1
|
Jones RA, Ramirez-Bencomo F, Whiting G, Fang M, Lavender H, Kurzyp K, Thistlethwaite A, Stejskal L, Rashmi S, Jerse AE, Cehovin A, Derrick JP, Tang CM. Tackling immunosuppression by Neisseria gonorrhoeae to facilitate vaccine design. PLoS Pathog 2024; 20:e1012688. [PMID: 39541395 PMCID: PMC11594432 DOI: 10.1371/journal.ppat.1012688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/26/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Gonorrhoea, caused by Neisseria gonorrhoeae, is a common sexually transmitted infection. Increasing multi-drug resistance and the impact of asymptomatic infections on sexual and reproductive health underline the need for an effective gonococcal vaccine. Outer membrane vesicles (OMVs) from Neisseria meningitidis induce modest cross-protection against gonococcal infection. However, the presence of proteins in OMVs derived from N. gonorrhoeae that manipulate immune responses could hamper their success as a vaccine. Here we modified two key immunomodulatory proteins of the gonococcus; RmpM, which can elicit 'blocking antibodies', and PorB, an outer membrane porin which contributes to immunosuppression. As meningococcal PorB has adjuvant properties, we replaced gonococcal PorB with a meningococcal PorB. Immunisation with OMVs from N. gonorrhoeae lacking rmpM and expressing meningococcal porB elicited higher antibody titres against model antigens in mice compared to OMVs with native PorB. Further, a gonococcal protein microarray revealed stronger IgG antibody responses to a more diverse range of antigens in the Nm PorB OMV immunised group. Finally, meningococcal PorB OMVs resulted in a Th1-skewed response, exemplified by increased serum IgG2a antibody responses and increased IFNɣ production by splenocytes from immunised mice. In summary, we demonstrate that the replacement of PorB in gonococcal OMVs enhances immune responses and offers a strategy for gonococcal vaccine development.
Collapse
Affiliation(s)
- Rebekah A. Jones
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Fidel Ramirez-Bencomo
- School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester United Kingdom
| | - Gail Whiting
- Medicines and Healthcare products Regulatory Agency, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Min Fang
- Medicines and Healthcare products Regulatory Agency, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Hayley Lavender
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Kacper Kurzyp
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Angela Thistlethwaite
- School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester United Kingdom
| | - Lenka Stejskal
- School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester United Kingdom
| | - Smruti Rashmi
- School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester United Kingdom
| | - Ann E. Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Ana Cehovin
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Jeremy P. Derrick
- School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester United Kingdom
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| |
Collapse
|
2
|
Jones RA, Jerse AE, Tang CM. Gonococcal PorB: a multifaceted modulator of host immune responses. Trends Microbiol 2024; 32:355-364. [PMID: 37891023 DOI: 10.1016/j.tim.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
Neisseria gonorrhoeae is a human-specific pathogen responsible for the sexually transmitted infection, gonorrhoea. N. gonorrhoeae promotes its survival by manipulating both innate and adaptive immune responses. The most abundant gonococcal outer-membrane protein is PorB, an essential porin that facilitates ion exchange. Importantly, gonococcal PorB has several immunomodulatory properties. To subvert the innate immune response, PorB suppresses killing mechanisms of macrophages and neutrophils, and recruits negative regulators of complement to the gonococcal cell surface. For manipulation of adaptive immune responses, gonococcal PorB suppresses the capability of dendritic cells to stimulate proliferation of T cells. As gonococcal PorB is highly abundant in outer-membrane vesicles, consideration of the immunomodulatory properties of this porin is critical when designing gonococcal vaccines.
Collapse
Affiliation(s)
- Rebekah A Jones
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
3
|
Cappelli L, Cinelli P, Perrotta A, Veggi D, Audagnotto M, Tuscano G, Pansegrau W, Bartolini E, Rinaudo D, Cozzi R. Computational structure-based approach to study chimeric antigens using a new protein scaffold displaying foreign epitopes. FASEB J 2024; 38:e23326. [PMID: 38019196 DOI: 10.1096/fj.202202130r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Abstract
The identification and recombinant production of functional antigens and/or epitopes of pathogens represent a crucial step for the development of an effective protein-based vaccine. Many vaccine targets are outer membrane proteins anchored into the lipidic bilayer through an extended hydrophobic portion making their recombinant production challenging. Moreover, only the extracellular loops, and not the hydrophobic regions, are naturally exposed to the immune system. In this work, the Domain 3 (D3) from Group B Streptococcus (GBS) pilus 2a backbone protein has been identified and engineered to be used as a scaffold for the display of extracellular loops of two Neisseria gonorrhoeae membrane proteins (PorB.1b and OpaB). A computational structure-based approach has been applied to the design of both the scaffold and the model antigens. Once identified the best D3 engineerable site, several different chimeric D3 displaying PorB.1b and OpaB extracellular loops were produced as soluble proteins. Each molecule has been characterized in terms of solubility, stability, and ability to correctly display the foreign epitope. This antigen dissection strategy allowed the identification of most immunogenic extracellular loops of both PorB.1b and OpaB gonococcal antigens. The crystal structure of chimeric D3 displaying PorB.1b immunodominant loop has been obtained confirming that the engineerization did not alter the predicted native structure of this epitope. Taken together, the reported data suggest that D3 is a novel protein scaffold for epitope insertion and display, and a valid alternative to the production of whole membrane protein antigens. Finally, this work describes a generalized computational structure-based approach for the identification, design, and dissection of epitopes in target antigens through chimeric proteins.
Collapse
Affiliation(s)
- Luigia Cappelli
- Dipartimento di Farmacia e Biotecnologie - FaBiT, University of Bologna, Bologna, Italy
- GSK, Siena, Italy
| | - Paolo Cinelli
- Dipartimento di Farmacia e Biotecnologie - FaBiT, University of Bologna, Bologna, Italy
- GSK, Siena, Italy
| | - Andrea Perrotta
- GSK, Siena, Italy
- Dipartimento di Scienze della Vita, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Zhang HL, Zhang RH, Liu G, Li GM, Wang FX, Wen YJ, Shan H. Evaluation of immunogenicity of gene-deleted and subunit vaccines constructed against the emerging pseudorabies virus variants. Virol J 2023; 20:98. [PMID: 37221518 DOI: 10.1186/s12985-023-02051-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Pseudorabies (PR) (also called Aujeszky's disease, AD) is a serious infectious disease affecting pigs and other animals worldwide. The emergence of variant strains of pseudorabies virus (PRV) since 2011 has led to PR outbreaks in China and a vaccine that antigenically more closely matches these PRV variants could represent an added value to control these infections. METHODS The objective of this study was to develop new live attenuated and subunit vaccines against PRV variant strains. Genomic alterations of vaccine strains were based on the highly virulent SD-2017 mutant strain and gene-deleted strains SD-2017ΔgE/gI and SD-2017ΔgE/gI/TK, which constructed using homologous recombination technology. PRV gB-DCpep (Dendritic cells targeting peptide) and PorB (the outer membrane pore proteins of N. meningitidis) proteins containing gp67 protein secretion signal peptide were expressed using the baculovirus system for the preparation of subunit vaccines. We used experimental animal rabbits to test immunogenicity to evaluate the effect of the newly constructed PR vaccines. RESULTS Compared with the PRV-gB subunit vaccine and SD-2017ΔgE/gI inactivated vaccines, rabbits (n = 10) that were intramuscularly vaccinated with SD-2017ΔgE/gI/TK live attenuated vaccine and PRV-gB + PorB subunit vaccine showed significantly higher anti-PRV-specific antibodies as well as neutralizing antibodies and IFN-γ levels in serum. In addition, the SD-2017ΔgE/gI/TK live attenuated vaccine and PRV-gB + PorB subunit vaccine protected (90-100%) rabbits against homologous infection by the PRV variant strain. No obvious pathological damage was observed in these vaccinated rabbits. CONCLUSIONS The SD-2017ΔgE/gI/TK live attenuated vaccine provided 100% protection against PRV variant challenge. Interestingly, the subunit vaccines with gB protein linked to DCpep and PorB protein as adjuvant may also be a promising and effective PRV variant vaccine candidate.
Collapse
Affiliation(s)
- Hong-Liang Zhang
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Rui-Hua Zhang
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
| | - Gang Liu
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Gui-Mei Li
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China
| | - Feng-Xue Wang
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
| | - Yong-Jun Wen
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China.
| | - Hu Shan
- Ministry of Agriculture Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Diseases, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China.
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, P.R. China.
| |
Collapse
|
5
|
Walker E, van Niekerk S, Hanning K, Kelton W, Hicks J. Mechanisms of host manipulation by Neisseria gonorrhoeae. Front Microbiol 2023; 14:1119834. [PMID: 36819065 PMCID: PMC9935845 DOI: 10.3389/fmicb.2023.1119834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Neisseria gonorrhoeae (also known as gonococcus) has been causing gonorrhoea in humans since ancient Egyptian times. Today, global gonorrhoea infections are rising at an alarming rate, in concert with an increasing number of antimicrobial-resistant strains. The gonococcus has concurrently evolved several intricate mechanisms that promote pathogenesis by evading both host immunity and defeating common therapeutic interventions. Central to these adaptations is the ability of the gonococcus to manipulate various host microenvironments upon infection. For example, the gonococcus can survive within neutrophils through direct regulation of both the oxidative burst response and maturation of the phagosome; a concerning trait given the important role neutrophils have in defending against invading pathogens. Hence, a detailed understanding of how N. gonorrhoeae exploits the human host to establish and maintain infection is crucial for combating this pathogen. This review summarizes the mechanisms behind host manipulation, with a central focus on the exploitation of host epithelial cell signaling to promote colonization and invasion of the epithelial lining, the modulation of the host immune response to evade both innate and adaptive defenses, and the manipulation of host cell death pathways to both assist colonization and combat antimicrobial activities of innate immune cells. Collectively, these pathways act in concert to enable N. gonorrhoeae to colonize and invade a wide array of host tissues, both establishing and disseminating gonococcal infection.
Collapse
Affiliation(s)
- Emma Walker
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Stacy van Niekerk
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - Kyrin Hanning
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| | - William Kelton
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| | - Joanna Hicks
- Te Huataki Waiora, School of Health, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
6
|
Jalalifar S, Morovati Khamsi H, Hosseini-Fard SR, Karampoor S, Bajelan B, Irajian G, Mirzaei R. Emerging role of microbiota derived outer membrane vesicles to preventive, therapeutic and diagnostic proposes. Infect Agent Cancer 2023; 18:3. [PMID: 36658631 PMCID: PMC9850788 DOI: 10.1186/s13027-023-00480-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
The role of gut microbiota and its products in human health and disease is profoundly investigated. The communication between gut microbiota and the host involves a complicated network of signaling pathways via biologically active molecules generated by intestinal microbiota. Some of these molecules could be assembled within nanoparticles known as outer membrane vesicles (OMVs). Recent studies propose that OMVs play a critical role in shaping immune responses, including homeostasis and acute inflammatory responses. Moreover, these OMVs have an immense capacity to be applied in medical research, such as OMV-based vaccines and drug delivery. This review presents a comprehensive overview of emerging knowledge about biogenesis, the role, and application of these bacterial-derived OMVs, including OMV-based vaccines, OMV adjuvants characteristics, OMV vehicles (in conjugated vaccines), cancer immunotherapy, and drug carriers and delivery systems. Moreover, we also highlight the significance of the potential role of these OMVs in diagnosis and therapy.
Collapse
Affiliation(s)
- Saba Jalalifar
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Morovati Khamsi
- Department of Quality Control, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bahar Bajelan
- School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Irajian
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Matthias KA, Connolly KL, Begum AA, Jerse AE, Macintyre AN, Sempowski GD, Bash MC. Meningococcal Detoxified Outer Membrane Vesicle Vaccines Enhance Gonococcal Clearance in a Murine Infection Model. J Infect Dis 2021; 225:650-660. [PMID: 34498079 DOI: 10.1093/infdis/jiab450] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Despite decades of research efforts, development of a gonorrhea vaccine has remained elusive. Epidemiological studies suggest that detoxified outer membrane vesicle (dOMV) vaccines from Neisseria meningitidis (Nm) may protect against infection with Neisseria gonorrhoeae (Ng). We recently reported that Nm dOMVs lacking the major outer membrane proteins (OMPs) PorA, PorB, and RmpM induced greater antibody cross-reactivity against heterologous Nm strains than wild-type (WT) dOMVs and may represent an improved vaccine against gonorrhea. METHODS We prepared dOMV vaccines from meningococcal strains that were sufficient or deleted for PorA, PorB, and RmpM. Vaccines were tested in a murine genital tract infection model and antisera were used to identify vaccine targets. RESULTS Immunization with Nm dOMVs significantly and reproducibly enhanced gonococcal clearance for mice immunized with OMP-deficient dOMVs; significant clearance for WT dOMV-immunized mice was observed in one of two experiments. Clearance was associated with serum and vaginal anti-Nm dOMV IgG antibodies that cross-reacted with Ng. Serum IgG was used to identify putative Ng vaccine targets, including PilQ, MtrE, NlpD, and GuaB. CONCLUSIONS Meningococcal dOMVs elicited a protective effect against experimental gonococcal infection. Recognition and identification of Ng vaccine targets by Nm dOMV-induced antibodies supports the development of a cross-protective Neisseria vaccine.
Collapse
Affiliation(s)
- Kathryn A Matthias
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Kristie L Connolly
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Afrin A Begum
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrew N Macintyre
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Margaret C Bash
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA
| |
Collapse
|
8
|
Russell MW. Immune Responses to Neisseria gonorrhoeae: Challenges and Opportunities With Respect to Pelvic Inflammatory Disease. J Infect Dis 2021; 224:S96-S102. [PMID: 34396399 DOI: 10.1093/infdis/jiaa766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pelvic inflammatory disease and infertility frequently develop after female genital tract infection with Neisseria gonorrhoeae, but determining their etiology from among various possibilities presents difficulties. Exploitation of serology to identify the causative agent is complicated by numerous factors, and no immunological test currently exists to determine unequivocally whether an individual currently is, or has been, infected with N. gonorrhoeae. The extensive antigenic variability of N. gonorrhoeae and its expression of antigens shared with other Neisseria species commonly carried in humans render problematic an assay that is specific for all gonococcal strains. However, novel conserved gonococcal antigens identified for potential vaccines may find additional application in diagnostic assays. N. gonorrhoeae also interferes with the adaptive immune response, and antibody responses to uncomplicated infection are usually weak. Elucidating the mechanisms whereby N. gonorrhoeae manipulates the human immune system may lead to improved understanding of the pathogenesis of pelvic inflammatory disease and infertility.
Collapse
Affiliation(s)
- Michael W Russell
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
9
|
Haese EC, Thai VC, Kahler CM. Vaccine Candidates for the Control and Prevention of the Sexually Transmitted Disease Gonorrhea. Vaccines (Basel) 2021; 9:vaccines9070804. [PMID: 34358218 PMCID: PMC8310131 DOI: 10.3390/vaccines9070804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 11/25/2022] Open
Abstract
The World Health Organization (WHO) has placed N. gonorrhoeae on the global priority list of antimicrobial resistant pathogens and is urgently seeking the development of new intervention strategies. N. gonorrhoeae causes 86.9 million cases globally per annum. The effects of gonococcal disease are seen predominantly in women and children and especially in the Australian Indigenous community. While economic modelling suggests that this infection alone may directly cost the USA health care system USD 11.0–20.6 billion, indirect costs associated with adverse disease and pregnancy outcomes, disease prevention, and productivity loss, mean that the overall effect of the disease is far greater still. In this review, we summate the current progress towards the development of a gonorrhea vaccine and describe the clinical trials being undertaken in Australia to assess the efficacy of the current formulation of Bexsero® in controlling disease.
Collapse
|
10
|
The serogroup B meningococcal outer membrane vesicle-based vaccine 4CMenB induces cross-species protection against Neisseria gonorrhoeae. PLoS Pathog 2020; 16:e1008602. [PMID: 33290434 PMCID: PMC7748408 DOI: 10.1371/journal.ppat.1008602] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/18/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
There is a pressing need for a gonorrhea vaccine due to the high disease burden associated with gonococcal infections globally and the rapid evolution of antibiotic resistance in Neisseria gonorrhoeae (Ng). Current gonorrhea vaccine research is in the stages of antigen discovery and the identification of protective immune responses, and no vaccine has been tested in clinical trials in over 30 years. Recently, however, it was reported in a retrospective case-control study that vaccination of humans with a serogroup B Neisseria meningitidis (Nm) outer membrane vesicle (OMV) vaccine (MeNZB) was associated with reduced rates of gonorrhea. Here we directly tested the hypothesis that Nm OMVs induce cross-protection against gonorrhea in a well-characterized female mouse model of Ng genital tract infection. We found that immunization with the licensed Nm OMV-based vaccine 4CMenB (Bexsero) significantly accelerated clearance and reduced the Ng bacterial burden compared to administration of alum or PBS. Serum IgG and vaginal IgA and IgG that cross-reacted with Ng OMVs were induced by 4CMenB vaccination by either the subcutaneous or intraperitoneal routes. Antibodies from vaccinated mice recognized several Ng surface proteins, including PilQ, BamA, MtrE, NHBA (known to be recognized by humans), PorB, and Opa. Immune sera from both mice and humans recognized Ng PilQ and several proteins of similar apparent molecular weight, but MtrE was only recognized by mouse serum. Pooled sera from 4CMenB-immunized mice showed a 4-fold increase in serum bactericidal50 titers against the challenge strain; in contrast, no significant difference in bactericidal activity was detected when sera from 4CMenB-immunized and unimmunized subjects were compared. Our findings directly support epidemiological evidence that Nm OMVs confer cross-species protection against gonorrhea, and implicate several Ng surface antigens as potentially protective targets. Additionally, this study further defines the usefulness of murine infection model as a relevant experimental system for gonorrhea vaccine development.
Collapse
|
11
|
Guvenc F, Kaul R, Gray-Owen SD. Intimate Relations: Molecular and Immunologic Interactions Between Neisseria gonorrhoeae and HIV-1. Front Microbiol 2020; 11:1299. [PMID: 32582133 PMCID: PMC7284112 DOI: 10.3389/fmicb.2020.01299] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022] Open
Abstract
While the global incidence of human immunodeficiency virus (HIV-1) remains well above UNAIDS targets, sexual transmission HIV is surprisingly inefficient. A variety of host, viral and environmental factors can either increase HIV-1 shedding in the infected partner and/or increase mucosal susceptibility of the HIV-1 uninfected partner. Clinical and epidemiological studies have clearly established that Neisseria gonorrhoeae substantially enhances HIV-1 transmission, despite it not being an ulcerative infection. This review will consider findings from molecular, immunologic and clinical studies that have focused on each of these two human-restricted pathogens, in order to develop an integrative model that describes how gonococci can both increase mucosal shedding of HIV-1 from a co-infected person and facilitate virus establishment in a susceptible host.
Collapse
Affiliation(s)
- Furkan Guvenc
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Division of Infectious Diseases, University Health Network, Toronto, ON, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Russell MW, Jerse AE, Gray-Owen SD. Progress Toward a Gonococcal Vaccine: The Way Forward. Front Immunol 2019; 10:2417. [PMID: 31681305 PMCID: PMC6803597 DOI: 10.3389/fimmu.2019.02417] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/27/2019] [Indexed: 12/26/2022] Open
Abstract
The concept of immunizing against gonorrhea has received renewed interest because of the recent emergence of strains of Neisseria gonorrhoeae that are resistant to most currently available antibiotics, an occurrence that threatens to render gonorrhea untreatable. However, despite efforts over many decades, no vaccine has yet been successfully developed for human use, leading to pessimism over whether this goal was actually attainable. Several factors have contributed to this situation, including extensive variation of the expression and specificity of many of the gonococcal surface antigens, and the ability of N. gonorrhoeae to resist destruction by complement and other innate immune defense mechanisms. The natural host restriction of N. gonorrhoeae for humans, coupled with the absence of any definable state of immunity arising from an episode of gonorrhea, have also complicated efforts to study gonococcal pathogenesis and the host's immune responses. However, recent findings have elucidated how the gonococcus exploits and manipulates the host's immune system for its own benefit, utilizing human-specific receptors for attachment to and invasion of tissues, and subverting adaptive immune responses that might otherwise be capable of eliminating it. While no single experimental model is capable of providing all the answers, experiments utilizing human cells and tissues in vitro, various in vivo animal models, including genetically modified strains of mice, and both experimental and observational human clinical studies, have combined to yield important new insight into the immuno-pathogenesis of gonococcal infection. In turn, these have now led to novel approaches for the development of a gonococcal vaccine. Ongoing investigations utilizing all available tools are now poised to make the development of an effective human vaccine against gonorrhea an achievable goal within a foreseeable time-frame.
Collapse
Affiliation(s)
- Michael W. Russell
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, United States
| | - Ann E. Jerse
- Department of Microbiology and Immunology, F. Edward Herbert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Scott D. Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Abstract
Neisseria gonorrhoeae infection is a major public health problem worldwide. The increasing incidence of gonorrhea coupled with global spread of multidrug-resistant isolates of gonococci has ushered in an era of potentially untreatable infection. Gonococcal disease elicits limited immunity, and individuals are susceptible to repeated infections. In this chapter, we describe gonococcal disease and epidemiology and the structure and function of major surface components involved in pathogenesis. We also discuss the mechanisms that gonococci use to evade host immune responses and the immune responses following immunization with selected bacterial components that may overcome evasion. Understanding the biology of the gonococcus may aid in preventing the spread of gonorrhea and also facilitate the development of gonococcal vaccines and treatments.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
14
|
El-Rami FE, Zielke RA, Wi T, Sikora AE, Unemo M. Quantitative Proteomics of the 2016 WHO Neisseria gonorrhoeae Reference Strains Surveys Vaccine Candidates and Antimicrobial Resistance Determinants. Mol Cell Proteomics 2019; 18:127-150. [PMID: 30352803 PMCID: PMC6317477 DOI: 10.1074/mcp.ra118.001125] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
The sexually transmitted disease gonorrhea (causative agent: Neisseria gonorrhoeae) remains an urgent public health threat globally because of its reproductive health repercussions, high incidence, widespread antimicrobial resistance (AMR), and absence of a vaccine. To mine gonorrhea antigens and enhance our understanding of gonococcal AMR at the proteome level, we performed the first large-scale proteomic profiling of a diverse panel (n = 15) of gonococcal strains, including the 2016 World Health Organization (WHO) reference strains. These strains show all existing AMR profiles - established through phenotypic characterization and reference genome publication - and are intended for quality assurance in laboratory investigations. Herein, these isolates were subjected to subcellular fractionation and labeling with tandem mass tags coupled to mass spectrometry and multi-combinatorial bioinformatics. Our analyses detected 904 and 723 common proteins in cell envelope and cytoplasmic subproteomes, respectively. We identified nine novel gonorrhea vaccine candidates. Expression and conservation of new and previously selected antigens were investigated. In addition, established gonococcal AMR determinants were evaluated for the first time using quantitative proteomics. Six new proteins, WHO_F_00238, WHO_F_00635c, WHO_F_00745, WHO_F_01139, WHO_F_01144c, and WHO_F_01126, were differentially expressed in all strains, suggesting that they represent global proteomic AMR markers, indicate a predisposition toward developing or compensating gonococcal AMR, and/or act as new antimicrobial targets. Finally, phenotypic clustering based on the isolates' defined antibiograms and common differentially expressed proteins yielded seven matching clusters between established and proteome-derived AMR signatures. Together, our investigations provide a reference proteomics data bank for gonococcal vaccine and AMR research endeavors, which enables microbiological, clinical, or epidemiological projects and enhances the utility of the WHO reference strains.
Collapse
Affiliation(s)
- Fadi E El-Rami
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Ryszard A Zielke
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Teodora Wi
- §Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Aleksandra E Sikora
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon;; ¶Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon;.
| | - Magnus Unemo
- ‖World Health Organization Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| |
Collapse
|
15
|
Abstract
Mouse models of infection are important tools in the study of infectious disease or host the development of products to prevent or treat infections. The estradiol-treated mouse model of Neisseria gonorrhoeae genital tract infection has proved to be a valuable system for determining the importance of gonococcal factors that mediate evasion of host innate effectors in vivo or host gonococcal adaptation to hormonally driven host factors in females. Examination of mechanisms that Neisseria gonorrhoeae uses to subvert the host immune response also has been greatly aided by this whole model system, as have studies on the consequence of antibiotic resistance mutations on gonococcal fitness in vivo and the search for new antibiotics to treat antibiotic-resistant infections. The strict human specificity of N. gonorrhoeae limits the ability of experimental murine infection to mimic human infection. However, in recent years, the development of transgenic mice and protocols for supplementing mice with human factors has improved animal modeling of gonorrhea. To date, however, because the mouse estrous cycle is much shorter than the human reproductive cycle, all reported gonorrhea mouse models require treatment with estradiol and antibiotics to maintain an estrus-like state and suppress the overgrowth of inhibitory commensal flora that occurs under the influence of estrogen to allow sustained N. gonorrhoeae infection. In this chapter, we detail the methods used to (1) prepare the mice for experimental infection with N. gonorrhoeae, (2) inoculate mice and quantitatively culture vaginal swabs for noncompetitive and competitive infection experiments, and (3) monitor the host innate immune response to infection.
Collapse
Affiliation(s)
- Erica L Raterman
- Uniformed Services, University of the Health Sciences, Bethesda, MD, USA
| | - Ann E Jerse
- Uniformed Services, University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
16
|
Cai W, Kesavan DK, Wan J, Abdelaziz MH, Su Z, Xu H. Bacterial outer membrane vesicles, a potential vaccine candidate in interactions with host cells based. Diagn Pathol 2018; 13:95. [PMID: 30537996 PMCID: PMC6290530 DOI: 10.1186/s13000-018-0768-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Both Gram-Positive and Gram-Negative bacteria can secrete outer membrane vesicles (OMVs) in their growth and metabolism process. Originally, OMVs were considered as a by-product of bacterial merisis. However, many scientists have reported the important role of OMVs in many fields recently. In this review, we briefly introduce OMVs biological functions and then summarize the findings about the OMVs interactions with host cells. At last, we will make an expectation about the prospects of the application of OMVs as vaccines.
Collapse
Affiliation(s)
- Wei Cai
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | | | - Jie Wan
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | | | - Zhaoliang Su
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.,The Central Laboratory, the Fourth Affiliated of Jiangsu University, Zhenjiang, 212001, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
17
|
Lenz JD, Dillard JP. Pathogenesis of Neisseria gonorrhoeae and the Host Defense in Ascending Infections of Human Fallopian Tube. Front Immunol 2018; 9:2710. [PMID: 30524442 PMCID: PMC6258741 DOI: 10.3389/fimmu.2018.02710] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022] Open
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that causes mucosal surface infections of male and female reproductive tracts, pharynx, rectum, and conjunctiva. Asymptomatic or unnoticed infections in the lower reproductive tract of women can lead to serious, long-term consequences if these infections ascend into the fallopian tube. The damage caused by gonococcal infection and the subsequent inflammatory response produce the condition known as pelvic inflammatory disease (PID). Infection can lead to tubal scarring, occlusion of the oviduct, and loss of critical ciliated cells. Consequences of the damage sustained on the fallopian tube epithelium include increased risk of ectopic pregnancy and tubal-factor infertility. Additionally, the resolution of infection can produce new adhesions between internal tissues, which can tear and reform, producing chronic pelvic pain. As a bacterium adapted to life in a human host, the gonococcus presents a challenge to the development of model systems for probing host-microbe interactions. Advances in small-animal models have yielded previously unattainable data on systemic immune responses, but the specificity of N. gonorrhoeae for many known (and unknown) host targets remains a constant hurdle. Infections of human volunteers are possible, though they present ethical and logistical challenges, and are necessarily limited to males due to the risk of severe complications in women. It is routine, however, that normal, healthy fallopian tubes are removed in the course of different gynecological surgeries (namely hysterectomy), making the very tissue most consequentially damaged during ascending gonococcal infection available for laboratory research. The study of fallopian tube organ cultures has allowed the opportunity to observe gonococcal biology and immune responses in a complex, multi-layered tissue from a natural host. Forty-five years since the first published example of human fallopian tube being infected ex vivo with N. gonorrhoeae, we review what modeling infections in human tissue explants has taught us about the gonococcus, what we have learned about the defenses mounted by the human host in the upper female reproductive tract, what other fields have taught us about ciliated and non-ciliated cell development, and ultimately offer suggestions regarding the next generation of model systems to help expand our ability to study gonococcal pathogenesis.
Collapse
Affiliation(s)
- Jonathan D Lenz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|