1
|
Wolf JD, Sirrine MR, Cox RM, Plemper RK. Structural basis of paramyxo- and pneumovirus polymerase inhibition by non-nucleoside small-molecule antivirals. Antimicrob Agents Chemother 2024; 68:e0080024. [PMID: 39162479 PMCID: PMC11459973 DOI: 10.1128/aac.00800-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Small-molecule antivirals can be used as chemical probes to stabilize transitory conformational stages of viral target proteins, facilitating structural analyses. Here, we evaluate allosteric pneumo- and paramyxovirus polymerase inhibitors that have the potential to serve as chemical probes and aid the structural characterization of short-lived intermediate conformations of the polymerase complex. Of multiple inhibitor classes evaluated, we discuss in-depth distinct scaffolds that were selected based on well-understood structure-activity relationships, insight into resistance profiles, biochemical characterization of the mechanism of action, and photoaffinity-based target mapping. Each class is thought to block structural rearrangements of polymerase domains albeit target sites and docking poses are distinct. This review highlights validated druggable targets in the paramyxo- and pneumovirus polymerase proteins and discusses discrete structural stages of the polymerase complexes required for bioactivity.
Collapse
Affiliation(s)
- Josef D. Wolf
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Michael R. Sirrine
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Robert M. Cox
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| | - Richard K. Plemper
- Center for Translational Antiviral Research, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Felicetti T, Sarnari C, Gaito R, Tabarrini O, Manfroni G. Recent Progress toward the Discovery of Small Molecules as Novel Anti-Respiratory Syncytial Virus Agents. J Med Chem 2024; 67:11543-11579. [PMID: 38970494 DOI: 10.1021/acs.jmedchem.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Respiratory syncytial virus (RSV) stands as the foremost cause of infant hospitalization globally, ranking second only to malaria in terms of infant mortality. Although three vaccines have recently been approved for the prophylaxis of adults aged 60 and above, and pregnant women, there is currently no effective antiviral drug for treating RSV infections. The only preventive measure for infants at high risk of severe RSV disease is passive immunization through monoclonal antibodies. This Perspective offers an overview of the latest advancements in RSV drug discovery of small molecule antivirals, with particular focus on the promising findings from agents targeting the fusion and polymerase proteins. A comprehensive reflection on the current state of RSV research is also given, drawing inspiration from the lessons gleaned from HCV and HIV, while also considering the impact of the recent approval of the three vaccines.
Collapse
Affiliation(s)
- Tommaso Felicetti
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Chiara Sarnari
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Roberta Gaito
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo, 1-06123, Perugia, Italy
| |
Collapse
|
3
|
Bonneux B, Shareef A, Tcherniuk S, Anson B, de Bruyn S, Verheyen N, Thys K, Conceição-Neto N, Van Ginderen M, Kwanten L, Ysebaert N, Vranckx L, Peeters E, Lanckacker E, Gallup JM, Sitthicharoenchai P, Alnajjar S, Ackermann MR, Adhikary S, Bhaumik A, Patrick A, Fung A, Sutto-Ortiz P, Decroly E, Mason SW, Lançois D, Deval J, Jin Z, Eléouët JF, Fearns R, Koul A, Roymans D, Rigaux P, Herschke F. JNJ-7184, a respiratory syncytial virus inhibitor targeting the connector domain of the viral polymerase. Antiviral Res 2024; 227:105907. [PMID: 38772503 DOI: 10.1016/j.antiviral.2024.105907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
Respiratory syncytial virus (RSV) can cause pulmonary complications in infants, elderly and immunocompromised patients. While two vaccines and two prophylactic monoclonal antibodies are now available, treatment options are still needed. JNJ-7184 is a non-nucleoside inhibitor of the RSV-Large (L) polymerase, displaying potent inhibition of both RSV-A and -B strains. Resistance selection and hydrogen-deuterium exchange experiments suggest JNJ-7184 binds RSV-L in the connector domain. JNJ-7184 prevents RSV replication and transcription by inhibiting initiation or early elongation. JNJ-7184 is effective in air-liquid interface cultures and therapeutically in neonatal lambs, acting to drastically reverse the appearance of lung pathology.
Collapse
Affiliation(s)
- Brecht Bonneux
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsbaan 1, 2610 Wilrijk, Belgium; Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Afzaal Shareef
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Sergey Tcherniuk
- Unité de Virologie et Immunologie Moléculaires (VIM, UMR892), INRAE, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Brandon Anson
- Janssen Research & Development LLC, Spring House (PA 19477) And Brisbane (CA 94005), USA
| | - Suzanne de Bruyn
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Nick Verheyen
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Kim Thys
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | | | - Leen Kwanten
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Nina Ysebaert
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Luc Vranckx
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Elien Peeters
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ellen Lanckacker
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | | | | | | | - Suraj Adhikary
- Janssen Research & Development LLC, Spring House (PA 19477) And Brisbane (CA 94005), USA
| | - Anusarka Bhaumik
- Janssen Research & Development LLC, Spring House (PA 19477) And Brisbane (CA 94005), USA
| | - Aaron Patrick
- Janssen Research & Development LLC, Spring House (PA 19477) And Brisbane (CA 94005), USA
| | - Amy Fung
- Janssen Research & Development LLC, Spring House (PA 19477) And Brisbane (CA 94005), USA
| | - Priscila Sutto-Ortiz
- AFMB, Aix-Marseille University, CNRS UMR 7257, 163 Avenue de Luminy, Marseille, France
| | - Etienne Decroly
- AFMB, Aix-Marseille University, CNRS UMR 7257, 163 Avenue de Luminy, Marseille, France
| | - Stephen W Mason
- Janssen Research & Development LLC, Spring House (PA 19477) And Brisbane (CA 94005), USA
| | | | - Jerome Deval
- Janssen Research & Development LLC, Spring House (PA 19477) And Brisbane (CA 94005), USA
| | - Zhinan Jin
- Janssen Research & Development LLC, Spring House (PA 19477) And Brisbane (CA 94005), USA
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires (VIM, UMR892), INRAE, Université Paris-Saclay, 78352 Jouy-en-Josas, France
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Anil Koul
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - Dirk Roymans
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Peter Rigaux
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | |
Collapse
|
4
|
Abstract
The nonsegmented, negative-strand RNA viruses (nsNSVs), also known as the order Mononegavirales, have a genome consisting of a single strand of negative-sense RNA. Integral to the nsNSV replication cycle is the viral polymerase, which is responsible for transcribing the viral genome, to produce an array of capped and polyadenylated messenger RNAs, and replicating it to produce new genomes. To perform the different steps that are necessary for these processes, the nsNSV polymerases undergo a series of coordinated conformational transitions. While much is still to be learned regarding the intersection of nsNSV polymerase dynamics, structure, and function, recently published polymerase structures, combined with a history of biochemical and molecular biology studies, have provided new insights into how nsNSV polymerases function as dynamic machines. In this review, we consider each of the steps involved in nsNSV transcription and replication and suggest how these relate to solved polymerase structures.
Collapse
Affiliation(s)
- Mohamed Ouizougun-Oubari
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA;
| | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA;
| |
Collapse
|
5
|
Gui W, Kodadek T. Facile Synthesis of Homodimeric Protein Ligands. Chembiochem 2023; 24:e202300392. [PMID: 37449865 PMCID: PMC10615197 DOI: 10.1002/cbic.202300392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Many proteins exist as oligomers (homodimers, homotrimers, etc.). A proven strategy for the development of high affinity ligands for such targets is to link together two modest affinity ligands that allows the formation of a 2 : 2 (or higher-order) protein-ligand complex. We report here the discovery of a convenient, "click-like" reaction for the homodimerization of protein ligands that is efficient, operationally simple to carry out, and tolerant of many functional groups. This chemistry reduces the synthetic burden inherent in the creation of homodimeric ligands since only a single precursor is required. The utility of this strategy is demonstrated by the synthesis of homodimeric inhibitors, including PROTACs.
Collapse
Affiliation(s)
- Weijun Gui
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 120 Scripps Way, Jupiter, FL 33458, USA
| | - Thomas Kodadek
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 120 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
6
|
Kleiner VA, O Fischmann T, Howe JA, Beshore DC, Eddins MJ, Hou Y, Mayhood T, Klein D, Nahas DD, Lucas BJ, Xi H, Murray E, Ma DY, Getty K, Fearns R. Conserved allosteric inhibitory site on the respiratory syncytial virus and human metapneumovirus RNA-dependent RNA polymerases. Commun Biol 2023; 6:649. [PMID: 37337079 DOI: 10.1038/s42003-023-04990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023] Open
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are related RNA viruses responsible for severe respiratory infections and resulting disease in infants, elderly, and immunocompromised adults1-3. Therapeutic small molecule inhibitors that bind to the RSV polymerase and inhibit viral replication are being developed, but their binding sites and molecular mechanisms of action remain largely unknown4. Here we report a conserved allosteric inhibitory site identified on the L polymerase proteins of RSV and HMPV that can be targeted by a dual-specificity, non-nucleoside inhibitor, termed MRK-1. Cryo-EM structures of the inhibitor in complexes with truncated RSV and full-length HMPV polymerase proteins provide a structural understanding of how MRK-1 is active against both viruses. Functional analyses indicate that MRK-1 inhibits conformational changes necessary for the polymerase to engage in RNA synthesis initiation and to transition into an elongation mode. Competition studies reveal that the MRK-1 binding pocket is distinct from that of a capping inhibitor with an overlapping resistance profile, suggesting that the polymerase conformation bound by MRK-1 may be distinct from that involved in mRNA capping. These findings should facilitate optimization of dual RSV and HMPV replication inhibitors and provide insights into the molecular mechanisms underlying their polymerase activities.
Collapse
Affiliation(s)
- Victoria A Kleiner
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | | | | | | | | | - Yan Hou
- MRL, Merck & Co., Inc., Rahway, NJ, USA
| | | | | | | | | | - He Xi
- MRL, Merck & Co., Inc., Rahway, NJ, USA
| | | | | | | | - Rachel Fearns
- Department of Virology, Immunology & Microbiology, National Emerging Infectious Diseases Laboratories, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
7
|
Threat of respiratory syncytial virus infection knocking the door: a proposed potential drug candidate through molecular dynamics simulations, a future alternative. J Mol Model 2023; 29:91. [PMID: 36884131 DOI: 10.1007/s00894-023-05489-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023]
Abstract
The discovery of antiviral approaches to prevent or cure respiratory syncytial virus (RSV) infections is critical, particularly because RSV is one of the most common causes of infant respiratory problems. There is currently no approved vaccination available to treat RSV infections. FDA has approved the drug ribavirin, but it is not sufficient to treat RSV. This work aimed to find and study in silico anti-RSV drugs that target matrix protein and nucleoprotein. In this study, we have identified five drug candidates that had better binding energies than ribavirin. Garenoxacin appeared as top lead compounds between them. AutoDock Vina was used to execute molecular docking of a library of chosen chemicals. The high-score compound was then confirmed using the Maestro 12.3 module's molecular dynamics simulation and the binding energies derived using Prime/Molecular Mechanics Generalized Born Surface Area (Prime/MM-GBSA). Comparative molecular dynamics simulations revealed that garenoxacin has better stability and high residue contacts with high binding affinity than ribavirin. This study showed garenoxacin could prevent RSV infection better than ribavirin. In pursuing a more effective RSV control drug, additional research into these chemicals in vitro and in vivo is essential.
Collapse
|
8
|
Sutto-Ortiz P, Eléouët JF, Ferron F, Decroly E. Biochemistry of the Respiratory Syncytial Virus L Protein Embedding RNA Polymerase and Capping Activities. Viruses 2023; 15:v15020341. [PMID: 36851554 PMCID: PMC9960070 DOI: 10.3390/v15020341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
The human respiratory syncytial virus (RSV) is a negative-sense, single-stranded RNA virus. It is the major cause of severe acute lower respiratory tract infection in infants, the elderly population, and immunocompromised individuals. There is still no approved vaccine or antiviral treatment against RSV disease, but new monoclonal prophylactic antibodies are yet to be commercialized, and clinical trials are in progress. Hence, urgent efforts are needed to develop efficient therapeutic treatments. RSV RNA synthesis comprises viral transcription and replication that are catalyzed by the large protein (L) in coordination with the phosphoprotein polymerase cofactor (P), the nucleoprotein (N), and the M2-1 transcription factor. The replication/transcription is orchestrated by the L protein, which contains three conserved enzymatic domains: the RNA-dependent RNA polymerase (RdRp), the polyribonucleotidyl transferase (PRNTase or capping), and the methyltransferase (MTase) domain. These activities are essential for the RSV replicative cycle and are thus considered as attractive targets for the development of therapeutic agents. In this review, we summarize recent findings about RSV L domains structure that highlight how the enzymatic activities of RSV L domains are interconnected, discuss the most relevant and recent antivirals developments that target the replication/transcription complex, and conclude with a perspective on identified knowledge gaps that enable new research directions.
Collapse
Affiliation(s)
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, F78350 Jouy en Josas, France
| | - François Ferron
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB, UMR, 7257 Marseille, France
- Correspondence:
| |
Collapse
|
9
|
Churiso G, Husen G, Bulbula D, Abebe L. Immunity Cell Responses to RSV and the Role of Antiviral Inhibitors: A Systematic Review. Infect Drug Resist 2022; 15:7413-7430. [PMID: 36540102 PMCID: PMC9759992 DOI: 10.2147/idr.s387479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Antigen-presenting cells recognize respiratory syncytial virus antigens, and produce cytokines and chemokines that act on immune cells. Dendritic cells play the main role in inflammatory cytokine responses. Similarly, alveolar macrophages produce IFN-β, IFN-α, TNF-α, IL-6, CXCL10, and CCL3, while alternatively activated macrophages differentiate at the late phase, and require IL-13 or IL-4 cytokines. Furthermore, activated NKT cells secrete IL-13 and IL-4 that cause lung epithelial, endothelial and fibroblasts to secrete eotaxin that enhances the recruitment of eosinophil to the lung. CD8+ and CD4+T cells infection by the virus decreases the IFN-γ and IL-2 production. Despite this, both are involved in terminating virus replication. CD8+T cells produce a larger amount of IFN-γ than CD4+T cells, and CD8+T cells activated under type 2 conditions produce IL-4, down regulating CD8 expression, granzyme and IFN-γ production. Antiviral inhibitors inhibit biological functions of viral proteins. Some of them directly target the virus replication machinery and are effective at later stages of infection; while others inhibit F protein dependent fusion and syncytium formation. TMC353121 reduces inflammatory cytokines, TNF-α, IL-6, and IL-1β and chemokines, KC, IP-10, MCP and MIP1-α. EDP-938 inhibits viral nucleoprotein (N), while GRP-156784 blocks the activity of respiratory syncytial virus ribonucleic acid (RNA) polymerase. PC786 inhibits non-structural protein 1 (NS-1) gene, RANTES transcripts, virus-induced CCL5, IL-6, and mucin increase. In general, it is an immune reaction that is blamed for the disease severity and pathogenesis in respiratory syncytial virus infection. Anti-viral inhibitors not only inhibit viral entry and replication, but also may reduce inflammatory cytokines and chemokines. Many respiratory syncytial virus inhibitors are proposed; however, only palivizumab and ribavirin are approved for prophylaxis and treatment, respectively. Hence, this review is focused on immunity cell responses to respiratory syncytial virus and the role of antiviral inhibitors.
Collapse
Affiliation(s)
- Gemechu Churiso
- Department of Medical Laboratory Sciences, Dilla University, Dilla, Ethiopia,Correspondence: Gemechu Churiso, Email
| | - Gose Husen
- Department of Orthopedic Surgery, Dilla University, Dilla, Ethiopia
| | - Denebo Bulbula
- Department of Orthopedic Surgery, Dilla University, Dilla, Ethiopia
| | - Lulu Abebe
- Department of Psychiatry, Dilla University, Dilla, Ethiopia
| |
Collapse
|
10
|
Speck-Planche A, Kleandrova VV. Multi-Condition QSAR Model for the Virtual Design of Chemicals with Dual Pan-Antiviral and Anti-Cytokine Storm Profiles. ACS OMEGA 2022; 7:32119-32130. [PMID: 36120024 PMCID: PMC9476185 DOI: 10.1021/acsomega.2c03363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Respiratory viruses are infectious agents, which can cause pandemics. Although nowadays the danger associated with respiratory viruses continues to be evidenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the virus responsible for the current COVID-19 pandemic, other viruses such as SARS-CoV-1, the influenza A and B viruses (IAV and IBV, respectively), and the respiratory syncytial virus (RSV) can lead to globally spread viral diseases. Also, from a biological point of view, most of these viruses can cause an organ-damaging hyperinflammatory response known as the cytokine storm (CS). Computational approaches constitute an essential component of modern drug development campaigns, and therefore, they have the potential to accelerate the discovery of chemicals able to simultaneously inhibit multiple molecular and nonmolecular targets. We report here the first multicondition model based on quantitative structure-activity relationships and an artificial neural network (mtc-QSAR-ANN) for the virtual design and prediction of molecules with dual pan-antiviral and anti-CS profiles. Our mtc-QSAR-ANN model exhibited an accuracy higher than 80%. By interpreting the different descriptors present in the mtc-QSAR-ANN model, we could retrieve several molecular fragments whose assembly led to new molecules with drug-like properties and predicted pan-antiviral and anti-CS activities.
Collapse
Affiliation(s)
- Alejandro Speck-Planche
- Grupo
de Química Computacional y Teórica (QCT-USFQ), Departamento
de Ingeniería Química, Universidad
San Francisco de Quito, Diego de Robles y vía Interoceánica, Quito 170901, Ecuador
| | - Valeria V. Kleandrova
- Laboratory
of Fundamental and Applied Research of Quality and Technology of Food
Production, Moscow State University of Food
Production, Volokolamskoe
shosse 11, 125080, Moscow, Russian Federation
| |
Collapse
|
11
|
Sourimant J, Lieber CM, Yoon JJ, Toots M, Govindarajan M, Udumula V, Sakamoto K, Natchus MG, Patti J, Vernachio J, Plemper RK. Orally efficacious lead of the AVG inhibitor series targeting a dynamic interface in the respiratory syncytial virus polymerase. SCIENCE ADVANCES 2022; 8:eabo2236. [PMID: 35749502 PMCID: PMC9232112 DOI: 10.1126/sciadv.abo2236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory infections in infants and the immunocompromised, yet no efficient therapeutic exists. We have identified the AVG class of allosteric inhibitors of RSV RNA synthesis. Here, we demonstrate through biolayer interferometry and in vitro RNA-dependent RNA polymerase (RdRP) assays that AVG compounds bind to the viral polymerase, stalling the polymerase in initiation conformation. Resistance profiling revealed a unique escape pattern, suggesting a discrete docking pose. Affinity mapping using photoreactive AVG analogs identified the interface of polymerase core, capping, and connector domains as a molecular target site. A first-generation lead showed nanomolar potency against RSV in human airway epithelium organoids but lacked in vivo efficacy. Docking pose-informed synthetic optimization generated orally efficacious AVG-388, which showed potent efficacy in the RSV mouse model when administered therapeutically. This study maps a druggable target in the RSV RdRP and establishes clinical potential of the AVG chemotype against RSV disease.
Collapse
Affiliation(s)
- Julien Sourimant
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Carolin M. Lieber
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Jeong-Joong Yoon
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Mart Toots
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | | | - Venkata Udumula
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA
| | - Kaori Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Michael G. Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA
| | - Joseph Patti
- Aviragen Therapeutics Inc, Alpharetta, GA 30009, USA
| | | | - Richard K. Plemper
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
12
|
Farghaly TA, Alsaedi AMR, Alenazi NA, Harras MF. Anti-viral activity of thiazole derivatives: an updated patent review. Expert Opin Ther Pat 2022; 32:791-815. [DOI: 10.1080/13543776.2022.2067477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Amani M. R. Alsaedi
- Department of Chemistry, Collage of Science, Taif University, Taif 21944, Saudi Arabia
| | - Noof A. Alenazi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Marwa F. Harras
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
13
|
Sourimant J, Lieber CM, Aggarwal M, Cox RM, Wolf JD, Yoon JJ, Toots M, Ye C, Sticher Z, Kolykhalov AA, Martinez-Sobrido L, Bluemling GR, Natchus MG, Painter GR, Plemper RK. 4'-Fluorouridine is an oral antiviral that blocks respiratory syncytial virus and SARS-CoV-2 replication. Science 2022; 375:161-167. [PMID: 34855509 PMCID: PMC9206510 DOI: 10.1126/science.abj5508] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The COVID-19 pandemic has underscored the critical need for broad-spectrum therapeutics against respiratory viruses. Respiratory syncytial virus (RSV) is a major threat to pediatric patients and older adults. We describe 4′-fluorouridine (4′-FlU, EIDD-2749), a ribonucleoside analog that inhibits RSV, related RNA viruses, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with high selectivity index in cells and human airway epithelia organoids. Polymerase inhibition within in vitro RNA-dependent RNA polymerase assays established for RSV and SARS-CoV-2 revealed transcriptional stalling after incorporation. Once-daily oral treatment was highly efficacious at 5 milligrams per kilogram (mg/kg) in RSV-infected mice or 20 mg/kg in ferrets infected with different SARS-CoV-2 variants of concern, initiated 24 or 12 hours after infection, respectively. These properties define 4′-FlU as a broad-spectrum candidate for the treatment of RSV, SARS-CoV-2, and related RNA virus infections.
Collapse
Affiliation(s)
- Julien Sourimant
- Center for Translational Antiviral Research, Georgia State University, Atlanta, GA 30303, USA
| | - Carolin M Lieber
- Center for Translational Antiviral Research, Georgia State University, Atlanta, GA 30303, USA
| | - Megha Aggarwal
- Center for Translational Antiviral Research, Georgia State University, Atlanta, GA 30303, USA
| | - Robert M Cox
- Center for Translational Antiviral Research, Georgia State University, Atlanta, GA 30303, USA
| | - Josef D Wolf
- Center for Translational Antiviral Research, Georgia State University, Atlanta, GA 30303, USA
| | - Jeong-Joong Yoon
- Center for Translational Antiviral Research, Georgia State University, Atlanta, GA 30303, USA
| | - Mart Toots
- Center for Translational Antiviral Research, Georgia State University, Atlanta, GA 30303, USA
| | - Chengin Ye
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Zachary Sticher
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA
| | - Alexander A Kolykhalov
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA,Drug Innovation Ventures at Emory (DRIVE), Atlanta, GA 30322, USA
| | | | - Gregory R Bluemling
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA,Drug Innovation Ventures at Emory (DRIVE), Atlanta, GA 30322, USA
| | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA
| | - George R Painter
- Emory Institute for Drug Development, Emory University, Atlanta, GA 30322, USA,Drug Innovation Ventures at Emory (DRIVE), Atlanta, GA 30322, USA,Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Richard K Plemper
- Center for Translational Antiviral Research, Georgia State University, Atlanta, GA 30303, USA,Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA,Corresponding author:
| |
Collapse
|
14
|
Kawamoto T, Ikeda S, Kamimura A. Synthesis of 1-(1-Arylvinyl)pyridin-2(1 H)-ones from Ketones and 2-Fluoropyridine. J Org Chem 2021; 86:13783-13789. [PMID: 34547204 DOI: 10.1021/acs.joc.1c01615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We describe a simple and efficient procedure for the synthesis of N-vinyl-substituted pyridones from ketones and 2-fluoropyridine in the presence of trifluoromethane sulfonic anhydride, followed by a base treatment. Various ketones with electron-donating or electron-withdrawing groups at the benzene rings can be used in this reaction. A preliminary mechanistic study indicates that it is not very likely that both vinyl triflates and vinyl cations play major roles as intermediates in this transformation.
Collapse
Affiliation(s)
- Takuji Kawamoto
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Shunya Ikeda
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| | - Akio Kamimura
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan
| |
Collapse
|
15
|
Raubenolt BA, Wong K, Rick SW. Molecular dynamics simulations of allosteric motions and competitive inhibition of the Zika virus helicase. J Mol Graph Model 2021; 108:108001. [PMID: 34388402 DOI: 10.1016/j.jmgm.2021.108001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
The 2015 Zika outbreak sparked major global concern and emphasized the reality and dangers still posed by mosquito borne pathogens. While efforts have been made to develop a vaccine and other therapeutics, there is still a great demand for antiviral drugs targeting Zika and other flaviviruses. The non-structural protein 3 (NS3) helicase is a vital component of the viral replication complex, tasked with unwinding the viral dsRNA molecule into single strands. Given this critical function, the Zika virus helicase is a potential therapeutic target and the focus of many ongoing research efforts. Using a combination of drug docking and molecular dynamics simulations, we have identified a list of competitive helicase inhibitors targeting the ATP hydrolysis site and have discovered a potential allosteric site capable of distorting both of the protein's active sites.
Collapse
Affiliation(s)
- Bryan A Raubenolt
- Department of Chemistry, University of New Orleans, New Orleans, LA, 70148, USA.
| | - Katy Wong
- Department of Chemical and Biomolecular Engineering Tulane University, New Orleans, LA, 70118, USA.
| | - Steven W Rick
- Department of Chemistry, University of New Orleans, New Orleans, LA, 70148, USA.
| |
Collapse
|
16
|
Sourimant J, Lieber CM, Aggarwal M, Cox RM, Wolf JD, Yoon JJ, Toots M, Ye C, Sticher Z, Kolykhalov AA, Martinez-Sobrido L, Bluemling GR, Natchus MG, Painter GR, Plemper RK. 4'-Fluorouridine is a broad-spectrum orally efficacious antiviral blocking respiratory syncytial virus and SARS-CoV-2 replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.05.19.444875. [PMID: 34031658 PMCID: PMC8142655 DOI: 10.1101/2021.05.19.444875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
UNLABELLED The COVID-19 pandemic has underscored the critical need for broad-spectrum therapeutics against respiratory viruses. Respiratory syncytial virus (RSV) is a major threat to pediatric patients and the elderly. We describe 4'-fluorouridine (4'-FlU, EIDD-2749), a ribonucleoside analog that inhibits RSV, related RNA viruses, and SARS-CoV-2 with high selectivity index in cells and well-differentiated human airway epithelia. Polymerase inhibition in in vitro RdRP assays established for RSV and SARS-CoV-2 revealed transcriptional pauses at positions i or i +3/4 post-incorporation. Once-daily oral treatment was highly efficacious at 5 mg/kg in RSV-infected mice or 20 mg/kg in ferrets infected with SARS-CoV-2 WA1/2020 or variant-of-concern (VoC) isolate CA/2020, initiated 24 or 12 hours after infection, respectively. These properties define 4'-FlU as a broad-spectrum candidate for the treatment of RSV, SARS-CoV-2 and related RNA virus infections. ONE-SENTENCE SUMMARY 4'-Fluorouridine is an orally available ribonucleoside analog that efficiently treats RSV and SARS-CoV-2 infections in vivo .
Collapse
|
17
|
Discovery of a Novel Respiratory Syncytial Virus Replication Inhibitor. Antimicrob Agents Chemother 2021; 65:AAC.02576-20. [PMID: 33782012 PMCID: PMC8316115 DOI: 10.1128/aac.02576-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/18/2021] [Indexed: 11/20/2022] Open
Abstract
A high-throughput screen of a Roche internal chemical library based on inhibition of the respiratory syncytial virus (RSV)-induced cytopathic effect (CPE) on HEp-2 cells was performed to identify RSV inhibitors. Over 2,000 hits were identified and confirmed to be efficacious against RSV infection in vitro Here, we report the discovery of a triazole-oxadiazole derivative, designated triazole-1, as an RSV replication inhibitor, and we characterize its mechanism of action. Triazole-1 inhibited the replication of both RSV A and B subtypes with 50% inhibitory concentration (IC50) values of approximately 1 μM, but it was not effective against other viruses, including influenza virus A, human enterovirus 71 (EV71), and vaccinia virus. Triazole-1 was shown to inhibit RSV replication when added at up to 8 h after viral entry, suggesting that it inhibits RSV after viral entry. In a minigenome reporter assay in which RSV transcription regulatory sequences flanking a luciferase gene were cotransfected with RSV N/P/L/M2-1 genes into HEp-2 cells, triazole-1 demonstrated specific and dose-dependent RSV transcription inhibitory effects. Consistent with these findings, deep sequencing of the genomes of triazole-1-resistant mutants revealed a single point mutation (A to G) at nucleotide 13546 of the RSV genome, leading to a T-to-A change at amino acid position 1684 of the L protein, which is the RSV RNA polymerase for both viral transcription and replication. The effect of triazole-1 on minigenome transcription, which was mediated by the L protein containing the T1684A mutation, was significantly reduced, suggesting that the T1684A mutation alone conferred viral resistance to triazole-1.
Collapse
|
18
|
Cox RM, Sourimant J, Govindarajan M, Natchus MG, Plemper RK. Therapeutic targeting of measles virus polymerase with ERDRP-0519 suppresses all RNA synthesis activity. PLoS Pathog 2021; 17:e1009371. [PMID: 33621266 PMCID: PMC7935272 DOI: 10.1371/journal.ppat.1009371] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/05/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Morbilliviruses, such as measles virus (MeV) and canine distemper virus (CDV), are highly infectious members of the paramyxovirus family. MeV is responsible for major morbidity and mortality in non-vaccinated populations. ERDRP-0519, a pan-morbillivirus small molecule inhibitor for the treatment of measles, targets the morbillivirus RNA-dependent RNA-polymerase (RdRP) complex and displayed unparalleled oral efficacy against lethal infection of ferrets with CDV, an established surrogate model for human measles. Resistance profiling identified the L subunit of the RdRP, which harbors all enzymatic activity of the polymerase complex, as the molecular target of inhibition. Here, we examined binding characteristics, physical docking site, and the molecular mechanism of action of ERDRP-0519 through label-free biolayer interferometry, photoaffinity cross-linking, and in vitro RdRP assays using purified MeV RdRP complexes and synthetic templates. Results demonstrate that unlike all other mononegavirus small molecule inhibitors identified to date, ERDRP-0519 inhibits all phosphodiester bond formation in both de novo initiation of RNA synthesis at the promoter and RNA elongation by a committed polymerase complex. Photocrosslinking and resistance profiling-informed ligand docking revealed that this unprecedented mechanism of action of ERDRP-0519 is due to simultaneous engagement of the L protein polyribonucleotidyl transferase (PRNTase)-like domain and the flexible intrusion loop by the compound, pharmacologically locking the polymerase in pre-initiation conformation. This study informs selection of ERDRP-0519 as clinical candidate for measles therapy and identifies a previously unrecognized druggable site in mononegavirus L polymerase proteins that can silence all synthesis of viral RNA. The mononegavirus order contains major established and recently emerged human pathogens. Despite the threat to human health, antiviral therapeutics directed against this order remain understudied. The mononegavirus polymerase complex represents a promising drug target due to its central importance for both virus replication and viral mitigation of the innate host antiviral response. In this study, we have mechanistically characterized a clinical candidate small-molecule MeV polymerase inhibitor. The compound blocked all phosphodiester bond formation activity, a unique mechanism of action unlike all other known mononegavirus polymerase inhibitors. Photocrosslinking-based target site mapping demonstrated that this class-defining prototype inhibitor stabilizes a pre-initiation conformation of the viral polymerase complex that sterically cannot accommodate template RNA. Function-equivalent druggable sites exist in all mononegavirus polymerases. In addition to its direct anti-MeV impact, the insight gained in this study can therefore serve as a blueprint for indication spectrum expansion through structure-informed scaffold engineering or targeted drug discovery.
Collapse
Affiliation(s)
- Robert M. Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Julien Sourimant
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Mugunthan Govindarajan
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, United States of America
| | - Michael G. Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, Georgia, United States of America
| | - Richard K. Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
19
|
Liu X, Shao Y, Sun J. Ruthenium-Catalyzed Chemoselective N-H Bond Insertion Reactions of 2-Pyridones/7-Azaindoles with Sulfoxonium Ylides. Org Lett 2021; 23:1038-1043. [PMID: 33475367 DOI: 10.1021/acs.orglett.0c04229] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A ruthenium-catalyzed highly chemoselective N-alkylation of 2-pyridones has been developed, affording N-alkylated 2-pyridone derivatives in good yields and excellent N-selectivity. The key to achieve this unprecedented N-H rather than O-H insertion reaction is the use of CpRu(PPh3)2Cl as the catalyst and sulfoxonium ylides as the alkylation reagents. Moreover, this protocol is also amenable to 7-azaindoles by slightly varying the reaction conditions. Furthermore, sulfonium ylides are also suitable alkylation reagents, providing the N-alkylated 2-pyridones in good selectivity.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
20
|
Balakrishnan A, Price E, Luu C, Shaul J, Wartchow C, Cantwell J, Vo T, DiDonato M, Spraggon G, Hekmat-Nejad M. Biochemical Characterization of Respiratory Syncytial Virus RNA-Dependent RNA Polymerase Complex. ACS Infect Dis 2020; 6:2800-2811. [PMID: 32886480 DOI: 10.1021/acsinfecdis.0c00554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA-dependent RNA polymerases (RdRPs) from nonsegmented negative strand (NNS) RNA viruses perform both mRNA transcription and genome replication, and these activities are regulated by their interactions with RNA and other accessory proteins within the ribonucleoprotein (RNP) complex. Detailed biochemical characterization of these enzymatic activities and their regulation is essential for understanding the life cycles of many pathogenic RNA viruses and for antiviral drug discovery. We developed biochemical and biophysical kinetic methods to study the RNA synthesis and RNA binding activities of respiratory syncytial virus (RSV) L/P RdRP. We determined that the intact L protein is essential for RdRP activity, and in truncated L protein constructs, RdRP activity is abrogated due to their deficiency in RNA template binding. These results are in agreement with the observation of an RNA template-binding tunnel at the interface of RdRP and capping domains in RSV and vesicular stomatitis virus (VSV) L protein cryo-EM structures. We also describe nonradiometric assays for measuring RNA binding and RNA polymerization activity of RSV RdRP, which are amenable to compound screening and profiling.
Collapse
Affiliation(s)
- Anand Balakrishnan
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Edmund Price
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Catherine Luu
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Jacob Shaul
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Charles Wartchow
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - John Cantwell
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Todd Vo
- Structural Biology and Protein Sciences, Genomics Institute of the Novartis Research Foundation, La Jolla, California 92121, United States
| | - Michael DiDonato
- Structural Biology and Protein Sciences, Genomics Institute of the Novartis Research Foundation, La Jolla, California 92121, United States
| | - Glen Spraggon
- Structural Biology and Protein Sciences, Genomics Institute of the Novartis Research Foundation, La Jolla, California 92121, United States
| | - Mohammad Hekmat-Nejad
- Infectious Diseases, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| |
Collapse
|
21
|
Cox RM, Sourimant J, Toots M, Yoon JJ, Ikegame S, Govindarajan M, Watkinson RE, Thibault P, Makhsous N, Lin MJ, Marengo JR, Sticher Z, Kolykhalov AA, Natchus MG, Greninger AL, Lee B, Plemper RK. Orally efficacious broad-spectrum allosteric inhibitor of paramyxovirus polymerase. Nat Microbiol 2020; 5:1232-1246. [PMID: 32661315 PMCID: PMC7529989 DOI: 10.1038/s41564-020-0752-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Paramyxoviruses such as human parainfluenza virus type-3 (HPIV3) and measles virus (MeV) are a substantial health threat. In a high-throughput screen for inhibitors of HPIV3 (a major cause of acute respiratory infection), we identified GHP-88309-a non-nucleoside inhibitor of viral polymerase activity that possesses unusual broad-spectrum activity against diverse paramyxoviruses including respiroviruses (that is, HPIV1 and HPIV3) and morbilliviruses (that is, MeV). Resistance profiles of distinct target viruses overlapped spatially, revealing a conserved binding site in the central cavity of the viral polymerase (L) protein that was validated by photoaffinity labelling-based target mapping. Mechanistic characterization through viral RNA profiling and in vitro MeV polymerase assays identified a block in the initiation phase of the viral polymerase. GHP-88309 showed nanomolar potency against HPIV3 isolates in well-differentiated human airway organoid cultures, was well tolerated (selectivity index > 7,111) and orally bioavailable, and provided complete protection against lethal infection in a Sendai virus mouse surrogate model of human HPIV3 disease when administered therapeutically 48 h after infection. Recoverees had acquired robust immunoprotection against reinfection, and viral resistance coincided with severe attenuation. This study provides proof of the feasibility of a well-behaved broad-spectrum allosteric antiviral and describes a chemotype with high therapeutic potential that addresses major obstacles of anti-paramyxovirus drug development.
Collapse
Affiliation(s)
- Robert M Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Julien Sourimant
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Mart Toots
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Jeong-Joong Yoon
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Satoshi Ikegame
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ruth E Watkinson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patricia Thibault
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Negar Makhsous
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Michelle J Lin
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Jose R Marengo
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
| | - Zachary Sticher
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
| | | | - Michael G Natchus
- Emory Institute for Drug Development, Emory University, Atlanta, GA, USA
| | - Alexander L Greninger
- Virology Division, Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
22
|
Aggarwal M, Plemper RK. Structural Insight into Paramyxovirus and Pneumovirus Entry Inhibition. Viruses 2020; 12:E342. [PMID: 32245118 PMCID: PMC7150754 DOI: 10.3390/v12030342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/04/2023] Open
Abstract
Paramyxoviruses and pneumoviruses infect cells through fusion (F) protein-mediated merger of the viral envelope with target membranes. Members of these families include a range of major human and animal pathogens, such as respiratory syncytial virus (RSV), measles virus (MeV), human parainfluenza viruses (HPIVs), and highly pathogenic Nipah virus (NiV). High-resolution F protein structures in both the metastable pre- and the postfusion conformation have been solved for several members of the families and a number of F-targeting entry inhibitors have progressed to advanced development or clinical testing. However, small-molecule RSV entry inhibitors have overall disappointed in clinical trials and viral resistance developed rapidly in experimental settings and patients, raising the question of whether the available structural information may provide a path to counteract viral escape through proactive inhibitor engineering. This article will summarize current mechanistic insight into F-mediated membrane fusion and examine the contribution of structural information to the development of small-molecule F inhibitors. Implications are outlined for future drug target selection and rational drug engineering strategies.
Collapse
Affiliation(s)
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
| |
Collapse
|
23
|
Tognarelli EI, Bueno SM, González PA. Immune-Modulation by the Human Respiratory Syncytial Virus: Focus on Dendritic Cells. Front Immunol 2019; 10:810. [PMID: 31057543 PMCID: PMC6478035 DOI: 10.3389/fimmu.2019.00810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/26/2019] [Indexed: 12/23/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) is the leading cause of pneumonia in infants and produces a significant burden in the elderly. It can also infect and produce disease in otherwise healthy adults and recurrently infect those previously exposed to the virus. Importantly, recurrent infections are not necessarily a consequence of antigenic variability, as described for other respiratory viruses, but most likely due to the capacity of this virus to interfere with the host's immune response and the establishment of a protective and long-lasting immunity. Although some genes encoded by hRSV are known to have a direct participation in immune evasion, it seems that repeated infection is mainly given by its capacity to modulate immune components in such a way to promote non-optimal antiviral responses in the host. Importantly, hRSV is known to interfere with dendritic cell (DC) function, which are key cells involved in establishing and regulating protective virus-specific immunity. Notably, hRSV infects DCs, alters their maturation, migration to lymph nodes and their capacity to activate virus-specific T cells, which likely impacts the host antiviral response against this virus. Here, we review and discuss the most important and recent findings related to DC modulation by hRSV, which might be at the basis of recurrent infections in previously infected individuals and hRSV-induced disease. A focus on the interaction between DCs and hRSV will likely contribute to the development of effective prophylactic and antiviral strategies against this virus.
Collapse
Affiliation(s)
- Eduardo I Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|