1
|
Götz V, Qiao S, Das D, Wartenberg P, Wyatt A, Wahl V, Gamayun I, Alasmi S, Fecher-Trost C, Meyer MR, Rad R, Kaltenbacher T, Kattler K, Lipp P, Becherer U, Mollard P, Candlish M, Boehm U. Ovulation is triggered by a cyclical modulation of gonadotropes into a hyperexcitable state. Cell Rep 2023; 42:112543. [PMID: 37224016 DOI: 10.1016/j.celrep.2023.112543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/17/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Gonadotropes in the anterior pituitary gland are essential for fertility and provide a functional link between the brain and the gonads. To trigger ovulation, gonadotrope cells release massive amounts of luteinizing hormone (LH). The mechanism underlying this remains unclear. Here, we utilize a mouse model expressing a genetically encoded Ca2+ indicator exclusively in gonadotropes to dissect this mechanism in intact pituitaries. We demonstrate that female gonadotropes exclusively exhibit a state of hyperexcitability during the LH surge, resulting in spontaneous [Ca2+]i transients in these cells, which persist in the absence of any in vivo hormonal signals. L-type Ca2+ channels and transient receptor potential channel A1 (TRPA1) together with intracellular reactive oxygen species (ROS) levels ensure this state of hyperexcitability. Consistent with this, virus-assisted triple knockout of Trpa1 and L-type Ca2+ subunits in gonadotropes leads to vaginal closure in cycling females. Our data provide insight into molecular mechanisms required for ovulation and reproductive success in mammals.
Collapse
Affiliation(s)
- Viktoria Götz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Sen Qiao
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Debajyoti Das
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Philipp Wartenberg
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Amanda Wyatt
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Vanessa Wahl
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Igor Gamayun
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Samer Alasmi
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Claudia Fecher-Trost
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Markus R Meyer
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich 80333, Germany
| | - Thorsten Kaltenbacher
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich 80333, Germany
| | - Kathrin Kattler
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken 66123, Germany
| | - Peter Lipp
- Molecular Cell Biology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Ute Becherer
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University School of Medicine, Homburg 66421, Germany
| | - Patrice Mollard
- IGF, CNRS, INSERM, University of Montpellier, Montpellier 34090, France
| | - Michael Candlish
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany
| | - Ulrich Boehm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg 66421, Germany.
| |
Collapse
|
2
|
Jiménez-Díaz E, Del-Rio D, Fiordelisio T. The Contribution of Cell Imaging to the Study of Anterior Pituitary Function and Its Regulation. Neuroendocrinology 2023; 113:179-192. [PMID: 35231920 DOI: 10.1159/000523860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/18/2022] [Indexed: 11/19/2022]
Abstract
Advances in the knowledge of the neuroendocrine system are closely related to the development of cellular imaging and labeling techniques. This synergy ranges from the staining techniques that allowed the first characterizations of the anterior pituitary gland, its relationship with the hypothalamus, and the birth of neuroendocrinology; through the development of fluorescence microscopy applications, specific labeling strategies, transgenic systems, and intracellular calcium sensors that enabled the study of processes and dynamics at the cellular and tissue level; until the advent of super-resolution microscopy, miniscopes, optogenetics, fiber photometry, and other imaging methods that allowed high spatiotemporal resolution and long-term three-dimensional cellular activity recordings in living systems in a conscious and freely moving condition. In this review, we briefly summarize the main contributions of cellular imaging techniques that have allowed relevant advances in the field of neuroendocrinology and paradigm shifts that have improved our understanding of the function of the hypothalamic-pituitary axes. The development of these methods and equipment is the result of the integration of knowledge achieved by the integration of several disciplines and effort to solve scientific questions and problems of high impact on health and society that this system entails.
Collapse
Affiliation(s)
- Edgar Jiménez-Díaz
- Laboratorio de Neuroendocrinología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Del-Rio
- Laboratorio de Neuroendocrinología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Tatiana Fiordelisio
- Laboratorio de Neuroendocrinología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio Nacional de Soluciones Biomiméticas para Diagnóstico y Terapia LaNSBioDyT, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Effective Accentuation of Voltage-Gated Sodium Current Caused by Apocynin (4'-Hydroxy-3'-methoxyacetophenone), a Known NADPH-Oxidase Inhibitor. Biomedicines 2021; 9:biomedicines9091146. [PMID: 34572332 PMCID: PMC8464932 DOI: 10.3390/biomedicines9091146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022] Open
Abstract
Apocynin (aPO, 4'-Hydroxy-3'-methoxyacetophenone) is a cell-permeable, anti-inflammatory phenolic compound that acts as an inhibitor of NADPH-dependent oxidase (NOX). However, the mechanisms through which aPO can interact directly with plasmalemmal ionic channels to perturb the amplitude or gating of ionic currents in excitable cells remain incompletely understood. Herein, we aimed to investigate any modifications of aPO on ionic currents in pituitary GH3 cells or murine HL-1 cardiomyocytes. In whole-cell current recordings, GH3-cell exposure to aPO effectively stimulated the peak and late components of voltage-gated Na+ current (INa) with different potencies. The EC50 value of aPO required for its differential increase in peak or late INa in GH3 cells was estimated to be 13.2 or 2.8 μM, respectively, whereas the KD value required for its retardation in the slow component of current inactivation was 3.4 μM. The current-voltage relation of INa was shifted slightly to more negative potential during cell exposure to aPO (10 μM); however, the steady-state inactivation curve of the current was shifted in a rightward direction in its presence. Recovery of peak INa inactivation was increased in the presence of 10 μM aPO. In continued presence of aPO, further application of rufinamide or ranolazine attenuated aPO-stimulated INa. In methylglyoxal- or superoxide dismutase-treated cells, the stimulatory effect of aPO on peak INa remained effective. By using upright isosceles-triangular ramp pulse of varying duration, the amplitude of persistent INa measured at low or high threshold was enhanced by the aPO presence, along with increased hysteretic strength appearing at low or high threshold. The addition of aPO (10 μM) mildly inhibited the amplitude of erg-mediated K+ current. Likewise, in HL-1 murine cardiomyocytes, the aPO presence increased the peak amplitude of INa as well as decreased the inactivation or deactivation rate of the current, and further addition of ranolazine or esaxerenone attenuated aPO-accentuated INa. Altogether, this study provides a distinctive yet unidentified finding that, despite its effectiveness in suppressing NOX activity, aPO may directly and concertedly perturb the amplitude, gating and voltage-dependent hysteresis of INa in electrically excitable cells. The interaction of aPO with ionic currents may, at least in part, contribute to the underlying mechanisms through which it affects neuroendocrine, endocrine or cardiac function.
Collapse
|
4
|
Effects of gonadotropin-releasing hormone analog (GnRHa) immunization on the gonadal transcriptome and proteome of tilapia (Oreochromis niloticus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100780. [PMID: 33296765 DOI: 10.1016/j.cbd.2020.100780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 11/21/2022]
Abstract
Gonadotropin releasing hormone (GnRH) plays an important role in the regulation of vertebrate reproduction. Studies have shown that immunization against GnRHa can induce sexually sterile tilapia. To explore the mechanism behind this, in this study, RNA-seq and data-independent acquisition (DIA) techniques were used to study the transcriptome and proteome of the gonad of tilapia immunized with GnRHa. 644 differentially expressed genes (80 upregulated and 564 downregulated) and 1150 differentially expressed proteins (351 upregulated and 799 downregulated) were identified. There were 209 genes with consistent differential expression patterns in the transcriptomic and proteomic analyses, of which 9 were upregulated and 200 downregulated, indicating that the gonad gene expression was inhibited by GnRHa immunization. The downregulated genes were particularly involved in the functions of single-organism process, binding, cellular process, metabolic process and catalytic activity, and associated with the pathways including ECM-receptor interaction, focal adhesion, cardiac muscle contraction and oxidative phosphorylation. The expression of six differentially expressed genes involved in the GnRH signaling pathway was all downregulated. In addition, several important functional genes related to gonadal development after GnRHa immunization were screened. This study confirmed the expression of corresponding genes was affected by GnRHa on the gonad development in tilapia at the molecular level, and laid a foundation for elucidating the mechanism of GnRHa immunization.
Collapse
|
5
|
Doser RL, Amberg GC, Hoerndli FJ. Reactive Oxygen Species Modulate Activity-Dependent AMPA Receptor Transport in C. elegans. J Neurosci 2020; 40:7405-7420. [PMID: 32847966 PMCID: PMC7511182 DOI: 10.1523/jneurosci.0902-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/26/2020] [Accepted: 08/16/2020] [Indexed: 12/22/2022] Open
Abstract
The AMPA subtype of synaptic glutamate receptors (AMPARs) plays an essential role in cognition. Their function, numbers, and change at synapses during synaptic plasticity are tightly regulated by neuronal activity. Although we know that long-distance transport of AMPARs is essential for this regulation, we do not understand the associated regulatory mechanisms of it. Neuronal transmission is a metabolically demanding process in which ATP consumption and production are tightly coupled and regulated. Aerobic ATP synthesis unavoidably produces reactive oxygen species (ROS), such as hydrogen peroxide, which are known modulators of calcium signaling. Although a role for calcium signaling in AMPAR transport has been described, there is little understanding of the mechanisms involved and no known link to physiological ROS signaling. Here, using real-time in vivo imaging of AMPAR transport in the intact C. elegans nervous system, we demonstrate that long-distance synaptic AMPAR transport is bidirectionally regulated by calcium influx and activation of calcium/calmodulin-dependent protein kinase II. Quantification of in vivo calcium dynamics revealed that modest, physiological increases in ROS decrease calcium transients in C. elegans glutamatergic neurons. By combining genetic and pharmacological manipulation of ROS levels and calcium influx, we reveal a mechanism in which physiological increases in ROS cause a decrease in synaptic AMPAR transport and delivery by modulating activity-dependent calcium signaling. Together, our results identify a novel role for oxidant signaling in the regulation of synaptic AMPAR transport and delivery, which in turn could be critical for coupling the metabolic demands of neuronal activity with excitatory neurotransmission.SIGNIFICANCE STATEMENT Synaptic AMPARs are critical for excitatory synaptic transmission. The disruption of their synaptic localization and numbers is associated with numerous psychiatric, neurologic, and neurodegenerative conditions. However, very little is known about the regulatory mechanisms controlling transport and delivery of AMPAR to synapses. Here, we describe a novel physiological signaling mechanism in which ROS, such as hydrogen peroxide, modulate AMPAR transport by modifying activity-dependent calcium signaling. Our findings provide the first evidence in support of a mechanistic link between physiological ROS signaling, AMPAR transport, localization, and excitatory transmission. This is of fundamental and clinical significance since dysregulation of intracellular calcium and ROS signaling is implicated in aging and the pathogenesis of several neurodegenerative disorders, including Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Rachel L Doser
- Department of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| | - Gregory C Amberg
- Department of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| | - Frederic J Hoerndli
- Department of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
6
|
Nicholas DA, Knight VS, Tonsfeldt KJ, Terasaka T, Molinar-Inglis O, Stephens SBZ, Trejo J, Kauffman AS, Mellon PL, Lawson MA. GLUT1-mediated glycolysis supports GnRH-induced secretion of luteinizing hormone from female gonadotropes. Sci Rep 2020; 10:13063. [PMID: 32747664 PMCID: PMC7400764 DOI: 10.1038/s41598-020-69913-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/21/2020] [Indexed: 12/03/2022] Open
Abstract
The mechanisms mediating suppression of reproduction in response to decreased nutrient availability remain undefined, with studies suggesting regulation occurs within the hypothalamus, pituitary, or gonads. By manipulating glucose utilization and GLUT1 expression in a pituitary gonadotrope cell model and in primary gonadotropes, we show GLUT1-dependent stimulation of glycolysis, but not mitochondrial respiration, by the reproductive neuropeptide GnRH. GnRH stimulation increases gonadotrope GLUT1 expression and translocation to the extracellular membrane. Maximal secretion of the gonadotropin Luteinizing Hormone is supported by GLUT1 expression and activity, and GnRH-induced glycolysis is recapitulated in primary gonadotropes. GLUT1 expression increases in vivo during the GnRH-induced ovulatory LH surge and correlates with GnRHR. We conclude that the gonadotropes of the anterior pituitary sense glucose availability and integrate this status with input from the hypothalamus via GnRH receptor signaling to regulate reproductive hormone synthesis and secretion.
Collapse
Affiliation(s)
- Dequina A Nicholas
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Vashti S Knight
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Karen J Tonsfeldt
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tomohiro Terasaka
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Shannon B Z Stephens
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - JoAnn Trejo
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Alexander S Kauffman
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mark A Lawson
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Kim T, Li D, Terasaka T, Nicholas DA, Knight VS, Yang JJ, Lawson MA. SRXN1 Is Necessary for Resolution of GnRH-Induced Oxidative Stress and Induction of Gonadotropin Gene Expression. Endocrinology 2019; 160:2543-2555. [PMID: 31504396 PMCID: PMC6779075 DOI: 10.1210/en.2019-00283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
A defining characteristic of the hypothalamus-pituitary-gonad reproductive endocrine axis is the episodic secretion of the pituitary gonadotropin hormones LH and FSH by the anterior pituitary gonadotropes. Hormone secretion is dictated by pulsatile stimulation, with GnRH released by hypothalamic neurons that bind and activate the G protein-coupled GnRH receptor expressed by gonadotropes. Hormone secretion and synthesis of gonadotropins are influenced by the amplitude and frequency of GnRH stimulation; variation in either affects the proportion of LH and FSH secreted and the differential regulation of hormone subunit gene expression. Therefore, proper decoding of GnRH signals is essential for appropriate gonadotropin synthesis and secretion. The GnRH receptor robustly activates downstream signaling cascades to facilitate exocytosis and stimulate gene expression and protein synthesis. It is necessary to rapidly quench signaling to preserve sensitivity and adaptability to changing pulse patterns. Reactive oxygen species (ROS) generated by receptor-activated oxidases fulfill the role of rapid signaling intermediates that facilitate robust and transient signaling. However, excess ROS can be detrimental and, unchecked, can confuse signal interpretation. We demonstrate that sulfiredoxin (SRXN1), an ATP-dependent reductase, is essential for normal responses to GnRH receptor signaling and plays a central role in resolution of ROS induced by GnRH stimulation. SRXN1 expression is mitogen-activated protein kinase dependent, and knockdown reduces Lhb and Fshb glycoprotein hormone subunit mRNA and promoter activity. Loss of SRXN1 leads to increased basal and GnRH-stimulated ROS levels. We conclude that SRXN1 is essential for normal responses to GnRH stimulation and plays an important role in ROS management.
Collapse
Affiliation(s)
- Taeshin Kim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Danmei Li
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Tomohiro Terasaka
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Dequina A Nicholas
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Vashti S Knight
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Joyce J Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Mark A Lawson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
- Correspondence: Mark A. Lawson, PhD, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego Mail Code 0674, 9500 Gilman Drive, La Jolla, California 92093. E-mail:
| |
Collapse
|