1
|
Wang J, Wang ZQ, Zong W. ADP-ribose hydrolases: biological functions and potential therapeutic targets. Expert Rev Mol Med 2024; 26:e21. [PMID: 39375922 PMCID: PMC11488344 DOI: 10.1017/erm.2024.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 10/09/2024]
Abstract
ADP-ribosylation (ADPRylation), which encompasses poly(ADP-ribosyl)ation and mono(ADP-ribosyl)ation, is an important post-translational modification catalysed by the poly(ADP-ribose) polymerase (PARP) enzyme superfamily. The process involves writers (PARPs) and erasers (ADP-ribose hydrolases), which work together to precisely regulate diverse cellular and molecular responses. Although the PARP-mediated synthesis of ADP-ribose (ADPr) has been well studied, ADPr degradation by degrading enzymes deserves further investigation. Nonetheless, recent studies have provided important new insights into the biology and functions of ADPr hydrolases. Notably, research has illuminated the significance of the poly(ADP-ribose) degradation pathway and its activation by the coordinated actions of poly(ADP-ribose) glycohydrolase and other ADPr hydrolases, which have been identified as key components of ADPRylation signalling networks. The degradation pathway has been proposed to play crucial roles in key cellular processes, such as DNA damage repair, chromatin dynamics, transcriptional regulation and cell death. A deep understanding of these ADPr erasing enzymes provides insights into the biological roles of ADPRylation in human health and disease aetiology and paves the road for the development of novel therapeutic strategies. This review article provides a summary of current knowledge about the biochemical and molecular functions of ADPr erasers and their physiological implications in human pathology.
Collapse
Affiliation(s)
- Jingpeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Zhao-Qi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Faculty of Biological Sciences, Friedrich-Schiller University of Jena, Jena 07743, Germany
| | - Wen Zong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
2
|
Bannister M, Bray S, Aggarwal A, Billington C, Nguyen HD. A novel variant in ADPRS disrupts ARH3 stability and subcellular localization in children with neurodegeneration and respiratory failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.597428. [PMID: 38915701 PMCID: PMC11195236 DOI: 10.1101/2024.06.14.597428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Purpose ADP-ribosylation is a post-translational modification involving the transfer of one or more ADP-ribose units from NAD+ to target proteins. Dysregulation of ADP-ribosylation is implicated in neurodegenerative diseases. Here we report a novel homozygous variant in the ADPRS gene (c.545A>G, p.His182Arg) encoding the mono(ADP-ribosyl) hydrolase ARH3 found in 2 patients with childhood-onset neurodegeneration with stress-induced ataxia and seizures (CONDSIAS). Methods Genetic testing via exome sequencing was used to identify the underlying disease cause in two siblings with developmental delay, seizures, progressive muscle weakness, and respiratory failure following an episodic course. Studies in a cell culture model uncover biochemical and cellular consequences of the identified genetic change. Results The ARH3 H182R variant affects a highly conserved residue in the active site of ARH3, leading to protein instability, degradation, and reduced expression. ARH3 H182R additionally fails to localize to the nucleus. The combination of reduced expression and mislocalization of ARH3 H182R resulted in accumulation of mono-ADP ribosylated species in cells. Conclusions The children's clinical course combined with the biochemical characterization of their genetic variant develops our understanding of the pathogenic mechanisms driving CONDSIAS and highlights a critical role for ARH3-regulated ADP ribosylation in nervous system integrity.
Collapse
|
3
|
Öz Yıldız S, Yalnızoğlu D, Şimsek Kiper PÖ, Göçmen R, Soğukpınar M, Utine GE, Haliloğlu G. Delineation of ADPRHL2 Variants: Report of Two New Patients with Review of the Literature. Neuropediatrics 2024; 55:156-165. [PMID: 38365196 DOI: 10.1055/s-0044-1779618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
ADPRHL2 is involved in posttranslational modification and is known to have a role in physiological functions such as cell signaling, DNA repair, gene control, cell death, and response to stress. Recently, a group of neurological disorders due to ADPRHL2 variants is described, characterized by childhood-onset, stress-induced variable movement disorders, neuropathy, seizures, and neurodegenerative course. We present the diagnostic pathway of two pediatric patients with episodic dystonia and ataxia, who later had a neurodegenerative course complicated by central hypoventilation syndrome due to the same homozygous ADPRHL2 variant. We conducted a systematic literature search and data extraction procedure following the Preferred Reporting Items for Systematic Review and Meta-Analysis 2020 statement in terms of patients with ADPRHL2 variants, from 2018 up to 3 February, 2023. In total, 12 articles describing 47 patients were included in the final analysis. Median age at symptom onset was 2 (0.7-25) years, with the most common presenting symptoms being gait problems (n = 19, 40.4%), seizures (n = 16, 34%), ataxia (n = 13, 27.6%), and weakness (n = 10, 21.2%). Triggering factors (28/47; 59.5%) and regression (28/43; 60.4%), axonal polyneuropathy (9/23; 39.1%), and cerebral and cerebellar atrophy with white matter changes (28/36; 77.7%) were the other clues. The fatality rate and median age of death were 44.6% (n = 21) and 7 (2-34) years, respectively. ADPRHL2 variants should be considered in the context of episodic, stress-induced pediatric and adult-onset movement disorders and seizures.
Collapse
Affiliation(s)
- Sibel Öz Yıldız
- Division of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Dilek Yalnızoğlu
- Division of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Pelin Özlem Şimsek Kiper
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Rahşan Göçmen
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Merve Soğukpınar
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gülen Eda Utine
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Göknur Haliloğlu
- Division of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
4
|
Rouleau-Turcotte É, Pascal JM. ADP-ribose contributions to genome stability and PARP enzyme trapping on sites of DNA damage; paradigm shifts for a coming-of-age modification. J Biol Chem 2023; 299:105397. [PMID: 37898399 PMCID: PMC10722394 DOI: 10.1016/j.jbc.2023.105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
ADP-ribose is a versatile modification that plays a critical role in diverse cellular processes. The addition of this modification is catalyzed by ADP-ribosyltransferases, among which notable poly(ADP-ribose) polymerase (PARP) enzymes are intimately involved in the maintenance of genome integrity. The role of ADP-ribose modifications during DNA damage repair is of significant interest for the proper development of PARP inhibitors targeted toward the treatment of diseases caused by genomic instability. More specifically, inhibitors promoting PARP persistence on DNA lesions, termed PARP "trapping," is considered a desirable characteristic. In this review, we discuss key classes of proteins involved in ADP-ribose signaling (writers, readers, and erasers) with a focus on those involved in the maintenance of genome integrity. An overview of factors that modulate PARP1 and PARP2 persistence at sites of DNA lesions is also discussed. Finally, we clarify aspects of the PARP trapping model in light of recent studies that characterize the kinetics of PARP1 and PARP2 recruitment at sites of lesions. These findings suggest that PARP trapping could be considered as the continuous recruitment of PARP molecules to sites of lesions, rather than the physical stalling of molecules. Recent studies and novel research tools have elevated the level of understanding of ADP-ribosylation, marking a coming-of-age for this interesting modification.
Collapse
Affiliation(s)
- Élise Rouleau-Turcotte
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
5
|
Duma L, Ahel I. The function and regulation of ADP-ribosylation in the DNA damage response. Biochem Soc Trans 2023; 51:995-1008. [PMID: 37171085 PMCID: PMC10317172 DOI: 10.1042/bst20220749] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
ADP-ribosylation is a post-translational modification involved in DNA damage response (DDR). In higher organisms it is synthesised by PARP 1-3, DNA strand break sensors. Recent advances have identified serine residues as the most common targets for ADP-ribosylation during DDR. To ADP-ribosylate serine, PARPs require an accessory factor, HPF1 which completes the catalytic domain. Through ADP-ribosylation, PARPs recruit a variety of factors to the break site and control their activities. However, the timely removal of ADP-ribosylation is also key for genome stability and is mostly performed by two hydrolases: PARG and ARH3. Here, we describe the key writers, readers and erasers of ADP-ribosylation and their contribution to the mounting of the DDR. We also discuss the use of PARP inhibitors in cancer therapy and the ways to tackle PARPi treatment resistance.
Collapse
Affiliation(s)
- Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| |
Collapse
|
6
|
Badiee M, Kenet AL, Ganser LR, Paul T, Myong S, Leung AKL. Switch-like compaction of poly(ADP-ribose) upon cation binding. Proc Natl Acad Sci U S A 2023; 120:e2215068120. [PMID: 37126687 PMCID: PMC10175808 DOI: 10.1073/pnas.2215068120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023] Open
Abstract
Poly(ADP-ribose) (PAR) is a homopolymer of adenosine diphosphate ribose that is added to proteins as a posttranslational modification to regulate numerous cellular processes. PAR also serves as a scaffold for protein binding in macromolecular complexes, including biomolecular condensates. It remains unclear how PAR achieves specific molecular recognition. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) to evaluate PAR flexibility under different cation conditions. We demonstrate that, compared to RNA and DNA, PAR has a longer persistence length and undergoes a sharper transition from extended to compact states in physiologically relevant concentrations of various cations (Na+, Mg2+, Ca2+, and spermine4+). We show that the degree of PAR compaction depends on the concentration and valency of cations. Furthermore, the intrinsically disordered protein FUS also served as a macromolecular cation to compact PAR. Taken together, our study reveals the inherent stiffness of PAR molecules, which undergo switch-like compaction in response to cation binding. This study indicates that a cationic environment may drive recognition specificity of PAR.
Collapse
Affiliation(s)
- Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Adam L. Kenet
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Laura R. Ganser
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218
| | - Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| |
Collapse
|
7
|
Badiee M, Kenet AL, Ganser LR, Paul T, Myong S, Leung AKL. Switch-like Compaction of Poly(ADP-ribose) Upon Cation Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.11.531013. [PMID: 36993178 PMCID: PMC10055007 DOI: 10.1101/2023.03.11.531013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Poly(ADP-ribose) (PAR) is a homopolymer of adenosine diphosphate ribose that is added to proteins as a post-translational modification to regulate numerous cellular processes. PAR also serves as a scaffold for protein binding in macromolecular complexes, including biomolecular condensates. It remains unclear how PAR achieves specific molecular recognition. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) to evaluate PAR flexibility under different cation conditions. We demonstrate that, compared to RNA and DNA, PAR has a longer persistence length and undergoes a sharper transition from extended to compact states in physiologically relevant concentrations of various cations (Na + , Mg 2+ , Ca 2+ , and spermine). We show that the degree of PAR compaction depends on the concentration and valency of cations. Furthermore, the intrinsically disordered protein FUS also served as a macromolecular cation to compact PAR. Taken together, our study reveals the inherent stiffness of PAR molecules, which undergo switch-like compaction in response to cation binding. This study indicates that a cationic environment may drive recognition specificity of PAR. Significance Poly(ADP-ribose) (PAR) is an RNA-like homopolymer that regulates DNA repair, RNA metabolism, and biomolecular condensate formation. Dysregulation of PAR results in cancer and neurodegeneration. Although discovered in 1963, fundamental properties of this therapeutically important polymer remain largely unknown. Biophysical and structural analyses of PAR have been exceptionally challenging due to the dynamic and repetitive nature. Here, we present the first single-molecule biophysical characterization of PAR. We show that PAR is stiffer than DNA and RNA per unit length. Unlike DNA and RNA which undergoes gradual compaction, PAR exhibits an abrupt switch-like bending as a function of salt concentration and by protein binding. Our findings points to unique physical properties of PAR that may drive recognition specificity for its function.
Collapse
|
8
|
Chea C, Lee DY, Kato J, Ishiwata-Endo H, Moss J. Macrodomain Mac1 of SARS-CoV-2 Nonstructural Protein 3 Hydrolyzes Diverse ADP-ribosylated Substrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527501. [PMID: 36945431 PMCID: PMC10028740 DOI: 10.1101/2023.02.07.527501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for a global pandemic that resulted in more than 6-million deaths worldwide. The virus encodes several non-structural proteins (Nsps) that contain elements capable of disrupting cellular processes. Among these Nsp proteins, Nsp3 contains macrodomains, e.g., Mac1, Mac2, Mac3, with potential effects on host cells. Mac1 has been shown to increase SARS-CoV-2 virulence and disrupt ADP-ribosylation pathways in mammalian cells. ADP-ribosylation results from the transfer of the ADP-ribose moiety of NAD + to various acceptors, e.g., proteins, DNA, RNA, contributing on a cell's biological processes. ADP-ribosylation is the mechanism of action of bacterial toxins, e.g., Pseudomonas toxins, diphtheria toxin that disrupt protein biosynthetic and signaling pathways. On the other hand, some viral macrodomains cleavage ADP-ribose-acceptor bond, generating free ADP-ribose. By this reaction, the macrodomain-containing proteins interfere ADP-ribose homeostasis in host cells. Here, we examined potential hydrolytic activities of SARS-CoV-2 Mac1, 2, and 3 on substrates containing ADP-ribose. Mac1 cleaved α-NAD + , but not β-NAD + , consistent with stereospecificity at the C-1" bond. In contrast to ARH1 and ARH3, Mac1 did not require Mg 2+ for optimal activity. Mac1 also hydrolyzed O -acetyl-ADP-ribose and ADP-ribose-1"-phosphat, but not Mac2 and Mac3. However, Mac1 did not cleave α-ADP-ribose-(arginine) and ADP-ribose-(serine)-histone H3 peptide, suggesting that Mac1 hydrolyzes ADP-ribose attached to O- and N-linked functional groups, with specificity at the catalytic site in the ADP-ribose moiety. We conclude that SARS-CoV-2 Mac1 may exert anti-viral activity by reversing host-mediated ADP-ribosylation. New insights on Nsp3 activities may shed light on potential SARS-CoV-2 therapeutic targets. IMPORTANCE SARS-CoV-2, the virus responsible for COVID-19, encodes 3 macrodomain-containing proteins, e.g., Mac1, Mac2, Mac3, within non-structural proteins 3 (Nsp3). Mac1 was shown previously to hydrolyze ADP-ribose-phosphate. Inactivation of Mac1 reduced viral proliferation. Here we report that Mac1, but not Mac2 and Mac3, has multiple activities, i.e., Mac1 hydrolyzed. α-NAD + and O -acetyl-ADP-ribose. However, Mac1 did not hydrolyze β-NAD + , ADP-ribose-serine on a histone 3 peptide (aa1-21), and ADP-ribose-arginine, exhibiting substrate selectivity. These data suggest that Mac1 may have multi-function as a α-NAD + consumer for viral replication and a disruptor of host-mediated ADP-ribosylation pathways. Understanding Mac1's mechanisms of action is important to provide possible therapeutic targets for COVID-19.
Collapse
|
9
|
Ishiwata-Endo H, Kato J, Yamashita S, Chea C, Koike K, Lee DY, Moss J. ARH Family of ADP-Ribose-Acceptor Hydrolases. Cells 2022; 11:3853. [PMID: 36497109 PMCID: PMC9738213 DOI: 10.3390/cells11233853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
The ARH family of ADP-ribose-acceptor hydrolases consists of three 39-kDa members (ARH1-3), with similarities in amino acid sequence. ARH1 was identified based on its ability to cleave ADP-ribosyl-arginine synthesized by cholera toxin. Mammalian ADP-ribosyltransferases (ARTCs) mimicked the toxin reaction, with ARTC1 catalyzing the synthesis of ADP-ribosyl-arginine. ADP-ribosylation of arginine was stereospecific, with β-NAD+ as substrate and, α-anomeric ADP-ribose-arginine the reaction product. ARH1 hydrolyzed α-ADP-ribose-arginine, in addition to α-NAD+ and O-acetyl-ADP-ribose. Thus, ADP-ribose attached to oxygen-containing or nitrogen-containing functional groups was a substrate. Arh1 heterozygous and knockout (KO) mice developed tumors. Arh1-KO mice showed decreased cardiac contractility and developed myocardial fibrosis. In addition to Arh1-KO mice showed increased ADP-ribosylation of tripartite motif-containing protein 72 (TRIM72), a membrane-repair protein. ARH3 cleaved ADP-ribose from ends of the poly(ADP-ribose) (PAR) chain and released the terminal ADP-ribose attached to (serine)protein. ARH3 also hydrolyzed α-NAD+ and O-acetyl-ADP-ribose. Incubation of Arh3-KO cells with H2O2 resulted in activation of poly-ADP-ribose polymerase (PARP)-1, followed by increased nuclear PAR, increased cytoplasmic PAR, leading to release of Apoptosis Inducing Factor (AIF) from mitochondria. AIF, following nuclear translocation, stimulated endonucleases, resulting in cell death by Parthanatos. Human ARH3-deficiency is autosomal recessive, rare, and characterized by neurodegeneration and early death. Arh3-KO mice developed increased brain infarction following ischemia-reperfusion injury, which was reduced by PARP inhibitors. Similarly, PARP inhibitors improved survival of Arh3-KO cells treated with H2O2. ARH2 protein did not show activity in the in vitro assays described above for ARH1 and ARH3. ARH2 has a restricted tissue distribution, with primary involvement of cardiac and skeletal muscle. Overall, the ARH family has unique functions in biological processes and different enzymatic activities.
Collapse
Affiliation(s)
- Hiroko Ishiwata-Endo
- Laboratory of Translational Research, Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiro Kato
- Laboratory of Translational Research, Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sachiko Yamashita
- Laboratory of Translational Research, Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chanbora Chea
- Laboratory of Translational Research, Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kazushige Koike
- Laboratory of Translational Research, Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Duck-Yeon Lee
- Biochemistry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joel Moss
- Laboratory of Translational Research, Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Schützenhofer K, Rack JGM, Ahel I. The Making and Breaking of Serine-ADP-Ribosylation in the DNA Damage Response. Front Cell Dev Biol 2021; 9:745922. [PMID: 34869334 PMCID: PMC8634249 DOI: 10.3389/fcell.2021.745922] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
ADP-ribosylation is a widespread posttranslational modification that is of particular therapeutic relevance due to its involvement in DNA repair. In response to DNA damage, PARP1 and 2 are the main enzymes that catalyze ADP-ribosylation at damage sites. Recently, serine was identified as the primary amino acid acceptor of the ADP-ribosyl moiety following DNA damage and appears to act as seed for chain elongation in this context. Serine-ADP-ribosylation strictly depends on HPF1, an auxiliary factor of PARP1/2, which facilitates this modification by completing the PARP1/2 active site. The signal is terminated by initial poly(ADP-ribose) chain degradation, primarily carried out by PARG, while another enzyme, (ADP-ribosyl)hydrolase 3 (ARH3), specifically cleaves the terminal seryl-ADP-ribosyl bond, thus completing the chain degradation initiated by PARG. This review summarizes recent findings in the field of serine-ADP-ribosylation, its mechanisms, possible functions and potential for therapeutic targeting through HPF1 and ARH3 inhibition.
Collapse
Affiliation(s)
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Rack JGM, Liu Q, Zorzini V, Voorneveld J, Ariza A, Honarmand Ebrahimi K, Reber JM, Krassnig SC, Ahel D, van der Marel GA, Mangerich A, McCullagh JSO, Filippov DV, Ahel I. Mechanistic insights into the three steps of poly(ADP-ribosylation) reversal. Nat Commun 2021; 12:4581. [PMID: 34321462 PMCID: PMC8319183 DOI: 10.1038/s41467-021-24723-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Poly(ADP-ribosyl)ation (PAR) is a versatile and complex posttranslational modification composed of repeating units of ADP-ribose arranged into linear or branched polymers. This scaffold is linked to the regulation of many of cellular processes including the DNA damage response, alteration of chromatin structure and Wnt signalling. Despite decades of research, the principles and mechanisms underlying all steps of PAR removal remain actively studied. In this work, we synthesise well-defined PAR branch point molecules and demonstrate that PARG, but not ARH3, can resolve this distinct PAR architecture. Structural analysis of ARH3 in complex with dimeric ADP-ribose as well as an ADP-ribosylated peptide reveal the molecular basis for the hydrolysis of linear and terminal ADP-ribose linkages. We find that ARH3-dependent hydrolysis requires both rearrangement of a catalytic glutamate and induction of an unusual, square-pyramidal magnesium coordination geometry.
Collapse
Affiliation(s)
| | - Qiang Liu
- Leiden University, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Valentina Zorzini
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jim Voorneveld
- Leiden University, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Antonio Ariza
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Julia M Reber
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Sarah C Krassnig
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - James S O McCullagh
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Dmitri V Filippov
- Leiden University, Leiden Institute of Chemistry, Leiden, The Netherlands.
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Kasson S, Dharmapriya N, Kim IK. Selective monitoring of the protein-free ADP-ribose released by ADP-ribosylation reversal enzymes. PLoS One 2021; 16:e0254022. [PMID: 34191856 PMCID: PMC8244878 DOI: 10.1371/journal.pone.0254022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/17/2021] [Indexed: 11/18/2022] Open
Abstract
ADP-ribosylation is a key post-translational modification that regulates a wide variety of cellular stress responses. The ADP-ribosylation cycle is maintained by writers and erasers. For example, poly(ADP-ribosyl)ation cycles consist of two predominant enzymes, poly(ADP-ribose) polymerases (PARPs) and poly(ADP-ribose) glycohydrolase (PARG). However, historically, mechanisms of erasers of ADP-ribosylations have been understudied, primarily due to the lack of quantitative tools to selectively monitor specific activities of different ADP-ribosylation reversal enzymes. Here, we developed a new NUDT5-coupled AMP-Glo (NCAG) assay to specifically monitor the protein-free ADP-ribose released by ADP-ribosylation reversal enzymes. We found that NUDT5 selectively cleaves protein-free ADP-ribose, but not protein-bound poly- and mono-ADP-ribosylations, protein-free poly(ADP-ribose) chains, or NAD+. As a proof-of-concept, we successfully measured the kinetic parameters for the exo-glycohydrolase activity of PARG, which releases monomeric ADP-ribose, and monitored activities of site-specific mono-ADP-ribosyl-acceptor hydrolases, such as ARH3 and TARG1. This NCAG assay can be used as a general platform to study the mechanisms of diverse ADP-ribosylation reversal enzymes that release protein-free ADP-ribose as a product. Furthermore, this assay provides a useful tool to identify small-molecule probes targeting ADP-ribosylation metabolism and to quantify ADP-ribose concentrations in cells.
Collapse
Affiliation(s)
- Samuel Kasson
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States of America
| | - Nuwani Dharmapriya
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States of America
| | - In-Kwon Kim
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States of America
- * E-mail:
| |
Collapse
|
13
|
Wasyluk W, Zwolak A. PARP Inhibitors: An Innovative Approach to the Treatment of Inflammation and Metabolic Disorders in Sepsis. J Inflamm Res 2021; 14:1827-1844. [PMID: 33986609 PMCID: PMC8110256 DOI: 10.2147/jir.s300679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Sepsis is not only a threat to the health of individual patients but also presents a serious epidemiological problem. Despite intensive research, modern sepsis therapy remains based primarily on antimicrobial treatment and supporting the functions of failing organs. Finding a cure for sepsis represents a great and as yet unfulfilled need in modern medicine. Research results indicate that the activity of poly (adenosine diphosphate (ADP)-ribose) polymerase (PARP) may play an important role in the inflammatory response and the cellular metabolic disorders found in sepsis. Mechanisms by which PARP-1 may contribute to inflammation and metabolic disorders include effects on the regulation of gene expression, impaired metabolism, cell death, and the release of alarmins. These findings suggest that inhibition of this enzyme may be a promising solution for the treatment of sepsis. In studies using experimental sepsis models, inhibition of PARP-1 has been shown to ameliorate the inflammatory response and increase survival. This action was described, among others, for olaparib, a PARP-1 inhibitor approved for use in oncology. While the results of current research are promising, the use of PARP inhibitors in non-oncological diseases raises some concerns, mainly related to the enzyme's role in deoxyribonucleic acid (DNA) repair. However, the results of studies on experimental models indicate the effectiveness of even short-term PARP-1 inhibition and do not confirm concerns regarding its impact on the integrity of nuclear DNA. Current research presents PARP inhibition as a potential solution for the treatment of sepsis and indicates the need for further research.
Collapse
Affiliation(s)
- Weronika Wasyluk
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland.,Doctoral School, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Zwolak
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
14
|
Reconstitution and functional characterization of SARS-CoV-2 proofreading complex. Protein Expr Purif 2021; 185:105894. [PMID: 33933612 PMCID: PMC8082334 DOI: 10.1016/j.pep.2021.105894] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 01/18/2023]
Abstract
The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2 or COVID-19) has led to a world-wild pandemic. The replication of SARS-CoV-2 RNA genome involves the core replication-transcription complex (RTC, nsp12-nsp7-nsp8) and the proofreading complex (nsp14-nsp10) that can correct mismatched base pairs during replication. Structures and functions of SARS-CoV-2 RTC have been actively studied, yet little is known about SARS-CoV-2 nsp14-nsp10. Here, we purified, reconstituted, and characterized the SARS-CoV-2 nsp14-nsp10 proofreading nuclease in vitro. We show that SARS-CoV-2 nsp14 is activated by nsp10, functioning as a potent RNase that can hydrolyze RNAs in the context of single- and double-stranded RNA and RNA/DNA hybrid duplex. SARS-CoV-2 nsp14-nsp10 shows a metal-dependent nuclease activity but has different metal selectivity from RTC. While RTC is activated by Ca2+, nsp14-nsp10 is completely inhibited. Importantly, the reconstituted SARS-CoV-2 nsp14-nsp10 efficiently removed the A:A mismatch at the 3′-end of the primer, enabling the stalled RTC to restart RNA replication. Our collective results confirm that SARS-CoV-2 nsp14-nsp10 functions as the RNA proofreading complex in SARS-CoV-2 replication and provide a useful foundation to understand the structure and function of SARS-CoV-2 RNA metabolism.
Collapse
|
15
|
Pourfarjam Y, Ma Z, Kurinov I, Moss J, Kim IK. Structural and biochemical analysis of human ADP-ribosyl-acceptor hydrolase 3 reveals the basis of metal selectivity and different roles for the two magnesium ions. J Biol Chem 2021; 296:100692. [PMID: 33894202 PMCID: PMC8141533 DOI: 10.1016/j.jbc.2021.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 11/18/2022] Open
Abstract
ADP-ribosylation is a reversible and site-specific post-translational modification that regulates a wide array of cellular signaling pathways. Regulation of ADP-ribosylation is vital for maintaining genomic integrity, and uncontrolled accumulation of poly(ADP-ribosyl)ation triggers a poly(ADP-ribose) (PAR)–dependent release of apoptosis-inducing factor from mitochondria, leading to cell death. ADP-ribosyl-acceptor hydrolase 3 (ARH3) cleaves PAR and mono(ADP-ribosyl)ation at serine following DNA damage. ARH3 is also a metalloenzyme with strong metal selectivity. While coordination of two magnesium ions (MgA and MgB) significantly enhances its catalytic efficiency, calcium binding suppresses its function. However, how the coordination of different metal ions affects its catalysis has not been defined. Here, we report a new crystal structure of ARH3 complexed with its product ADP-ribose and calcium. This structure shows that calcium coordination significantly distorts the binuclear metal center of ARH3, which results in decreased binding affinity to ADP-ribose, and suboptimal substrate alignment, leading to impaired hydrolysis of PAR and mono(ADP-ribosyl)ated serines. Furthermore, combined structural and mutational analysis of the metal-coordinating acidic residues revealed that MgA is crucial for optimal substrate positioning for catalysis, whereas MgB plays a key role in substrate binding. Our collective data provide novel insights into the different roles of these metal ions and the basis of metal selectivity of ARH3 and contribute to understanding the dynamic regulation of cellular ADP-ribosylations during the DNA damage response.
Collapse
Affiliation(s)
- Yasin Pourfarjam
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Zhijun Ma
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, NE-CAT APS, Cornell University, Argonne, Illinois, USA
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - In-Kwon Kim
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
16
|
Zhou Y, Liu L, Tao S, Yao Y, Wang Y, Wei Q, Shao A, Deng Y. Parthanatos and its associated components: Promising therapeutic targets for cancer. Pharmacol Res 2020; 163:105299. [PMID: 33171306 DOI: 10.1016/j.phrs.2020.105299] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Parthanatos is a PARP1-dependent, caspase-independent, cell-death pathway that is distinct from apoptosis, necrosis, or other known forms of cell death. Parthanatos is a multistep pathway that plays a pivotal role in tumorigenesis. There are many molecules in the parthanatos cascade that can be exploited to create therapeutic interventions for cancer management, including PARP1, PARG, ARH3, AIF, and MIF. These critical molecules are involved in tumor cell proliferation, progression, invasion, and metastasis. Therefore, these molecular signals in the parthanatos cascade represent promising therapeutic targets for cancer therapy. In addition, intimate interactions occur between parthanatos and other forms of cancer cell death, such as apoptosis and autophagy. Thus, co-targeting a combination of parthanatos and other death pathways may further provide a new avenue for cancer precision treatment. In this review, we elaborate on the signaling pathways of canonical parthanatos and briefly introduce the non-canonical parthanatos. We also shed light on the role parthanatos and its associated components play in tumorigenesis, particularly with respect to the aforementioned five molecules, and discuss the promise targeted therapy of parthanatos and its associated components holds for cancer therapy.
Collapse
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Lihong Liu
- Department of Radiation Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Sifeng Tao
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yihan Yao
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yali Wang
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Qichun Wei
- Department of Radiation Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Anwen Shao
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Yongchuan Deng
- Department of Surgical Oncology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
17
|
Liu X, Xie R, Yu LL, Chen SH, Yang X, Singh AK, Li H, Wu C, Yu X. AI26 inhibits the ADP-ribosylhydrolase ARH3 and suppresses DNA damage repair. J Biol Chem 2020; 295:13838-13849. [PMID: 32753484 DOI: 10.1074/jbc.ra120.012801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 08/01/2020] [Indexed: 01/21/2023] Open
Abstract
The ADP-ribosylhydrolase ARH3 plays a key role in DNA damage repair, digesting poly(ADP-ribose) and removing ADP-ribose from serine residues of the substrates. Specific inhibitors that selectively target ARH3 would be a useful tool to examine DNA damage repair, as well as a possible strategy for tumor suppression. However, efforts to date have not identified any suitable compounds. Here, we used in silico and biochemistry screening to search for ARH3 inhibitors. We discovered a small molecule compound named ARH3 inhibitor 26 (AI26) as, to our knowledge, the first ARH3 inhibitor. AI26 binds to the catalytic pocket of ARH3 and inhibits the enzymatic activity of ARH3 with an estimated IC50 of ∼2.41 μm in vitro Moreover, hydrolysis of DNA damage-induced ADP-ribosylation was clearly inhibited when cells were pretreated with AI26, leading to defects in DNA damage repair. In addition, tumor cells with DNA damage repair defects were hypersensitive to AI26 treatment, as well as combinations of AI26 and other DNA-damaging agents such as camptothecin and doxorubicin. Collectively, these results reveal not only a chemical probe to study ARH3-mediated DNA damage repair but also a chemotherapeutic strategy for tumor suppression.
Collapse
Affiliation(s)
- Xiuhua Liu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Rong Xie
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Lily L Yu
- Westridge School, Pasadena, California, USA
| | - Shih-Hsun Chen
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Xiaoyun Yang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Anup K Singh
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Hongzhi Li
- Drug Discovery and Structural Biology Core Facility, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Chen Wu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Xiaochun Yu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Smith SJ, Towers N, Demetriou K, Mohun TJ. Defective heart chamber growth and myofibrillogenesis after knockout of adprhl1 gene function by targeted disruption of the ancestral catalytic active site. PLoS One 2020; 15:e0235433. [PMID: 32726316 PMCID: PMC7390403 DOI: 10.1371/journal.pone.0235433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/15/2020] [Indexed: 12/28/2022] Open
Abstract
ADP-ribosylhydrolase-like 1 (Adprhl1) is a pseudoenzyme expressed in the developing heart myocardium of all vertebrates. In the amphibian Xenopus laevis, knockdown of the two cardiac Adprhl1 protein species (40 and 23 kDa) causes failure of chamber outgrowth but this has only been demonstrated using antisense morpholinos that interfere with RNA-splicing. Transgenic production of 40 kDa Adprhl1 provides only part rescue of these defects. CRISPR/Cas9 technology now enables targeted mutation of the adprhl1 gene in G0-generation embryos with routine cleavage of all alleles. Testing multiple gRNAs distributed across the locus reveals exonic locations that encode critical amino acids for Adprhl1 function. The gRNA recording the highest frequency of a specific ventricle outgrowth phenotype directs Cas9 cleavage of an exon 6 sequence, where microhomology mediated end-joining biases subsequent DNA repairs towards three small in-frame deletions. Mutant alleles encode discrete loss of 1, 3 or 4 amino acids from a di-arginine (Arg271-Arg272) containing peptide loop at the centre of the ancestral ADP-ribosylhydrolase site. Thus despite lacking catalytic activity, it is the modified (adenosine-ribose) substrate binding cleft of Adprhl1 that fulfils an essential role during heart formation. Mutation results in striking loss of myofibril assembly in ventricle cardiomyocytes. The defects suggest Adprhl1 participation from the earliest stage of cardiac myofibrillogenesis and are consistent with previous MO results and Adprhl1 protein localization to actin filament Z-disc boundaries. A single nucleotide change to the gRNA sequence renders it inactive. Mice lacking Adprhl1 exons 3–4 are normal but production of the smaller ADPRHL1 species is unaffected, providing further evidence that cardiac activity is concentrated at the C-terminal protein portion.
Collapse
Affiliation(s)
- Stuart J Smith
- Heart Formation in Vertebrates Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Norma Towers
- Heart Formation in Vertebrates Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Kim Demetriou
- Aquatics STP, The Francis Crick Institute, London, United Kingdom
| | - Timothy J Mohun
- Heart Formation in Vertebrates Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
19
|
Pourfarjam Y, Kasson S, Tran L, Ho C, Lim S, Kim IK. PARG has a robust endo-glycohydrolase activity that releases protein-free poly(ADP-ribose) chains. Biochem Biophys Res Commun 2020; 527:818-823. [PMID: 32439163 DOI: 10.1016/j.bbrc.2020.04.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022]
Abstract
Poly(ADP-ribosyl)ation (PARylation) regulates DNA damage response, chromatin structure, and cell-fate. Dynamic regulation of cellular PAR levels is crucial for the maintenance of genomic integrity and excessive cellular PAR activates a PAR-dependent cell death pathway. Thus, PAR serves as a cell-death signal; however, it has been debated how the protein-free PAR is generated. Here, we demonstrate that PAR glycohydrolases (PARGs) from mammals to bacteria have a robust endo-glycohydrolase activity, releasing protein-free PAR chains longer than three ADP-ribose units as early reaction products. Released PAR chains are transient and rapidly degraded to monomeric ADP-ribose, which is consistent with a short half-life of PAR during DNA damage responses. Computational simulations using a tri-ADP-ribose further support that PARG can efficiently bind to internal sites of PAR for the endo-glycosidic cleavage. Our collective results suggest PARG as a key player in producing protein-free PAR during DNA damage signaling and establish bacterial PARG as a useful tool to enrich short PAR chains that emerge as important reagents for biomedical research.
Collapse
Affiliation(s)
- Yasin Pourfarjam
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA
| | - Samuel Kasson
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA
| | - Linh Tran
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA
| | - Chris Ho
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sookkyung Lim
- Department of Mathematical Sciences, University of Cincinnati, 4199 French Hall West, Cincinnati, OH, 45221, USA
| | - In-Kwon Kim
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA.
| |
Collapse
|
20
|
Abstract
ADP-ribosylation is an intricate and versatile posttranslational modification involved in the regulation of a vast variety of cellular processes in all kingdoms of life. Its complexity derives from the varied range of different chemical linkages, including to several amino acid side chains as well as nucleic acids termini and bases, it can adopt. In this review, we provide an overview of the different families of (ADP-ribosyl)hydrolases. We discuss their molecular functions, physiological roles, and influence on human health and disease. Together, the accumulated data support the increasingly compelling view that (ADP-ribosyl)hydrolases are a vital element within ADP-ribosyl signaling pathways and they hold the potential for novel therapeutic approaches as well as a deeper understanding of ADP-ribosylation as a whole.
Collapse
Affiliation(s)
| | - Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, 80145 Naples, Italy
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
21
|
Suskiewicz MJ, Zobel F, Ogden TEH, Fontana P, Ariza A, Yang JC, Zhu K, Bracken L, Hawthorne WJ, Ahel D, Neuhaus D, Ahel I. HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Nature 2020; 579:598-602. [PMID: 32028527 PMCID: PMC7104379 DOI: 10.1038/s41586-020-2013-6] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
The anti-cancer drug target poly(ADP-ribose) polymerase 1 (PARP1) and its close homologue, PARP2, are early responders to DNA damage in human cells1,2. After binding to genomic lesions, these enzymes use NAD+ to modify numerous proteins with mono- and poly(ADP-ribose) signals that are important for the subsequent decompaction of chromatin and the recruitment of repair factors3,4. These post-translational modifications are predominantly serine-linked and require the accessory factor HPF1, which is specific for the DNA damage response and switches the amino acid specificity of PARP1 and PARP2 from aspartate or glutamate to serine residues5-10. Here we report a co-structure of HPF1 bound to the catalytic domain of PARP2 that, in combination with NMR and biochemical data, reveals a composite active site formed by residues from HPF1 and PARP1 or PARP2 . The assembly of this catalytic centre is essential for the addition of ADP-ribose moieties after DNA damage in human cells. In response to DNA damage and occupancy of the NAD+-binding site, the interaction of HPF1 with PARP1 or PARP2 is enhanced by allosteric networks that operate within the PARP proteins, providing an additional level of regulation in the induction of the DNA damage response. As HPF1 forms a joint active site with PARP1 or PARP2, our data implicate HPF1 as an important determinant of the response to clinical PARP inhibitors.
Collapse
Affiliation(s)
| | - Florian Zobel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Pietro Fontana
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Antonio Ariza
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ji-Chun Yang
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lily Bracken
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Stevens LA, Kato J, Kasamatsu A, Oda H, Lee DY, Moss J. The ARH and Macrodomain Families of α-ADP-ribose-acceptor Hydrolases Catalyze α-NAD + Hydrolysis. ACS Chem Biol 2019; 14:2576-2584. [PMID: 31599159 DOI: 10.1021/acschembio.9b00429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ADP-ribosyltransferases transfer ADP-ribose from β-NAD+ to acceptors; ADP-ribosylated acceptors are cleaved by ADP-ribosyl-acceptor hydrolases (ARHs) and proteins containing ADP-ribose-binding modules termed macrodomains. On the basis of the ADP-ribosyl-arginine hydrolase 1 (ARH1) stereospecific hydrolysis of α-ADP-ribosyl-arginine and the hypothesis that α-NAD+ is generated as a side product of β-NAD+/ NADH metabolism, we proposed that α-NAD+ was a substrate of ARHs and macrodomain proteins. Here, we report that ARH1, ARH3, and macrodomain proteins (i.e., MacroD1, MacroD2, C6orf130 (TARG1), Af1521, hydrolyzed α-NAD+ but not β-NAD+. ARH3 had the highest α-NADase specific activity. The ARH and macrodomain protein families, in stereospecific reactions, cleave ADP-ribose linkages to N- or O- containing functional groups; anomerization of α- to β-forms (e.g., α-ADP-ribosyl-arginine to β-ADP-ribose- (arginine) protein) may explain partial hydrolysis of ADP-ribosylated acceptors with an increase in content of ADP-ribosylated substrates. Af1521 and ARH3 crystal structures with bound ADP-ribose revealed similar ADP-ribose-binding pockets with the catalytic residues of the ARH and macrodomain protein families in the N-terminal helix and loop. Although the biological roles of the ARHs and macrodomain proteins differ, they share enzymatic and structural properties that may regulate metabolites such as α-NAD+.
Collapse
|
23
|
The Enigmatic Function of PARP1: From PARylation Activity to PAR Readers. Cells 2019; 8:cells8121625. [PMID: 31842403 PMCID: PMC6953017 DOI: 10.3390/cells8121625] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation) is catalysed by poly(ADP-ribose) polymerases (PARPs, also known as ARTDs) and then rapidly removed by degrading enzymes. Poly(ADP-ribose) (PAR) is produced from PARylation and provides a delicate and spatiotemporal interaction scaffold for numerous target proteins. The PARylation system, consisting of PAR synthesizers and erasers and PAR itself and readers, plays diverse roles in the DNA damage response (DDR), DNA repair, transcription, replication, chromatin remodeling, metabolism, and cell death. Despite great efforts by scientists in biochemistry, cell and molecular biology, genetics, and pharmacology over the last five decades, the biology of PARPs and PARylation remains enigmatic. In this review, we summarize the current understanding of the biological function of PARP1 (ARTD1), the founding member of the PARP family, focusing on the inter-dependent or -independent nature of different functional domains of the PARP1 protein. We also discuss the readers of PAR, whose function may transduce signals and coordinate the cellular processes, which has recently emerged as a new research avenue for PARP biology. We aim to provide some perspective on how future research might disentangle the biology of PARylation by dissecting the structural and functional relationship of PARP1, a major effector of the PARPs family.
Collapse
|
24
|
Palazzo L, Mikolčević P, Mikoč A, Ahel I. ADP-ribosylation signalling and human disease. Open Biol 2019; 9:190041. [PMID: 30991935 PMCID: PMC6501648 DOI: 10.1098/rsob.190041] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
ADP-ribosylation (ADPr) is a reversible post-translational modification of proteins, which controls major cellular and biological processes, including DNA damage repair, cell proliferation and differentiation, metabolism, stress and immune responses. In order to maintain the cellular homeostasis, diverse ADP-ribosyl transferases and hydrolases are involved in the fine-tuning of ADPr systems. The control of ADPr network is vital, and dysregulation of enzymes involved in the regulation of ADPr signalling has been linked to a number of inherited and acquired human diseases, such as several neurological disorders and in cancer. Conversely, the therapeutic manipulation of ADPr has been shown to ameliorate several disorders in both human and animal models. These include cardiovascular, inflammatory, autoimmune and neurological disorders. Herein, we summarize the recent findings in the field of ADPr, which support the impact of this modification in human pathophysiology and highlight the curative potential of targeting ADPr for translational and molecular medicine.
Collapse
Affiliation(s)
- Luca Palazzo
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| |
Collapse
|
25
|
Kassab MA, Yu X. The role of dePARylation in DNA damage repair and cancer suppression. DNA Repair (Amst) 2019; 76:20-29. [PMID: 30807923 DOI: 10.1016/j.dnarep.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/03/2019] [Indexed: 12/19/2022]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a reversible post-translational modification regulating various biological pathways including DNA damage repair (DDR). Rapid turnover of PARylation is critically important for an optimal DNA damage response and maintaining genomic stability. Recent studies show that PARylation is tightly regulated by a group of enzymes that can erase the ADP-ribose (ADPR) groups from target proteins. The aim of this review is to present a comprehensive understanding of dePARylation enzymes, their substrates and roles in DDR. Special attention will be laid on the role of these proteins in the development of cancer and their feasibility in anticancer therapeutics.
Collapse
Affiliation(s)
- Muzaffer Ahmad Kassab
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
26
|
Rack JGM, Ariza A, Drown BS, Henfrey C, Bartlett E, Shirai T, Hergenrother PJ, Ahel I. (ADP-ribosyl)hydrolases: Structural Basis for Differential Substrate Recognition and Inhibition. Cell Chem Biol 2018; 25:1533-1546.e12. [PMID: 30472116 PMCID: PMC6309922 DOI: 10.1016/j.chembiol.2018.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/25/2018] [Accepted: 10/31/2018] [Indexed: 01/06/2023]
Abstract
Protein ADP-ribosylation is a highly dynamic post-translational modification. The rapid turnover is achieved, among others, by ADP-(ribosyl)hydrolases (ARHs), an ancient family of enzymes that reverses this modification. Recently ARHs came into focus due to their role as regulators of cellular stresses and tumor suppressors. Here we present a comprehensive structural analysis of the enzymatically active family members ARH1 and ARH3. These two enzymes have very distinct substrate requirements. Our data show that binding of the adenosine ribose moiety is highly diverged between the two enzymes, whereas the active sites harboring the distal ribose closely resemble each other. Despite this apparent similarity, we elucidate the structural basis for the selective inhibition of ARH3 by the ADP-ribose analogues ADP-HPD and arginine-ADP-ribose. Together, our biochemical and structural work provides important insights into the mode of enzyme-ligand interaction, helps to understand differences in their catalytic behavior, and provides useful tools for targeted drug design.
Collapse
Affiliation(s)
| | - Antonio Ariza
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, UK
| | - Bryon S Drown
- University of Illinois, Department of Chemistry, Urbana, IL 61801, USA
| | - Callum Henfrey
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, UK
| | - Edward Bartlett
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, UK; Kyoto Institute of Technology, Matsugasaki Hashikamicho, Sakyo Ward, Kyoto, Japan
| | - Tomohiro Shirai
- University of Illinois, Department of Chemistry, Urbana, IL 61801, USA
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
27
|
Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Microbiol Mol Biol Rev 2018; 83:83/1/e00038-18. [PMID: 30567936 DOI: 10.1128/mmbr.00038-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The literature review presented here details recent research involving members of the poly(ADP-ribose) polymerase (PARP) family of proteins. Among the 17 recognized members of the family, the human enzyme PARP1 is the most extensively studied, resulting in a number of known biological and metabolic roles. This review is focused on the roles played by PARP enzymes in host-pathogen interactions and in diseases with an associated inflammatory response. In mammalian cells, several PARPs have specific roles in the antiviral response; this is perhaps best illustrated by PARP13, also termed the zinc finger antiviral protein (ZAP). Plant stress responses and immunity are also regulated by poly(ADP-ribosyl)ation. PARPs promote inflammatory responses by stimulating proinflammatory signal transduction pathways that lead to the expression of cytokines and cell adhesion molecules. Hence, PARP inhibitors show promise in the treatment of inflammatory disorders and conditions with an inflammatory component, such as diabetes, arthritis, and stroke. These functions are correlated with the biophysical characteristics of PARP family enzymes. This work is important in providing a comprehensive understanding of the molecular basis of pathogenesis and host responses, as well as in the identification of inhibitors. This is important because the identification of inhibitors has been shown to be effective in arresting the progression of disease.
Collapse
|
28
|
Bu X, Kato J, Moss J. Emerging roles of ADP-ribosyl-acceptor hydrolases (ARHs) in tumorigenesis and cell death pathways. Biochem Pharmacol 2018; 167:44-49. [PMID: 30267646 DOI: 10.1016/j.bcp.2018.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/25/2018] [Indexed: 01/23/2023]
Abstract
Malignant transformation may occur in the background of post-translational modification, such as ADP-ribosylation, phosphorylation and acetylation. Recent genomic analysis of ADP-ribosylation led to the discovery of more than twenty ADP-ribosyltransferases (ARTs), which catalyze either mono- or poly-ADP-ribosylation. ARTs catalyze the attachment of ADP-ribose to acceptor molecules. The ADP-ribose-acceptor bond can then be cleaved by a family of hydrolases in a substrate-specific manner, which is dependent on the acceptor and its functional group, e.g., arginine (guanidino), serine (hydroxyl), aspartate (carboxyl). These hydrolases vary in structure and function, and include poly-ADP-ribose glycohydrolase (PARG), MacroD1, MacroD2, terminal ADP-ribose protein glycohydrolase 1 (TARG1) and ADP-ribosyl-acceptor hydrolases (ARHs). In murine models, PARG deficiency increased susceptibility to alkylating agents-induced carcinogenesis. Similarly, by cleaving mono-ADP-ribosylated arginine on target proteins, ARH1 appears to inhibit tumor formation, suggesting that ARH1 is a tumor-suppressor gene. Although ARH3 is similar to ARH1 in amino acid sequence and crystal structure, ARH3 does not cleave ADP-ribose-arginine, rather it degrades in an exocidic manner, the PAR polymer and cleaves O-acetyl-ADP-ribose (OAADPr) and the ADP-ribose-serine linkage in acceptor proteins. Under conditions of oxidative stress, ARH3-deficient cells showed increased cytosolic PAR accumulation and PARP-1 mediated cell death. These findings expand our understanding of ADP-ribosylation and provide new therapeutic targets for cancer treatment. In the present review, research on ARH1-regulated tumorigenesis and cell death pathways that are enhanced by ARH3 deficiency are discussed.
Collapse
Affiliation(s)
- Xiangning Bu
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1590, USA
| | - Jiro Kato
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1590, USA
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1590, USA.
| |
Collapse
|