1
|
Zeng Q, Peng F, Wang J, Wang S, Lu X, Bakhsh A, Li Y, Qaraevna BZ, Ye W, Yin Z. Identification of the MAP4K gene family reveals GhMAP4K13 regulates drought and salt stress tolerance in cotton. PHYSIOLOGIA PLANTARUM 2025; 177:e70031. [PMID: 39743670 DOI: 10.1111/ppl.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/25/2024] [Accepted: 10/22/2024] [Indexed: 01/04/2025]
Abstract
Mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) are a class of highly conserved serine/threonine-protein kinases in eukaryotes. They participate in the typical MAPK cascade system and various signal transduction pathways regulating biological processes in plants, during stressful conditions. To date, genome-wide identification of MAP4Ks in cotton has not been reported. In this study, 77 MAP4K genes were identified in four Gossypium species. Protein characteristics, gene structures, conserved motifs and gene expression analysis were carried out. Genome-wide or fragment duplication has played an important role in the expansion of the GhMAP4K. Promoter cis-acting elements and expression patterns indicated that GhMAP4Ks are related to plant hormones (ABA, MeJA, GA, IAA, SA) and various stresses (drought, hypothermia and wound). Overexpressing GhMAP4K13 in Arabidopsis showed higher stem length in response to drought and salt stress. The wilting degree in virus-induced GhMAP4K13 gene silenced plants was substantially greater than wild type plants under drought and salt stress. Transcriptomic analysis showed that most differentially expressed genes were involved in the MAPK signaling pathway, carbon metabolism and porphyrin metabolism. Additionally, transgenic Arabidopsis and VIGS cotton showed that GhMAP4K13 was positively responsive to drought and salt stresses. This study will play an important role in understanding the function of the MAP4K gene family in response to abiotic stress in cotton.
Collapse
Affiliation(s)
- Qing Zeng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, Hunan, China
| | - Junjuan Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuai Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuke Lu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Yan Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Bobokhonova Zebinisso Qaraevna
- Department cotton growing, genetics, breeding and seed, Tajik agrarian University named Shirinsho Shotemur Dushanbe, Republic of Tajikistan
| | - Wuwei Ye
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Zujun Yin
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
2
|
Pan L, Fonseca de Lima CF, Vu LD, van de Cotte B, De Winne N, Gevaert K, De Jaeger G, De Smet I. Heterodimerization domains in MAP4 KINASEs determine subcellular localization and activity in Arabidopsis. PLANT PHYSIOLOGY 2024; 195:1807-1817. [PMID: 38513700 DOI: 10.1093/plphys/kiae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 03/23/2024]
Abstract
Signal transduction relies largely on the activity of kinases and phosphatases that control protein phosphorylation. However, we still know very little about phosphorylation-mediated signaling networks. Plant MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE KINASEs (MAP4Ks) have recently gained more attention, given their role in a wide range of processes, including developmental processes and stress signaling. We analyzed MAP4K expression patterns and mapped protein-MAP4K interactions in Arabidopsis (Arabidopsis thaliana), revealing extensive coexpression and heterodimerization. This heterodimerization is regulated by the C-terminal, intrinsically disordered half of the MAP4K, and specifically by the coiled coil motif. The ability to heterodimerize is required for proper activity and localization of the MAP4Ks. Taken together, our results identify MAP4K-interacting proteins and emphasize the functional importance of MAP4K heterodimerization. Furthermore, we identified MAP4K4/TARGET OF TEMPERATURE3 (TOT3) and MAP4K5/TOT3-INTERACTING PROTEIN 5 (TOI5) as key regulators of the transition from cell division to elongation zones in the primary root tip.
Collapse
Affiliation(s)
- Lixia Pan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Cassio Flavio Fonseca de Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9052 Ghent, Belgium
| | - Brigitte van de Cotte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, B-9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| |
Collapse
|
3
|
Li Y, Li Y, Zou X, Jiang S, Cao M, Chen F, Yin Y, Xiao W, Liu S, Guo X. Bioinformatic Identification and Expression Analyses of the MAPK-MAP4K Gene Family Reveal a Putative Functional MAP4K10-MAP3K7/8-MAP2K1/11-MAPK3/6 Cascade in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:941. [PMID: 38611471 PMCID: PMC11013086 DOI: 10.3390/plants13070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
The mitogen-activated protein kinase (MAPK) cascades act as crucial signaling modules that regulate plant growth and development, response to biotic/abiotic stresses, and plant immunity. MAP3Ks can be activated through MAP4K phosphorylation in non-plant systems, but this has not been reported in plants to date. Here, we identified a total of 234 putative TaMAPK family members in wheat (Triticum aestivum L.). They included 48 MAPKs, 17 MAP2Ks, 144 MAP3Ks, and 25 MAP4Ks. We conducted systematic analyses of the evolution, domain conservation, interaction networks, and expression profiles of these TaMAPK-TaMAP4K (representing TaMAPK, TaMAP2K, TaMAP3K, and TaMAP4K) kinase family members. The 234 TaMAPK-TaMAP4Ks are distributed on 21 chromosomes and one unknown linkage group (Un). Notably, 25 of these TaMAP4K family members possessed the conserved motifs of MAP4K genes, including glycine-rich motif, invariant lysine (K) motif, HRD motif, DFG motif, and signature motif. TaMAPK3 and 6, and TaMAP4K10/24 were shown to be strongly expressed not only throughout the growth and development stages but also in response to drought or heat stress. The bioinformatics analyses and qRT-PCR results suggested that wheat may activate the MAP4K10-MEKK7-MAP2K11-MAPK6 pathway to increase drought resistance in wheat, and the MAP4K10-MAP3K8-MAP2K1/11-MAPK3 pathway may be involved in plant growth. In general, our work identified members of the MAPK-MAP4K cascade in wheat and profiled their potential roles during their response to abiotic stresses and plant growth based on their expression pattern. The characterized cascades might be good candidates for future crop improvement and molecular breeding.
Collapse
Affiliation(s)
- Yongliang Li
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China; (Y.L.); (Y.L.); (X.Z.); (S.J.); (M.C.); (F.C.); (Y.Y.)
| | - You Li
- College of Biology, Hunan University, Changsha 410082, China
| | - Xiaoxiao Zou
- College of Biology, Hunan University, Changsha 410082, China
| | - Shuai Jiang
- College of Biology, Hunan University, Changsha 410082, China
| | - Miyuan Cao
- College of Biology, Hunan University, Changsha 410082, China
| | - Fenglin Chen
- College of Biology, Hunan University, Changsha 410082, China
| | - Yan Yin
- College of Biology, Hunan University, Changsha 410082, China
| | - Wenjun Xiao
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China; (Y.L.); (Y.L.); (X.Z.); (S.J.); (M.C.); (F.C.); (Y.Y.)
| | - Shucan Liu
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China; (Y.L.); (Y.L.); (X.Z.); (S.J.); (M.C.); (F.C.); (Y.Y.)
| | - Xinhong Guo
- College of Biology, Hunan University, Changsha 410082, China
- Chongqing Research Institute, Hunan University, Chongqing 401120, China; (Y.L.); (Y.L.); (X.Z.); (S.J.); (M.C.); (F.C.); (Y.Y.)
| |
Collapse
|
4
|
Waksman T, Suetsugu N, Hermanowicz P, Ronald J, Sullivan S, Łabuz J, Christie JM. Phototropin phosphorylation of ROOT PHOTOTROPISM 2 and its role in mediating phototropism, leaf positioning, and chloroplast accumulation movement in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:390-402. [PMID: 36794876 PMCID: PMC10953443 DOI: 10.1111/tpj.16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/08/2023] [Indexed: 05/10/2023]
Abstract
Directional movements impact the ability of plants to respond and adjust their growth accordingly to the prevailing light environment. The plasma-membrane associated protein, ROOT PHOTOTROPISM 2 (RPT2) is a key signalling component involved in chloroplast accumulation movement, leaf positioning, and phototropism, all of which are regulated redundantly by the ultraviolet/blue light-activated AGC kinases phototropin 1 and 2 (phot1 and phot2). We recently demonstrated that members of the NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3)/RPT2-like (NRL) family in Arabidopsis thaliana, including RPT2, are directly phosphorylated by phot1. However, whether RPT2 is a substrate for phot2, and the biological significance of phot phosphorylation of RPT2 remains to be determined. Here, we show that RPT2 is phosphorylated by both phot1 and phot2 at a conserved serine residue (S591) within the C-terminal region of the protein. Blue light triggered the association of 14-3-3 proteins with RPT2 consistent with S591 acting as a 14-3-3 binding site. Mutation of S591 had no effect on the plasma membrane localization of RPT2 but reduced its functionality for leaf positioning and phototropism. Moreover, our findings indicate that S591 phosphorylation within the C-terminus of RPT2 is required for chloroplast accumulation movement to low level blue light. Taken together, these findings further highlight the importance of the C-terminal region of NRL proteins and how its phosphorylation contributes to phot receptor signalling in plants.
Collapse
Affiliation(s)
- Thomas Waksman
- School of Molecular BiosciencesCollege of Medical, Veterinary and Life Sciences, University of GlasgowBower BuildingGlasgowG12 8QQUK
| | - Noriyuki Suetsugu
- School of Molecular BiosciencesCollege of Medical, Veterinary and Life Sciences, University of GlasgowBower BuildingGlasgowG12 8QQUK
- Graduate School of Arts and SciencesThe University of TokyoTokyo153‐8902Japan
| | - Pawel Hermanowicz
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakówPoland
| | - James Ronald
- School of Molecular BiosciencesCollege of Medical, Veterinary and Life Sciences, University of GlasgowBower BuildingGlasgowG12 8QQUK
| | - Stuart Sullivan
- School of Molecular BiosciencesCollege of Medical, Veterinary and Life Sciences, University of GlasgowBower BuildingGlasgowG12 8QQUK
| | - Justyna Łabuz
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakówPoland
| | - John M. Christie
- School of Molecular BiosciencesCollege of Medical, Veterinary and Life Sciences, University of GlasgowBower BuildingGlasgowG12 8QQUK
| |
Collapse
|
5
|
Yuan N, Mendu L, Ghose K, Witte CS, Frugoli J, Mendu V. FKF1 Interacts with CHUP1 and Regulates Chloroplast Movement in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:542. [PMID: 36771626 PMCID: PMC9920714 DOI: 10.3390/plants12030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Plants have mechanisms to relocate chloroplasts based on light intensities in order to maximize photosynthesis and reduce photodamage. Under low light, chloroplasts move to the periclinal walls to increase photosynthesis (accumulation) and move to the anticlinal walls under high light to avoid photodamage, and even cell death (avoidance). Arabidopsis blue light receptors phot1 and phot2 (phototropins) have been reported to regulate chloroplast movement. This study discovered that another blue light receptor, FLAVIN-BINDING KELCH REPEAT F-BOX1 (FKF1), regulates chloroplast photorelocation by physically interacting with chloroplast unusual positioning protein 1 (CHUP1), a critical component of the chloroplast motility system. Leaf cross-sectioning and red-light transmittance results showed that overexpression of FKF1 compromised the avoidance response, while the absence of FKF1 enhanced chloroplast movements under high light. Western blot analysis showed that CHUP1 protein abundance is altered in FKF1 mutants and overexpression lines, indicating a potential regulation of CHUP1 by FKF1. qPCR results showed that two photorelocation pathway genes, JAC1 and THRUMIN1, were upregulated in FKF1-OE lines, and overexpression of FKF1 in the THRUMIN1 mutant weakened its accumulation and avoidance responses, indicating that JAC1 and THRUMIN1 may play a role in the FKF1-mediated chloroplast avoidance response. However, the precise functional roles of JAC1 and THRUMIN1 in this process are not known.
Collapse
Affiliation(s)
- Ning Yuan
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Lavanya Mendu
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - Kaushik Ghose
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Carlie Shea Witte
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Julia Frugoli
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Venugopal Mendu
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
6
|
Song W, Hu L, Ma Z, Yang L, Li J. Importance of Tyrosine Phosphorylation in Hormone-Regulated Plant Growth and Development. Int J Mol Sci 2022; 23:ijms23126603. [PMID: 35743047 PMCID: PMC9224382 DOI: 10.3390/ijms23126603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 02/01/2023] Open
Abstract
Protein phosphorylation is the most frequent post-translational modification (PTM) that plays important regulatory roles in a wide range of biological processes. Phosphorylation mainly occurs on serine (Ser), threonine (Thr), and tyrosine (Tyr) residues, with the phosphorylated Tyr sites accounting for ~1–2% of all phosphorylated residues. Tyr phosphorylation was initially believed to be less common in plants compared to animals; however, recent investigation indicates otherwise. Although they lack typical protein Tyr kinases, plants possess many dual-specificity protein kinases that were implicated in diverse cellular processes by phosphorylating Ser, Thr, and Tyr residues. Analyses of sequenced plant genomes also identified protein Tyr phosphatases and dual-specificity protein phosphatases. Recent studies have revealed important regulatory roles of Tyr phosphorylation in many different aspects of plant growth and development and plant interactions with the environment. This short review summarizes studies that implicated the Tyr phosphorylation in biosynthesis and signaling of plant hormones.
Collapse
Affiliation(s)
- Weimeng Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Li Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhihui Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Lei Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (W.S.); (L.H.); (Z.M.); (L.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
7
|
Sullivan S, Waksman T, Paliogianni D, Henderson L, Lütkemeyer M, Suetsugu N, Christie JM. Regulation of plant phototropic growth by NPH3/RPT2-like substrate phosphorylation and 14-3-3 binding. Nat Commun 2021; 12:6129. [PMID: 34675214 PMCID: PMC8531357 DOI: 10.1038/s41467-021-26333-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
Polarity underlies all directional growth responses in plants including growth towards the light (phototropism). The plasma-membrane associated protein, NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) is a key determinant of phototropic growth which is regulated by phototropin (phot) AGC kinases. Here we demonstrate that NPH3 is directly phosphorylated by phot1 within a conserved C-terminal consensus sequence (RxS) that is necessary to promote phototropism and petiole positioning in Arabidopsis. RxS phosphorylation also triggers 14-3-3 binding combined with changes in NPH3 phosphorylation and localisation status. Mutants of NPH3 that are unable to bind or constitutively bind 14-3-3 s show compromised functionality consistent with a model where phototropic curvature is established by signalling outputs arising from a gradient of NPH3 RxS phosphorylation across the stem. Our findings therefore establish that NPH3/RPT2-Like (NRL) proteins are phosphorylation targets for plant AGC kinases. Moreover, RxS phosphorylation is conserved in other members of the NRL family, suggesting a common mechanism of regulating plant growth to the prevailing light environment.
Collapse
Affiliation(s)
- Stuart Sullivan
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Thomas Waksman
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Dimitra Paliogianni
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Louise Henderson
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Melanie Lütkemeyer
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.,RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| | - Noriyuki Suetsugu
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.,Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
| | - John M Christie
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
8
|
Pan L, Fonseca De Lima CF, Vu LD, De Smet I. A Comprehensive Phylogenetic Analysis of the MAP4K Family in the Green Lineage. FRONTIERS IN PLANT SCIENCE 2021; 12:650171. [PMID: 34484252 PMCID: PMC8415026 DOI: 10.3389/fpls.2021.650171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The kinase-mediated phosphorylation impacts every basic cellular process. While mitogen-activated protein kinase technology kinase kinases (MAP4Ks) are evolutionarily conserved, there is no comprehensive overview of the MAP4K family in the green lineage (Viridiplantae). In this study, we identified putative MAP4K members from representative species of the two core groups in the green lineage: Chlorophyta, which is a diverse group of green algae, and Streptophyta, which is mostly freshwater green algae and land plants. From that, we inferred the evolutionary relationships of MAP4K proteins through a phylogenetic reconstruction. Furthermore, we provided a classification of the MAP4Ks in the green lineage into three distinct.
Collapse
Affiliation(s)
- Lixia Pan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca De Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
9
|
Hart JE, Gardner KH. Lighting the way: Recent insights into the structure and regulation of phototropin blue light receptors. J Biol Chem 2021; 296:100594. [PMID: 33781746 PMCID: PMC8086140 DOI: 10.1016/j.jbc.2021.100594] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
The phototropins (phots) are light-activated kinases that are critical for plant physiology and the many diverse optogenetic tools that they have inspired. Phototropins combine two blue-light-sensing Light-Oxygen-Voltage (LOV) domains (LOV1 and LOV2) and a C-terminal serine/threonine kinase domain, using the LOV domains to control the catalytic activity of the kinase. While much is known about the structure and photochemistry of the light-perceiving LOV domains, particularly in how activation of the LOV2 domain triggers the unfolding of alpha helices that communicate the light signal to the kinase domain, many questions about phot structure and mechanism remain. Recent studies have made progress addressing these questions by utilizing small-angle X-ray scattering (SAXS) and other biophysical approaches to study multidomain phots from Chlamydomonas and Arabidopsis, leading to models where the domains have an extended linear arrangement, with the regulatory LOV2 domain contacting the kinase domain N-lobe. We discuss this and other advances that have improved structural and mechanistic understanding of phot regulation in this review, along with the challenges that will have to be overcome to obtain high-resolution structural information on these exciting photoreceptors. Such information will be essential to advancing fundamental understanding of plant physiology while enabling engineering efforts at both the whole plant and molecular levels.
Collapse
Affiliation(s)
- Jaynee E Hart
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA; Department of Chemistry and Biochemistry, City College of New York, New York, USA; PhD Programs in Biochemistry, Chemistry, and Biology, Graduate Center, City University of New York, New York, USA.
| |
Collapse
|
10
|
Inoue S, Kaiserli E, Zhao X, Waksman T, Takemiya A, Okumura M, Takahashi H, Seki M, Shinozaki K, Endo Y, Sawasaki T, Kinoshita T, Zhang X, Christie JM, Shimazaki K. CIPK23 regulates blue light-dependent stomatal opening in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:679-692. [PMID: 32780529 PMCID: PMC7693358 DOI: 10.1111/tpj.14955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 05/23/2023]
Abstract
Phototropins (phot1 and phot2) are plant blue light receptor kinases that function to mediate phototropism, chloroplast movement, leaf flattening, and stomatal opening in Arabidopsis. Considerable progress has been made in understanding the mechanisms associated with phototropin receptor activation by light. However, the identities of phototropin signaling components are less well understood by comparison. In this study, we specifically searched for protein kinases that interact with phototropins by using an in vitro screening method (AlphaScreen) to profile interactions against an Arabidopsis protein kinase library. We found that CBL-interacting protein kinase 23 (CIPK23) interacts with both phot1 and phot2. Although these interactions were verified by in vitro pull-down and in vivo bimolecular fluorescence complementation assays, CIPK23 was not phosphorylated by phot1, as least in vitro. Mutants lacking CIPK23 were found to exhibit impaired stomatal opening in response to blue light but no deficits in other phototropin-mediated responses. We further found that blue light activation of inward-rectifying K+ (K+ in ) channels was impaired in the guard cells of cipk23 mutants, whereas activation of the plasma membrane H+ -ATPase was not. The blue light activation of K+ in channels was also impaired in the mutant of BLUS1, which is one of the phototropin substrates in guard cells. We therefore conclude that CIPK23 promotes stomatal opening through activation of K+ in channels most likely in concert with BLUS1, but through a mechanism other than activation of the H+ -ATPase. The role of CIPK23 as a newly identified component of phototropin signaling in stomatal guard cells is discussed.
Collapse
Affiliation(s)
- Shin‐Ichiro Inoue
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8602Japan
| | - Eirini Kaiserli
- Institute of Molecular Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Xiang Zhao
- Institute of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004People’s Republic of China
| | - Thomas Waksman
- Institute of Molecular Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Atsushi Takemiya
- Department of BiologyFaculty of ScienceKyushu University744 MotookaFukuoka819‐0395Japan
- Present address:
Department of BiologyGraduate School of Sciences and Technology for InnovationYamaguchi UniversityYamaguchi753‐8512Japan
| | - Masaki Okumura
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8602Japan
- Present address:
Department of Plant and Microbial BiologyUniversity of Minnesota
| | | | - Motoaki Seki
- RIKEN Cluster for Pioneering Research2‐1 HirosawaWako351‐0198Japan
- RIKEN Center for Sustainable Resource Science1‐7‐22, Suehiro, Tsurumi‐kuYokohama230‐0045Japan
| | - Kazuo Shinozaki
- Gene Discovery Research GroupRIKEN Center for Sustainable Resource Science3‐1‐1 KoyadaiTsukuba305‐0074Japan
| | - Yaeta Endo
- Institute for the Promotion of Science and TechnologyEhime UniversityMatsuyama790‐8577Japan
| | | | - Toshinori Kinoshita
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityChikusaNagoya464‐8602Japan
| | - Xiao Zhang
- Institute of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifeng475004People’s Republic of China
| | - John M. Christie
- Institute of Molecular Cell and Systems BiologyCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Ken‐Ichiro Shimazaki
- Department of BiologyFaculty of ScienceKyushu University744 MotookaFukuoka819‐0395Japan
| |
Collapse
|
11
|
Pan L, De Smet I. Expanding the Mitogen-Activated Protein Kinase (MAPK) Universe: An Update on MAP4Ks. FRONTIERS IN PLANT SCIENCE 2020; 11:1220. [PMID: 32849755 PMCID: PMC7427426 DOI: 10.3389/fpls.2020.01220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/27/2020] [Indexed: 05/23/2023]
Abstract
Phosphorylation-mediated signaling cascades control plant growth and development or the response to stress conditions. One of the best studied signaling cascades is the one regulated by MITOGEN-ACTIVATED PROTEIN KINASEs (MAPKs). However, MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE KINASEs (MAP4Ks) are hardly explored. Here, we will give a comprehensive overview of what is known about plant MAP4Ks and highlight some outstanding questions associated with this largely uncharacterized class of kinases in plants.
Collapse
Affiliation(s)
- Lixia Pan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
12
|
Liscum E, Nittler P, Koskie K. The continuing arc toward phototropic enlightenment. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1652-1658. [PMID: 31907539 PMCID: PMC7242014 DOI: 10.1093/jxb/eraa005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/05/2020] [Indexed: 05/20/2023]
Abstract
Phototropism represents a simple physiological mechanism-differential growth across the growing organ of a plant-to respond to gradients of light and maximize photosynthetic light capture (in aerial tissues) and water/nutrient acquisition (in roots). The phototropin blue light receptors, phot1 and phot2, have been identified as the essential sensors for phototropism. Additionally, several downstream signal/response components have been identified, including the phot-interacting proteins NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) and PHYTOCHROME SUBSTRATE 4 (PKS4). While the structural and photochemical properties of the phots are quite well understood, much less is known about how the phots signal through downstream regulators. Recent advances have, however, provided some intriguing clues. It appears that inactive receptor phot1 is found dispersed in a monomeric form at the plasma membrane in darkness. Upon light absorption dimerizes and clusters in sterol-rich microdomains where it is signal active. Additional studies showed that the phot-regulated phosphorylation status of both NPH3 and PKS4 is linked to phototropic responsiveness. While PKS4 can function as both a positive (in low light) and a negative (in high light) regulator of phototropism, NPH3 appears to function solely as a key positive regulator. Ultimately, it is the subcellular localization of NPH3 that appears crucial, an aspect regulated by its phosphorylation status. While phot1 activation promotes dephosphorylation of NPH3 and its movement from the plasma membrane to cytoplasmic foci, phot2 appears to modulate relocalization back to the plasma membrane. Together these findings are beginning to illuminate the complex biochemical and cellular events, involved in adaptively modifying phototropic responsiveness under a wide varying range of light conditions.
Collapse
Affiliation(s)
- Emmanuel Liscum
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
- Correspondence:
| | - Patrick Nittler
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Katelynn Koskie
- C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|