1
|
Dhanasekaran S, Selvadoss PP, Manoharan SS, Jeyabalan S, Yaraguppi DA, Choudhury AA, Rajeswari VD, Ramanathan G, Thamaraikani T, Sekar M, Subramaniyan V, Shing WL. Regulation of NS5B Polymerase Activity of Hepatitis C Virus by Target Specific Phytotherapeutics: An In-Silico Molecular Dynamics Approach. Cell Biochem Biophys 2024; 82:2473-2492. [PMID: 39042185 DOI: 10.1007/s12013-024-01359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/24/2024]
Abstract
Chronic hepatitis caused by the hepatitis C virus (HCV) is closely linked with the advancement of liver disease. The research hypothesis suggests that the NS5B enzyme (non-structural 5B protein) of HCV plays a pivotal role in facilitating viral replication within host cells. Hence, the objective of the present investigation is to identify the binding interactions between the structurally diverse phytotherapeutics and those of the catalytic residue of the target NS5B polymerase protein. Results of our docking simulations reveal that compounds such as arjunolic acid, sesamin, arjungenin, astragalin, piperic acid, piperidine, piperine, acalyphin, adhatodine, amyrin, anisotine, apigenin, cuminaldehyde, and curcumin exhibit a maximum of three interactions with the catalytic residues (Asp 220, Asp 318, and Asp 319) present on the Hepatitis C virus NS5B polymerase of HCV. Molecular dynamic simulation, particularly focusing on the best binding lead compound, arjunolic acid (-8.78 kcal/mol), was further extensively analyzed using RMSD, RMSF, Rg, and SASA techniques. The results of the MD simulation confirm that the NS5B-arjunolic acid complex becomes increasingly stable from 20 to 100 ns. The orientation of both arjunolic acid and sofosbuvir triphosphate (standard) within the active site was investigated through DCCM, PCA, and FEL analysis, indicating highly stable interactions of the lead arjunolic acid with the catalytic region of the NS5B enzyme. The findings of our current investigation suggest that bioactive therapeutics like arjunolic acid could serve as promising candidates for limiting the NS5B polymerase activity of the hepatitis C virus, offering hope for the future of HCV treatment.
Collapse
Affiliation(s)
- Sivaraman Dhanasekaran
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat, 382426, India.
| | - Pradeep Pushparaj Selvadoss
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat, 382426, India
| | - Solomon Sundar Manoharan
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Raisan Village, PDPU Road, Gandhinagar, Gujarat, 382426, India
| | - Srikanth Jeyabalan
- Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, 600116, India
| | | | | | - V Devi Rajeswari
- Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | | | | | - Mahendran Sekar
- Monash University, Bandar Sunway, Subang Jaya, Selangor, 47500, Malaysia
| | | | - Wong Ling Shing
- INTI International University, Nilai, Negeri Sembilan, 71800, Malaysia
| |
Collapse
|
2
|
Kumar S, Ansari S, Narayanan S, Ranjith-Kumar CT, Surjit M. Antiviral activity of zinc against hepatitis viruses: current status and future prospects. Front Microbiol 2023; 14:1218654. [PMID: 37908540 PMCID: PMC10613677 DOI: 10.3389/fmicb.2023.1218654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Viral hepatitis is a major public health concern globally. World health organization aims at eliminating viral hepatitis as a public health threat by 2030. Among the hepatitis causing viruses, hepatitis B and C are primarily transmitted via contaminated blood. Hepatitis A and E, which gets transmitted primarily via the feco-oral route, are the leading cause of acute viral hepatitis. Although vaccines are available against some of these viruses, new cases continue to be reported. There is an urgent need to devise a potent yet economical antiviral strategy against the hepatitis-causing viruses (denoted as hepatitis viruses) for achieving global elimination of viral hepatitis. Although zinc was known to mankind for a long time (since before Christ era), it was identified as an element in 1746 and its importance for human health was discovered in 1963 by the pioneering work of Dr. Ananda S. Prasad. A series of follow up studies involving zinc supplementation as a therapy demonstrated zinc as an essential element for humans, leading to establishment of a recommended dietary allowance (RDA) of 15 milligram zinc [United States RDA for zinc]. Being an essential component of many cellular enzymes and transcription factors, zinc is vital for growth and homeostasis of most living organisms, including human. Importantly, several studies indicate potent antiviral activity of zinc. Multiple studies have demonstrated antiviral activity of zinc against viruses that cause hepatitis. This article provides a comprehensive overview of the findings on antiviral activity of zinc against hepatitis viruses, discusses the mechanisms underlying the antiviral properties of zinc and summarizes the prospects of harnessing the therapeutic benefit of zinc supplementation therapy in reducing the disease burden due to viral hepatitis.
Collapse
Affiliation(s)
- Shiv Kumar
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Shabnam Ansari
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sriram Narayanan
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - C. T. Ranjith-Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Milan Surjit
- Virology Laboratory, Centre for Virus Research, Therapeutics and Vaccines, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
3
|
Malone BF, Perry JK, Olinares PDB, Lee HW, Chen J, Appleby TC, Feng JY, Bilello JP, Ng H, Sotiris J, Ebrahim M, Chua EYD, Mendez JH, Eng ET, Landick R, Götte M, Chait BT, Campbell EA, Darst SA. Structural basis for substrate selection by the SARS-CoV-2 replicase. Nature 2023; 614:781-787. [PMID: 36725929 PMCID: PMC9891196 DOI: 10.1038/s41586-022-05664-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/15/2022] [Indexed: 02/03/2023]
Abstract
The SARS-CoV-2 RNA-dependent RNA polymerase coordinates viral RNA synthesis as part of an assembly known as the replication-transcription complex (RTC)1. Accordingly, the RTC is a target for clinically approved antiviral nucleoside analogues, including remdesivir2. Faithful synthesis of viral RNAs by the RTC requires recognition of the correct nucleotide triphosphate (NTP) for incorporation into the nascent RNA. To be effective inhibitors, antiviral nucleoside analogues must compete with the natural NTPs for incorporation. How the SARS-CoV-2 RTC discriminates between the natural NTPs, and how antiviral nucleoside analogues compete, has not been discerned in detail. Here, we use cryogenic-electron microscopy to visualize the RTC bound to each of the natural NTPs in states poised for incorporation. Furthermore, we investigate the RTC with the active metabolite of remdesivir, remdesivir triphosphate (RDV-TP), highlighting the structural basis for the selective incorporation of RDV-TP over its natural counterpart adenosine triphosphate3,4. Our results explain the suite of interactions required for NTP recognition, informing the rational design of antivirals. Our analysis also yields insights into nucleotide recognition by the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase), an enigmatic catalytic domain essential for viral propagation5. The NiRAN selectively binds guanosine triphosphate, strengthening proposals for the role of this domain in the formation of the 5' RNA cap6.
Collapse
Affiliation(s)
- Brandon F Malone
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | | | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Hery W Lee
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | | | - Joy Y Feng
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | - Honkit Ng
- The Evelyn Gruss Lipper Cryo-Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Johanna Sotiris
- The Evelyn Gruss Lipper Cryo-Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Mark Ebrahim
- The Evelyn Gruss Lipper Cryo-Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Eugene Y D Chua
- National Center for Cryo-EM Access and Training, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Joshua H Mendez
- National Center for Cryo-EM Access and Training, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Ed T Eng
- National Center for Cryo-EM Access and Training, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
4
|
Dixit H, Kulharia M, Verma SK. Metalloproteome of human-infective RNA viruses: a study towards understanding the role of metal ions in virology. Pathog Dis 2023; 81:ftad020. [PMID: 37653445 DOI: 10.1093/femspd/ftad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Metalloproteins and metal-based inhibitors have been shown to effectively combat infectious diseases, particularly those caused by RNA viruses. In this study, a diverse set of bioinformatics methods was employed to identify metal-binding proteins of human RNA viruses. Seventy-three viral proteins with a high probability of being metal-binding proteins were identified. These proteins included 40 zinc-, 47 magnesium- and 14 manganese-binding proteins belonging to 29 viral species and eight significant viral families, including Coronaviridae, Flaviviridae and Retroviridae. Further functional characterization has revealed that these proteins play a critical role in several viral processes, including viral replication, fusion and host viral entry. They fall under the essential categories of viral proteins, including polymerase and protease enzymes. Magnesium ion is abundantly predicted to interact with these viral enzymes, followed by zinc. In addition, this study also examined the evolutionary aspects of predicted viral metalloproteins, offering essential insights into the metal utilization patterns among different viral species. The analysis indicates that the metal utilization patterns are conserved within the functional classes of the proteins. In conclusion, the findings of this study provide significant knowledge on viral metalloproteins that can serve as a valuable foundation for future research in this area.
Collapse
Affiliation(s)
- Himisha Dixit
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra 176206, Himachal Pradesh, India
| | - Mahesh Kulharia
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra 176206, Himachal Pradesh, India
| | - Shailender Kumar Verma
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra 176206, Himachal Pradesh, India
- Department of Environmental Studies, University of Delhi 110007, Delhi, India
| |
Collapse
|
5
|
An Efficient Synthesis of a Novel Broad-spectrum Nucleoside Analogue BCX4430 Triphosphate. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Luo X, Wang X, Yao Y, Gao X, Zhang L. Unveiling the "Template-Dependent" Inhibition on the Viral Transcription of SARS-CoV-2. J Phys Chem Lett 2022; 13:7197-7205. [PMID: 35912566 PMCID: PMC9363016 DOI: 10.1021/acs.jpclett.2c01314] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Remdesivir is one nucleotide analogue prodrug capable to terminate RNA synthesis in SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) by two distinct mechanisms. Although the "delayed chain termination" mechanism has been extensively investigated, the "template-dependent" inhibitory mechanism remains elusive. In this study, we have demonstrated that remdesivir embedded in the template strand seldom directly disrupted the complementary NTP incorporation at the active site. Instead, the translocation of remdesivir from the +2 to the +1 site was hindered due to the steric clash with V557. Moreover, we have elucidated the molecular mechanism characterizing the drug resistance upon V557L mutation. Overall, our studies have provided valuable insight into the "template-dependent" inhibitory mechanism exerted by remdesivir on SARS-CoV-2 RdRp and paved venues for an alternative antiviral strategy for the COVID-19 pandemic. As the "template-dependent" inhibition occurs across diverse viral RdRps, our findings may also shed light on a common acting mechanism of inhibitors.
Collapse
Affiliation(s)
- Xueying Luo
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, 350002 Fuzhou, Fujian, China
- University
of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiaowei Wang
- Department
of Chemical and Biological Engineering, Department of Mathematics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Yuan Yao
- Department
of Mathematics, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xin Gao
- Computer
Science Program, Computer, Electrical and Mathematical Sciences and
Engineering (CEMSE) Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Lu Zhang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, 350002 Fuzhou, Fujian, China
- University
of Chinese Academy of Sciences, 100049 Beijing, China
- Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry, 361005 Fujian, China
| |
Collapse
|
7
|
Boulard Y, Bressanelli S. Recapitulating Trafficking of Nucleosides Into the Active Site of Polymerases of RNA Viruses: The Challenge and the Prize. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:705875. [PMID: 35047945 PMCID: PMC8757734 DOI: 10.3389/fmedt.2021.705875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Nucleoside analogs are very effective antiviral agents with currently over 25 compounds approved for the therapy of viral infections. Still, their successful use against RNA viruses is very recent, despite RNA viruses comprising some of the most damaging human pathogens (e.g., Coronaviruses, Influenza viruses, or Flaviviridae such as dengue, Zika and hepatitis C viruses). The breakthrough came in 2013–2014, when the nucleoside analog Sofosbuvir became one of the cornerstones of current curative treatments for hepatitis C virus (HCV). An analog designed on the same principles, Remdesivir, has been the first approved compound against SARS-CoV-2, the coronavirus that causes the current COVID-19 pandemic. Both of these nucleoside analogs target the RNA-dependent RNA polymerase (RdRp) (NS5B for HCV, nsp12 for SARS-CoV-2). RdRps of RNA viruses display a peculiar elaboration of the classical polymerase architecture that leads to their active site being caged. Thus, triphosphate nucleosides and their analogs must access this active site in several steps along a narrow and dynamic tunnel. This makes straightforward computational approaches such as docking unsuitable for getting atomic-level details of this process. Here we give an account of ribose-modified nucleoside analogs as inhibitors of viral RdRps and of why taking into account the dynamics of these polymerases is necessary to understand nucleotide selection by RdRps. As a case study we use a computational protocol we recently described to examine the approach of the NTP tunnel of HCV NS5B by cellular metabolites of Sofosbuvir. We find major differences with natural nucleotides even at this early stage of nucleotide entry.
Collapse
Affiliation(s)
- Yves Boulard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
8
|
Malone B, Urakova N, Snijder EJ, Campbell EA. Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design. Nat Rev Mol Cell Biol 2022; 23:21-39. [PMID: 34824452 PMCID: PMC8613731 DOI: 10.1038/s41580-021-00432-z] [Citation(s) in RCA: 225] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to cause massive global upheaval. Coronaviruses are positive-strand RNA viruses with an unusually large genome of ~30 kb. They express an RNA-dependent RNA polymerase and a cohort of other replication enzymes and supporting factors to transcribe and replicate their genomes. The proteins performing these essential processes are prime antiviral drug targets, but drug discovery is hindered by our incomplete understanding of coronavirus RNA synthesis and processing. In infected cells, the RNA-dependent RNA polymerase must coordinate with other viral and host factors to produce both viral mRNAs and new genomes. Recent research aiming to decipher and contextualize the structures, functions and interplay of the subunits of the SARS-CoV-2 replication and transcription complex proteins has burgeoned. In this Review, we discuss recent advancements in our understanding of the molecular basis and complexity of the coronavirus RNA-synthesizing machinery. Specifically, we outline the mechanisms and regulation of RNA translation, replication and transcription. We also discuss the composition of the replication and transcription complexes and their suitability as targets for antiviral therapy.
Collapse
Affiliation(s)
- Brandon Malone
- grid.134907.80000 0001 2166 1519Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY USA
| | - Nadya Urakova
- grid.10419.3d0000000089452978Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Eric J. Snijder
- grid.10419.3d0000000089452978Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Elizabeth A. Campbell
- grid.134907.80000 0001 2166 1519Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY USA
| |
Collapse
|
9
|
Abstract
The ongoing Covid-19 pandemic has spurred research in the biology of the nidovirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Much focus has been on the viral RNA synthesis machinery due to its fundamental role in viral propagation. The central and essential enzyme of the RNA synthesis process, the RNA-dependent RNA polymerase (RdRp), functions in conjunction with a coterie of viral-encoded enzymes that mediate crucial nucleic acid transactions. Some of these enzymes share common features with other RNA viruses, while others play roles unique to nidoviruses or CoVs. The RdRps are proven targets for viral pathogens, and many of the other nucleic acid processing enzymes are promising targets. The purpose of this review is to summarize recent advances in our understanding of the mechanisms of RNA synthesis in CoVs. By reflecting on these studies, we hope to emphasize the remaining gaps in our knowledge. The recent onslaught of structural information related to SARS-CoV-2 RNA synthesis, in combination with previous structural, genetic and biochemical studies, have vastly improved our understanding of how CoVs replicate and process their genomic RNA. Structural biology not only provides a blueprint for understanding the function of the enzymes and cofactors in molecular detail, but also provides a basis for drug design and optimization. The concerted efforts of researchers around the world, in combination with the renewed urgency toward understanding this deadly family of viruses, may eventually yield new and improved antivirals that provide relief to the current global devastation.
Collapse
Affiliation(s)
- Brandon Malone
- The Rockefeller University, New York, New York, United States
| | | | - Seth A Darst
- The Rockefeller University, New York, New York, United States.
| |
Collapse
|
10
|
Long C, Romero ME, La Rocco D, Yu J. Dissecting nucleotide selectivity in viral RNA polymerases. Comput Struct Biotechnol J 2021; 19:3339-3348. [PMID: 34104356 PMCID: PMC8175102 DOI: 10.1016/j.csbj.2021.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 01/18/2023] Open
Abstract
Designing antiviral therapeutics is of great concern per current pandemics caused by novel coronavirus or SARS-CoV-2. The core polymerase enzyme in the viral replication/transcription machinery is generally conserved and serves well for drug target. In this work we briefly review structural biology and computational clues on representative single-subunit viral polymerases that are more or less connected with SARS-CoV-2 RNA dependent RNA polymerase (RdRp), in particular, to elucidate how nucleotide substrates and potential drug analogs are selected in the viral genome synthesis. To do that, we first survey two well studied RdRps from Polio virus and hepatitis C virus in regard to structural motifs and key residues that have been identified for the nucleotide selectivity. Then we focus on related structural and biochemical characteristics discovered for the SARS-CoV-2 RdRp. To further compare, we summarize what we have learned computationally from phage T7 RNA polymerase (RNAP) on its stepwise nucleotide selectivity, and extend discussion to a structurally similar human mitochondria RNAP, which deserves special attention as it cannot be adversely affected by antiviral treatments. We also include viral phi29 DNA polymerase for comparison, which has both helicase and proofreading activities on top of nucleotide selectivity for replication fidelity control. The helicase and proofreading functions are achieved by protein components in addition to RdRp in the coronavirus replication-transcription machine, with the proofreading strategy important for the fidelity control in synthesizing a comparatively large viral genome.
Collapse
Affiliation(s)
- Chunhong Long
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | | | - Daniel La Rocco
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Jin Yu
- Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA 92697, USA
| |
Collapse
|
11
|
Bamford CG, McLauchlan J. An interferon lambda 4-associated variant in the hepatitis C virus RNA polymerase affects viral replication in infected cells. J Gen Virol 2021; 102:001495. [PMID: 32897180 PMCID: PMC8116938 DOI: 10.1099/jgv.0.001495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/18/2020] [Indexed: 01/25/2023] Open
Abstract
Host IFNL4 haplotype status contributes to the development of chronic hepatitis C virus (HCV) infection in individuals who are acutely infected with the virus. In silico studies revealed that specific amino acid variants at multiple sites on the HCV polyprotein correlate with functional single-nucleotide polymorphisms (SNPs) in the IFNL4 locus. Thus, SNPs at the IFNL4 locus may select variants that influence virus replication and thereby the outcome of infection. Here, we examine the most significantly IFNL4-associated amino acid variants that lie in the 'lambda (L) 2 loop' of the HCV NS5B RNA polymerase. L2 loop variants were introduced into both sub-genomic replicon and full-length infectious clones of HCV and viral replication was examined in the presence and absence of exogenous IFNλ4. Our data demonstrate that while mutation of the NS5B L2 loop affects replication, individual IFNL4-associated variants have modest but consistent effects on replication in both the presence and absence of IFNλ4. Given the strong genetic association between these variants and IFNL4, these data suggest a nuanced effect of each individual position on viral replication, the combined effect of which might mediate resistance to the effects of IFNλ4.
Collapse
Affiliation(s)
- Connor G.G. Bamford
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Glasgow, G61 1QH, Scotland, UK
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University of Belfast, 97 Lisburn Rd, Belfast, BT97BL, Northern Ireland, UK
| | - John McLauchlan
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Rd, Glasgow, G61 1QH, Scotland, UK
| |
Collapse
|
12
|
de Jesus JR, de Araújo Andrade T. Understanding the relationship between viral infections and trace elements from a metallomics perspective: implications for COVID-19. Metallomics 2020; 12:1912-1930. [PMID: 33295922 PMCID: PMC7928718 DOI: 10.1039/d0mt00220h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Recently, the World Health Organization (WHO) declared a pandemic situation due to a new viral infection (COVID-19) caused by a novel virus (Sars-CoV-2). COVID-19 is today the leading cause of death from viral infections in the world. It is known that many elements play important roles in viral infections, both in virus survival, and in the activation of the host's immune system, which depends on the presence of micronutrients to maintain the integrity of its functions. In this sense, the metallome can be an important object of study for understanding viral infections. Therefore, this work presents an overview of the role of trace elements in the immune system and the state of the art in metallomics, highlighting the challenges found in studies focusing on viral infections.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- University of Campinas, Institute of Chemistry, Dept of Analytical Chemistry, Campinas, São Paulo, Brazil.
| | | |
Collapse
|
13
|
Liang C, Tian L, Liu Y, Hui N, Qiao G, Li H, Shi Z, Tang Y, Zhang D, Xie X, Zhao X. A promising antiviral candidate drug for the COVID-19 pandemic: A mini-review of remdesivir. Eur J Med Chem 2020; 201:112527. [PMID: 32563812 PMCID: PMC7834743 DOI: 10.1016/j.ejmech.2020.112527] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023]
Abstract
Remdesivir (GS-5734), a viral RNA-dependent RNA polymerase (RdRP) inhibitor that can be used to treat a variety of RNA virus infections, is expected to be an effective treatment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. On May 1, 2020, The U.S. Food and Drug Administration (FDA) has granted Emergency Use Authorization (EUA) for remdesivir to treat COVID-19 patients. In light of the COVID-19 pandemic, this review presents comprehensive information on remdesivir, including information regarding the milestones, intellectual properties, anti-coronavirus mechanisms, preclinical research and clinical trials, and in particular, the chemical synthesis, pharmacology, toxicology, pharmacodynamics and pharmacokinetics of remdesivir. Furthermore, perspectives regarding the use of remdesivir for the treatment of COVID-19 are also discussed.
Collapse
Affiliation(s)
- Chengyuan Liang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Lei Tian
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yuzhi Liu
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Nan Hui
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Guaiping Qiao
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Han Li
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, 830002, PR China
| | - Yonghong Tang
- Xi'an Taikomed Pharmaceutical Technology Co., Ltd., Xi'an, 710077, PR China
| | - Dezhu Zhang
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Xu Zhao
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, PR China.
| |
Collapse
|
14
|
Zhang L, Zhou R. Structural Basis of the Potential Binding Mechanism of Remdesivir to SARS-CoV-2 RNA-Dependent RNA Polymerase. J Phys Chem B 2020; 124:6955-6962. [PMID: 32521159 DOI: 10.20944/preprints202003.0267.v1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Starting from late 2019, the coronavirus disease 2019 (COVID-19) has emerged as a once-in-a-century pandemic with deadly consequences, which urgently calls for new treatments, cures, and supporting apparatuses. Recently, because of its positive results in clinical trials, remdesivir was approved by the Food and Drug Administration to treat COVID-19 through Emergency Use Authorization. Here, we used molecular dynamics simulations and free energy perturbation methods to study the inhibition mechanism of remdesivir to its target SARS-CoV-2 virus RNA-dependent RNA polymerase (RdRp). We first constructed the homology model of this polymerase based on a previously available structure of SARS-CoV NSP12 RdRp (with a sequence identity of 95.8%). We then built a putative preinsertion binding structure by aligning the remdesivir + RdRp complex to the ATP bound poliovirus RdRp without the RNA template. The putative binding structure was further optimized with molecular dynamics simulations. The resulting stable preinsertion state of remdesivir appeared to form hydrogen bonds with the RNA template when aligned with the newly solved cryo-EM structure of SARS-CoV-2 RdRp. The relative binding free energy between remdesivir and ATP was calculated to be -2.80 ± 0.84 kcal/mol, where remdesivir bound much stronger to SARS-CoV-2 RdRp than the natural substrate ATP. The ∼100-fold improvement in the Kd from remdesivir over ATP indicates an effective replacement of ATP in blocking of the RdRp preinsertion site. Key residues D618, S549, and R555 are found to be the contributors to the binding affinity of remdesivir. These findings suggest that remdesivir can potentially act as a SARS-CoV-2 RNA-chain terminator, effectively stopping its RNA replication, with key residues also identified for future lead optimization and/or drug resistance studies.
Collapse
Affiliation(s)
- Leili Zhang
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Ruhong Zhou
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
- Institute of Quantitative Biology, Zhejiang University, Hangzhou, 310027, China
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
15
|
Zhang L, Zhou R. Structural Basis of the Potential Binding Mechanism of Remdesivir to SARS-CoV-2 RNA-Dependent RNA Polymerase. J Phys Chem B 2020; 124:6955-6962. [PMID: 32521159 PMCID: PMC7309898 DOI: 10.1021/acs.jpcb.0c04198] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/05/2020] [Indexed: 01/18/2023]
Abstract
Starting from late 2019, the coronavirus disease 2019 (COVID-19) has emerged as a once-in-a-century pandemic with deadly consequences, which urgently calls for new treatments, cures, and supporting apparatuses. Recently, because of its positive results in clinical trials, remdesivir was approved by the Food and Drug Administration to treat COVID-19 through Emergency Use Authorization. Here, we used molecular dynamics simulations and free energy perturbation methods to study the inhibition mechanism of remdesivir to its target SARS-CoV-2 virus RNA-dependent RNA polymerase (RdRp). We first constructed the homology model of this polymerase based on a previously available structure of SARS-CoV NSP12 RdRp (with a sequence identity of 95.8%). We then built a putative preinsertion binding structure by aligning the remdesivir + RdRp complex to the ATP bound poliovirus RdRp without the RNA template. The putative binding structure was further optimized with molecular dynamics simulations. The resulting stable preinsertion state of remdesivir appeared to form hydrogen bonds with the RNA template when aligned with the newly solved cryo-EM structure of SARS-CoV-2 RdRp. The relative binding free energy between remdesivir and ATP was calculated to be -2.80 ± 0.84 kcal/mol, where remdesivir bound much stronger to SARS-CoV-2 RdRp than the natural substrate ATP. The ∼100-fold improvement in the Kd from remdesivir over ATP indicates an effective replacement of ATP in blocking of the RdRp preinsertion site. Key residues D618, S549, and R555 are found to be the contributors to the binding affinity of remdesivir. These findings suggest that remdesivir can potentially act as a SARS-CoV-2 RNA-chain terminator, effectively stopping its RNA replication, with key residues also identified for future lead optimization and/or drug resistance studies.
Collapse
Affiliation(s)
- Leili Zhang
- Computational Biology Center, IBM Thomas
J. Watson Research Center, Yorktown Heights, New York 10598,
United States
| | - Ruhong Zhou
- Computational Biology Center, IBM Thomas
J. Watson Research Center, Yorktown Heights, New York 10598,
United States
- Institute of Quantitative Biology,
Zhejiang University, Hangzhou, 310027,
China
- Department of Chemistry, Columbia
University, New York, New York 10027, United
States
| |
Collapse
|