1
|
Miao Y, Du Y, Wang B, Liang J, Liang Y, Dang S, Liu J, Li D, He K, Ding M. Spatiotemporal recruitment of the ubiquitin-specific protease USP8 directs endosome maturation. eLife 2024; 13:RP96353. [PMID: 39576689 PMCID: PMC11584181 DOI: 10.7554/elife.96353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.
Collapse
Affiliation(s)
- Yue Miao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baolei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yu Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Song Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiahao Liu
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Rebollar-Vega RG, Zuarth-Vázquez JM, Hernández-Ramírez LC. Clinical Spectrum of USP8 Pathogenic Variants in Cushing's Disease. Arch Med Res 2023; 54:102899. [PMID: 37925320 DOI: 10.1016/j.arcmed.2023.102899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
Cushing's disease (CD) is a life-threatening condition with a challenging diagnostic process and scarce treatment options. CD is caused by usually benign adrenocorticotrophic hormone (ACTH)-secreting pituitary neuroendocrine tumors (PitNETs), known as corticotropinomas. These tumors are predominantly of sporadic origin, and usually derive from the monoclonal expansion of a mutated cell. Somatic activating variants located within a hotspot of the USP8 gene are present in 11-62% of corticotropinomas, making USP8 the most frequent genetic driver of corticotroph neoplasia. In contrast, other somatic defects such as those affecting the glucocorticoid receptor gene (NR3C1), the BRAF oncogene, the deubiquitinase-encoding gene USP48, and TP53 are infrequent. Moreover, patients with familial tumor syndromes, such as multiple endocrine neoplasia, familial isolated pituitary adenoma, and DICER1 rarely develop corticotropinomas. One of the main molecular alterations in USP8-driven tumors is an overactivation of the epidermal growth factor receptor (EGFR) signaling pathway, which induces ACTH production. Hotspot USP8 variants lead to persistent EGFR overexpression, thereby perpetuating the hyper-synthesis of ACTH. More importantly, they condition a characteristic transcriptomic signature that might be useful for the clinical prognosis of patients with CD. Nevertheless, the clinical phenotype associated with USP8 variants is less well defined. Hereby we discuss the current knowledge on the molecular pathogenesis and clinical picture associated with USP8 hotspot variants. We focus on the potential significance of the USP8 mutational status for the design of tailored clinical strategies in CD.
Collapse
Affiliation(s)
- Rosa G Rebollar-Vega
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Julia M Zuarth-Vázquez
- Department of Endocrinology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
3
|
Cui J, Guo Y, Yin T, Gou S, Xiong J, Liang X, Lu C, Peng T. USP8 promotes gemcitabine resistance of pancreatic cancer via deubiquitinating and stabilizing Nrf2. Biomed Pharmacother 2023; 166:115359. [PMID: 37639742 DOI: 10.1016/j.biopha.2023.115359] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Gemcitabine (Gem) is the first-line chemotherapy drug for pancreatic cancer, but the acquired chemoresistance also hinders its application. Therefore, research about Gem resistance plays a crucial role in enhancing the therapeutic effect of Gem. As a deubiquitinating enzyme, ubiquitin-specific protease 8 (USP8) was shown to play vital roles in the tumorigenesis processes of several cancers; however, the effect of USP8 on Gem resistance of pancreatic cancer still remains largely unknown. In the current study, we observed that the expression of USP8 was increased in pancreatic cancer patients, it is related to the recurrence of Gem chemotherapy, and USP8 expression could be induced by Gem application. Furthermore, USP8 was found to promote Gem resistance both in vivo and in vitro via regulating cell viability and apoptosis. Moreover, USP8 enhanced the activation of Nrf2 signaling which is dependent on its deubiquitinase ability. At last, we illustrated that USP8 interacted with Nrf2 directly and deubiquitinated K48-linked polyubiquitin chains from Nrf2, stabilizing the expression of Nrf2. In summary, the manuscript revealed the role of USP8 in Gem chemoresistance and suggested USP8 as a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Jing Cui
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yao Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shanmiao Gou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiongxin Xiong
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyi Liang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chong Lu
- Department of Thyroid and Breast Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Tao Peng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Zhou M, Zheng M, Zhou X, Tian S, Yang X, Ning Y, Li Y, Zhang S. The roles of connexins and gap junctions in the progression of cancer. Cell Commun Signal 2023; 21:8. [PMID: 36639804 PMCID: PMC9837928 DOI: 10.1186/s12964-022-01009-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/03/2022] [Indexed: 01/15/2023] Open
Abstract
Gap junctions (GJs), which are composed of connexins (Cxs), provide channels for direct information exchange between cells. Cx expression has a strong spatial specificity; however, its influence on cell behavior and information exchange between cells cannot be ignored. A variety of factors in organisms can modulate Cxs and subsequently trigger a series of responses that have important effects on cellular behavior. The expression and function of Cxs and the number and function of GJs are in dynamic change. Cxs have been characterized as tumor suppressors in the past, but recent studies have highlighted the critical roles of Cxs and GJs in cancer pathogenesis. The complex mechanism underlying Cx and GJ involvement in cancer development is a major obstacle to the evolution of therapy targeting Cxs. In this paper, we review the post-translational modifications of Cxs, the interactions of Cxs with several chaperone proteins, and the effects of Cxs and GJs on cancer. Video Abstract.
Collapse
Affiliation(s)
- Mingming Zhou
- grid.265021.20000 0000 9792 1228Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| | - Xinyue Zhou
- grid.265021.20000 0000 9792 1228Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Shifeng Tian
- grid.265021.20000 0000 9792 1228Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Xiaohui Yang
- grid.216938.70000 0000 9878 7032Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yidi Ning
- grid.216938.70000 0000 9878 7032Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yuwei Li
- grid.417031.00000 0004 1799 2675Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| |
Collapse
|
5
|
Islam MT, Chen FZ, Chen HC, Wahid A. Knockdown of USP8 inhibits prostate cancer cell growth, proliferation, and metastasis and promotes docetaxel's activity by suppressing the NF-kB signaling pathway. Front Oncol 2022; 12:923270. [PMID: 36338727 PMCID: PMC9632420 DOI: 10.3389/fonc.2022.923270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin-specific protease 8 (USP8) has been recently reported to be involved in tumorigenesis. Prostate cancer (PCa) is the most diagnosed malignancy among men, but USP8's role in PCa is not yet investigated comprehensively. Therefore, the PCa cell lines DU145 and PC3 were transfected with USP8 siRNA or overexpressing vector together with or without docetaxel. The silencing USP8 and docetaxel treatment reduced cell viability and migration and promoted apoptosis. In contrast, USP8 knockdown was found to enhance docetaxel antitumor activity. In contrast, increased cell viability and migration were noticed upon USP8 overexpression, thereby decreasing apoptosis and suppressing docetaxel antitumor activity. Notably, although EGFR, PI3K, and NF-kB were found to be increased in both USP8 overexpression and docetaxel treatment, it significantly attenuated the effects in USP8 silencing followed by with or without docetaxel. Although EGFR silencing decreased PI3K and NF-kB activation, overexpression of USP8 was shown to counteract SiEGFR's effects on NF-kB signaling by increasing PI3K expression. Our findings revealed that USP8 plays an oncogenic role in PCa and can suppress docetaxel activity. Additionally, as EGFR/PI3K/NF-kB was previously reported to develop docetaxel resistance, the combination treatment of USP8 knockdown with docetaxel might be a potential PCa therapeutic.
Collapse
Affiliation(s)
- Md. Tariqul Islam
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Fang-Zhi Chen
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Han-Chun Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Abdul Wahid
- Department of Cardiology of the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Huang Y, Xia L, Tan X, Zhang J, Zeng W, Tan B, Yu X, Fang W, Yang Z. Molecular mechanism of lncRNA SNHG12 in immune escape of non-small cell lung cancer through the HuR/PD-L1/USP8 axis. Cell Mol Biol Lett 2022; 27:43. [PMID: 35658874 PMCID: PMC9164758 DOI: 10.1186/s11658-022-00343-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/05/2022] [Indexed: 02/08/2023] Open
Abstract
Background The pivotal role of long noncoding RNAs (lncRNAs) in cancer immune responses has been well established. This study was conducted with the aim of exploring the molecular mechanism of lncRNA small nucleolar RNA host gene 12 (SNHG12) in immune escape of non-small cell lung cancer (NSCLC). Methods Expression of lncRNA SNHG12, programmed cell death receptor ligand 1 (PD-L1), ubiquitin-specific protease 8 (USP8), and human antigen R (HuR) in NSCLC tissues and cells was measured, and their binding relationship was determined. NSCLC cell proliferation and apoptosis were assessed. Peripheral blood mononuclear cells (PBMCs) were co-cultured with NSCLC cells. The ratio of CD8+ T cells, PBMC proliferation, and inflammatory factors were determined. lncRNA SNHG12 localization was assessed via subcellular fractionation assay. The half-life period of mRNA was determined using actinomycin D. Xenograft tumor models were established to confirm the role of lncRNA SNHG12 in vivo. Results LncRNA SNHG12 was found to be prominently expressed in NSCLC tissues and cells, which was associated with a poor prognosis. Silencing lncRNA SNHG12 resulted in the reduction in proliferation and the promotion of apoptosis of NSCLC cells, while simultaneously increasing PBMC proliferation and the ratio of CD8+ T cells. Mechanically, the binding of lncRNA SNHG12 to HuR improved mRNA stability and expression of PD-L1 and USP8, and USP8-mediated deubiquitination stabilized the protein level of PD-L1. Overexpression of USP8 or PD-L1 weakened the inhibition of silencing lncRNA SNHG12 on the immune escape of NSCLC. Silencing lncRNA SNHG12 restricted tumor growth and upregulated the ratio of CD8+ T cells by decreasing USP8 and PD-L1. Conclusion LncRNA SNHG12 facilitated the immune escape of NSCLC by binding to HuR and increasing PD-L1 and USP8 levels.
Collapse
Affiliation(s)
- Yusheng Huang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Tianwen Avenue No. 288, Nan'an District, Chongqing, 400010, China
| | - Lei Xia
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Tianwen Avenue No. 288, Nan'an District, Chongqing, 400010, China
| | - Xiangwu Tan
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Tianwen Avenue No. 288, Nan'an District, Chongqing, 400010, China
| | - Jingyi Zhang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Tianwen Avenue No. 288, Nan'an District, Chongqing, 400010, China
| | - Weiwei Zeng
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Tianwen Avenue No. 288, Nan'an District, Chongqing, 400010, China
| | - Benxu Tan
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Tianwen Avenue No. 288, Nan'an District, Chongqing, 400010, China
| | - Xian Yu
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Tianwen Avenue No. 288, Nan'an District, Chongqing, 400010, China
| | - Wei Fang
- Chongqing University, Three Gorges Hospital, No. 165 Xincheng Road, Wanzhou District, Chongqing, 404100, China.
| | - Zhenzhou Yang
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Tianwen Avenue No. 288, Nan'an District, Chongqing, 400010, China.
| |
Collapse
|
7
|
Li L, Liu Y, Zhao Y, Feng R, Li Y, Yu X, Liu Z, Wang L. Deubiquitinase USP8 increases ID1 stability and promotes esophageal squamous cell carcinoma tumorigenesis. Cancer Lett 2022; 542:215760. [DOI: 10.1016/j.canlet.2022.215760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
|
8
|
Zhao Y, Peng D, Liu Y, Zhang Q, Liu B, Deng Y, Ding W, Zhou Z, Liu Q. Usp8 promotes tumor cell migration through activating the JNK pathway. Cell Death Dis 2022; 13:286. [PMID: 35361778 PMCID: PMC8971431 DOI: 10.1038/s41419-022-04749-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/23/2022]
Abstract
Tumor metastasis is the most cause of high mortality for cancer patients. Identification of novel factors that modulate tumor cell migration is of great significance for therapeutic strategies. Here, we find that the ubiquitin-specific protease 8 (Usp8) promotes tumor cell migration through activating the c-Jun N-terminal kinase (JNK) pathway. Genetic epistasis analyses uncover Usp8 acts upstream of Tak1 to control the JNK pathway. Consistently, biochemical results reveal that Usp8 binds Tak1 to remove ubiquitin modification from Tak1, leading to its stabilization. In addition, human USP8 also triggers tumor cell migration and activates the JNK pathway. Finally, we show that knockdown of USP8 in human breast cancer cells suppresses cell migration. Taken together, our findings demonstrate that a conserved Usp8-Tak1-JNK axis promotes tumor cell migration, and providing USP8 as a potential therapeutic target for cancer treatment.
Collapse
|
9
|
Yuan X, Shi L, Guo Y, Sun J, Miao J, Shi J, Chen Y. METTL3 Regulates Ossification of the Posterior Longitudinal Ligament via the lncRNA XIST/miR-302a-3p/USP8 Axis. Front Cell Dev Biol 2021; 9:629895. [PMID: 33748113 PMCID: PMC7973222 DOI: 10.3389/fcell.2021.629895] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
The prevalence of ossification of the posterior longitudinal ligament (OPLL) is increasing, and currently there is no effective medical treatment for OPLL. Methyltransferase like 3 (METTL3), one of the components of the N6-methyladenosine (m6A) methyltransferase complex, regulates gene expression via modification of mRNA. Although METTL3 has been implicated in a variety of diseases, its role in OPLL remains to be elucidated. Primary ligament fibroblasts were used in this study. To investigate the role of METTL3 in OPLL, METTL3 was silenced or overexpressed. m6A RNA methylation was measured by commercially available kits. Luciferase reporter assay was performed to investigate the binding of miR-302a-3p and METTL3, and the binding of miR-302a-3p and USP8. Quantitative RT-PCR and western blots were used to evaluate mRNA and protein expression, respectively. OPLL increases METTL3 and its m6A modification. Overexpressing METTL3 significantly promoted osteogenic differentiation of primary ligament fibroblasts. Mechanism study showed that METTL3 increased m6A methylation of long non-coding RNA (lncRNA) X-inactive specific transcript (XIST). Further study showed that lncRNA XIST regulates osteogenic differentiation of primary ligament fibroblasts via miR-302a-3p, which targets ubiquitin-specific protease 8 (USP8). METTL3 enhanced osteogenic differentiation of primary ligament fibroblasts via the lncRNA XIST/miR-302a-3p/USP8 axis. The findings highlight the importance of METTL3-mediated m6A methylation of XIST in OPLL and provide new insights into therapeutic strategies for OPLL.
Collapse
Affiliation(s)
- Xiaoqiu Yuan
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Shi
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yongfei Guo
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jingchuan Sun
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jinhao Miao
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiangang Shi
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yu Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
10
|
The oncogenic role of ubiquitin specific peptidase (USP8) and its signaling pathways targeting for cancer therapeutics. Arch Biochem Biophys 2021; 701:108811. [PMID: 33600786 DOI: 10.1016/j.abb.2021.108811] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/08/2021] [Accepted: 02/11/2021] [Indexed: 01/06/2023]
Abstract
USP8 is a deubiquitinating enzyme in the family of ubiquitin-specific proteases (USPs) which can remove ubiquitin from the substrate and protect the substrate from degradation. The upregulated or mutated USP8 becomes hyperactivated and stabilizes numerous oncogenes or proto-oncogenes leading to cancer progression and survival by activating multiple signaling pathways. Moreover, USP8 inhibition is also important to overcome anticancer drug-resistant. This review is the first study to find, combine, analyze, and represent the multiple oncogenic signaling pathways with their downstream and upstream regulation activated or enhanced by USP8, which will help the researchers to find any therapeutic strategy for drug discovery by inhibiting or suppressing the multi-targeted USP8.
Collapse
|
11
|
Martín-Rodríguez C, Song M, Anta B, González-Calvo FJ, Deogracias R, Jing D, Lee FS, Arevalo JC. TrkB deubiquitylation by USP8 regulates receptor levels and BDNF-dependent neuronal differentiation. J Cell Sci 2020; 133:jcs247841. [PMID: 33288548 PMCID: PMC7774901 DOI: 10.1242/jcs.247841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/13/2020] [Indexed: 01/04/2023] Open
Abstract
Ubiquitylation of receptor tyrosine kinases (RTKs) regulates both the levels and functions of these receptors. The neurotrophin receptor TrkB (also known as NTRK2), a RTK, is ubiquitylated upon activation by brain-derived neurotrophic factor (BDNF) binding. Although TrkB ubiquitylation has been demonstrated, there is a lack of knowledge regarding the precise repertoire of proteins that regulates TrkB ubiquitylation. Here, we provide mechanistic evidence indicating that ubiquitin carboxyl-terminal hydrolase 8 (USP8) modulates BDNF- and TrkB-dependent neuronal differentiation. USP8 binds to the C-terminus of TrkB using its microtubule-interacting domain (MIT). Immunopurified USP8 deubiquitylates TrkB in vitro, whereas knockdown of USP8 results in enhanced ubiquitylation of TrkB upon BDNF treatment in neurons. As a consequence of USP8 depletion, TrkB levels and its activation are reduced. Moreover, USP8 protein regulates the differentiation and correct BDNF-dependent dendritic formation of hippocampal neurons in vitro and in vivo We conclude that USP8 positively regulates the levels and activation of TrkB, modulating BDNF-dependent neuronal differentiation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Carlos Martín-Rodríguez
- Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
- Institute of Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Begoña Anta
- Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
- Institute of Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Francisco J González-Calvo
- Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
| | - Rubén Deogracias
- Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
| | - Deqiang Jing
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Juan Carlos Arevalo
- Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
- Institute of Biomedical Research of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
12
|
Depleting deubiquitinating enzymes promotes apoptosis in glioma cell line via RNA binding proteins SF2/ASF1. Biochem Biophys Rep 2020; 24:100846. [PMID: 33319070 PMCID: PMC7726668 DOI: 10.1016/j.bbrep.2020.100846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
USP5 and USP8 (Deubiquitinating enzyme) are highly overexpressed and more recognized as poor prognosis marker in various cancers. Depleting USP5 or USP8 to assess the synergism with proteasome inhibitor (Bortezomib) were measured. Furthermore, in present finding USP5 cooperates hnRNPA1 & USP8 cooperate SF2/ASF1, therefore gain in expression of either hnRNPA1 or SF2/ASF1 is sufficient to promote cell survival. On the other side, apoptosis markers were more pronounced in U87 or T98G cells devoid of either USP5 or USP8. However, apparent increase in SF2/ASF1 in absence of USP5, providing resistant factor is new. Antiapoptotic activity due to rise in SF2/ASF1 was validated after co-knock down of SF2/ASF1 in addition to USP5 induces more apoptosis comparing to individual knock down of USP5 or SF2/ASF1. This reveals SF2/ASF1 (RNA binding protein) delayed the apoptotic effect due to loss of USP5, lends ubiquitination of hnRNPA1. In presence of USP5, PI3 kinase inhibition promotes even more interaction between USP5 and hnRNPA1, thereby stabilizes hnRNPA1 in U87MG. In that way hnRNPA1 and SF2/ASF1 impart oncogenic activity. In conclusion, siRNA based strategy against USP5 is not enough to inhibit glioma, moreover targeting additionally SF2/ASF1 by knocking down USP8 is suitably more effective to deal with glioma tumour reoccurrence by indirectly targeting both SF2/ASF1 and hnRNPA1 oncogene. Deubiquitinating enzyme USP5 interact with hnRNPA1 and promotes hnRNPA1 ubiquitination is PI3 Kinase dependent. USP5 knock down in glioma cell, stabilizes SF2/ASF1 expression act as resistance factor. Depleting SF2/ASF1 and USP5 synergistically promotes apoptosis in glioma cell.
Collapse
|
13
|
Martins-Marques T, Ribeiro-Rodrigues T, de Jager SC, Zuzarte M, Ferreira C, Cruz P, Reis L, Baptista R, Gonçalves L, Sluijter JP, Girao H. Myocardial infarction affects Cx43 content of extracellular vesicles secreted by cardiomyocytes. Life Sci Alliance 2020; 3:e202000821. [PMID: 33097557 PMCID: PMC7652393 DOI: 10.26508/lsa.202000821] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic heart disease has been associated with an impairment on intercellular communication mediated by both gap junctions and extracellular vesicles. We have previously shown that connexin 43 (Cx43), the main ventricular gap junction protein, assembles into channels at the extracellular vesicle surface, mediating the release of vesicle content into target cells. Here, using a comprehensive strategy that included cell-based approaches, animal models and human patients, we demonstrate that myocardial ischemia impairs the secretion of Cx43 into circulating, intracardiac and cardiomyocyte-derived vesicles. In addition, we show that ubiquitin signals Cx43 release in basal conditions but appears to be dispensable during ischemia, suggesting an interplay between ischemia-induced Cx43 degradation and secretion. Overall, this study constitutes a step forward for the characterization of the signals and molecular players underlying vesicle protein sorting, with strong implications on long-range intercellular communication, paving the way towards the development of innovative diagnostic and therapeutic strategies for cardiovascular disorders.
Collapse
Affiliation(s)
- Tania Martins-Marques
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Saskia C de Jager
- Laboratory of Experimental Cardiology, University Medical Center Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Monica Zuzarte
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Cátia Ferreira
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Pedro Cruz
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Liliana Reis
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Rui Baptista
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Cardiology Department, Centro Hospitalar Entre Douro e Vouga, Santa Maria da Feira, Portugal
| | - Lino Gonçalves
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Joost Pg Sluijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Henrique Girao
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
14
|
Antagonistic Functions of Connexin 43 during the Development of Primary or Secondary Bone Tumors. Biomolecules 2020; 10:biom10091240. [PMID: 32859065 PMCID: PMC7565206 DOI: 10.3390/biom10091240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Despite research and clinical advances during recent decades, bone cancers remain a leading cause of death worldwide. There is a low survival rate for patients with primary bone tumors such as osteosarcoma and Ewing’s sarcoma or secondary bone tumors such as bone metastases from prostate carcinoma. Gap junctions are specialized plasma membrane structures consisting of transmembrane channels that directly link the cytoplasm of adjacent cells, thereby enabling the direct exchange of small signaling molecules between cells. Discoveries of human genetic disorders due to genetic mutations in gap junction proteins (connexins) and experimental data using connexin knockout mice have provided significant evidence that gap-junctional intercellular communication (Gj) is crucial for tissue function. Thus, the dysfunction of Gj may be responsible for the development of some diseases. Gj is thus a main mechanism for tumor cells to communicate with other tumor cells and their surrounding microenvironment to survive and proliferate. If it is well accepted that a low level of connexin expression favors cancer cell proliferation and therefore primary tumor development, more evidence is suggesting that a high level of connexin expression stimulates various cellular process such as intravasation, extravasation, or migration of metastatic cells. If so, connexin expression would facilitate secondary tumor dissemination. This paper discusses evidence that suggests that connexin 43 plays an antagonistic role in the development of primary bone tumors as a tumor suppressor and secondary bone tumors as a tumor promoter.
Collapse
|
15
|
Sun J, Shen D, Gao Y, Zheng Y, Zhao L, Maa M, Liu H, Chen X. Down-Regulation of USP8 Suppresses HER-3 Positive Gastric Cancer Cells Proliferation. Onco Targets Ther 2020; 13:7973-7984. [PMID: 32848421 PMCID: PMC7429216 DOI: 10.2147/ott.s264108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Background Ubiquitin specific peptidase 8 (USP8) has been reported to induce the degradation of several receptor tyrosine kinases such as epidermal growth factor receptor (EGFR), among which human epidermal growth factor receptor-3 (HER-3) is one of them. However, the role and functional mechanisms of USP8 and HER-3 in gastric cancer (GC) remain unknown. Objective To explore the function and mechanism of USP8 and HER-3 in the progression of GC. Materials and Methods Eighty-eight patients with histologically confirmed GC were recruited for this study. Tumor samples and GC cell lines were used to detect USP8 and HER-3 levels. MGC803 (HER-3 negative GC cell) was selected as the control group and NCI-N87, MKN-45 and AGS (HER-3 positive GC cells) as the experimental group. USP8i and si-RNA were then used to down-regulate USP8 in each group. Apoptosis and cell-cycle experiments were performed to detect the effects of USP8 on GC cells. Cytotoxicity Assay Kit (MTT) and colony formation assays were used to analyze cell proliferation. Cell migration and invasion ability were examined by wound healing. The expression of related mRNA and protein was detected by Western blot and quantitative real-time PCR (qRT-PCR). In vivo experiments were used to examine the effect of USP8 and HER-3. Results Patients with high expression of USP8 or HER-3 tumors alone died earlier than those with low expression and the patients with both USP8 and HER-3 high expression had a shorter overall survival than those with the opposite pattern (both USP8 and HER-3 low expression). Down-regulation of USP8 inhibited cell proliferation and cell metastasis and also reduced the HER-3 expression. We also observed that down-regulation of USP8 inhibited the proliferation of GC cells which highly expressed HER-3. Moreover, down-regulation of USP8 could promote the apoptosis of HER3-positive GC cells and inhibit the proliferation of them by affecting the cell-cycle. In vivo studies demonstrated that down-regulation of USP8 inhibited HER-3 positive tumors growth. Conclusion Down-regulation of USP8 inhibits HER-3 positive GC cells proliferation in vivo and in vitro, which indicate that USP8 represents a feasible choice as a therapeutic target for HER-3 positive GC cells.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Dandan Shen
- Key Laboratory of Advanced Pharmaceutical Technology, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yichao Zheng
- Key Laboratory of Advanced Pharmaceutical Technology, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Lijuan Zhao
- Key Laboratory of Advanced Pharmaceutical Technology, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Mamum Maa
- Key Laboratory of Advanced Pharmaceutical Technology, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Hongmin Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xiaoping Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Department of Hepatic Surgery of Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
16
|
Jing X, Chen Y, Chen Y, Shi G, Lv S, Cheng N, Feng C, Xin Z, Zhang L, Wu J. Down-regulation of USP8 Inhibits Cholangiocarcinoma Cell Proliferation and Invasion. Cancer Manag Res 2020; 12:2185-2194. [PMID: 32273758 PMCID: PMC7113805 DOI: 10.2147/cmar.s234586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/15/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Cholangiocarcinoma is the second most common primary hepatobiliary malignancy with high incidence and recurrence rate. Ubiquitin-specific protease 8 (USP8) is recently reported to be involved in tumor progression. Herein, we aimed to investigate the effects of USP8 on the growth and metastasis abilities of cholangiocarcinoma cells. Methods The siRNA interference was used to knock down USP8 in cholangiocarcinoma cell lines QBC939 and RBE; Hucct-1 cells were transfected with pcDNA3.1-USP8 to up-regulate its expression. The effects of USP8 on cholangiocarcinoma were detected by cell function assays. We analyzed the expressions of USP8, Bcl2, Bax, cleaved caspase-3, cleaved caspase-9, Akt, p-Akt, Cyclin D1 and P70S6K by Western blot analysis. Results We demonstrated that knockdown of USP8 significantly inhibited the proliferation, migration and invasion of QBC939 and RBE cells in vitro, while USP8 overexpression showed significant promoting effects on Hucct-1 cells. Moreover, silencing of USP8 also promoted apoptosis in cholangiocarcinoma cells by regulating the Bcl-2/Bax axis and Caspase cascade; up-regulation of USP8 decreased apoptosis in Hucct-1 cells. Importantly, knockdown of USP8 inhibited activation of the Akt signaling pathway by decreasing the phosphorylation level of Akt and up-regulated p53 expression, while USP8 overexpression increased activation of the Akt signaling pathway in Hucct-1 cells. Further, IGF-1 could reverse the inhibitory effects of USP8 knockdown on the Akt signaling pathway and the proliferation of QBC939 and RBE cells. Conclusion Taken together, our findings suggest that USP8 exerts an oncogenic role in the progression of cholangiocarcinoma and may be a potential therapeutic target for cholangiocarcinoma treatment.
Collapse
Affiliation(s)
- Xu Jing
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Yingjie Chen
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Ye Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, People's Republic of China
| | - Guangyan Shi
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Shuanghao Lv
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Nana Cheng
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Chaolin Feng
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Zhen Xin
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, People's Republic of China
| | - Liping Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Jing Wu
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, People's Republic of China
| |
Collapse
|
17
|
Ubiquitin-specific protease 8 (USP8/UBPy): a prototypic multidomain deubiquitinating enzyme with pleiotropic functions. Biochem Soc Trans 2020; 47:1867-1879. [PMID: 31845722 PMCID: PMC6925526 DOI: 10.1042/bst20190527] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 01/07/2023]
Abstract
Protein modification by ubiquitin is one of the most versatile posttranslational regulations and counteracted by almost 100 deubiquitinating enzymes (DUBs). USP8 was originally identified as a growth regulated ubiquitin-specific protease and is like many other DUBs characterized by its multidomain architecture. Besides the catalytic domain, specific protein-protein interaction modules were characterized which contribute to USP8 substrate recruitment, regulation and targeting to distinct protein complexes. Studies in mice and humans impressively showed the physiological relevance and non-redundant function of USP8 within the context of the whole organism. USP8 knockout (KO) mice exhibit early embryonic lethality while induced deletion in adult animals rapidly causes lethal liver failure. Furthermore, T-cell specific ablation disturbs T-cell development and function resulting in fatal autoimmune inflammatory bowel disease. In human patients, somatic mutations in USP8 were identified as the underlying cause of adrenocorticotropic hormone (ACTH) releasing pituitary adenomas causing Cushing's disease (CD). Here we provide an overview of the versatile molecular, cellular and pathology associated function and regulation of USP8 which appears to depend on specific protein binding partners, substrates and the cellular context.
Collapse
|
18
|
Totland MZ, Rasmussen NL, Knudsen LM, Leithe E. Regulation of gap junction intercellular communication by connexin ubiquitination: physiological and pathophysiological implications. Cell Mol Life Sci 2020; 77:573-591. [PMID: 31501970 PMCID: PMC7040059 DOI: 10.1007/s00018-019-03285-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/10/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022]
Abstract
Gap junctions consist of arrays of intercellular channels that enable adjacent cells to communicate both electrically and metabolically. Gap junctions have a wide diversity of physiological functions, playing critical roles in both excitable and non-excitable tissues. Gap junction channels are formed by integral membrane proteins called connexins. Inherited or acquired alterations in connexins are associated with numerous diseases, including heart failure, neuropathologies, deafness, skin disorders, cataracts and cancer. Gap junctions are highly dynamic structures and by modulating the turnover rate of connexins, cells can rapidly alter the number of gap junction channels at the plasma membrane in response to extracellular or intracellular cues. Increasing evidence suggests that ubiquitination has important roles in the regulation of endoplasmic reticulum-associated degradation of connexins as well as in the modulation of gap junction endocytosis and post-endocytic sorting of connexins to lysosomes. In recent years, researchers have also started to provide insights into the physiological roles of connexin ubiquitination in specific tissue types. This review provides an overview of the advances made in understanding the roles of connexin ubiquitination in the regulation of gap junction intercellular communication and discusses the emerging physiological and pathophysiological implications of these processes.
Collapse
Affiliation(s)
- Max Zachrisson Totland
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Nikoline Lander Rasmussen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
- Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Lars Mørland Knudsen
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424, Oslo, Norway.
- K.G. Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
19
|
Peng H, Yang F, Hu Q, Sun J, Peng C, Zhao Y, Huang C. The ubiquitin-specific protease USP8 directly deubiquitinates SQSTM1/p62 to suppress its autophagic activity. Autophagy 2019; 16:698-708. [PMID: 31241013 DOI: 10.1080/15548627.2019.1635381] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
SQSTM1/p62 (sequestosome 1) is a critical macroautophagy/autophagy receptor that promotes the formation and degradation of ubiquitinated aggregates. SQSTM1 can be modified by ubiquitination, and this modification modulates its autophagic activity. However, the molecular mechanisms underpinning its reversible deubiquitination have never been described. Here we report that USP8 (ubiquitin specific peptidase 8) directly interacted with and deubiquitinated SQSTM1. USP8 preferentially removed the lysine 11 (K11)-linked ubiquitin chains from SQSTM1. Moreover, USP8 deubiquitinated SQSTM1 principally at K420 within its ubiquitin-association (UBA) domain. Finally, USP8 inhibited SQSTM1 degradation and autophagic influx in cells with wild-type SQSTM1, but not its mutant with substitution of K420 with an arginine. Taken together, USP8 acts as a negative regulator of autophagy by deubiquitinating SQSTM1 at K420.Abbreviations: BafA1: bafilomycin A1; BAP1: BRCA1 associated protein 1; DUB: deubiquitinating enzyme; ESCRT: endosomal sorting complex required for transport; HTT: huntingtin; K: lysine; KEAP1: kelch like ECH associated protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; shRNA: short hairpin RNA; SQSTM1: sequestosome 1; Ub: ubiquitin; UBA: ubiquitin-association; UBE2D2: ubiquitin conjugating enzyme E2 D2; UBE2D3: ubiquitin conjugating enzyme E2 D3; USP: ubiquitin specific peptidase; WT: wild-type.
Collapse
Affiliation(s)
- Hong Peng
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Medical Virology, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fang Yang
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianwen Hu
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Sun
- Department of Breast Surgery, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Cheng Peng
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zhao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chuanxin Huang
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Li C, Liang J, Chen P, Zeng K, Xue R, Tian X, Liang L, Wang Q, Shi M, Zhang X. Two de novo GJA1 mutation in two sporadic patients with erythrokeratodermia variabilis et progressiva. Mol Genet Genomic Med 2019; 7:e670. [PMID: 30924322 PMCID: PMC6565561 DOI: 10.1002/mgg3.670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/02/2019] [Accepted: 03/04/2019] [Indexed: 01/05/2023] Open
Abstract
Background Erythrokeratodermia variabilis et progressiva (EKVP, OMIM 133200) is a rare hereditary disorder characterized by varies from transient, fast moving erythema to persistent brown hyperkeratotic plaques. Recently, mutations in the genes gap junction alpha 1 gene (GJA1), GJB3, and GJB4 have been reported to cause EKVP. Here, we report the identification of two de novo missense mutations in the GJA1 gene in two unrelated individuals with EKVP. Methods The patients and his family members were subjected to mutation detection in the candidate gene GJA1, GJB3, and GJB4 by Sanger sequencing. The expression of connexin (Cx) 43 was detected by immunohistochemistry and immunofluorescence (IF) studies in the lesions. Results A 12‐year‐old boy presented with multiple hyperkeratotic plaques on the face, neck, elbows, wrists, limbs, knees, inguinal region, hands, and feet. A 7‐year‐old girl presented with symmetrical erythematous, plaques on the hands, feet, wrists, and ankles. A novel heterozygous missense mutation c.848C > T (p.P283L) in exon 2 of the GJA1 gene was identified in both patients. A novel heterozygous missense mutation c.869C > A (p.T290N) in exon 2 of the GJA1 gene was also identified in the boy. These mutations were not found in the unaffected family members and 100 normal controls. In the patients’ lesions, Cx43 protein was located to the cytomembrane and cytoplasm in the stratum corneum, and granular layer. Compound heterozygous mutations in the boy showed a more severe clinical phenotype and cytoplasmic mislocalization. Conclusions The novel mutations c.848C > T (p.P283L) and c.869C > A(p.T290N) arose de novo and were considered as the cause of two Chinese EKVP. GJA1 P283L and T290N mutations lead to Cx43 protein cytoplasmic mislocalization. Our finding expands the mutant spectrum of GJA1 gene and adds new understanding of the genotype‐phenotype correlation.
Collapse
Affiliation(s)
- Changxing Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyao Liang
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Pingjiao Chen
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rujun Xue
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Xin Tian
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| | - Liuping Liang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minglan Shi
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xibao Zhang
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, China
| |
Collapse
|
21
|
He J, Lee HJ, Saha S, Ruan D, Guo H, Chan CH. Inhibition of USP2 eliminates cancer stem cells and enhances TNBC responsiveness to chemotherapy. Cell Death Dis 2019; 10:285. [PMID: 30918246 PMCID: PMC6437220 DOI: 10.1038/s41419-019-1512-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 01/17/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer that harbors enriched cancer stem cell (CSC) populations in tumors. Conventional chemotherapy is a standard treatment for TNBC, but it spares the CSC populations, which cause tumor recurrence and progression. Therefore, identification of the core molecular pathway that controls CSC activity and expansion is essential for developing effective therapeutics for TNBC. In this study, we identify that USP2 deubiquitinating enzyme is upregulated in CSCs and is a novel regulator of CSCs. Genetic and pharmacological targeting of USP2 substantially inhibits the self-renewal, expansion and chemoresistance of CSCs. We show that USP2 maintains the CSC population by activating self-renewing factor Bmi1 and epithelial-mesenchymal transition through Twist upregulation. Mechanistically, USP2 promotes Twist stabilization by removing β-TrCP-mediated ubiquitination of Twist. Animal studies indicate that pharmacological inhibition of USP2 suppresses tumor progression and sensitizes tumor responses to chemotherapy in TNBC. Furthermore, the histological analyses reveal a positive correlation between USP2 upregulation and lymph node metastasis. Our findings together demonstrate a previously unrecognized role of USP2 in mediating Twist activation and CSC enrichment, suggesting that targeting USP2 is a novel therapeutic strategy to tackle TNBC.
Collapse
Affiliation(s)
- Jiabei He
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Hong-Jen Lee
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Suchandrima Saha
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Diane Ruan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Hua Guo
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Chia-Hsin Chan
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA. .,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
22
|
Deubiquitinating Enzymes Related to Autophagy: New Therapeutic Opportunities? Cells 2018; 7:cells7080112. [PMID: 30126257 PMCID: PMC6116007 DOI: 10.3390/cells7080112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Autophagy is an evolutionary conserved catabolic process that allows for the degradation of intracellular components by lysosomes. This process can be triggered by nutrient deprivation, microbial infections or other challenges to promote cell survival under these stressed conditions. However, basal levels of autophagy are also crucial for the maintenance of proper cellular homeostasis by ensuring the selective removal of protein aggregates and dysfunctional organelles. A tight regulation of this process is essential for cellular survival and organismal health. Indeed, deregulation of autophagy is associated with a broad range of pathologies such as neuronal degeneration, inflammatory diseases, and cancer progression. Ubiquitination and deubiquitination of autophagy substrates, as well as components of the autophagic machinery, are critical regulatory mechanisms of autophagy. Here, we review the main evidence implicating deubiquitinating enzymes (DUBs) in the regulation of autophagy. We also discuss how they may constitute new therapeutic opportunities in the treatment of pathologies such as cancers, neurodegenerative diseases or infections.
Collapse
|
23
|
Sorgen PL, Trease AJ, Spagnol G, Delmar M, Nielsen MS. Protein⁻Protein Interactions with Connexin 43: Regulation and Function. Int J Mol Sci 2018; 19:E1428. [PMID: 29748463 PMCID: PMC5983787 DOI: 10.3390/ijms19051428] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Connexins are integral membrane building blocks that form gap junctions, enabling direct cytoplasmic exchange of ions and low-molecular-mass metabolites between adjacent cells. In the heart, gap junctions mediate the propagation of cardiac action potentials and the maintenance of a regular beating rhythm. A number of connexin interacting proteins have been described and are known gap junction regulators either through direct effects (e.g., kinases) or the formation of larger multifunctional complexes (e.g., cytoskeleton scaffold proteins). Most connexin partners can be categorized as either proteins promoting coupling by stimulating forward trafficking and channel opening or inhibiting coupling by inducing channel closure, internalization, and degradation. While some interactions have only been implied through co-localization using immunohistochemistry, others have been confirmed by biophysical methods that allow detection of a direct interaction. Our understanding of these interactions is, by far, most well developed for connexin 43 (Cx43) and the scope of this review is to summarize our current knowledge of their functional and regulatory roles. The significance of these interactions is further exemplified by demonstrating their importance at the intercalated disc, a major hub for Cx43 regulation and Cx43 mediated effects.
Collapse
Affiliation(s)
- Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Mario Delmar
- Leon H Charney Division of Cardiology, NYU School of Medicine, New York, NY 10016, USA.
| | - Morten S Nielsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|