1
|
Chen Y, Yan Y, Li Y, Zhang L, Luo T, Zhu X, Qin D, Chen N, Huang W, Chen X, Wang L, Zhu X, Zhang L. Deletion of Tgm2 suppresses BMP-mediated hepatocyte-to-cholangiocyte metaplasia in ductular reaction. Cell Prolif 2024; 57:e13646. [PMID: 38623945 PMCID: PMC11471396 DOI: 10.1111/cpr.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
Transglutaminase 2 (Tgm2) plays an essential role in hepatic repair following prolonged toxic injury. During cholestatic liver injury, the intrahepatic cholangiocytes undergo dynamic tissue expansion and remodelling, referred to as ductular reaction (DR), which is crucial for liver regeneration. However, the molecular mechanisms governing the dynamics of active cells in DR are still largely unclear. Here, we generated Tgm2-knockout mice (Tgm2-/-) and Tgm2-CreERT2-Rosa26-mTmG flox/flox (Tgm2CreERT2-R26T/Gf/f) mice and performed a three-dimensional (3D) collagen gel culture of mouse hepatocytes to demonstrate how Tgm2 signalling is involved in DR to remodel intrahepatic cholangiocytes. Our results showed that the deletion of Tgm2 adversely affected the functionality and maturity of the proliferative cholangiocytes in DR, thus leading to more severe cholestasis during DDC-induced liver injury. Additionally, Tgm2 hepatocytes played a crucial role in the regulation of DR through metaplasia. We unveiled that Tgm2 regulated H3K4me3Q5ser via serotonin to promote BMP signalling activation to participate in DR. Besides, we revealed that the activation or inhibition of BMP signalling could promote or suppress the development and maturation of cholangiocytes in DDC-induced DR. Furthermore, our 3D collagen gel culture assay indicated that Tgm2 was vital for the development of cholangiocytes in vitro. Our results uncovered a considerable role of BMP signalling in controlling metaplasia of Tgm2 hepatocytes in DR and revealed the phenotypic plasticity of mature hepatocytes.
Collapse
Affiliation(s)
- Yaqing Chen
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Yi Yan
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Yujing Li
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Liang Zhang
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Tingting Luo
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Xinlong Zhu
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Dan Qin
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Ning Chen
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| | - Wendong Huang
- Department of Diabetes Complications and MetabolismDiabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical CenterDuarteCaliforniaUSA
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General HospitalNephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease ResearchBeijingChina
| | - Liqiang Wang
- Department of Nephrology, First Medical Center of Chinese PLA General HospitalNephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease ResearchBeijingChina
| | - Xianmin Zhu
- Department of Hepatobiliary and Pancreatic SurgeryCancer Hospital of Wuhan University (Hubei Cancer Hospital)WuhanChina
| | - Lisheng Zhang
- College of Veterinary Medicine/College of Biomedicine and HealthHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
2
|
Huyghe A, Trajkova A, Lavial F. Cellular plasticity in reprogramming, rejuvenation and tumorigenesis: a pioneer TF perspective. Trends Cell Biol 2024; 34:255-267. [PMID: 37648593 DOI: 10.1016/j.tcb.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
The multistep process of in vivo reprogramming, mediated by the transcription factors (TFs) Oct4, Sox2, Klf4, and c-Myc (OSKM), holds great promise for the development of rejuvenating and regenerative strategies. However, most of the approaches developed so far are accompanied by a persistent risk of tumorigenicity. Here, we review the groundbreaking effects of in vivo reprogramming with a particular focus on rejuvenation and regeneration. We discuss how the activity of pioneer TFs generates cellular plasticity that may be critical for inducing not only reprogramming and regeneration, but also cancer initiation. Finally, we highlight how a better understanding of the uncoupled control of cellular identity, plasticity, and aging during reprogramming might pave the way to the development of rejuvenating/regenerating strategies in a nontumorigenic manner.
Collapse
Affiliation(s)
- Aurélia Huyghe
- Cellular Reprogramming, Stem Cells and Oncogenesis Laboratory, Equipe Labellisée la Ligue Contre le Cancer, Labex Dev2Can - Univeristy of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Aneta Trajkova
- Cellular Reprogramming, Stem Cells and Oncogenesis Laboratory, Equipe Labellisée la Ligue Contre le Cancer, Labex Dev2Can - Univeristy of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | - Fabrice Lavial
- Cellular Reprogramming, Stem Cells and Oncogenesis Laboratory, Equipe Labellisée la Ligue Contre le Cancer, Labex Dev2Can - Univeristy of Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France.
| |
Collapse
|
3
|
Kim JH, Mun SJ, Kim JH, Son MJ, Kim SY. Integrative analysis of single-cell RNA-seq and ATAC-seq reveals heterogeneity of induced pluripotent stem cell-derived hepatic organoids. iScience 2023; 26:107675. [PMID: 37680467 PMCID: PMC10481365 DOI: 10.1016/j.isci.2023.107675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/30/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
To gain deeper insights into transcriptomes and epigenomes of organoids, liver organoids from two states (expandable and more differentiated) were subjected to single-cell RNA-seq (scRNA-seq) and single-cell ATAC-seq (scATAC-seq) analyses. Mitochondrial gene expression was higher in differentiated than in non-differentiated hepatocytes, with ATAC-seq peaks increasing near the mitochondrial control region. Differentiation of liver organoids resulted in the expression of transcription factors that act as enhancers and repressors. In addition, epigenetic mechanisms regulating the expression of alpha-fetoprotein (AFP) and albumin (ALB) differed in liver organoids and adult liver. Knockdown of PDX1, an essential transcription factor for pancreas development, led to the hepatic maturation of liver organoids through regulation of AFP and ALB expression. This integrative analysis of the transcriptomes and epigenomes of liver organoids at the single-cell level may contribute to a better understanding of the regulatory networks during liver development and the further development of mature in vitro human liver models.
Collapse
Affiliation(s)
| | - Seon Ju Mun
- Stem Cell Convergence Research Center, Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| | - Jeong-Hwan Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Myung Jin Son
- Stem Cell Convergence Research Center, Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seon-Young Kim
- Korean Bioinformation Center, Daejeon, Korea
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, Korea
| |
Collapse
|
4
|
Yerra VG, Drosatos K. Specificity Proteins (SP) and Krüppel-like Factors (KLF) in Liver Physiology and Pathology. Int J Mol Sci 2023; 24:4682. [PMID: 36902112 PMCID: PMC10003758 DOI: 10.3390/ijms24054682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The liver acts as a central hub that controls several essential physiological processes ranging from metabolism to detoxification of xenobiotics. At the cellular level, these pleiotropic functions are facilitated through transcriptional regulation in hepatocytes. Defects in hepatocyte function and its transcriptional regulatory mechanisms have a detrimental influence on liver function leading to the development of hepatic diseases. In recent years, increased intake of alcohol and western diet also resulted in a significantly increasing number of people predisposed to the incidence of hepatic diseases. Liver diseases constitute one of the serious contributors to global deaths, constituting the cause of approximately two million deaths worldwide. Understanding hepatocyte transcriptional mechanisms and gene regulation is essential to delineate pathophysiology during disease progression. The current review summarizes the contribution of a family of zinc finger family transcription factors, named specificity protein (SP) and Krüppel-like factors (KLF), in physiological hepatocyte functions, as well as how they are involved in the onset and development of hepatic diseases.
Collapse
Affiliation(s)
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Cardiovascular Center, Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
5
|
Wang W, Chen D, Wang J, Wen L. Cellular Homeostasis and Repair in the Biliary Tree. Semin Liver Dis 2022; 42:271-282. [PMID: 35672015 DOI: 10.1055/a-1869-7714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During biliary tree homeostasis, BECs are largely in a quiescent state and their turnover is slow for maintaining normal tissue homeostasis. BTSCs continually replenish new BECs in the luminal surface of EHBDs. In response to various types of biliary injuries, distinct cellular sources, including HPCs, BTSCs, hepatocytes, and BECs, repair or regenerate the injured bile duct. BEC, biliary epithelial cell; BTSC, biliary tree stem/progenitor cell; EHBD, extrahepatic bile ducts; HPC, hepatic progenitor cell.The biliary tree comprises intrahepatic bile ducts and extrahepatic bile ducts lined with epithelial cells known as biliary epithelial cells (BECs). BECs are a common target of various cholangiopathies for which there is an unmet therapeutic need in clinical hepatology. The repair and regeneration of biliary tissue may potentially restore the normal architecture and function of the biliary tree. Hence, the repair and regeneration process in detail, including the replication of existing BECs, expansion and differentiation of the hepatic progenitor cells and biliary tree stem/progenitor cells, and transdifferentiation of the hepatocytes, should be understood. In this paper, we review biliary tree homeostasis, repair, and regeneration and discuss the feasibility of regenerative therapy strategies for cholangiopathy treatment.
Collapse
Affiliation(s)
- Wei Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongfeng Chen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Wang
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangzhi Wen
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
6
|
Liberti DC, Liberti Iii WA, Kremp MM, Penkala IJ, Cardenas-Diaz FL, Morley MP, Babu A, Zhou S, Fernandez Iii RJ, Morrisey EE. Klf5 defines alveolar epithelial type 1 cell lineage commitment during lung development and regeneration. Dev Cell 2022; 57:1742-1757.e5. [PMID: 35803279 DOI: 10.1016/j.devcel.2022.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Alveolar epithelial cell fate decisions drive lung development and regeneration. Using transcriptomic and epigenetic profiling coupled with genetic mouse and organoid models, we identified the transcription factor Klf5 as an essential determinant of alveolar epithelial cell fate across the lifespan. We show that although dispensable for both adult alveolar epithelial type 1 (AT1) and alveolar epithelial type 2 (AT2) cell homeostasis, Klf5 enforces AT1 cell lineage fidelity during development. Using infectious and non-infectious models of acute respiratory distress syndrome, we demonstrate that Klf5 represses AT2 cell proliferation and enhances AT2-AT1 cell differentiation in a spatially restricted manner during lung regeneration. Moreover, ex vivo organoid assays identify that Klf5 reduces AT2 cell sensitivity to inflammatory signaling to drive AT2-AT1 cell differentiation. These data define the roll of a major transcriptional regulator of AT1 cell lineage commitment and of the AT2 cell response to inflammatory crosstalk during lung regeneration.
Collapse
Affiliation(s)
- Derek C Liberti
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA
| | - William A Liberti Iii
- Department of Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA 94720, USA
| | - Madison M Kremp
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian J Penkala
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA
| | - Fabian L Cardenas-Diaz
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Zhou
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rafael J Fernandez Iii
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Palioura D, Lazou A, Drosatos K. Krüppel-like factor (KLF)5: An emerging foe of cardiovascular health. J Mol Cell Cardiol 2022; 163:56-66. [PMID: 34653523 PMCID: PMC8816822 DOI: 10.1016/j.yjmcc.2021.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 02/03/2023]
Abstract
Krüppel-like factors (KLFs) are DNA-binding transcriptional factors, which regulate various pathways that pertain to development, metabolism and other cellular mechanisms. KLF5 was first cloned in 1993 and by 1999, it was reported as the intestinal-enriched KLF. Beyond findings that have associated KLF5 with normal development and cancer, it has been associated with various types of cardiovascular (CV) complications and regulation of metabolic pathways in the liver, heart, adipose tissue and skeletal muscle. Specifically, increased KLF5 expression has been linked with cardiomyopathy in diabetes, end-stage heart failure, and as well as in vascular atherosclerotic lesions. In this review article, we summarize research findings about transcriptional, post-transcriptional and post-translational regulation of KLF5, as well as the role of KLF5 in the biology of cells and organs that affect cardiovascular health either directly or indirectly. Finally, we propose KLF5 inhibition as an emerging approach for cardiovascular therapeutics.
Collapse
Affiliation(s)
- Dimitra Palioura
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA;,School of Biology, Aristotle University of Thessaloniki, GR, Greece
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, GR, Greece
| | - Konstantinos Drosatos
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Paranjapye A, NandyMazumdar M, Browne JA, Leir SH, Harris A. Krüppel-like factor 5 regulates wound repair and the innate immune response in human airway epithelial cells. J Biol Chem 2021; 297:100932. [PMID: 34217701 PMCID: PMC8353497 DOI: 10.1016/j.jbc.2021.100932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022] Open
Abstract
A complex network of transcription factors regulates genes involved in establishing and maintaining key biological properties of the human airway epithelium. However, detailed knowledge of the contributing factors is incomplete. Here we characterize the role of Krüppel-like factor 5 (KLF5), in controlling essential pathways of epithelial cell identity and function in the human lung. RNA-seq following siRNA-mediated depletion of KLF5 in the Calu-3 lung epithelial cell line identified significant enrichment of genes encoding chemokines and cytokines involved in the proinflammatory response and also components of the junctional complexes mediating cell adhesion. To determine direct gene targets of KLF5, we defined the cistrome of KLF5 using ChIP-seq in both Calu-3 and 16HBE14o- lung epithelial cell lines. Occupancy site concordance analysis revealed that KLF5 colocalized with the active histone modification H3K27ac and also with binding sites for the transcription factor CCAAT enhancer-binding protein beta (C/EBPβ). Depletion of KLF5 increased both the expression and secretion of cytokines including IL-1β, a response that was enhanced following exposure to Pseudomonas aeruginosa lipopolysaccharide. Calu-3 cells exhibited faster rates of repair after KLF5 depletion compared with negative controls in wound scratch assays. Similarly, CRISPR-mediated KLF5-null 16HBE14o- cells also showed enhanced wound closure. These data reveal a pivotal role for KLF5 in coordinating epithelial functions relevant to human lung disease.
Collapse
Affiliation(s)
- Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Monali NandyMazumdar
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - James A Browne
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shih-Hsing Leir
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
9
|
Bergström Å, Gerling M, Van Hul N, Fernández Moro C, Rozell B, Toftgård R, Sur I. Severe liver disease resembling PSC in mice with K5-Cre mediated deletion of Krüppel-like factor 5 (Klf5). Transgenic Res 2021; 30:701-707. [PMID: 34117597 PMCID: PMC8478727 DOI: 10.1007/s11248-021-00267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/06/2021] [Indexed: 11/30/2022]
Abstract
Chronic cholestatic liver diseases including primary sclerosing cholangitis (PSC) present a complex spectrum with regards to the cause, age of manifestation and histopathological features. Current treatment options are severely limited primarily due to a paucity of model systems mirroring the disease. Here, we describe the Keratin 5 (K5)-Cre; Klf5fl/fl mouse that spontaneously develops severe liver disease during the postnatal period with features resembling PSC including a prominent ductular reaction, fibrotic obliteration of the bile ducts and secondary degeneration/necrosis of liver parenchyma. Over time, there is an expansion of Sox9+ hepatocytes in the damaged livers suggestive of a hepatocyte-mediated regenerative response. We conclude that Klf5 is required for the normal function of the hepatobiliary system and that the K5-Cre; Klf5fl/fl mouse is an excellent model to probe the molecular events interlinking damage and regenerative response in the liver.
Collapse
Affiliation(s)
- Åsa Bergström
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Marco Gerling
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
- Tema Cancer, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Noémi Van Hul
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Carlos Fernández Moro
- Department Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, 141 86, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, 141 52, Huddinge, Sweden
| | - Björn Rozell
- Department of Laboratory Medicine, Karolinska Institutet, 141 52, Huddinge, Sweden
| | - Rune Toftgård
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Inderpreet Sur
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
10
|
Kyrönlahti A, Godbole N, Akinrinade O, Soini T, Nyholm I, Andersson N, Hukkinen M, Lohi J, Wilson DB, Pihlajoki M, Pakarinen MP, Heikinheimo M. Evolving Up-regulation of Biliary Fibrosis-Related Extracellular Matrix Molecules After Successful Portoenterostomy. Hepatol Commun 2021; 5:1036-1050. [PMID: 34141988 PMCID: PMC8183171 DOI: 10.1002/hep4.1684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Successful portoenterostomy (SPE) improves the short-term outcome of patients with biliary atresia (BA) by relieving cholestasis and extending survival with native liver. Despite SPE, hepatic fibrosis progresses in most patients, leading to cirrhosis and a deterioration of liver function. The goal of this study was to characterize the effects of SPE on the BA liver transcriptome. We used messenger RNA sequencing to analyze global gene-expression patterns in liver biopsies obtained at the time of portoenterostomy (n = 13) and 1 year after SPE (n = 8). Biopsies from pediatric (n = 2) and adult (n = 2) organ donors and other neonatal cholestatic conditions (n = 5) served as controls. SPE was accompanied by attenuation of inflammation and concomitant up-regulation of key extracellular matrix (ECM) genes. Highly overexpressed genes promoting biliary fibrosis and bile duct integrity, such as integrin subunit beta 6 and previously unreported laminin subunit alpha 3, emerged as candidates to control liver fibrosis after SPE. At a cellular level, the relative abundance of activated hepatic stellate cells and liver macrophages decreased following SPE, whereas portal fibroblasts (PFs) and cholangiocytes persisted. Conclusion: The attenuation of inflammation following SPE coincides with emergence of an ECM molecular fingerprint, a set of profibrotic molecules mechanistically connected to biliary fibrosis. The persistence of activated PFs and cholangiocytes after SPE suggests a central role for these cell types in the progression of biliary fibrosis.
Collapse
Affiliation(s)
- Antti Kyrönlahti
- Pediatric Research CenterChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Nimish Godbole
- Pediatric Research CenterChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Oyediran Akinrinade
- Pediatric Research CenterChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Tea Soini
- Pediatric Research CenterChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland.,Center for Infectious MedicineDepartment of MedicineKarolinska InstitutetStockholmSweden
| | - Iiris Nyholm
- Pediatric Research CenterChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland.,Pediatric SurgeryPediatric Liver and Gut Research GroupChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Noora Andersson
- Pediatric Research CenterChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Maria Hukkinen
- Pediatric SurgeryPediatric Liver and Gut Research GroupChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Jouko Lohi
- Department of PathologyHelsinki University HospitalHelsinkiFinland
| | - David B Wilson
- Department of PediatricsSt. Louis Children's HospitalWashington University School of MedicineSt. LouisMOUSA
| | - Marjut Pihlajoki
- Pediatric Research CenterChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland.,Center for Infectious MedicineDepartment of MedicineKarolinska InstitutetStockholmSweden
| | - Mikko P Pakarinen
- Pediatric Research CenterChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland.,Pediatric SurgeryPediatric Liver and Gut Research GroupChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Markku Heikinheimo
- Pediatric Research CenterChildren's HospitalUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland.,Department of PediatricsSt. Louis Children's HospitalWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
11
|
Abstract
BACKGROUND GATA6, a transcription factor expressed in cholangiocytes, has been implicated in the response to liver injury. In biliary atresia, a disease characterized by extrahepatic bile duct obstruction, liver expression of GATA6 increases with pathological bile duct expansion and decreases after successful Kasai portoenterostomy. The aim of this study was to garner genetic evidence that GATA6 is involved in ductular formation/expansion. METHODS The murine Gata6 gene was conditionally deleted using Alb-cre, a transgene expressed in hepatoblasts (the precursors of hepatocytes and cholangiocytes) and mature hepatocytes. Bile duct ligation (BDL) was used to model biliary obstruction. RESULTS Alb-Cre;Gata6flox/flox mice were viable and fertile. Cre-mediated recombination of Gata6 in hepatocytes had little impact on cellular structure or function. GATA6 immunoreactivity was retained in a majority of biliary epithelial cells in adult Alb-Cre;Gata6flox/flox mice, implying that surviving cholangiocytes were derived from hepatoblasts that had escaped biallelic Cre-mediated recombination. Although GATA6 immunoreactivity was preserved in cholangiocytes, Alb-cre;Gata6flox/flox mice had a demonstrable biliary phenotype. A neutrophil-rich infiltrate surrounded newly formed bile ducts in neonatal Alb-Cre;Gata6flox/flox mice. Foci of fibrosis/necrosis, presumed to reflect patchy defects in bile duct formation, were observed in the livers of 37% of adult Alb-cre;Gata6flox/flox mice and 0% of controls (p < 0.05). Most notably, Alb-cre;Gata6flox/flox mice had an altered response to BDL manifest as reduced survival, impaired bile ductule proliferation, increased parenchymal necrosis, reduced fibrosis, and enhanced macrophage accumulation in the portal space. CONCLUSIONS GATA6 orchestrates intrahepatic biliary remodeling and mitigates liver injury following extrahepatic bile duct obstruction.
Collapse
|
12
|
Yamada M, Okada H, Kikkawa Y, Miyajima A, Itoh T. Tissue substructure-specific deposition of the β3-containing laminin-332 in the biliary epithelium of human and mouse livers. Biochem Biophys Res Commun 2020; 524:465-471. [PMID: 32008745 DOI: 10.1016/j.bbrc.2020.01.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/19/2020] [Indexed: 01/20/2023]
Abstract
Laminin is a family of basement membrane proteins, whose selective and spatiotemporal expression profiles are linked to their various functions in development, maintenance, and functional regulation of different tissues. In the liver, α1-and α5-containing laminin isoforms have been documented to be critically involved in the developmental process of the epithelial tissue of the bile duct. However, possible roles of other laminin isoforms in bile duct formation and function remain elusive. Here, we evaluated public single-cell RNA sequencing databases on human liver cells to reveal expression landscape of laminin genes, and found that genes for laminin-332 subunits were conjointly expressed in the EPCAM+ biliary epithelial cell population. Expression of the β3 and γ2 subunit genes was restricted to biliary epithelial cells in the liver and, remarkably, showed apparent heterogeneity among them. We confirmed the heterogeneous nature of the laminin-β3 expression in murine livers, which was firmly related to morphological substructures in the biliary epithelium. Finally, we generated the liver epithelial tissue-specific laminin- β3 knockout mice and found that this laminin subunit was dispensable under physiological conditions. Together, our present findings have identified the β3 subunit and the related laminin-332 isoform as useful markers and potentially important regulatory molecules for future understanding of pathophysiology in the hepatobiliary system.
Collapse
Affiliation(s)
- Minami Yamada
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Hajime Okada
- Division of Mammalian Development, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Atsushi Miyajima
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Tohru Itoh
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
13
|
Itoh T, Miyajima A. Filling a gYap in Hepato-Biliary Tissue Integration in Liver Homeostasis and Regeneration. Cell Stem Cell 2020; 25:5-6. [PMID: 31271747 DOI: 10.1016/j.stem.2019.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Liver bile ducts serve primarily as drainage for bile and undergo extensive remodeling in response to hepatocyte injuries. In this issue of Cell Stem Cell, Pepe-Mooney et al. (2019) and Planas-Paz et al. (2019) show that Yap signaling can be activated by bile acids and is critical for biliary tissue homeostasis and dynamics.
Collapse
Affiliation(s)
- Tohru Itoh
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
| | - Atsushi Miyajima
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
14
|
Alison MR, Lin WR. Bile ductular reactions in the liver: similarities are only skin deep. J Pathol 2019; 248:257-259. [PMID: 30883752 DOI: 10.1002/path.5265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022]
Abstract
Extensive bile ductular reactions (DRs) accompany many cholestatic liver diseases such as primary biliary cholangitis and primary sclerosing cholangitis (PSC) as well as parenchymal liver cell diseases such as alcoholic liver disease, non-alcoholic steatohepatitis and HCV and HBV infections. DRs originate from bile ducts or hepatocytes after damage and can be identified by expression of markers associated with cholangiocytes, often being associated with disease progression and fibrosis. In a recent issue of The Journal of Pathology, Govaere et al employed high-throughput RNA sequencing to compare the transcriptomic profiles of DR cells from liver diseases of different aetiology; HCV infection affecting hepatocytes and PSC initially affecting biliary epithelial cells. Both DR transcriptomes were markedly different from that of their neighbouring hepatocytes and 330 genes were significantly differently expressed between the DRs of the HCV and PSC liver diseases. Exploring such gene expression profiles could enable therapeutic targeting of DRs, on the one hand to inhibit liver fibrosis and inflammation and conversely to promote hepatocyte and cholangiocyte regeneration. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|