cell niche, division zone, elongation and differentiation zone (EDZ). PIN-FORMED (PIN) protein abundance, PIN2 polar distribution and general endocytosis were impaired in the root tip of dpr2. Excess hydrogen peroxide and auxin accumulate in the EDZ of dpr2, leading to RAM consumption by accelerating cell differentiation. Suppression of ROS over-accumulation or inhibition of auxin signalling partially prevent RAM differentiation in dpr2 after choline starvation. Taken together, we conclude that the EDZ of the root tip is most sensitive to choline shortage, leading to RAM consumption through an ROS-auxin regulation module.
Collapse
Affiliation(s)
- Yi Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaojing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yunyi Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jia-Bao Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiqiong Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Li-Zhen Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
11
|
Liu YC, Lin YC, Kanehara K, Nakamura Y. A Methyltransferase Trio Essential for Phosphatidylcholine Biosynthesis and Growth. PLANT PHYSIOLOGY 2019; 179:433-445. [PMID: 30518673 PMCID: PMC6426410 DOI: 10.1104/pp.18.01408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/23/2018] [Indexed: 05/08/2023]
Abstract
Phosphatidylcholine (PC) is a primary class of membrane lipids in most eukaryotes. In plants, the primary PC biosynthetic pathway and its role in plant growth and development remain elusive due to lack of a mutant model with substantially decreased PC content. Recently, a double mutant of Arabidopsis (Arabidopsis thaliana) PHOSPHO-BASE N-METHYLTRANSFERASE 1 (PMT1) and PMT3 was reported with reduced PC content and defective plant growth. However, residual PC content as well as the nonlethal phenotype of the mutant suggests an additional enzyme contributes to PC biosynthesis. In this article, we report on the role of three PMTs in PC biosynthesis and plant development, with a focus on PMT2. PMT2 had the highest expression level among the three PMTs, and it was highly expressed in roots. The pmt1 pmt2 double mutant enhanced the defects in root growth, cell viability, and PC content of pmt1, suggesting that PMT2 functions together with PMT1 in roots. Chemical inhibition of PMT activity in wild-type roots reproduced the short root phenotype observed in pmt1 pmt2, suggesting that PMT1 and PMT2 are the major PMT isoforms in roots. In shoots, pmt1 pmt2 pmt3 enhanced the phenotype of pmt1 pmt3, showing seedling lethality and further reduced PC content without detectable de novo PC biosynthesis. These results suggest that PMTs catalyze an essential reaction step in PC biosynthesis and that the three PMTs have differential tissue-specific functions in PC biosynthesis and plant growth.
Collapse
Affiliation(s)
- Yu-Chi Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ying-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
12
|
Chen W, Taylor MC, Barrow RA, Croyal M, Masle J. Loss of Phosphoethanolamine N-Methyltransferases Abolishes Phosphatidylcholine Synthesis and Is Lethal. PLANT PHYSIOLOGY 2019; 179:124-142. [PMID: 30381317 PMCID: PMC6324220 DOI: 10.1104/pp.18.00694] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/19/2018] [Indexed: 05/21/2023]
Abstract
Plants use several pathways to synthesize phosphatidylcholine (PC), the major phospholipid of eukaryotic cells. PC has important structural and signaling roles. One pathway plants use for synthesis is the phospho-base methylation pathway, which forms the head-group phosphocholine through the triple methylation of phosphoethanolamine (PEA) catalyzed by phosphoethanolamine N-methyltransferases (PEAMTs). Our understanding of that pathway and its physiological importance remains limited. We recently reported that disruption of Arabidopsis thaliana PEAMT1/NMT1 and PEAMT3/NMT3 induces severe PC deficiency leading to dwarfism and impaired development. However, the double nmt1 nmt3 knock-out mutant is viable. Here, we show that this is enabled by residual PEAMT activity through a third family member, NMT2. The triple nmt1 nmt2 nmt3 knock-out mutant cannot synthesize PC from PEA and is lethal. This shows that, unlike mammals and yeast, Arabidopsis cannot form PC from phosphatidyl ethanolamine (PE), and demonstrates that methylation of PEA is the sole, and vital, entry point to PC synthesis. We further show that Arabidopsis has evolved an expanded family of four nonredundant PEAMTs through gene duplication and alternate use of the NMT2 promoter. NMT2 encodes two PEAMT variants, which greatly differ in their ability to perform the initial phospho-base methylation of PEA. Five amino acids at the N terminus of PEAMTs are shown to each be critical for the catalysis of that step committing to PC synthesis. As a whole, these findings open new avenues for enzymatic engineering and the exploration of ways to better tune phosphocholine and PC synthesis to environmental conditions for improved plant performance.
Collapse
Affiliation(s)
- Weihua Chen
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Matthew C Taylor
- Land and Water Flagship, Commonwealth Scientific and Industrial Research Organization, Canberra, Australian Capital Territory 2601, Australia
| | - Russell A Barrow
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Mikaël Croyal
- CRNH Nantes, Mass Spectrometry Core facility, 8 Quai Moncousu BP-70721, Nantes cedex 1, France
| | - Josette Masle
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
13
|
Liu YC, Lin YC, Kanehara K, Nakamura Y. A pair of phospho-base methyltransferases important for phosphatidylcholine biosynthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1064-1075. [PMID: 30218542 DOI: 10.1111/tpj.14090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 05/25/2023]
Abstract
Phosphatidylcholine (PtdCho) is a predominant membrane lipid class in eukaryotes. Phospho-base N-methyltransferase (PMT) catalyzes a critical step in PtdCho biosynthesis. However, in Arabidopsis thaliana, the discovery of involvement of the specific PMT isoform in PtdCho biosynthesis remains elusive. Here, we show that PMT1 and PMT3 redundantly play an essential role in phosphocholine (PCho) biosynthesis, a prerequisite for PtdCho production. A pmt1 pmt3 double mutant was devoid of PCho, which affected PtdCho biosynthesis in vivo, showing severe growth defects in post-embryonic development. PMT1 and PMT3 were both highly expressed in the vasculature. The pmt1 pmt3 mutants had specifically affected leaf vein development and showed pale-green seedlings that were rescued by exogenous supplementation of PCho. We suggest that PMT1 and PMT3 are the primary enzymes for PCho biosynthesis and are involved in PtdCho biosynthesis and vascular development in Arabidopsis seedlings.
Collapse
Affiliation(s)
- Yu-Chi Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Academia Sinica, Taiwan International Graduate Program, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
14
|
Chen W, Salari H, Taylor MC, Jost R, Berkowitz O, Barrow R, Qiu D, Branco R, Masle J. NMT1 and NMT3 N-Methyltransferase Activity Is Critical to Lipid Homeostasis, Morphogenesis, and Reproduction. PLANT PHYSIOLOGY 2018; 177:1605-1628. [PMID: 29777000 PMCID: PMC6084668 DOI: 10.1104/pp.18.00457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/10/2018] [Indexed: 05/24/2023]
Abstract
Phosphatidylcholine (PC) is a major membrane phospholipid and a precursor for major signaling molecules. Understanding its synthesis is important for improving plant growth, nutritional value, and resistance to stress. PC synthesis is complex, involving several interconnected pathways, one of which proceeds from serine-derived phosphoethanolamine to form phosphocholine through three sequential phospho-base methylations catalyzed by phosphoethanolamine N-methyltransferases (PEAMTs). The contribution of this pathway to the production of PC and plant growth has been a matter of some debate. Although a handful of individual PEAMTs have been described, there has not been any in planta investigation of a PEAMT family. Here, we provide a comparative functional analysis of two Arabidopsis (Arabidopsis thaliana) PEAMTs, NMT1 and the little known NMT3. Analysis of loss-of-function mutants demonstrates that NMT1 and NMT3 synergistically regulate PC homeostasis, phase transition at the shoot apex, coordinated organ development, and fertility through overlapping but also specific functions. The nmt1 nmt3 double mutant shows extensive sterility, drastically reduced PC concentrations, and altered lipid profiles. These findings demonstrate that the phospho-base methylation pathway makes a major contribution to PC synthesis in Arabidopsis and that NMT1 and NMT3 play major roles in its catalysis and the regulation of PC homeostasis as well as in plant growth and reproduction.
Collapse
Affiliation(s)
- Weihua Chen
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Hooman Salari
- Agronomy and Plant Breeding Department, Razi University, Kermanshah 67155, Iran
| | - Matthew C Taylor
- Land and Water Flagship, Commonwealth Scientific and Industrial Research Organisation, Canberra, Australian Capital Territory 2601, Australia
| | - Ricarda Jost
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Oliver Berkowitz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Russell Barrow
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Deyun Qiu
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Rémi Branco
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Josette Masle
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
15
|
Membrane glycerolipid equilibrium under endoplasmic reticulum stress in Arabidopsis thaliana. Biochem Biophys Res Commun 2018. [PMID: 29524407 DOI: 10.1016/j.bbrc.2018.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endoplasmic reticulum (ER) is an indispensable organelle for secretory protein synthesis as well as metabolism of phospholipids and their derivatives in eukaryotic cells. Various external and internal factors may cause an accumulation of aberrant proteins in the ER, which causes ER stress and activates cellular ER stress responses to cope with the stress. In animal research, molecular mechanisms for protein quality control upon ER stress are well documented; however, how cells maintain lipid homeostasis under ER stress is an emerging issue. The ratio of phosphatidylcholine (PC) to phosphatidylethanolamine (PE), two major phospholipid classes, is important under ER stress in animal cells. However, in seed plants, no study has reported on the changes in membrane lipid content under ER stress, although a number of physiologically important environmental stresses, such as heat and salinity, induce ER stress. Here, we investigated membrane glycerolipid metabolism under ER stress in Arabidopsis. ER stress transcriptionally affected PC and PE biosynthesis pathways differentially, with no significant changes in membrane glycerolipid content. Our results suggest that higher plants maintain membrane lipid equilibrium during active transcription of phospholipid biosynthetic genes under ER stress.
Collapse
|
16
|
Barycki JJ. Covering their bases: The phosphobase methylation pathway in plants. J Biol Chem 2017; 292:21703-21704. [PMID: 29288241 DOI: 10.1074/jbc.h117.000712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphoethanolamine methyltransferases add three methyl groups successively to their substrate to produce phosphocholine, an important precursor for phospholipid biosynthesis in diverse organisms. New work from Lee and Jez reveals critical domain movements that explain how multiple methylation reactions are uniquely coordinated by plant methyltransferases and provides insights into the evolution of this class of enzymes. As opposed to closely related family members, the intermediates in this pathway are likely shuttled between two tethered domains to ensure complete methylation.
Collapse
Affiliation(s)
- Joseph J Barycki
- From the Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|