1
|
Tona R, Inagaki S, Ishibashi Y, Faridi R, Yousaf R, Roux I, Wilson E, Fenollar-Ferrer C, Chien WW, Belyantseva IA, Friedman TB. Interaction between the TBC1D24 TLDc domain and the KIBRA C2 domain is disrupted by two epilepsy-associated TBC1D24 missense variants. J Biol Chem 2024; 300:107725. [PMID: 39214300 PMCID: PMC11465063 DOI: 10.1016/j.jbc.2024.107725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Mutations of human TBC1D24 are associated with deafness, epilepsy, or DOORS syndrome (deafness, onychodystrophy, osteodystrophy, cognitive disability, and seizures). The causal relationships between TBC1D24 variants and the different clinical phenotypes are not understood. Our hypothesis is that phenotypic heterogeneity of missense mutations of TBC1D24 results, in part, from perturbed binding of different protein partners. To discover novel protein partners of TBC1D24, we conducted yeast two-hybrid (Y2H) screen using mouse full-length TBC1D24 as bait. Kidney and brain protein (KIBRA), a scaffold protein encoded by Wwc1, was identified as a partner of TBC1D24. KIBRA functions in the Hippo signaling pathway and is important for human cognition and memory. The TBC1D24 TLDc domain binds to KIBRA full-length and to its C2 domain, confirmed by Y2H assays. No interaction was detected with Y2H assays between the KIBRA C2 domain and TLDc domains of NCOA7, MEAK7, and OXR1. Moreover, the C2 domains of other WWC family proteins do not interact with the TLDc domain of TBC1D24, demonstrating specificity. The mRNAs encoding TBC1D24 and KIBRA proteins in mouse are coexpressed at least in a subset of hippocampal cells indicating availability to interact in vivo. As two epilepsy-associated recessive variants (Gly511Arg and Ala515Val) in the TLDc domain of human TBC1D24 disrupt the interaction with the human KIBRA C2 domain, this study reveals a pathogenic mechanism of TBC1D24-associated epilepsy, linking the TBC1D24 and KIBRA pathways. The interaction of TBC1D24-KIBRA is physiologically meaningful and necessary to reduce the risk of epilepsy.
Collapse
Affiliation(s)
- Risa Tona
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Sayaka Inagaki
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA.
| | - Yasuko Ishibashi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Rabia Faridi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Rizwan Yousaf
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Isabelle Roux
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Elizabeth Wilson
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Wade W Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA; Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Maryland, USA
| | - Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Maryland, USA.
| |
Collapse
|
2
|
Shao X, Volk L. PICK1 links KIBRA and AMPA receptors in coiled-coil-driven supramolecular complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584494. [PMID: 38558978 PMCID: PMC10980033 DOI: 10.1101/2024.03.12.584494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The human memory-associated protein KIBRA regulates synaptic plasticity and trafficking of AMPA-type glutamate receptors, and is implicated in multiple neuropsychiatric and cognitive disorders. How KIBRA forms complexes with and regulates AMPA receptors remains unclear. Here, we show that KIBRA does not interact directly with the AMPA receptor subunit GluA2, but that PICK1, a key regulator of AMPA receptor trafficking, can serve as a bridge between KIBRA and GluA2. We identified structural determinants of KIBRA-PICK1-AMPAR complexes by investigating interactions and cellular expression patterns of different combinations of KIBRA and PICK1 domain mutants. We find that the PICK1 BAR domain, a coiled-coil structure, is sufficient for interaction with KIBRA, whereas mutation of the BAR domain disrupts KIBRA-PICK1-GluA2 complex formation. In addition, KIBRA recruits PICK1 into large supramolecular complexes, a process which requires KIBRA coiled-coil domains. These findings reveal molecular mechanisms by which KIBRA can organize key synaptic signaling complexes.
Collapse
|
3
|
Han X, Wang C, Song L, Wang X, Tang S, Hou T, Liu C, Liang X, Qiu C, Wang Y, Du Y. KIBRA regulates amyloid β metabolism by controlling extracellular vesicles secretion. EBioMedicine 2022; 78:103980. [PMID: 35367771 PMCID: PMC8983338 DOI: 10.1016/j.ebiom.2022.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Background Previous research has revealed that KIBRA controls secretion of extracellular vesicles (EVs) by inhibiting the proteasomal degradation of Rab27a and EVs play an important role in amyloid β (Aβ) metabolism and transmission during Alzheimer's disease (AD) pathogenesis. Here, we further test the hypothesis that KIBRA regulates Aβ metabolism via the endosomal-lysosomal system. Methods We generated KIBRA knockout mice on a 5XFAD background and KIBRA knockdown cells in murine HT22 cells with stably overexpressing APP. Various forms of Aβ and quantification of EVs were analyzed by biochemical methods and nanoparticle tracking analysis, respectively. Multivesicular bodies (MVBs) were visualized by electron microscopy and confocal fluorescent microscopy. In a population-based cohort (n = 1419), KIBRA genotypes and plasma Aβ levels were analyzed using multiple-PCR amplification and Simoa, respectively. Findings Multiple forms of Aβ were dramatically attenuated in KIBRA knockout mouse brain, including monomers, oligomers, and extracellular deposition, but KIBRA knockout had no effect on intraneuronal APP C-terminal fragment β (APP-CTFβ)/Aβ levels. KIBRA depletion also decreased APP-CTFβ/Aβ-associated EVs secretion and subsequently enhanced MVBs number. Furthermore, we found that excessive accumulation of MVBs harboring APP-CTFβ/Aβ promoted the MVBs-lysosome fusion for degradation and inhibition of lysosomal function rescued secretion of APP-CTFβ/Aβ-associated EVs. More importantly, whole exon sequencing of KIBRA in a large population-based cohort identified the association of KIBRA rs28421695 polymorphism with plasma Aβ levels. Interpretation These results demonstrate that KIBRA regulates Aβ metabolism via controlling the secretion of APP-CTFβ/Aβ-associated EVs. Funding National Key R&D Program of China, and National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Xiaolei Han
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China
| | - Chaoqun Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China
| | - Lin Song
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China
| | - Xiaojie Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China
| | - Cuicui Liu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China
| | - Xiaoyan Liang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China; Department of Neurobiology, Care Sciences and Society, Aging Research Center and Center for Alzheimer Research, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China.
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Shandong University, No. 324 Jingwuweiqi Road, Jinan, Shandong 250021, PR China; Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, PR China; Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, PR China.
| |
Collapse
|
4
|
Larsen AH, Sansom MSP. Binding of Ca 2+-independent C2 domains to lipid membranes: A multi-scale molecular dynamics study. Structure 2021; 29:1200-1213.e2. [PMID: 34081910 PMCID: PMC8507603 DOI: 10.1016/j.str.2021.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 01/17/2023]
Abstract
C2 domains facilitate protein interactions with lipid bilayers in either a Ca2+-dependent or -independent manner. We used molecular dynamics (MD) simulations to explore six Ca2+-independent C2 domains, from KIBRA, PI3KC2α, RIM2, PTEN, SHIP2, and Smurf2. In coarse-grained MD simulations these C2 domains formed transient interactions with zwitterionic bilayers, compared with longer-lived interactions with anionic bilayers containing phosphatidylinositol bisphosphate (PIP2). Type I C2 domains bound non-canonically via the front, back, or side of the β sandwich, whereas type II C2 domains bound canonically, via the top loops. C2 domains interacted strongly with membranes containing PIP2, causing bound anionic lipids to cluster around the protein. Binding modes were refined via atomistic simulations. For PTEN and SHIP2, CG simulations of their phosphatase plus C2 domains with PIP2-containing bilayers were also performed, and the roles of the two domains in membrane localization compared. These studies establish a simulation protocol for membrane-recognition proteins. Binding of Ca2+-independent C2 domains to membranes was explored by MD simulation C2 domains from KIBRA, PI3KC2α, RIM2, PTEN, SHIP2, and Smurf2 were compared C2 domains formed longer-lived interactions with lipid bilayers containing PIP2 For PTEN and SHIP2, simulations of their phosphatase plus C2 domains were performed
Collapse
Affiliation(s)
- Andreas Haahr Larsen
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
5
|
Alnaas AA, Watson-Siriboe A, Tran S, Negussie M, Henderson JA, Osterberg JR, Chon NL, Harrott BM, Oviedo J, Lyakhova T, Michel C, Reisdorph N, Reisdorph R, Shearn CT, Lin H, Knight JD. Multivalent lipid targeting by the calcium-independent C2A domain of synaptotagmin-like protein 4/granuphilin. J Biol Chem 2020; 296:100159. [PMID: 33277360 PMCID: PMC7857503 DOI: 10.1074/jbc.ra120.014618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/03/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Synaptotagmin-like protein 4 (Slp-4), also known as granuphilin, is a Rab effector responsible for docking secretory vesicles to the plasma membrane before exocytosis. Slp-4 binds vesicular Rab proteins via an N-terminal Slp homology domain, interacts with plasma membrane SNARE complex proteins via a central linker region, and contains tandem C-terminal C2 domains (C2A and C2B) with affinity for phosphatidylinositol-(4,5)-bisphosphate (PIP2). The Slp-4 C2A domain binds with low nanomolar apparent affinity to PIP2 in lipid vesicles that also contain background anionic lipids such as phosphatidylserine but much weaker when either the background anionic lipids or PIP2 is removed. Through computational and experimental approaches, we show that this high-affinity membrane binding arises from concerted interaction at multiple sites on the C2A domain. In addition to a conserved PIP2-selective lysine cluster, a larger cationic surface surrounding the cluster contributes substantially to the affinity for physiologically relevant lipid compositions. Although the K398A mutation in the lysine cluster blocks PIP2 binding, this mutated protein domain retains the ability to bind physiological membranes in both a liposome-binding assay and MIN6 cells. Molecular dynamics simulations indicate several conformationally flexible loops that contribute to the nonspecific cationic surface. We also identify and characterize a covalently modified variant that arises through reactivity of the PIP2-binding lysine cluster with endogenous bacterial compounds and binds weakly to membranes. Overall, multivalent lipid binding by the Slp-4 C2A domain provides selective recognition and high-affinity docking of large dense core secretory vesicles to the plasma membrane.
Collapse
Affiliation(s)
- Aml A Alnaas
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | | | - Sherleen Tran
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Mikias Negussie
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Jack A Henderson
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - J Ryan Osterberg
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Nara L Chon
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Beckston M Harrott
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Julianna Oviedo
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Tatyana Lyakhova
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | - Cole Michel
- Department of Pharmaceutical Sciences, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Richard Reisdorph
- Department of Pharmaceutical Sciences, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Colin T Shearn
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hai Lin
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA.
| | - Jefferson D Knight
- Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA.
| |
Collapse
|
6
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
7
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|