1
|
Tso P, Bernier-Latmani J, Petrova TV, Liu M. Transport functions of intestinal lymphatic vessels. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00996-z. [PMID: 39496888 DOI: 10.1038/s41575-024-00996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/06/2024]
Abstract
Lymphatic vessels are crucial for fluid absorption and the transport of peripheral immune cells to lymph nodes. However, in the small intestine, the lymphatic fluid is rich in diet-derived lipids incorporated into chylomicrons and gut-specific immune cells. Thus, intestinal lymphatic vessels have evolved to handle these unique cargoes and are critical for systemic dietary lipid delivery and metabolism. This Review covers mechanisms of lipid absorption from epithelial cells to the lymphatics as well as unique features of the gut microenvironment that affect these functions. Moreover, we discuss details of the intestinal lymphatics in gut immune cell trafficking and insights into the role of inter-organ communication. Lastly, we highlight the particularities of fat absorption that can be harnessed for efficient lipid-soluble drug distribution for novel therapies, including the ability of chylomicron-associated drugs to bypass first-pass liver metabolism for systemic delivery. In all, this Review will help to promote an understanding of intestinal lymphatic-systemic interactions to guide future research directions.
Collapse
Affiliation(s)
- Patrick Tso
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Min Liu
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
2
|
Chen Q, Guo P, Hong Y, Mo P, Yu C. The multifaceted therapeutic value of targeting steroid receptor coactivator-1 in tumorigenesis. Cell Biosci 2024; 14:41. [PMID: 38553750 PMCID: PMC10979636 DOI: 10.1186/s13578-024-01222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
Steroid receptor coactivator-1 (SRC-1, also known as NCOA1) frequently functions as a transcriptional coactivator by directly binding to transcription factors and recruiting to the target gene promoters to promote gene transcription by increasing chromatin accessibility and promoting the formation of transcriptional complexes. In recent decades, various biological and pathological functions of SRC-1 have been reported, especially in the context of tumorigenesis. SRC-1 is a facilitator of the progression of multiple cancers, including breast cancer, prostate cancer, gastrointestinal cancer, neurological cancer, and female genital system cancer. The emerging multiorgan oncogenic role of SRC-1 is still being studied and may not be limited to only steroid hormone-producing tissues. Growing evidence suggests that SRC-1 promotes target gene expression by directly binding to transcription factors, which may constitute a novel coactivation pattern independent of AR or ER. In addition, the antitumour effect of pharmacological inhibition of SRC-1 with agents including various small molecules or naturally active compounds has been reported, but their practical application in clinical cancer therapy is very limited. For this review, we gathered typical evidence on the oncogenic role of SRC-1, highlighted its major collaborators and regulatory genes, and mapped the potential mechanisms by which SRC-1 promotes primary tumour progression.
Collapse
Affiliation(s)
- Qiang Chen
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, Zhejiang, 315010, China.
| | - Peng Guo
- Department of Cell Biotechnology Laboratory, Tianjin Cancer Hospital Airport Hospital, Tianjin, 300308, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361104, China
| | - Yilin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361104, China
| | - Pingli Mo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361104, China
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361104, China.
| |
Collapse
|
3
|
Zhu Q, Qi N, Shen L, Lo CC, Xu M, Duan Q, Ollberding NJ, Wu Z, Hui DY, Tso P, Liu M. Sexual Dimorphism in Lipid Metabolism and Gut Microbiota in Mice Fed a High-Fat Diet. Nutrients 2023; 15:2175. [PMID: 37432375 PMCID: PMC10180580 DOI: 10.3390/nu15092175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 07/12/2023] Open
Abstract
The gut microbiome plays an essential role in regulating lipid metabolism. However, little is known about how gut microbiome modulates sex differences in lipid metabolism. The present study aims to determine whether gut microbiota modulates sexual dimorphism of lipid metabolism in mice fed a high-fat diet (HFD). Conventional and germ-free male and female mice were fed an HFD for four weeks, and lipid absorption, plasma lipid profiles, and apolipoprotein levels were then evaluated. The gut microbiota was analyzed by 16S rRNA gene sequencing. After 4-week HFD consumption, the females exhibited less body weight gain and body fat composition and significantly lower triglyceride levels in very-low-density lipoprotein (VLDL) and cholesterol levels in high-density lipoprotein (HDL) compared to male mice. The fecal microbiota analysis revealed that the male mice were associated with reduced gut microbial diversity. The female mice had considerably different microbiota composition compared to males, e.g., enriched growth of beneficial microbes (e.g., Akkermansia) and depleted growth of Adlercreutzia and Enterococcus. Correlation analyses suggested that the different compositions of the gut microbiota were associated with sexual dimorphism in body weight, fat mass, and lipid metabolism in mice fed an HFD. Our findings demonstrated significant sex differences in lipid metabolism and the microbiota composition at baseline (during LFD), along with sex-dependent responses to HFD. A comprehensive understanding of sexual dimorphism in lipid metabolism modulated by microbiota will help to develop more sex-specific effective treatment options for dyslipidemia and metabolic disorders in females.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Nathan Qi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; (N.Q.)
| | - Ling Shen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Chunmin C. Lo
- Department of Biomedical Sciences, Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Qing Duan
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Nicholas J. Ollberding
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Zhe Wu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; (N.Q.)
| | - David Y. Hui
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| |
Collapse
|
4
|
Liu M, Shen L, Yang Q, Nauli AM, Bingamon M, Wang DQH, Ulrich-Lai YM, Tso P. Sexual dimorphism in intestinal absorption and lymphatic transport of dietary lipids. J Physiol 2021; 599:5015-5030. [PMID: 34648185 PMCID: PMC8595769 DOI: 10.1113/jp281621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Although the basic process of intestinal lipid absorption and transport is understood, many critical aspects remain unclear. One question in particular is whether intestinal lipid absorption and transport differ between the sexes. Using a well-established lymph fistula model, we found that intact female mice exhibited lower lymphatic output of triacylglycerol (TAG) than male mice. Further analysis revealed that the female mice segregated into two groups: the high group having similar lymphatic TAG transport to the males, and the low group having significantly less lymphatic output, implying the impact of cyclical variation of ovarian hormonal levels. These led us to examine whether oestradiol (E2) and progesterone (P) affect intestinal absorption and lymphatic transport of dietary lipids. In ovariectomized (OVX) rats, E2 treatment significantly reduced [3 H]-TAG lymphatic output through reducing TAG transport; and P treatment decreased [14 C]cholesterol (Chol) lymphatic output by inhibiting Chol absorption, compared to vehicle treatment. Gene expression data suggested that E2 enhances vascular endothelial growth factor-A (VEGF-A) signalling to reduce the permeability of lacteals, leading to reduced CM transport through the lymphatic system. Interestingly, E2 treatment also increased lymphatic output of apolipoprotein A-I (apoA-I), but not apoB-48 and apoA-IV, in the OVX rats. Collectively, these data suggested that ovarian hormone-induced reductions of intestinal lipid absorption and lymphatic transport, as well as increased lymphatic output of apoA-I, may contribute to a beneficial protection from atherosclerosis in females. KEY POINTS: Significant differences in intestinal lipid absorption and lymphatic transport were found between female and male animals. Oestrogen treatment significantly reduced [3 H]triacylglycerol (TAG) lymphatic output through suppressing TAG transport in ovariectomized (OVX) rats, and this effect is associated with enhanced vegfa gene expression in the intestine. Progesterone treatment significantly decreased the output of [14 C]cholesterol in lymph by inhibiting cholesterol absorption in the OVX rats. Oestrogen treatment also increased lymphatic output of apolipoprotein A-I (apoA-I) in the OVX rats, which may contribute to the reduced risk of atherosclerosis in females.
Collapse
Affiliation(s)
- Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Ling Shen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Qing Yang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Andromeda M. Nauli
- Department of Pharmaceutical Sciences, College of Pharmacy, Marshall B. Ketchum University, Fullerton, CA 92831, USA
| | - Madison Bingamon
- Northern Kentucky University, Louie B Nunn Dr, Highland Heights, KY 41099, USA
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yvonne M. Ulrich-Lai
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| |
Collapse
|
5
|
Meng Z, Wang X, Zhang D, Lan Z, Cai X, Bian C, Zhang J. Steroid receptor coactivator-1: The central intermediator linking multiple signals and functions in the brain and spinal cord. Genes Dis 2021; 9:1281-1289. [PMID: 35873031 PMCID: PMC9293692 DOI: 10.1016/j.gendis.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022] Open
Abstract
The effects of steroid hormones are believed to be mediated by their nuclear receptors (NRs). The p160 coactivator family, including steroid receptor coactivator-1 (SRC-1), 2 and 3, has been shown to physically interact with NRs to enhance their transactivational activities. Among which SRC-1 has been predominantly localized in the central nervous system including brain and spinal cord. It is not only localized in neurons but also detectable in neuroglial cells (mainly localized in the nuclei but also detectable in the extra-nuclear components). Although the expression of SRC-1 is regulated by many steroids, it is also regulated by some non-steroidal factors such as injury, sound and light. Functionally, SRC-1 has been implied in normal function such as development and ageing, learning and memory, central regulation on reproductive behaviors, motor and food intake. Pathologically, SRC-1 may play a role in the regulation of neuropsychiatric disorders (including stress, depression, anxiety, and autism spectrum disorder), metabolite homeostasis and obesity as well as tumorigenesis. Under most conditions, the related mechanisms are far from elucidation; although it may regulate spatial memory through Rictor/mTORC2-actin polymerization related synaptic plasticity. Several inhibitors and stimulator of SRC-1 have shown anti-cancer potentials, but whether these small molecules could be used to modulate ageing and central disorder related neuropathology remain unclear. Therefore, to elucidate when and how SRC-1 is turned on and off under different stimuli is very interesting and great challenge for neuroscientists.
Collapse
Affiliation(s)
- Zhaoyou Meng
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
| | - Xiaoya Wang
- Department of Neurosurgery, Nanchong Central Hospital, the Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan 637000, PR China
| | - Dongmei Zhang
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing 400038, PR China
| | - Zhen Lan
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
| | - Xiaoxia Cai
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
- School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Chen Bian
- School of Psychology, Amy Medical University, Chongqing 400038, PR China
- Corresponding author.
| | - Jiqiang Zhang
- Department of Neurobiology, Army Medical University, Chongqing 400038, PR China
- Corresponding author.
| |
Collapse
|
6
|
Liu M, Shen L, Xu M, Wang DQH, Tso P. Estradiol Enhances Anorectic Effect of Apolipoprotein A-IV through ERα-PI3K Pathway in the Nucleus Tractus Solitarius. Genes (Basel) 2020; 11:E1494. [PMID: 33322656 PMCID: PMC7764025 DOI: 10.3390/genes11121494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/09/2023] Open
Abstract
Estradiol (E2) enhances the anorectic action of apolipoprotein A-IV (apoA-IV), however, the intracellular mechanisms are largely unclear. Here we reported that the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway was significantly activated by E2 and apoA-IV, respectively, in primary neuronal cells isolated from rat embryonic brainstem. Importantly, the combination of E2 and apoA-IV at their subthreshold doses synergistically activated the PI3K/Akt signaling pathway. These effects, however, were significantly diminished by the pretreatment with LY294002, a selective PI3K inhibitor. E2-induced activation of the PI3K/Akt pathway was through membrane-associated ERα, because the phosphorylation of Akt was significantly increased by PPT, an ERα agonist, and by E2-BSA (E2 conjugated to bovine serum albumin) which activates estrogen receptor on the membrane. Centrally administered apoA-IV at a low dose (0.5 µg) significantly suppressed food intake and increased the phosphorylation of Akt in the nucleus tractus solitarius (NTS) of ovariectomized (OVX) rats treated with E2, but not in OVX rats treated with vehicle. These effects were blunted by pretreatment with LY294002. These results indicate that E2's regulatory role in apoA-IV's anorectic action is through the ERα-PI3K pathway in the NTS. Manipulation of the PI3K/Akt signaling activation in the NTS may provide a novel therapeutic approach for the prevention and the treatment of obesity-related disorders in females.
Collapse
Affiliation(s)
- Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (L.S.); (M.X.); (P.T.)
| | - Ling Shen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (L.S.); (M.X.); (P.T.)
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (L.S.); (M.X.); (P.T.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (L.S.); (M.X.); (P.T.)
| |
Collapse
|
7
|
Sun Z, Xu Y. Nuclear Receptor Coactivators (NCOAs) and Corepressors (NCORs) in the Brain. Endocrinology 2020; 161:5843759. [PMID: 32449767 PMCID: PMC7351129 DOI: 10.1210/endocr/bqaa083] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/20/2020] [Indexed: 01/20/2023]
Abstract
Nuclear receptor coactivators (NCOAs) and corepressors (NCORs) bind to nuclear hormone receptors in a ligand-dependent manner and mediate the transcriptional activation or repression of the downstream target genes in response to hormones, metabolites, xenobiotics, and drugs. NCOAs and NCORs are widely expressed in the mammalian brain. Studies using genetic animal models started to reveal pivotal roles of NCOAs/NCORs in the brain in regulating hormonal signaling, sexual behaviors, consummatory behaviors, exploratory and locomotor behaviors, moods, learning, and memory. Genetic variants of NCOAs or NCORs have begun to emerge from human patients with obesity, hormonal disruption, intellectual disability, or autism spectrum disorders. Here we review recent studies that shed light on the function of NCOAs and NCORs in the central nervous system.
Collapse
Affiliation(s)
- Zheng Sun
- Department of Molecular and Cellular Biology; Baylor College of Medicine, Houston, Texas
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism; Baylor College of Medicine, Houston, Texas
- Correspondence: Zheng Sun, PhD, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030. E-mail: ; or Yong Xu, PhD, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030. E-mail:
| | - Yong Xu
- Department of Molecular and Cellular Biology; Baylor College of Medicine, Houston, Texas
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics; Baylor College of Medicine, Houston, Texas
- Correspondence: Zheng Sun, PhD, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030. E-mail: ; or Yong Xu, PhD, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030. E-mail:
| |
Collapse
|
8
|
Littlejohn EL, Fedorchak S, Boychuk CR. Sex-steroid-dependent plasticity of brain-stem autonomic circuits. Am J Physiol Regul Integr Comp Physiol 2020; 319:R60-R68. [PMID: 32493037 DOI: 10.1152/ajpregu.00357.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In the central nervous system (CNS), nuclei of the brain stem play a critical role in the integration of peripheral sensory information and the regulation of autonomic output in mammalian physiology. The nucleus tractus solitarius of the brain stem acts as a relay center that receives peripheral sensory input from vagal afferents of the nodose ganglia, integrates information from within the brain stem and higher central centers, and then transmits autonomic efferent output through downstream premotor nuclei, such as the nucleus ambiguus, the dorsal motor nucleus of the vagus, and the rostral ventral lateral medulla. Although there is mounting evidence that sex and sex hormones modulate autonomic physiology at the level of the CNS, the mechanisms and neurocircuitry involved in producing these functional consequences are poorly understood. Of particular interest in this review is the role of estrogen, progesterone, and 5α-reductase-dependent neurosteroid metabolites of progesterone (e.g., allopregnanolone) in the modulation of neurotransmission within brain-stem autonomic neurocircuits. This review will discuss our understanding of the actions and mechanisms of estrogen, progesterone, and neurosteroids at the cellular level of brain-stem nuclei. Understanding the complex interaction between sex hormones and neural signaling plasticity of the autonomic nervous system is essential to elucidating the role of sex in overall physiology and disease.
Collapse
Affiliation(s)
- Erica L Littlejohn
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Stephanie Fedorchak
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Carie R Boychuk
- Department of Cellular and Integrative Physiology, Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
9
|
Littlejohn EL, Espinoza L, Lopez MM, Smith BN, Boychuk CR. GABA A receptor currents in the dorsal motor nucleus of the vagus in females: influence of ovarian cycle and 5α-reductase inhibition. J Neurophysiol 2019; 122:2130-2141. [PMID: 31596653 PMCID: PMC6879959 DOI: 10.1152/jn.00039.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 11/22/2022] Open
Abstract
The dorsal motor nucleus of the vagus (DMV) contains the preganglionic motor neurons important in the regulation of glucose homeostasis and gastrointestinal function. Despite the role of sex in the regulation of these processes, few studies examine the role of sex and/or ovarian cycle in the regulation of synaptic neurotransmission to the DMV. Since GABAergic neurotransmission is critical to normal DMV function, the present study used in vitro whole cell patch-clamping to investigate whether sex differences exist in GABAergic neurotransmission to DMV neurons. It additionally investigated whether the ovarian cycle plays a role in those sex differences. The frequency of phasic GABAA receptor-mediated inhibitory postsynaptic currents in DMV neurons from females was lower compared with males, and this effect was TTX sensitive and abolished by ovariectomy (OVX). Amplitudes of GABAergic currents (both phasic and tonic) were not different. However, females demonstrated significantly more variability in the amplitude of both phasic and tonic GABAA receptor currents. This difference was eliminated by OVX in females, suggesting that these differences were related to reproductive hormone levels. This was confirmed for GABAergic tonic currents by comparing females in two ovarian stages, estrus versus diestrus. Female mice in diestrus had larger tonic current amplitudes compared with those in estrus, and this increase was abolished after administration of a 5α-reductase inhibitor but not modulation of estrogen. Taken together, these findings demonstrate that DMV neurons undergo GABAA receptor activity plasticity as a function of sex and/or sex steroids.NEW & NOTEWORTHY Results show that GABAergic signaling in dorsal vagal motor neurons (DMV) demonstrates sex differences and fluctuates across the ovarian cycle in females. These findings are the first to demonstrate that female GABAA receptor activity in this brain region is modulated by 5α-reductase-dependent hormones. Since DMV activity is critical to both glucose and gastrointestinal homeostasis, these results suggest that sex hormones, including those synthesized by 5α-reductase, contribute to visceral, autonomic function related to these physiological processes.
Collapse
Affiliation(s)
- Erica L Littlejohn
- Department of Cellular and Integrative Physiology, College of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Liliana Espinoza
- Department of Cellular and Integrative Physiology, College of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Monica M Lopez
- Department of Cellular and Integrative Physiology, College of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Bret N Smith
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Carie R Boychuk
- Department of Cellular and Integrative Physiology, College of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|