1
|
Concors SJ, Hernandez PT, O'Brien C, DePaolo J, Murken DR, Aufhauser DD, Wang Z, Xiong Y, Krumeich L, Ge G, Beier UH, Bhatti TR, Kozikowski AP, Avelar LAA, Kurz T, Hancock WW, Levine MH. Differential Effects of HDAC6 Inhibition Versus Knockout During Hepatic Ischemia-Reperfusion Injury Highlight Importance of HDAC6 C-terminal Zinc-finger Ubiquitin-binding Domain. Transplantation 2024; 108:2084-2092. [PMID: 38685198 DOI: 10.1097/tp.0000000000005042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) causes significant morbidity in liver transplantation among other medical conditions. IRI following liver transplantation contributes to poor outcomes and early graft loss. Histone/protein deacetylases (HDACs) regulate diverse cellular processes, play a role in mediating tissue responses to IRI, and may represent a novel therapeutic target in preventing IRI in liver transplantation. METHODS Using a previously described standardized model of murine liver warm IRI, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were assessed at 24 and 48 h after reperfusion to determine the effect of different HDAC inhibitors. RESULTS Broad HDAC inhibition with trichostatin-A (TSA) was protective against hepatocellular damage ( P < 0.01 for AST and P < 0.05 for ALT). Although HDAC class I inhibition with MS-275 provided statistically insignificant benefit, tubastatin-A (TubA), an HDAC6 inhibitor with additional activity against HDAC10, provided significant protection against liver IRI ( P < 0.01 for AST and P < 0.001 for ALT). Surprisingly genetic deletion of HDAC6 or -10 did not replicate the protective effects of HDAC6 inhibition with TubA, whereas treatment with an HDAC6 BUZ-domain inhibitor, LakZnFD, eliminated the protective effect of TubA treatment in liver ischemia ( P < 0.01 for AST and P < 0.01 for ALT). CONCLUSIONS Our findings suggest TubA, a class IIb HDAC inhibitor, can mitigate hepatic IRI in a manner distinct from previously described class I HDAC inhibition and requires the HDAC6 BUZ-domain activity. Our data corroborate previous findings that HDAC targets for therapeutic intervention of IRI may be tissue-specific, and identify HDAC6 inhibition as a possible target in the treatment of liver IRI.
Collapse
Affiliation(s)
- Seth J Concors
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Paul T Hernandez
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Ciaran O'Brien
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - John DePaolo
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Douglas R Murken
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | | | - Zhonglin Wang
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Yan Xiong
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Lauren Krumeich
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Guanghui Ge
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
| | - Ulf H Beier
- Division of Nephrology and Department of Pediatrics, Children's Hospital of Pennsylvania and University of Pennsylvania, Philadelphia, PA
| | - Tricia R Bhatti
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Leandro A Alves Avelar
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas Kurz
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Matthew H Levine
- Department of Surgery, University of Pennsylvania, Philadelphia, PA
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
2
|
He H, Zhang W, Jiang L, Tong X, Zheng Y, Xia Z. Endothelial Cell Dysfunction Due to Molecules Secreted by Macrophages in Sepsis. Biomolecules 2024; 14:980. [PMID: 39199368 PMCID: PMC11352357 DOI: 10.3390/biom14080980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Sepsis is recognized as a syndrome of systemic inflammatory reaction induced by dysregulation of the body's immunity against infection. The multiple organ dysfunction associated with sepsis is a serious threat to the patient's life. Endothelial cell dysfunction has been extensively studied in sepsis. However, the role of macrophages in sepsis is not well understood and the intrinsic link between the two cells has not been elucidated. Macrophages are first-line cells of the immune response, whereas endothelial cells are a class of cells that are highly altered in function and morphology. In sepsis, various cytokines secreted by macrophages and endothelial cell dysfunction are inextricably linked. Therefore, investigating how macrophages affect endothelial cells could offer a theoretical foundation for the treatment of sepsis. This review links molecules (TNF-α, CCL2, ROS, VEGF, MMP-9, and NO) secreted by macrophages under inflammatory conditions to endothelial cell dysfunction (adhesion, permeability, and coagulability), refining the pathophysiologic mechanisms of sepsis. At the same time, multiple approaches (a variety of miRNA and medicines) regulating macrophage polarization are also summarized, providing new insights into reversing endothelial cell dysfunction and improving the outcome of sepsis treatment.
Collapse
Affiliation(s)
- Heng He
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Yongjun Zheng
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; (H.H.); (W.Z.); (L.J.); (X.T.)
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, China
| |
Collapse
|
3
|
Chen K, Wang D, Qian M, Weng M, Lu Z, Zhang K, Jin Y. Endothelial cell dysfunction and targeted therapeutic drugs in sepsis. Heliyon 2024; 10:e33340. [PMID: 39027563 PMCID: PMC11255673 DOI: 10.1016/j.heliyon.2024.e33340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by an abnormal host response to microbial infections. During its pathogenesis, vascular endothelial cells (ECs) play a pivotal role as essential components in maintaining microcirculatory homeostasis. This article aims to comprehensively review the multifaceted physiological functions of vascular ECs, elucidate the alterations in their functionality throughout the course of sepsis, and explore recent advancements in research concerning sepsis-related therapeutic drugs targeting ECs.
Collapse
Affiliation(s)
- Kunwei Chen
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongdong Wang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minyue Qian
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengcao Weng
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongteng Lu
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Jin
- Department of Anesthesiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Su Y, Lucas R, Fulton DJ, Verin AD. Mechanisms of pulmonary endothelial barrier dysfunction in acute lung injury and acute respiratory distress syndrome. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:80-87. [PMID: 39006829 PMCID: PMC11242916 DOI: 10.1016/j.pccm.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Endothelial cells (ECs) form a semi-permeable barrier between the interior space of blood vessels and the underlying tissues. Pulmonary endothelial barrier integrity is maintained through coordinated cellular processes involving receptors, signaling molecules, junctional complexes, and protein-regulated cytoskeletal reorganization. In acute lung injury (ALI) or its more severe form acute respiratory distress syndrome (ARDS), the loss of endothelial barrier integrity secondary to endothelial dysfunction caused by severe pulmonary inflammation and/or infection leads to pulmonary edema and hypoxemia. Pro-inflammatory agonists such as histamine, thrombin, bradykinin, interleukin 1β, tumor necrosis factor α, vascular endothelial growth factor, angiopoietin-2, and platelet-activating factor, as well as bacterial toxins and reactive oxygen species, cause dynamic changes in cytoskeletal structure, adherens junction disorganization, and detachment of vascular endothelial cadherin (VE-cadherin) from the actin cytoskeleton, leading to an increase in endothelial permeability. Endothelial interactions with leukocytes, platelets, and coagulation enhance the inflammatory response. Moreover, inflammatory infiltration and the associated generation of pro-inflammatory cytokines during infection cause EC death, resulting in further compromise of the structural integrity of lung endothelial barrier. Despite the use of potent antibiotics and aggressive intensive care support, the mortality of ALI is still high, because the mechanisms of pulmonary EC barrier disruption are not fully understood. In this review, we summarized recent advances in the studies of endothelial cytoskeletal reorganization, inter-endothelial junctions, endothelial inflammation, EC death, and endothelial repair in ALI and ARDS, intending to shed some light on the potential diagnostic and therapeutic targets in the clinical management of the disease.
Collapse
Affiliation(s)
- Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Rudolf Lucas
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J.R. Fulton
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
5
|
Patil RS, Maloney ME, Lucas R, Fulton DJR, Patel V, Bagi Z, Kovacs-Kasa A, Kovacs L, Su Y, Verin AD. Zinc-Dependent Histone Deacetylases in Lung Endothelial Pathobiology. Biomolecules 2024; 14:140. [PMID: 38397377 PMCID: PMC10886568 DOI: 10.3390/biom14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and, as such, provides a semi-selective barrier between the blood and the interstitial space. Compromise of the lung EC barrier due to inflammatory or toxic events may result in pulmonary edema, which is a cardinal feature of acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS). The EC functions are controlled, at least in part, via epigenetic mechanisms mediated by histone deacetylases (HDACs). Zinc-dependent HDACs represent the largest group of HDACs and are activated by Zn2+. Members of this HDAC group are involved in epigenetic regulation primarily by modifying the structure of chromatin upon removal of acetyl groups from histones. In addition, they can deacetylate many non-histone histone proteins, including those located in extranuclear compartments. Recently, the therapeutic potential of inhibiting zinc-dependent HDACs for EC barrier preservation has gained momentum. However, the role of specific HDAC subtypes in EC barrier regulation remains largely unknown. This review aims to provide an update on the role of zinc-dependent HDACs in endothelial dysfunction and its related diseases. We will broadly focus on biological contributions, signaling pathways and transcriptional roles of HDACs in endothelial pathobiology associated mainly with lung diseases, and we will discuss the potential of their inhibitors for lung injury prevention.
Collapse
Affiliation(s)
- Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - McKenzie E. Maloney
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Vijay Patel
- Department of Cardiothoracic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Laszlo Kovacs
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Karki P, Li Y, Zhang CO, Ke Y, Promnares K, Birukova AA, Eggerman TL, Bocharov AV, Birukov KG. Amphipathic Helical Peptide L37pA Protects against Lung Vascular Endothelial Dysfunction Caused by Truncated Oxidized Phospholipids via Antagonism with CD36 Receptor. Am J Respir Cell Mol Biol 2024; 70:11-25. [PMID: 37725486 PMCID: PMC10768836 DOI: 10.1165/rcmb.2023-0127oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023] Open
Abstract
The generation of bioactive truncated oxidized phospholipids (Tr-OxPLs) from oxidation of cell-membrane or circulating lipoproteins is a common feature of various pathological states. Scavenger receptor CD36 is involved in lipid transport and acts as a receptor for Tr-OxPLs. Interestingly, Tr-OxPLs and CD36 are involved in endothelial dysfunction-derived acute lung injury, but the precise mechanistic connections remain unexplored. In the present study, we investigated the role of CD36 in mediating pulmonary endothelial cell (EC) dysfunction caused by Tr-OxPLs. Our results demonstrated that the Tr-OxPLs KOdia-PC, Paz-PC, PGPC, PON-PC, POV-PC, and lysophosphocholine caused an acute EC barrier disruption as revealed by measurements of transendothelial electrical resistance and VE-cadherin immunostaining. More importantly, a synthetic amphipathic helical peptide, L37pA, targeting human CD36 strongly attenuated Tr-OxPL-induced EC permeability. L37pA also suppressed Tr-OxPL-induced endothelial inflammatory activation monitored by mRNA expression of inflammatory cytokines/chemokines and adhesion molecules. In addition, L37pA blocked Tr-OxPL-induced NF-κB activation and tyrosine phosphorylation of Src kinase and VE-cadherin. The Src inhibitor SU6656 attenuated KOdia-PC-induced EC permeability and inflammation, but inhibition of the Toll-like receptors (TLRs) TLR1, TLR2, TLR4, and TLR6 had no such protective effects. CD36-knockout mice were more resistant to Tr-OxPL-induced lung injury. Treatment with L37pA was equally effective in ameliorating Tr-OxPL-induced vascular leak and lung inflammation as determined by an Evans blue extravasation assay and total cell and protein content in BAL fluid. Altogether, these results demonstrate an essential role of CD36 in mediating Tr-OxPL-induced EC dysfunction and suggest a strong therapeutic potential of CD36 inhibitory peptides in mitigating lung injury and inflammation.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Yue Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Chen-Ou Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kamoltip Promnares
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anna A. Birukova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Thomas L. Eggerman
- Department of Laboratory Medicine, Clinical Center, and
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Monisha K, Mahema S, Chokkalingam M, Ahmad SF, Emran TB, Prabu P, Ahmed SSSJ. Elucidating the Histone Deacetylase Gene Expression Signatures in Peripheral Blood Mononuclear Cells That Correlate Essential Cardiac Function and Aid in Classifying Coronary Artery Disease through a Logistic Regression Model. Biomedicines 2023; 11:2952. [PMID: 38001953 PMCID: PMC10669643 DOI: 10.3390/biomedicines11112952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
A proinflammatory role of HDACs has been implicated in the pathogenesis of atherosclerosis as an emerging novel epigenetic diagnostic biomarker. However, its association with the clinical and cardiovascular function in coronary artery disease is largely unknown. The study aimed to profile the gene expression of HDAC1-11 in human peripheral blood mononuclear cells and to evaluate their influence on hematological, biochemical, and two-dimensional echocardiographic indices in CAD. The HDAC gene expression profiles were assessed in 62 angioproven CAD patients and compared with 62 healthy controls. Among the HDACs, upregulated HDACs 1,2, 4, 6, 8, 9, and 11 were upregulated, and HDAC3 was downregulated, which was significantly (p ≤ 0.05) linked with the hematological (basophils, lymphocytes, monocytes, and neutrophils), biochemical (LDL, HDL, and TGL), and echocardiographic parameters (cardiac function: biplane LVEF, GLS, MV E/A, IVRT, and PV S/D) in CAD. Furthermore, our constructed diagnostic model with the crucial HDACs establishes the most crucial HDACs in the classification of CAD from control with an excellent accuracy of 88.6%. Conclusively, our study has provided a novel perspective on the HDAC gene expression underlying cardiac function that is useful in developing molecular methods for CAD diagnosis.
Collapse
Affiliation(s)
- K. Monisha
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, India
| | - S. Mahema
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, India
| | - M. Chokkalingam
- Department of Cardiology, Chettinad Hospital and Research Institute, Chettinad Health City, Kelambakkam 603103, India
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Paramasivam Prabu
- Madras Diabetes Research Foundation, Chennai 600086, India
- Department of Neurology, University of New Mexico Albuquerque, Albuquerque, NM 87131, USA
| | - Shiek S. S. J. Ahmed
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, India
| |
Collapse
|
8
|
Karki P, Zhang CO, Promnares K, Li Y, Ke Y, Birukova AA, Birukov KG. Truncated oxidized phospholipids exacerbate endothelial dysfunction and lung injury caused by bacterial pathogens. Cell Signal 2023; 109:110804. [PMID: 37437826 PMCID: PMC10544726 DOI: 10.1016/j.cellsig.2023.110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Oxidized phospholipids (OxPLs) are present at basal levels in circulation of healthy individuals, but a substantial increase and changes in composition of OxPLs may rapidly occur during microbial infections, sepsis, and trauma. Specifically, truncated oxidized phospholipids (Tr-OxPLs) exhibit detrimental effects on pulmonary endothelium, yet their role on modulation of lung injury caused by bacterial pathogens remains to be elucidated. This study investigated the effects of Tr-OxPL species: KOdiA-PC, POV-PC, PON-PC, PAz-PC, PGPC, and Lyso-PC on endothelial permeability and inflammatory responses to gram-positive bacterial particles. Results showed that all six tested Tr-OxPLs augmented endothelial barrier disruption caused by heat-killed Staphylococcus aureus (HKSA) as determined by VE-cadherin immunostaining and monitoring transendothelial electrical resistance. In parallel, even moderate elevation of Tr-OxPLs augmented HKSA-induced activation of NF-κB, secretion of IL-6 and IL-8, and protein expression of ICAM-1 and VCAM-1. In the mouse model of acute lung injury caused by intranasal injection of HKSA, intravenous Tr-OxPLs administration augmented HKSA-induced increase in BAL protein content and cell counts, tissue expression of TNFα, KC, IL1β, and CCL2, and promoted vascular leak monitored by lung infiltration of Evans Blue. These results suggest that elevated Tr-OxPLs act as critical risk factor worsening bacterial pathogen-induced endothelial dysfunction and lung injury.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America.
| | - Chen-Ou Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Kamoltip Promnares
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Yue Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Anna A Birukova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| |
Collapse
|
9
|
Ke Y, Karki P, Li Y, Promnares K, Zhang CO, Eggerman TL, Bocharov AV, Birukova AA, Birukov KG. Aging-Related Accumulation of Truncated Oxidized Phospholipids Augments Infectious Lung Injury and Endothelial Dysfunction via Cluster of Differentiation 36-Dependent Mechanism. Cells 2023; 12:1937. [PMID: 37566016 PMCID: PMC10416939 DOI: 10.3390/cells12151937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Truncated phospholipid oxidation products (Tr-OxPL) increase in blood circulation with aging; however, their role in the severity of vascular dysfunction and bacterial lung injury in aging groups remains poorly understood. We investigated the effects of six Tr-OxPL species: KOdiA-PC, POVPC, PONPC, PGPC, Paz-PC, and Lyso-PC on endothelial dysfunction and lung inflammation caused by heat-killed Staphylococcus aureus (HKSA) in young (aged 2-4 months) and old (aged 12-18 months) mice, organotypic culture of precisely cut lung slices, and endothelial cells (mLEC) isolated from young and old mice. HKSA and Tr-OxPL combination caused a higher degree of vascular leak, the accumulation of inflammatory cells and protein in bronchoalveolar lavage, and inflammatory gene expression in old mice lungs. HKSA caused a greater magnitude of inflammatory gene activation in cell and ex vivo cultures from old mice, which was further augmented by Tr-OxPLs. L37pA peptide targeting CD36 receptor attenuated Tr-OxPL-induced endothelial cell permeability in young and old mLEC and ameliorated KOdiA-PC-induced vascular leak and lung inflammation in vivo. Finally, CD36 knockout mice showed better resistance to KOdiA-PC-induced lung injury in both age groups. These results demonstrate the aging-dependent vulnerability of pulmonary vasculature to elevated Tr-OxPL, which exacerbates bacterial lung injury. CD36 inhibition is a promising therapeutic approach for improving pneumonia outcomes in aging population.
Collapse
Affiliation(s)
- Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (P.K.)
| | - Yue Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (P.K.)
| | - Kamoltip Promnares
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chen-Ou Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (P.K.)
| | - Thomas L. Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20894, USA
- National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander V. Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20894, USA
| | - Anna A. Birukova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (P.K.)
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Patil RS, Kovacs-Kasa A, Gorshkov BA, Fulton DJR, Su Y, Batori RK, Verin AD. Serine/Threonine Protein Phosphatases 1 and 2A in Lung Endothelial Barrier Regulation. Biomedicines 2023; 11:1638. [PMID: 37371733 PMCID: PMC10296329 DOI: 10.3390/biomedicines11061638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular barrier dysfunction is characterized by increased permeability and inflammation of endothelial cells (ECs), which are prominent features of acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and sepsis, and a major complication of the SARS-CoV-2 infection and COVID-19. Functional impairment of the EC barrier and accompanying inflammation arises due to microbial toxins and from white blood cells of the lung as part of a defensive action against pathogens, ischemia-reperfusion or blood product transfusions, and aspiration syndromes-based injury. A loss of barrier function results in the excessive movement of fluid and macromolecules from the vasculature into the interstitium and alveolae resulting in pulmonary edema and collapse of the architecture and function of the lungs, and eventually culminates in respiratory failure. Therefore, EC barrier integrity, which is heavily dependent on cytoskeletal elements (mainly actin filaments, microtubules (MTs), cell-matrix focal adhesions, and intercellular junctions) to maintain cellular contacts, is a critical requirement for the preservation of lung function. EC cytoskeletal remodeling is regulated, at least in part, by Ser/Thr phosphorylation/dephosphorylation of key cytoskeletal proteins. While a large body of literature describes the role of phosphorylation of cytoskeletal proteins on Ser/Thr residues in the context of EC barrier regulation, the role of Ser/Thr dephosphorylation catalyzed by Ser/Thr protein phosphatases (PPases) in EC barrier regulation is less documented. Ser/Thr PPases have been proposed to act as a counter-regulatory mechanism that preserves the EC barrier and opposes EC contraction. Despite the importance of PPases, our knowledge of the catalytic and regulatory subunits involved, as well as their cellular targets, is limited and under-appreciated. Therefore, the goal of this review is to discuss the role of Ser/Thr PPases in the regulation of lung EC cytoskeleton and permeability with special emphasis on the role of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) as major mammalian Ser/Thr PPases. Importantly, we integrate the role of PPases with the structural dynamics of the cytoskeleton and signaling cascades that regulate endothelial cell permeability and inflammation.
Collapse
Affiliation(s)
- Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Boris A. Gorshkov
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K. Batori
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
11
|
Hussong SA, Banh AQ, Van Skike CE, Dorigatti AO, Hernandez SF, Hart MJ, Ferran B, Makhlouf H, Gaczynska M, Osmulski PA, McAllen SA, Dineley KT, Ungvari Z, Perez VI, Kayed R, Galvan V. Soluble pathogenic tau enters brain vascular endothelial cells and drives cellular senescence and brain microvascular dysfunction in a mouse model of tauopathy. Nat Commun 2023; 14:2367. [PMID: 37185259 PMCID: PMC10126555 DOI: 10.1038/s41467-023-37840-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
Vascular mechanisms of Alzheimer's disease (AD) may constitute a therapeutically addressable biological pathway underlying dementia. We previously demonstrated that soluble pathogenic forms of tau (tau oligomers) accumulate in brain microvasculature of AD and other tauopathies, including prominently in microvascular endothelial cells. Here we show that soluble pathogenic tau accumulates in brain microvascular endothelial cells of P301S(PS19) mice modeling tauopathy and drives AD-like brain microvascular deficits. Microvascular impairments in P301S(PS19) mice were partially negated by selective removal of pathogenic soluble tau aggregates from brain. We found that similar to trans-neuronal transmission of pathogenic forms of tau, soluble tau aggregates are internalized by brain microvascular endothelial cells in a heparin-sensitive manner and induce microtubule destabilization, block endothelial nitric oxide synthase (eNOS) activation, and potently induce endothelial cell senescence that was recapitulated in vivo in microvasculature of P301S(PS19) mice. Our studies suggest that soluble pathogenic tau aggregates mediate AD-like brain microvascular deficits in a mouse model of tauopathy, which may arise from endothelial cell senescence and eNOS dysfunction triggered by internalization of soluble tau aggregates.
Collapse
Affiliation(s)
- Stacy A Hussong
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
- Oklahoma City Veterans Health Care System, 921 NE 13th Street, Oklahoma City, OK, 73104, USA
| | - Andy Q Banh
- South Texas Medical Scientist Training Program, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
| | - Candice E Van Skike
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
| | - Angela O Dorigatti
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
| | - Stephen F Hernandez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
| | - Matthew J Hart
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
- Center for Therapeutic Science, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
| | - Beatriz Ferran
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
| | - Haneen Makhlouf
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
| | - Maria Gaczynska
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Pawel A Osmulski
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, 4939 Charles Katz Drive, San Antonio, TX, 78229, USA
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Salome A McAllen
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Kelly T Dineley
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Zoltan Ungvari
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, H-1085 Budapest, Üllői út 26, Budapest, Hungary
| | | | - Rakez Kayed
- Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
- Sealy Center for Vaccine Development, University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Veronica Galvan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA.
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Health Care System, 921 NE 13th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
12
|
Sul C, Lewis C, Dee N, Burns N, Oshima K, Schmidt E, Vohwinkel C, Nozik E. Release of extracellular superoxide dismutase into alveolar fluid protects against acute lung injury and inflammation in Staphylococcus aureus pneumonia. Am J Physiol Lung Cell Mol Physiol 2023; 324:L445-L455. [PMID: 36749572 PMCID: PMC10026994 DOI: 10.1152/ajplung.00217.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/13/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) remains a significant cause of morbidity and mortality in critically ill patients. Oxidative stress and inflammation play a crucial role in the pathogenesis of ARDS. Extracellular superoxide dismutase (EC-SOD) is abundant in the lung and is an important enzymatic defense against superoxide. Human single-nucleotide polymorphism in matrix binding region of EC-SOD leads to the substitution of arginine to glycine at position 213 (R213G) and results in release of EC-SOD into alveolar fluid, without affecting enzyme activity. We hypothesized that R213G EC-SOD variant protects against lung injury and inflammation via the blockade of neutrophil recruitment in infectious model of methicillin-resistant S. aureus (MRSA) pneumonia. After inoculation with MRSA, wild-type (WT) mice had impaired integrity of alveolar-capillary barrier and increased levels of IL-1β, IL-6, and TNF-α in the broncho-alveolar lavage fluid (BALF), while infected mice expressing R213G EC-SOD variant maintained the integrity of alveolar-capillary interface and had attenuated levels of proinflammatory cytokines. MRSA-infected mice expressing R213G EC-SOD variant also had attenuated neutrophil numbers in BALF and decreased expression of neutrophil chemoattractant CXCL1 by the alveolar epithelial ATII cells, compared with the infected WT group. The decreased neutrophil numbers in R213G mice were not due to increased rate of apoptosis. Mice expressing R213G variant had a differential effect on neutrophil functionality-the generation of neutrophil extracellular traps (NETs) but not myeloperoxidase (MPO) levels were attenuated in comparison with WT controls. Despite having the same bacterial load in the lung as WT controls, mice expressing R213G EC-SOD variant were protected from extrapulmonary dissemination of bacteria.
Collapse
Affiliation(s)
- Christina Sul
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Caitlin Lewis
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Nathan Dee
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Nana Burns
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kaori Oshima
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Eric Schmidt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Christine Vohwinkel
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Eva Nozik
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
13
|
Kim J, Baalachandran R, Li Y, Zhang CO, Ke Y, Karki P, Birukov KG, Birukova AA. Circulating extracellular histones exacerbate acute lung injury by augmenting pulmonary endothelial dysfunction via TLR4-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2022; 323:L223-L239. [PMID: 35852995 PMCID: PMC9512107 DOI: 10.1152/ajplung.00072.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Extracellular histones released into the circulation following trauma, sepsis, and ARDS may act as potent damage-associated molecular pattern signals leading to multiple organ failure. Endothelial cell (EC) dysfunction caused by extracellular histones has been demonstrated in vitro and in vivo; however, precise mechanistic details of histone-induced EC dysfunction and exacerbation of ongoing inflammation remain poorly understood. This study investigated the role of extracellular histones in exacerbating preexisting endothelial dysfunction and acute lung injury. Histone subunits H3 and H4, but not H1, H2A, or H2B, induced permeability in human pulmonary EC. H3 and H4 at concentrations above 30 µg/mL caused EC inflammation reflected by activation of the NF-κB pathway, transcriptional activation, and release of cytokines and chemokines including IL-6 and IL-8, and increased mRNA and protein expression of EC adhesion molecules VCAM-1 and ICAM-1. Pharmacological inhibitors targeting Toll-like receptor TLR4 but not TLR2/6, blocked histone-induced EC dysfunction. H3 and H4 also strongly augmented EC permeability and inflammation caused by Gram-negative and Gram-positive bacterial particles, endotoxin, and TNFα. Heparin blocked histone-induced augmentation of EC inflammation caused by endotoxin and TNFα. Injection of histone in mouse models of lung injury caused by bacterial wall lipopolysaccharide (LPS) and heat-killed Staphylococcus aureus (HKSA) augmented ALI parameters: increased protein content, cell count, and inflammatory cytokine secretion in bronchoalveolar lavage fluid. Important clinical significance of these findings is in the demonstration that even a modest increase in extracellular histone levels can act as a severe exacerbating factor in conjunction with other EC barrier disruptive or proinflammatory agents.
Collapse
Affiliation(s)
- Junghyun Kim
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ramasubramanian Baalachandran
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yue Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Chen-Ou Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anna A Birukova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
14
|
Parinandi N, Gerasimovskaya E, Verin A. Editorial: Molecular mechanisms of lung endothelial permeability. Front Physiol 2022; 13:976873. [PMID: 35936898 PMCID: PMC9355505 DOI: 10.3389/fphys.2022.976873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 01/16/2023] Open
Affiliation(s)
- Narasimham Parinandi
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Evgenia Gerasimovskaya
- Division of Critical Care Medicine, Department of Pediatrics, University of Colorado Denver, Aurora, CO, United States
| | - Alexander Verin
- Vascular Biology Center and Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States,*Correspondence: Alexander Verin,
| |
Collapse
|
15
|
Wang L, Letsiou E, Wang H, Belvitch P, Meliton LN, Brown ME, Bandela M, Chen J, Garcia JGN, Dudek SM. MRSA-induced endothelial permeability and acute lung injury are attenuated by FTY720 S-phosphonate. Am J Physiol Lung Cell Mol Physiol 2022; 322:L149-L161. [PMID: 35015568 PMCID: PMC8794017 DOI: 10.1152/ajplung.00100.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Disruption of the lung endothelial barrier is a hallmark of acute respiratory distress syndrome (ARDS), for which no effective pharmacologic treatments exist. Prior work has demonstrated that FTY720 S-phosphonate (Tys), an analog of sphingosine-1-phosphate (S1P) and FTY720, exhibits potent endothelial cell (EC) barrier protective properties. In this study, we investigated the in vitro and in vivo efficacy of Tys against methicillin-resistant Staphylococcus aureus (MRSA), a frequent bacterial cause of ARDS. Tys-protected human lung EC from barrier disruption induced by heat-killed MRSA (HK-MRSA) or staphylococcal α-toxin and attenuated MRSA-induced cytoskeletal changes associated with barrier disruption, including actin stress fiber formation and loss of peripheral VE-cadherin and cortactin. Tys-inhibited Rho and myosin light chain (MLC) activation after MRSA and blocked MRSA-induced NF-κB activation and release of the proinflammatory cytokines, IL-6 and IL-8. In vivo, intratracheal administration of live MRSA in mice caused significant vascular leakage and leukocyte infiltration into the alveolar space. Pre- or posttreatment with Tys attenuated MRSA-induced lung permeability and levels of alveolar neutrophils. Posttreatment with Tys significantly reduced levels of bronchoalveolar lavage (BAL) VCAM-1 and plasma IL-6 and KC induced by MRSA. Dynamic intravital imaging of mouse lungs demonstrated Tys attenuation of HK-MRSA-induced interstitial edema and neutrophil infiltration into lung tissue. Tys did not directly inhibit MRSA growth or viability in vitro. In conclusion, Tys inhibits lung EC barrier disruption and proinflammatory signaling induced by MRSA in vitro and attenuates acute lung injury induced by MRSA in vivo. These results support the potential utility of Tys as a novel ARDS therapeutic strategy.
Collapse
Affiliation(s)
- Lichun Wang
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Eleftheria Letsiou
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Huashan Wang
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Patrick Belvitch
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Lucille N. Meliton
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Mary E. Brown
- 2Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Mounica Bandela
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jiwang Chen
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | | | - Steven M. Dudek
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
16
|
Karki P, Birukova AA. Microtubules as Major Regulators of Endothelial Function: Implication for Lung Injury. Front Physiol 2021; 12:758313. [PMID: 34777018 PMCID: PMC8582326 DOI: 10.3389/fphys.2021.758313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023] Open
Abstract
Endothelial dysfunction has been attributed as one of the major complications in COVID-19 patients, a global pandemic that has already caused over 4 million deaths worldwide. The dysfunction of endothelial barrier is characterized by an increase in endothelial permeability and inflammatory responses, and has even broader implications in the pathogenesis of acute respiratory syndromes such as ARDS, sepsis and chronic illnesses represented by pulmonary arterial hypertension and interstitial lung disease. The structural integrity of endothelial barrier is maintained by cytoskeleton elements, cell-substrate focal adhesion and adhesive cell junctions. Agonist-mediated changes in endothelial permeability are directly associated with reorganization of actomyosin cytoskeleton leading to cell contraction and opening of intercellular gaps or enhancement of cortical actin cytoskeleton associated with strengthening of endothelial barrier. The role of actin cytoskeleton remodeling in endothelial barrier regulation has taken the central stage, but the impact of microtubules in this process remains less explored and under-appreciated. This review will summarize the current knowledge on the crosstalk between microtubules dynamics and actin cytoskeleton remodeling, describe the signaling mechanisms mediating this crosstalk, discuss epigenetic regulation of microtubules stability and its nexus with endothelial barrier maintenance, and overview a role of microtubules in targeted delivery of signaling molecules regulating endothelial permeability and inflammation.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anna A Birukova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Nwabuife JC, Pant AM, Govender T. Liposomal delivery systems and their applications against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Adv Drug Deliv Rev 2021; 178:113861. [PMID: 34242712 DOI: 10.1016/j.addr.2021.113861] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022]
Abstract
Liposomal delivery systems have been widely explored for targeting superbugs such as S. aureus and MRSA, overcoming antimicrobial resistance associated with conventional dosage forms. They have the significant advantage of delivering hydrophilic and lipophilic antimicrobial agents, either singularly as monotherapy or in combination as combination therapy, due to their bilayers with action-site-specificity, resulting in improved targeting compared to conventional dosage forms. Herein, we present an extensive and critical review of the different liposomal delivery systems employed in the past two decades for the delivery of both antibiotics of different classes and non-antibiotic antibacterial agents, as monotherapy and combination therapy to eradicate infections caused by S. aureus and MRSA. The review also identifies future research and strategies potentiating the applications of liposomal delivery systems against S. aureus and MRSA. This review confirms the potential application of liposomal delivery systems for effective delivery and specific targeting of S. aureus and MRSA infections.
Collapse
|
18
|
Li J, Fang Y, Wu D. Mechanical forces and metabolic changes cooperate to drive cellular memory and endothelial phenotypes. CURRENT TOPICS IN MEMBRANES 2021; 87:199-253. [PMID: 34696886 PMCID: PMC8639155 DOI: 10.1016/bs.ctm.2021.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Endothelial cells line the innermost layer of arterial, venous, and lymphatic vascular tree and accordingly are subject to hemodynamic, stretch, and stiffness mechanical forces. Normally quiescent, endothelial cells have a hemodynamic set point and become "activated" in response to disturbed hemodynamics, which may signal impending nutrient or gas depletion. Endothelial cells in the majority of tissue beds are normally inactivated and maintain vessel barrier functions, are anti-inflammatory, anti-coagulant, and anti-thrombotic. However, under aberrant mechanical forces, endothelial signaling transforms in response, resulting cellular changes that herald pathological diseases. Endothelial cell metabolism is now recognized as the primary intermediate pathway that undergirds cellular transformation. In this review, we discuss the various mechanical forces endothelial cells sense in the large vessels, microvasculature, and lymphatics, and how changes in environmental mechanical forces result in changes in metabolism, which ultimately influence cell physiology, cellular memory, and ultimately disease initiation and progression.
Collapse
Affiliation(s)
- Jin Li
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Yun Fang
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - David Wu
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
19
|
Wu YX, Jiang FJ, Liu G, Wang YY, Gao ZQ, Jin SH, Nie YJ, Chen D, Chen JL, Pang QF. Dehydrocostus Lactone Attenuates Methicillin-Resistant Staphylococcus aureus-Induced Inflammation and Acute Lung Injury via Modulating Macrophage Polarization. Int J Mol Sci 2021; 22:ijms22189754. [PMID: 34575918 PMCID: PMC8472345 DOI: 10.3390/ijms22189754] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Dehydrocostus lactone (DHL), a natural sesquiterpene lactone isolated from the traditional Chinese herbs Saussurea lappa and Inula helenium L., has important anti-inflammatory properties used for treating colitis, fibrosis, and Gram-negative bacteria-induced acute lung injury (ALI). However, the effects of DHL on Gram-positive bacteria-induced macrophage activation and ALI remains unclear. In this study, we found that DHL inhibited the phosphorylation of p38 MAPK, the degradation of IκBα, and the activation and nuclear translocation of NF-κB p65, but enhanced the phosphorylation of AMP-activated protein kinase (AMPK) and the expression of Nrf2 and HO-1 in lipoteichoic acid (LTA)-stimulated RAW264.7 cells and primary bone-marrow-derived macrophages (BMDMs). Given the critical role of the p38 MAPK/NF-κB and AMPK/Nrf2 signaling pathways in the balance of M1/M2 macrophage polarization and inflammation, we speculated that DHL would also have an effect on macrophage polarization. Further studies verified that DHL promoted M2 macrophage polarization and reduced M1 polarization, then resulted in a decreased inflammatory response. An in vivo study also revealed that DHL exhibited anti-inflammatory effects and ameliorated methicillin-resistant Staphylococcus aureus (MRSA)-induced ALI. In addition, DHL treatment significantly inhibited the p38 MAPK/NF-κB pathway and activated AMPK/Nrf2 signaling, leading to accelerated switching of macrophages from M1 to M2 in the MRSA-induced murine ALI model. Collectively, these data demonstrated that DHL can promote macrophage polarization to an anti-inflammatory M2 phenotype via interfering in p38 MAPK/NF-κB signaling, as well as activating the AMPK/Nrf2 pathway in vitro and in vivo. Our results suggested that DHL might be a novel candidate for treating inflammatory diseases caused by Gram-positive bacteria.
Collapse
Affiliation(s)
- Ya-Xian Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Feng-Juan Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Gang Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Ying-Ying Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Zhi-Qi Gao
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Si-Hao Jin
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Yun-Juan Nie
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Jun-Liang Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
| | - Qing-Feng Pang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.-X.W.); (F.-J.J.); (G.L.); (Y.-Y.W.); (Z.-Q.G.); (S.-H.J.); (Y.-J.N.); (D.C.); (J.-L.C.)
- Correspondence:
| |
Collapse
|
20
|
Rho-Proteins and Downstream Pathways as Potential Targets in Sepsis and Septic Shock: What Have We Learned from Basic Research. Cells 2021; 10:cells10081844. [PMID: 34440613 PMCID: PMC8391638 DOI: 10.3390/cells10081844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 01/19/2023] Open
Abstract
Sepsis and septic shock are associated with acute and sustained impairment in the function of the cardiovascular system, kidneys, lungs, liver, and brain, among others. Despite the significant advances in prevention and treatment, sepsis and septic shock sepsis remain global health problems with elevated mortality rates. Rho proteins can interact with a considerable number of targets, directly affecting cellular contractility, actin filament assembly and growing, cell motility and migration, cytoskeleton rearrangement, and actin polymerization, physiological functions that are intensively impaired during inflammatory conditions, such as the one that occurs in sepsis. In the last few decades, Rho proteins and their downstream pathways have been investigated in sepsis-associated experimental models. The most frequently used experimental design included the exposure to bacterial lipopolysaccharide (LPS), in both in vitro and in vivo approaches, but experiments using the cecal ligation and puncture (CLP) model of sepsis have also been performed. The findings described in this review indicate that Rho proteins, mainly RhoA and Rac1, are associated with the development of crucial sepsis-associated dysfunction in different systems and cells, including the endothelium, vessels, and heart. Notably, the data found in the literature suggest that either the inhibition or activation of Rho proteins and associated pathways might be desirable in sepsis and septic shock, accordingly with the cellular system evaluated. This review included the main findings, relevance, and limitations of the current knowledge connecting Rho proteins and sepsis-associated experimental models.
Collapse
|
21
|
Dubrovskyi O, Hasten E, Dudek SM, Flavin MT, Chan LLY. Development of an Image-Based HCS-Compatible Method for Endothelial Barrier Function Assessment. SLAS DISCOVERY 2021; 26:1079-1090. [PMID: 34269109 DOI: 10.1177/24725552211030900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The recent renascence of phenotypic drug discovery (PDD) is catalyzed by its ability to identify first-in-class drugs and deliver results when the exact molecular mechanism is partially obscure. Acute respiratory distress syndrome (ARDS) is a severe, life-threatening condition with a high mortality rate that has increased in frequency due to the COVID-19 pandemic. Despite decades of laboratory and clinical study, no efficient pharmacological therapy for ARDS has been found. An increase in endothelial permeability is the primary event in ARDS onset, causing the development of pulmonary edema that leads to respiratory failure. Currently, the detailed molecular mechanisms regulating endothelial permeability are poorly understood. Therefore, the use of the PDD approach in the search for efficient ARDS treatment can be more productive than classic target-based drug discovery (TDD), but its use requires a new cell-based assay compatible with high-throughput (HTS) and high-content (HCS) screening. Here we report the development of a new plate-based image cytometry method to measure endothelial barrier function. The incorporation of image cytometry in combination with digital image analysis substantially decreases assay variability and increases the signal window. This new method simultaneously allows for rapid measurement of cell monolayer permeability and cytological analysis. The time-course of permeability increase in human pulmonary artery endothelial cells (HPAECs) in response to the thrombin and tumor necrosis factor α treatment correlates with previously published data obtained by transendothelial resistance (TER) measurements. Furthermore, the proposed image cytometry method can be easily adapted for HTS/HCS applications.
Collapse
Affiliation(s)
- Oleksii Dubrovskyi
- UICentre, College of Pharmacy, University of Illinois in Chicago, Chicago, IL, USA
| | - Erica Hasten
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep, and Allergy, College of Medicine, University of Illinois in Chicago, Chicago, IL, USA
| | - Michael T Flavin
- UICentre, College of Pharmacy, University of Illinois in Chicago, Chicago, IL, USA
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, USA
| |
Collapse
|
22
|
Htwe YM, Wang H, Belvitch P, Meliton L, Bandela M, Letsiou E, Dudek SM. Group V Phospholipase A 2 Mediates Endothelial Dysfunction and Acute Lung Injury Caused by Methicillin-Resistant Staphylococcus Aureus. Cells 2021; 10:1731. [PMID: 34359901 PMCID: PMC8304832 DOI: 10.3390/cells10071731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022] Open
Abstract
Lung endothelial dysfunction is a key feature of acute lung injury (ALI) and clinical acute respiratory distress syndrome (ARDS). Previous studies have identified the lipid-generating enzyme, group V phospholipase A2 (gVPLA2), as a mediator of lung endothelial barrier disruption and inflammation. The current study aimed to determine the role of gVPLA2 in mediating lung endothelial responses to methicillin-resistant Staphylococcus aureus (MRSA, USA300 strain), a major cause of ALI/ARDS. In vitro studies assessed the effects of gVPLA2 inhibition on lung endothelial cell (EC) permeability after exposure to heat-killed (HK) MRSA. In vivo studies assessed the effects of intratracheal live or HK-MRSA on multiple indices of ALI in wild-type (WT) and gVPLA2-deficient (KO) mice. In vitro, HK-MRSA increased gVPLA2 expression and permeability in human lung EC. Inhibition of gVPLA2 with either the PLA2 inhibitor, LY311727, or with a specific monoclonal antibody, attenuated the barrier disruption caused by HK-MRSA. LY311727 also reduced HK-MRSA-induced permeability in mouse lung EC isolated from WT but not gVPLA2-KO mice. In vivo, live MRSA caused significantly less ALI in gVPLA2 KO mice compared to WT, findings confirmed by intravital microscopy assessment in HK-MRSA-treated mice. After targeted delivery of gVPLA2 plasmid to lung endothelium using ACE antibody-conjugated liposomes, MRSA-induced ALI was significantly increased in gVPLA2-KO mice, indicating that lung endothelial expression of gVPLA2 is critical in vivo. In summary, these results demonstrate an important role for gVPLA2 in mediating MRSA-induced lung EC permeability and ALI. Thus, gVPLA2 may represent a novel therapeutic target in ALI/ARDS caused by bacterial infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (Y.M.H.); (H.W.); (P.B.); (L.M.); (M.B.); (E.L.)
| |
Collapse
|
23
|
Kovacs-Kasa A, Kovacs L, Cherian-Shaw M, Patel V, Meadows ML, Fulton DJ, Su Y, Verin AD. Inhibition of Class IIa HDACs improves endothelial barrier function in endotoxin-induced acute lung injury. J Cell Physiol 2021; 236:2893-2905. [PMID: 32959895 PMCID: PMC9946131 DOI: 10.1002/jcp.30053] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Acute lung injury (ALI) is an acute inflammatory process arises from a wide range of lung insults. A major cause of ALI is dysfunction of the pulmonary vascular endothelial barrier but the mechanisms involved are incompletely understood. The therapeutic potential of histone deacetylase (HDAC) inhibitors for the treatment of cardiovascular and inflammatory diseases is increasingly apparent, but the mechanisms by which HDACs regulate pulmonary vascular barrier function remain to be resolved. We found that specific Class IIa HDACs inhibitor, TMP269, significantly attenuated the lipopolysaccharide (LPS)-induced human lung microvascular endothelial cells (HLMVEC) barrier compromise in vitro and improved vascular barrier integrity and lung function in murine model of ALI in vivo. TMP269 decreased LPS-induced myosin light chain phosphorylation suggesting the role for Class IIa HDACs in LPS-induced cytoskeleton reorganization. TMP269 did not affect microtubule structure and tubulin acetylation in contrast to the HDAC6-specific inhibitor, Tubastatin A suggesting that Class IIa HDACs and HDAC6 (Class IIb) regulate endothelial cytoskeleton and permeability via different mechanisms. Furthermore, LPS increased the expression of ArgBP2 which has recently been attributed to HDAC-mediated activation of Rho. Depletion of ArgBP2 abolished the ability of LPS to disrupt barrier function in HLMVEC and both TMP269 and Tubastatin A decreased the level of ArgBP2 expression after LPS stimulation suggesting that both Class IIa and IIb HDACs regulate endothelial permeability via ArgBP2-dependent mechanism. Collectively, our data strongly suggest that Class IIa HDACs are involved in LPS-induced ALI in vitro and in vivo via specific mechanism which involved contractile responses, but not microtubule reorganization.
Collapse
Affiliation(s)
- Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Laszlo Kovacs
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Mary Cherian-Shaw
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Vijay Patel
- Department of Cardiothoracic Surgery, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Mary L. Meadows
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - David J. Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Yunchao Su
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
24
|
Karki P, Cha B, Zhang CO, Li Y, Ke Y, Promnares K, Kaibuchi K, Yoshimura A, Birukov KG, Birukova AA. Microtubule-dependent mechanism of anti-inflammatory effect of SOCS1 in endothelial dysfunction and lung injury. FASEB J 2021; 35:e21388. [PMID: 33724556 PMCID: PMC10069762 DOI: 10.1096/fj.202001477rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/21/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Suppressors of cytokine signaling (SOCS) provide negative regulation of inflammatory reaction. The role and precise cellular mechanisms of SOCS1 in control of endothelial dysfunction and barrier compromise associated with acute lung injury remain unexplored. Our results show that siRNA-mediated SOCS1 knockdown augmented lipopolysaccharide (LPS)-induced pulmonary endothelial cell (EC) permeability and enhanced inflammatory response. Consistent with in vitro data, EC-specific SOCS1 knockout mice developed more severe lung vascular leak and accumulation of inflammatory cells in bronchoalveolar lavage fluid. SOCS1 overexpression exhibited protective effects against LPS-induced endothelial permeability and inflammation, which were dependent on microtubule (MT) integrity. Biochemical and image analysis of unstimulated EC showed SOCS1 association with the MT, while challenge with LPS or MT depolymerizing agent colchicine impaired this association. SOCS1 directly interacted with N2 domains of MT-associated proteins CLIP-170 and CLASP2. Furthermore, N-terminal region of SOCS1 was indispensable for these interactions and SOCS1-ΔN mutant lacking N-terminal 59 amino acids failed to rescue LPS-induced endothelial dysfunction. Depletion of endogenous CLIP-170 or CLASP2 abolished SOCS1 interaction with Toll-like receptor-4 and Janus kinase-2 leading to impairment of SOCS1 inhibitory effects on LPS-induced inflammation. Altogether, these findings suggest that endothelial barrier protective and anti-inflammatory effects of SOCS1 are critically dependent on its targeting to the MT.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Boyoung Cha
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chen-Ou Zhang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yue Li
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kamoltip Promnares
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University, Nagoya, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University, Tokyo, Japan
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anna A Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Zhang Q, Wang Y, Qu D, Yu J, Yang J. Role of HDAC6 inhibition in sepsis-induced acute respiratory distress syndrome (Review). Exp Ther Med 2021; 21:422. [PMID: 33747162 DOI: 10.3892/etm.2021.9866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) induced by sepsis contributes remarkably to the high mortality rate observed in intensive care units, largely due to a lack of effective drug therapies. Histone deacetylase 6 (HDAC6) is a class-IIb deacetylase that modulates non-nuclear protein functions via deacetylation and ubiquitination. Importantly, HDAC6 has been shown to exert anti-cancer, anti-neurodegeneration, and immunological effects, and several HDAC6 inhibitors have now entered clinical trials. It has also been recently shown to modulate inflammation, and HDAC6 inhibition has been demonstrated to markedly suppress experimental sepsis. The present review summarizes the role of HDAC6 in sepsis-induced inflammation and endothelial barrier dysfunction in recent years. It is proposed that HDAC6 inhibition predominantly ameliorates sepsis-induced ARDS by directly attenuating inflammation, which modulates the innate and adaptive immunity, transcription of pro-inflammatory genes, and protects endothelial barrier function. HDAC6 inhibition protects against sepsis-induced ARDS, thereby making HDAC6 a promising therapeutic target. However, HDAC inhibition may be associated with adverse effects on the embryo sac and oocyte, necessitating further studies.
Collapse
Affiliation(s)
- Qinghua Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Danhua Qu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jinyan Yu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Junling Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
26
|
Wang Y, Liu YJ, Xu DF, Zhang H, Xu CF, Mao YF, Lv Z, Zhu XY, Jiang L. DRD1 downregulation contributes to mechanical stretch-induced lung endothelial barrier dysfunction. Am J Cancer Res 2021; 11:2505-2521. [PMID: 33456556 PMCID: PMC7806475 DOI: 10.7150/thno.46192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 12/05/2020] [Indexed: 01/11/2023] Open
Abstract
Rationale: The lung-protective effects of dopamine and its role in the pathology of ventilator-induced lung injury (VILI) are emerging. However, the underlying mechanisms are still largely unknown. Objective: To investigate the contribution of dopamine receptor dysregulation in the pathogenesis of VILI and therapeutic potential of dopamine D1 receptor (DRD1) agonist in VILI. Methods: The role of dopamine receptors in mechanical stretch-induced endothelial barrier dysfunction and lung injury was studied in DRD1 knockout mice, in isolated mouse lung vascular endothelial cells (MLVECs), and in lung samples from patients who underwent pulmonary lobectomy with mechanical ventilation for different time periods. Measurements and Main Results: DRD1 was downregulated in both surgical patients and mice exposed to mechanical ventilation. Prophylactic administration of dopamine or DRD1 agonist attenuated mechanical stretch-induced lung endothelial barrier dysfunction and lung injury. By contrast, pulmonary knockdown or global knockout of DRD1 exacerbated these effects. Prophylactic administration of dopamine attenuated mechanical stretch-induced α-tubulin deacetylation and subsequent endothelial hyperpermeability through DRD1 signaling. We identified that cyclic stretch-induced glycogen-synthase-kinase-3β activation led to phosphorylation and activation of histone deacetylase 6 (HDAC6), which resulted in deacetylation of α-tubulin. Upon activation, DRD1 signaling attenuated mechanical stretch-induced α-tubulin deacetylation and subsequent lung endothelial barrier dysfunction through cAMP/exchange protein activated by cAMP (EPAC)-mediated inactivation of HDAC6. Conclusions: This work identifies a novel protective role for DRD1 against mechanical stretch-induced lung endothelial barrier dysfunction and lung injury. Further study of the mechanisms involving DRD1 in the regulation of microtubule stability and interference with DRD1/cAMP/EPAC/HDAC6 signaling may provide insight into therapeutic approaches for VILI.
Collapse
|
27
|
He L, Liu R, Yue H, Ren S, Zhu G, Guo Y, Qin C. Actin-granule formation is an additional step in cardiac myofibroblast differentiation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:165. [PMID: 33569467 PMCID: PMC7867932 DOI: 10.21037/atm-20-8231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Atrial fibrillation is the most common and long-lasting cardiac arrhythmia, and profoundly effects the daily lives of patients. The pathogenesis and persistence of atrial fibrillation is closely related to the cardiac fibroblast and its myofibroblast differentiation as increased collagen synthesis and migration capability. Thus better understanding of myofibroblast differentiation is essential for the prevention and treatment of atrial fibrillation. Methods Cardiac fibroblasts were isolated from neonatal rats and its actin structure was analyzed by immunofluorescence staining. Myofibroblast differentiation was induced by Angiotensin II (Ang II) and ROCK signaling related proteins were determined by western blot. Fasudil and Ricolinostat were employed to abrogate ROCK signaling and their effects on myofibroblast differentiation were assessed by IF microscopy and Celigo Image Cytometry. Results Stress actin fibers similar to actin filaments in myofibroblast differentiation are regulated by ROCK signaling, and our results also suggested Guanine nucleotide exchange factor-H1 (GEF-H1) phosphorylation could be induced by Ang II. In addition, Fasudil could down-regulate RhoA, GEF-H1, and phosphorylated GEF-H1 to inhibit ROCK signaling and further reduce Col I expression and the myofibroblast proportion. Conclusions An individual phase characterized by actin-granule formation was identified in cardiac myofibroblast differentiation. In the meanwhile, myofibroblast differentiation and its F-actin assembly could be detained in this phase by Fasudil abrogating the ROCK signaling pathway.
Collapse
Affiliation(s)
- Li He
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ruiqi Liu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Honghua Yue
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shuofang Ren
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Guonian Zhu
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chaoyi Qin
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Karki P, Ke Y, Zhang CO, Li Y, Tian Y, Son S, Yoshimura A, Kaibuchi K, Birukov KG, Birukova AA. SOCS3-microtubule interaction via CLIP-170 and CLASP2 is critical for modulation of endothelial inflammation and lung injury. J Biol Chem 2021; 296:100239. [PMID: 33372035 PMCID: PMC7949054 DOI: 10.1074/jbc.ra120.014232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/23/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Proinflammatory cytokines such as IL-6 induce endothelial cell (EC) barrier disruption and trigger an inflammatory response in part by activating the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. The protein suppressor of cytokine signaling-3 (SOCS3) is a negative regulator of JAK-STAT, but its role in modulation of lung EC barrier dysfunction caused by bacterial pathogens has not been investigated. Using human lung ECs and EC-specific SOCS3 knockout mice, we tested the hypothesis that SOCS3 confers microtubule (MT)-mediated protection against endothelial dysfunction. SOCS3 knockdown in cultured ECs or EC-specific SOCS3 knockout in mice resulted in exacerbated lung injury characterized by increased permeability and inflammation in response to IL-6 or heat-killed Staphylococcus aureus (HKSA). Ectopic expression of SOCS3 attenuated HKSA-induced EC dysfunction, and this effect required assembled MTs. SOCS3 was enriched in the MT fractions, and treatment with HKSA disrupted SOCS3-MT association. We discovered that-in addition to its known partners gp130 and JAK2-SOCS3 interacts with MT plus-end binding proteins CLIP-170 and CLASP2 via its N-terminal domain. The resulting SOCS3-CLIP-170/CLASP2 complex was essential for maximal SOCS3 anti-inflammatory effects. Both IL-6 and HKSA promoted MT disassembly and disrupted SOCS3 interaction with CLIP-170 and CLASP2. Moreover, knockdown of CLIP-170 or CLASP2 impaired SOCS3-JAK2 interaction and abolished the anti-inflammatory effects of SOCS3. Together, these findings demonstrate for the first time an interaction between SOCS3 and CLIP-170/CLASP2 and reveal that this interaction is essential to the protective effects of SOCS3 in lung endothelium.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chen-Ou Zhang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yue Li
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yufeng Tian
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sophia Son
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University, Tokyo, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University, Nagoya, Japan
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anna A Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
29
|
Chen X, He Y, Fu W, Sahebkar A, Tan Y, Xu S, Li H. Histone Deacetylases (HDACs) and Atherosclerosis: A Mechanistic and Pharmacological Review. Front Cell Dev Biol 2020; 8:581015. [PMID: 33282862 PMCID: PMC7688915 DOI: 10.3389/fcell.2020.581015] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (AS), the most common underlying pathology for coronary artery disease, is a chronic inflammatory, proliferative disease in large- and medium-sized arteries. The vascular endothelium is important for maintaining vascular health. Endothelial dysfunction is a critical early event leading to AS, which is a major risk factor for stroke and myocardial infarction. Accumulating evidence has suggested the critical roles of histone deacetylases (HDACs) in regulating vascular cell homeostasis and AS. The purpose of this review is to present an updated view on the roles of HDACs (Class I, Class II, Class IV) and HDAC inhibitors in vascular dysfunction and AS. We also elaborate on the novel therapeutic targets and agents in atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaona Chen
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhong He
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjun Fu
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | - Yuhui Tan
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suowen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hong Li
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
30
|
Wyman AE, Nguyen TTT, Karki P, Tulapurkar ME, Zhang CO, Kim J, Feng TG, Dabo AJ, Todd NW, Luzina IG, Geraghty P, Foronjy RF, Hasday JD, Birukova AA, Atamas SP, Birukov KG. SIRT7 deficiency suppresses inflammation, induces EndoMT, and increases vascular permeability in primary pulmonary endothelial cells. Sci Rep 2020; 10:12497. [PMID: 32719338 PMCID: PMC7385158 DOI: 10.1038/s41598-020-69236-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
Acute lung injury (ALI), a common condition in critically ill patients, has limited treatments and high mortality. Aging is a risk factor for ALI. Sirtuins (SIRTs), central regulators of the aging process, decrease during normal aging and in aging-related diseases. We recently showed decreased SIRT7 expression in lung tissues and fibroblasts from patients with pulmonary fibrosis compared to controls. To gain insight into aging-related mechanisms in ALI, we investigated the effects of SIRT7 depletion on lipopolysaccharide (LPS)-induced inflammatory responses and endothelial barrier permeability in human primary pulmonary endothelial cells. Silencing SIRT7 in pulmonary artery or microvascular endothelial cells attenuated LPS-induced increases in ICAM1, VCAM1, IL8, and IL6 and induced endomesenchymal transition (EndoMT) with decreases in VE-Cadherin and PECAM1 and increases in collagen, alpha-smooth muscle actin, TGFβ receptor 1, and the transcription factor Snail. Loss of endothelial adhesion molecules was accompanied by increased F-actin stress fibers and increased endothelial barrier permeability. Together, these results show that an aging phenotype induced by SIRT7 deficiency promotes EndoMT with impaired inflammatory responses and dysfunction of the lung vascular barrier.
Collapse
Affiliation(s)
- Anne E Wyman
- Geriatric Research Education and Clinical Center (GRECC), VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA. .,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA. .,Research Service, Baltimore VA Medical Center, Baltimore, MD, USA. .,Departments of Medicine and Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA.
| | - Trang T T Nguyen
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pratap Karki
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mohan E Tulapurkar
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chen-Ou Zhang
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Junghyun Kim
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Theresa G Feng
- Department of Anesthesiology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Abdoulaye J Dabo
- Departments of Medicine and Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Nevins W Todd
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Research Service, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Irina G Luzina
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Research Service, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Patrick Geraghty
- Departments of Medicine and Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Robert F Foronjy
- Departments of Medicine and Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jeffrey D Hasday
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Research Service, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Anna A Birukova
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sergei P Atamas
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.,Research Service, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Konstantin G Birukov
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
31
|
Yan S, Wei X, Jian W, Qin Y, Liu J, Zhu S, Jiang F, Lou H, Zhang B. Pharmacological Inhibition of HDAC6 Attenuates NLRP3 Inflammatory Response and Protects Dopaminergic Neurons in Experimental Models of Parkinson's Disease. Front Aging Neurosci 2020; 12:78. [PMID: 32296327 PMCID: PMC7137996 DOI: 10.3389/fnagi.2020.00078] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/03/2020] [Indexed: 12/26/2022] Open
Abstract
Aim To investigate the role of histone deacetylase 6 (HDAC6) deacetylation activity in nucleotide-binding oligomerization domain and leucine-rich repeat pyrin 3 domain (NLRP3) inflammatory response and explore the effects of pharmacological inhibition of HDAC6 with tubastatin A (TBA) on dopaminergic injury. Methods Using 6-OHDA-induced Parkinson's disease (PD) models, we examined the effects of TBA on NLRP3 activation and cell injury in SH-SY5Y cells. We also investigated the effects of TBA on NLRP3 inflammatory responses and dopaminergic injury in the nigrostriatal system in mice and analyzed the acetylation levels of peroxiredoxin2 (Prx2) and oxidative stress. Results TBA inhibited 6-OHDA-induced NLRP3 activation, as demonstrated by decreased expressions of NLRP3 and matured caspase-1 and IL-1β, and also alleviated glial proliferation and dopaminergic neuronal degeneration. Notably, TBA recovered acetylation levels of Prx2 and reduced oxidative stress. Conclusion Our findings indicate that pharmacological inhibition of HDAC6 with TBA attenuates NLRP3 inflammation and protects dopaminergic neurons, probably through Prx2 acetylation. This study suggests that the deacetylase catalytic domain of HDAC6 is a potential target for PD treatment.
Collapse
Affiliation(s)
- Shaoqi Yan
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xinbing Wei
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wencheng Jian
- Department of Radiology, Qilu Hospital, Shandong University, Jinan, China
| | - Yue Qin
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jia Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shaowei Zhu
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Fan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Shandong University, Jinan, China
| | - Haiyan Lou
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Bin Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| |
Collapse
|
32
|
Janßen HC, Angrisani N, Kalies S, Hansmann F, Kietzmann M, Warwas DP, Behrens P, Reifenrath J. Biodistribution, biocompatibility and targeted accumulation of magnetic nanoporous silica nanoparticles as drug carrier in orthopedics. J Nanobiotechnology 2020; 18:14. [PMID: 31941495 PMCID: PMC6964035 DOI: 10.1186/s12951-020-0578-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In orthopedics, the treatment of implant-associated infections represents a high challenge. Especially, potent antibacterial effects at implant surfaces can only be achieved by the use of high doses of antibiotics, and still often fail. Drug-loaded magnetic nanoparticles are very promising for local selective therapy, enabling lower systemic antibiotic doses and reducing adverse side effects. The idea of the following study was the local accumulation of such nanoparticles by an externally applied magnetic field combined with a magnetizable implant. The examination of the biodistribution of the nanoparticles, their effective accumulation at the implant and possible adverse side effects were the focus. In a BALB/c mouse model (n = 50) ferritic steel 1.4521 and Ti90Al6V4 (control) implants were inserted subcutaneously at the hindlimbs. Afterwards, magnetic nanoporous silica nanoparticles (MNPSNPs), modified with rhodamine B isothiocyanate and polyethylene glycol-silane (PEG), were administered intravenously. Directly/1/7/21/42 day(s) after subsequent application of a magnetic field gradient produced by an electromagnet, the nanoparticle biodistribution was evaluated by smear samples, histology and multiphoton microscopy of organs. Additionally, a pathohistological examination was performed. Accumulation on and around implants was evaluated by droplet samples and histology. RESULTS Clinical and histological examinations showed no MNPSNP-associated changes in mice at all investigated time points. Although PEGylated, MNPSNPs were mainly trapped in lung, liver, and spleen. Over time, they showed two distributional patterns: early significant drops in blood, lung, and kidney and slow decreases in liver and spleen. The accumulation of MNPSNPs on the magnetizable implant and in its area was very low with no significant differences towards the control. CONCLUSION Despite massive nanoparticle capture by the mononuclear phagocyte system, no significant pathomorphological alterations were found in affected organs. This shows good biocompatibility of MNPSNPs after intravenous administration. The organ uptake led to insufficient availability of MNPSNPs in the implant region. For that reason, among others, the nanoparticles did not achieve targeted accumulation in the desired way, manifesting future research need. However, with different conditions and dimensions in humans and further modifications of the nanoparticles, this principle should enable reaching magnetizable implant surfaces at any time in any body region for a therapeutic reason.
Collapse
Affiliation(s)
- Hilke Catherina Janßen
- Clinic for Orthopedic Surgery, NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Nina Angrisani
- Clinic for Orthopedic Surgery, NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Stefan Kalies
- Institute of Quantum Optics, NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Leibniz University Hannover, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hanover Foundation, Buenteweg 17, 30559, Hannover, Germany
| | - Manfred Kietzmann
- Institute of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hanover Foundation, Buenteweg 17, 30559, Hannover, Germany
| | - Dawid Peter Warwas
- Institute for Inorganic Chemistry, Leibniz University Hannover, Callinstraße 9, 30167, Hannover, Germany
| | - Peter Behrens
- Institute for Inorganic Chemistry, Leibniz University Hannover, Callinstraße 9, 30167, Hannover, Germany
| | - Janin Reifenrath
- Clinic for Orthopedic Surgery, NIFE-Lower Saxony Centre for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Stadtfelddamm 34, 30625, Hannover, Germany.
| |
Collapse
|
33
|
Akhtar M, Shaukat A, Zahoor A, Chen Y, Wang Y, Yang M, Umar T, Guo M, Deng G. Anti-inflammatory effects of Hederacoside-C on Staphylococcus aureus induced inflammation via TLRs and their downstream signal pathway in vivo and in vitro. Microb Pathog 2019; 137:103767. [DOI: 10.1016/j.micpath.2019.103767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/08/2019] [Accepted: 09/29/2019] [Indexed: 01/08/2023]
|
34
|
Li T, Liu L, Wang X. [Sepsis impairs aggregation of nicotinic acetylcholine receptors on murine skeletal muscle cell membranes by inhibiting AKT/GSK3β phosphorylation]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1337-1343. [PMID: 31852639 DOI: 10.12122/j.issn.1673-4254.2019.11.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To investigate the role of the protein-serine-threonine kinase (AKT)/glycogen synthase kinase 3β (GSK3β) signaling pathway in nicotinic acetylcholine receptors (nAChRs) aggregation disorder on skeletal muscle cell membranes induced by sepsis. METHODS Mouse C2C12 myoblasts were differentiated into myotubes by horse serum, and then C2C12 myotubes were randomly divided into four groups: the Sham group treated with serum from sham-operated mice, the Sepsis group treated with serum from septic mice, the Sepsis+D group treated with serum from septic mice and dimethyl sulfoxide (DMSO), the Sepsis+SB group treated with serum from septic mice and GSK3β inhibitor SB216763. Agrin was added into the cell culture to induce nAChRs aggregation before the treatment. After serum treatment for 5.5 h, the myotubes were examined for nAChRs clusters using Alexa Fluor 594-conjugated α-bungarotoxin (α- BTX). The expression levels of AKT, GSK3β and CLIP- associated protein 2 (CLASP2) and the phosphorylation of AKT, GSK3β were examined with Western blotting. The phosphorylation of CLASP2 and the interaction between CLASP2 and α-tubulin were detected with co-immunoprecipitation (Co-IP) assay. RESULTS Compared with the serum from sham-operated mice, the serum from septic mice caused significant reduction in the area and density of nAChRs clusters on C2C12 myotubes, lowered the levels of phosphorylated AKT (p-AKT) and phosphorylated GSK3β (p-GSK3β), increased the expression of phosphorylated CLASP2 (p-CLASP2), and obviously reduced the binding between CLASP2 and α-tubulin. Compared with DMSO, SB216763 significantly increased the area and density of nAChRs clusters on C2C12 myotubes treated with serum from septic mice, decreased the expression of p-CLASP2, and enhanced the interaction between CLASP2 and α-tubulin. CONCLUSIONS Septic mouse serum impairs nAChRs aggregation on C2C12 myotubes possibly by suppressing AKT/GSK3β phosphorylation to cause reduced interaction between CLASP2 and α-tubulin.
Collapse
Affiliation(s)
- Tianmei Li
- Department of Anesthesiology, First Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Li Liu
- Department of Anesthesiology, First Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiaobin Wang
- Department of Anesthesiology, First Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
35
|
Karki P, Birukov KG. Rho and Reactive Oxygen Species at Crossroads of Endothelial Permeability and Inflammation. Antioxid Redox Signal 2019; 31:1009-1022. [PMID: 31126187 PMCID: PMC6765062 DOI: 10.1089/ars.2019.7798] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Increased endothelial permeability and inflammation are two major hallmarks of the life-threatening conditions such as acute respiratory distress syndrome and sepsis. There is a growing consensus in the field that the Rho family of small guanosine triphosphates are critical regulators of endothelial function at both physiological and pathological states. A basal level of reactive oxygen species (ROS) is essential for maintaining metabolic homeostasis, vascular tone, and angiogenesis; however, excessive ROS generation impairs endothelial function and promotes lung inflammation. In this review, we will focus on the role of Rho in control of endothelial function and also briefly discuss a nexus between ROS generation and Rho activation during endothelial dysfunction. Recent Advances: Extensive studies in the past decades have established that a wide range of barrier-disruptive and proinflammatory agonists activate the Rho pathway that, ultimately, leads to endothelial dysfunction via disruption of endothelial barrier and further escalation of inflammation. An increasing body of evidence suggests that a bidirectional interplay exists between the Rho pathway and ROS generation during endothelial dysfunction. Rac, a member of the Rho family, is directly involved in ROS production and ROS, in turn, activate RhoA, Rac, and Cdc42. Critical Issues: A precise mechanism of interaction between ROS generation and Rho activation and its impact on endothelial function needs to be elucidated. Future Directions: By employing advanced molecular techniques, the sequential cascades in the Rho-ROS crosstalk signaling axis need to be explored. The therapeutic potential of the Rho pathway inhibitors in endothelial-dysfunction associated cardiopulmonary disorders needs to be evaluated.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland, Baltimore, Maryland
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
36
|
Wu Y, Nie Y, Huang J, Qiu Y, Wan B, Liu G, Chen J, Chen D, Pang Q. Protostemonine alleviates heat-killed methicillin-resistant Staphylococcus aureus-induced acute lung injury through MAPK and NF-κB signaling pathways. Int Immunopharmacol 2019; 77:105964. [PMID: 31669889 DOI: 10.1016/j.intimp.2019.105964] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
Acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) caused by gram-positive bacteria threatens human life because effective treatments and medicines is unavailable. Protostemonine (PSN), an active alkaloid mainly isolated from the roots of Stemona sesslifolia, has anti-inflammatory effects on asthma and gram-negative bacteria-induced ALI. Here, we found that PSN exhibits anti-inflammatory effects and alleviates heat-killed methicillin-resistant Staphylococcus aureus (HKMRSA)-induced pneumonia. PSN treatment significantly attenuated HKMRSA-induced pathological injury, pulmonary neutrophil infiltration, tissue permeability and the production of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in murine ALI model. In addition, PSN decreased the content of TNF-α, IL-1β, IL-6 and the expression of iNOS, as well as the production of NO in HKMRSA-induced bone marrow derived macrophages (BMDMs). Furthermore, treatment with PSN suppressed the activation of MAPKs (e.g. p38 MAPK, JNK and ERK) and NF-κB. Collectively, our results suggest that PSN ameliorates gram-positive bacteria-induced ALI in mice by inhibition of the MAPK and NF-κB signaling pathways, and our studies suggest that PSN might be a novel candidate for treating ALI/ARDS.
Collapse
Affiliation(s)
- Yaxian Wu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Yunjuan Nie
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Jianfeng Huang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, PR China
| | - Yubao Qiu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Binbin Wan
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Gang Liu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Junliang Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| | - Qingfeng Pang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China.
| |
Collapse
|
37
|
Wu D, Birukov K. Endothelial Cell Mechano-Metabolomic Coupling to Disease States in the Lung Microvasculature. Front Bioeng Biotechnol 2019; 7:172. [PMID: 31380363 PMCID: PMC6658821 DOI: 10.3389/fbioe.2019.00172] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Lungs are the most vascular part of humans, accepting the totality of cardiac output in a volume much smaller than the body itself. Due to this cardiac output, the lung microvasculature is subject to mechanical forces including shear stress and cyclic stretch that vary with the cardiac and breathing cycle. Vessels are surrounded by extracellular matrix which dictates the stiffness which endothelial cells also sense and respond to. Shear stress, stiffness, and cyclic stretch are known to influence endothelial cell state. At high shear stress, endothelial cells exhibit cell quiescence marked by low inflammatory markers and high nitric oxide synthesis, whereas at low shear stress, endothelial cells are thought to "activate" into a pro-inflammatory state and have low nitric oxide. Shear stress' profound effect on vascular phenotype is most apparent in the arterial vasculature and in the pathophysiology of vascular inflammation. To conduct the flow of blood from the right heart, the lung microvasculature must be rigid yet compliant. It turns out that excessive substrate rigidity or stiffness is important in the development of pulmonary hypertension and chronic fibrosing lung diseases via excessive cell proliferation or the endothelial-mesenchymal transition. Recently, a new body of literature has evolved that couples mechanical sensing to endothelial phenotypic changes through metabolic signaling in clinically relevant contexts such as pulmonary hypertension, lung injury syndromes, as well as fibrosis, which is the focus of this review. Stretch, like flow, has profound effect on endothelial phenotype; metabolism studies due to stretch are in their infancy.
Collapse
Affiliation(s)
- David Wu
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Konstantin Birukov
- Department of Anesthesia, University of Maryland, Baltimore, MD, United States
| |
Collapse
|