1
|
Steiner L, Eldh M, Offens A, Veerman RE, Johansson M, Hemdan T, Netterling H, Huge Y, Abdul-Sattar Aljabery F, Alamdari F, Lidén O, Sherif A, Gabrielsson S. Protein profile in urinary extracellular vesicles is a marker of malignancy and correlates with muscle invasiveness in urinary bladder cancer. Cancer Lett 2025; 609:217352. [PMID: 39586489 DOI: 10.1016/j.canlet.2024.217352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Urinary Bladder Cancer (UBC) ranks among the most prevalent cancers worldwide, has a high recurrence rate and unpredictable treatment responses. Thus, biomarkers are urgently needed. Extracellular vesicles (EVs) are released from both cancer- and immune cells and provide a snapshot of the originating cell. They are abundant in urine and are therefore candidate biomarkers for UBC. Isolated urinary EVs from 39 UBC patients were compared with EVs from healthy controls, prostate cancer patients and whole urine. Samples were from bladder urine at time of both transurethral resection of the bladder tumour (TURB) and cystectomy, as well as urine taken from the ureter at cystectomy. EVs were isolated by tangential flow filtration and differential ultracentrifugation and their protein composition was detected by Proximity Extension Assay (PEA; Olink, immuno-oncology panel). In UBC patients, the proteomic signature of bladder urine EVs differed from ureter urine EVs from the same individuals, and from bladder urine derived EVs of both healthy and prostate cancer controls. Pairwise comparison was performed with matched whole urine revealing proteins solely detected in isolated vesicles. Additionally, a distinct signature was identified in bladder urine EVs correlating with muscle invasiveness, and a trained classifier could predict UBC with 92 % accuracy. Some differentially expressed proteins, HO-1 and MMP7, were analysed by bead-based flow cytometry, where HO-1 was detected on the EV surface. Taken together, these results strengthen the rationale of using EVs as non-invasive biomarkers and prognostic tools for UBC.
Collapse
Affiliation(s)
- Loïc Steiner
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Eldh
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Annemarijn Offens
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Rosanne E Veerman
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Markus Johansson
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden; Department of Surgery, Urology Section, Sundsvall-Härnösand Hospital, Sundsvall, Sweden
| | - Tammer Hemdan
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Hans Netterling
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Ylva Huge
- Department of Clinical and Experimental Medicine, Division of Urology, Linköping University, Linköping, Sweden
| | - Firas Abdul-Sattar Aljabery
- Department of Clinical and Experimental Medicine, Division of Urology, Linköping University, Linköping, Sweden
| | | | - Oskar Lidén
- Department of Surgery and Urology, Hudiksvall Hospital, Hudiksvall, Sweden
| | - Amir Sherif
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden; Department of Biomedical and Clinical Sciences, Division of Urology, Linköping University, 581 85, Linköping, Sweden
| | - Susanne Gabrielsson
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
2
|
Kasiński D, Szeliski K, Drewa T, Pokrywczyńska M. Extracellular vesicles-a new player in the development of urinary bladder cancer. Ther Adv Med Oncol 2025; 17:17588359241297529. [PMID: 39850919 PMCID: PMC11755519 DOI: 10.1177/17588359241297529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/18/2024] [Indexed: 01/25/2025] Open
Abstract
Bladder cancer was the 10th most commonly diagnosed cancer worldwide in 2020. Extracellular vesicles (EVs) are nano-sized membranous structures secreted by all types of cells into the extracellular space. EVs can transport proteins, lipids, or nucleic acids to specific target cells. What brings more attention and potential implications is the fact that cancer cells secrete more EVs than non-malignant cells. EVs are widely studied for their role in cancer development. This publication summarizes the impact of EVs secreted by urinary bladder cancer cells on urinary bladder cancer development and metastasis. EVs isolated from urinary bladder cancer cells affect other lower-grade cancer cells or normal cells by inducing different metabolic pathways (transforming growth factor β/Smads pathway; phosphoinositide 3-kinase/Akt pathway) that promote epithelial-mesenchymal transition. The cargo carried by EVs can also induce angiogenesis, another critical element in the development of bladder cancer, and modulate the immune system response in a tumor-beneficial manner. In summary, the transfer of substances produced by tumor cells via EVs to the environment influences many stages of tumor progression. An in-depth understanding of the role EVs play in the development of urinary bladder cancer is crucial for the development of future anticancer therapies.
Collapse
Affiliation(s)
- Damian Kasiński
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Jagiellońska 13/15, 85-067 Bydgoszcz, Poland
| | - Kamil Szeliski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Pokrywczyńska
- Chair of Urology and Andrology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
3
|
Uchiya TDS, Cunha HND, Casotti MC, Castro GDSCD, Pereira GF, Moura JAD, Machado AM, Rocha FVV, Mauricio LSR, Lopes VA, Pesente F, Giacinti GM, Coelho FF, Carvalho EFD, Louro ID, Meira DD. Resilience in adversity: Exploring adaptive changes in cancer cells under stress. Tissue Cell 2025; 93:102756. [PMID: 39864208 DOI: 10.1016/j.tice.2025.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
OBJECTIVE Cancer cells undergo adaptive processes that favor their survival and proliferation when subjected to different types of cellular stress. These changes are linked to oncogenic processes such as genetic instability, tumor proliferation, therapy resistance, and invasion. Therefore, this study aimed to review studies that discuss possible morphological and genetic changes acquired by neoplastic cells under stressful conditions. METHODS The articles used in this integrative review were searched on PubMed, Web of Science, CAPES, BVS and Scopus. Studies that discussed how cells undergo morphogenetic changes as an adaptive response to stress in cancer were included. RESULTS This article reviewed 82 studies that highlighted multiple types of stress to which cancer can be subjected, such as oxidative, thermal and mechanical stress; glucose and other nutrients deficiency; hypoxia and chemotherapy. Neoplastic cells under stress can undergo adaptive changes that make it possible to overcome this obstacle. In this adaptive process, the acquisition of certain mutations implies cellular morphological changes such as Epithelial-Mesenchymal Transition, polyploidy, mitochondrial and cytoskeletal changes. These adaptive changes occur concomitantly with processes related to oncogenesis such as gene instability, tumor proliferation, resistance to therapy and invasion. CONCLUSIONS This study reveals that adaptations to cellular stress promote morphological and functional changes that accompany or accelerate oncogenesis. It has been revised how epithelial-mesenchymal transition, polyploidy and mitochondrial dysfunctions not only reinforce the survival of tumor cells in adverse environments, but also increase therapeutic resistance and invasive capacity. Also noteworthy are the contributions on genomic instability associated with stress and the potential of senescent cells in tumor heterogeneity, both as factors of tumor resistance and progression. These insights suggest new therapeutic targets and prognostic biomarkers, expanding the possibilities for more effective strategies to combat cancer.
Collapse
Affiliation(s)
- Taissa Dos Santos Uchiya
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - Helena Napoli da Cunha
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | | | - Gabrielle Feu Pereira
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - João Augusto Diniz Moura
- Laboratório de Oncologia Clínica e Experimental (LOCE), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - André Manhães Machado
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - Fabio Victor Vieira Rocha
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - Lorena Souza Rittberg Mauricio
- Laboratório de Oncologia Clínica e Experimental (LOCE), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - Victor Alves Lopes
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - Fellipe Pesente
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - Giulia Maria Giacinti
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - Francisco Felipe Coelho
- Departamento de Biblioteconomia, Federal University of Espírito Santo, Espírito Santo, Brazil
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Iúri Drumond Louro
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil
| | - Débora Dummer Meira
- Núcleo de Genética Humana e Molecular (NGHM), Federal University of Espírito Santo (UFES), Espírito Santo, Brazil.
| |
Collapse
|
4
|
Liu S, Feng C, Tan L, Zhang D, Li YX, Han Y, Wang C. Single-cell dissection of multifocal bladder cancer reveals malignant and immune cells variation between primary and recurrent tumor lesions. Commun Biol 2024; 7:1659. [PMID: 39702554 DOI: 10.1038/s42003-024-07343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Bladder carcinoma (BLCA) is characterized by a high rate of post-surgery recurrence and multifocality. Multifocal tumors have a higher risk of recurrence compared to single tumors, significantly impacting bladder cancer-specific mortality. However, the interregional or intraregional heterogeneity within both primary and recurrent tumors remains poorly understood. Here, we employed single-cell RNA sequencing to analyze tumor lesions from five multifocal bladder cancer patients comprising three primary tumors and two recurrent tumors. Our findings revealed that malignant cells derived from recurrent multifocal bladder cancer exhibited higher interregional transcriptional similarity and consistent cellular communication. Furthermore, our analysis uncovered that malignant cells from recurrent tumors may evade immune destruction by suppressing cytokine responses and natural killer cell activity. Notably, we identified a preference for the expression of the tryptophan metabolic enzyme IL4I1 on SPP1+ macrophages in recurrent tumors. Functional analyses have revealed that IL4I1 may promotes tumor progression in recurrent tumors by activating the aryl hydrocarbon receptor (AHR) and recruiting regulatory T cells to suppress adaptive immunity. Taken together, our study provides a comprehensive understanding of primary and recurrent multifocal bladder tumors, offering valuable resources for analyzing the multifocality and recurrence of bladder cancer.
Collapse
Affiliation(s)
- Shenghua Liu
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Chenchen Feng
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Linyi Tan
- Department of Urology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Dengwei Zhang
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ya Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
- National Key Laboratory of Autonomous Intelligent Unmanned Systems, Tongji University, 200120, Shanghai, China.
- Frontier Science Center for Intelligent Autonomous Systems, Tongji University, 200120, Shanghai, China.
| |
Collapse
|
5
|
Zuo W, Zhang J, Xu L, Xiong G, Xu C, Tang Q, Li X, Zhou L. Clinical, Prognosis, and Treatment Effect Features Analysis of Metachronous and Synchronous UTUC and BUC. Clin Genitourin Cancer 2024; 22:102192. [PMID: 39261258 DOI: 10.1016/j.clgc.2024.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVE To provide a comprehensive understanding of the clinical features of patients with synchronous and metachronous upper tract urothelial carcinoma (UTUC) and bladder urothelial carcinoma (BUC) and inform surgical and postoperative adjuvant treatment planning. PATIENTS AND METHOD A total of 292 consecutive patients with synchronous and metachronous UTUC-BUC were retrospectively enrolled and were categorized into three groups: (1) UTUC metachronous BUC (N = 185, UTUC-mBUC), (2) BUC-metachronous UTUC (N = 43, BUC-mUTUC), (3) synchronous UTUC-BUC (N = 64, sUTUC-BUC). We compared pathological characteristics and survival data among groups with Wilcoxon's rank sum tests, Pearson's chi-squared, and the Kaplan-Meier method. RESULTS In the sUTUC-BUC group, a higher proportion of patients exhibited UTUC tumors with grade G3 (56%, P = .001) and stage T4 (6%, P < .001) than group UTUC-mBUC (G3 = 16%, T4 = 0%). The proportion of patients with variant histology subtype in group sUTUC-BUC was higher than that of metachronous UTUC-BUC, involving squamous (P = .003), adenoid (P = .012), and sarcomatoid (P < .001) differentiation. It was also observed that the maximum diameter of the UTUC tumor of group sUTUC-BUC (median = 3.5) was significantly larger than group UTUC-mBUC (median = 2.5, P = .002) and group BUC-mUTUC (median = 2.2, P < .001). Notably, sUTUC-BUC has an increased risk of cancer-specific death compared with UTUC-mBUC (P < .001) and BUC-mUTUC (P < .001). On multivariable Cox regression, synchronous UTUC-BUC was an independent predictor of both RFS (P < .001; vs. UTUC-mBUC: HR 0.555, P = .004; vs. BUC-mUTUC: HR 0.279, P < .001) and CSS (P < .001, HR 29.737). Moreover, sUTUC-BUC showed a better response to intravesical therapy and chemotherapy with higher cancer-specific survival (P < .001) and recurrence-free survival (P = .034). CONCLUSIONS The prognosis and pathological characteristics among different metachronous and synchronous UTUC and BUC were diverse. The synchronous UTUC-BUC group showed variant histology subtype, high-grade tumors, advanced tumors, multifocal UTUC, worse cancer-specific survival, but better response to intravesical therapy and chemotherapy.
Collapse
MESH Headings
- Humans
- Male
- Female
- Urinary Bladder Neoplasms/pathology
- Urinary Bladder Neoplasms/mortality
- Urinary Bladder Neoplasms/therapy
- Aged
- Retrospective Studies
- Middle Aged
- Prognosis
- Neoplasms, Multiple Primary/pathology
- Neoplasms, Multiple Primary/mortality
- Neoplasms, Multiple Primary/therapy
- Neoplasms, Multiple Primary/surgery
- Neoplasms, Second Primary/pathology
- Neoplasms, Second Primary/mortality
- Treatment Outcome
- Carcinoma, Transitional Cell/pathology
- Carcinoma, Transitional Cell/mortality
- Carcinoma, Transitional Cell/therapy
- Carcinoma, Transitional Cell/surgery
- Carcinoma, Transitional Cell/drug therapy
- Survival Analysis
- Aged, 80 and over
Collapse
Affiliation(s)
- Wei Zuo
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Jilong Zhang
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Liqing Xu
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Gengyan Xiong
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Chunru Xu
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Qi Tang
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China.
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China.
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China.
| |
Collapse
|
6
|
Farahani N, Alimohammadi M, Raei M, Nabavi N, Aref AR, Hushmandi K, Daneshi S, Razzaghi A, Taheriazam A, Hashemi M. Exploring the dual role of endoplasmic reticulum stress in urological cancers: Implications for tumor progression and cell death interactions. J Cell Commun Signal 2024; 18:e12054. [PMID: 39691874 PMCID: PMC11647052 DOI: 10.1002/ccs3.12054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 12/19/2024] Open
Abstract
The endoplasmic reticulum (ER) is crucial for maintaining calcium balance, lipid biosynthesis, and protein folding. Disruptions in ER homeostasis, often due to the accumulation of misfolded or unfolded proteins, lead to ER stress, which plays a significant role in various diseases, especially cancer. Urological cancers, which account for high male mortality worldwide, pose a persistent challenge due to their incurability and tendency to develop drug resistance. Among the numerous dysregulated biological mechanisms, ER stress is a key factor in the progression and treatment response of these cancers. This review highlights the dual role of aberrant ER stress activation in urologic cancers, affecting both tumor growth and therapeutic outcomes. While ER stress can support tumor growth through pro-survival autophagy, it primarily inhibits cancer progression via apoptosis and pro-death autophagy. Interestingly, ER stress can paradoxically aid cancer progression through mechanisms such as exosome-mediated immune evasion. Additionally, the review examines how pharmacological interventions, particularly with phytochemicals, can stimulate ER stress-mediated tumor suppression. Key regulators, including PERK, IRE1α, and ATF6, are discussed for their roles in upregulating CHOP levels and triggering apoptosis. In conclusion, a deeper understanding of ER stress in urological cancers not only clarifies the complex interactions between cellular stress and cancer progression but also provides new opportunities for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mina Alimohammadi
- Department of ImmunologySchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Mehdi Raei
- Health Research CenterLife Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| | | | - Amir Reza Aref
- Department of SurgeryMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kiavash Hushmandi
- Nephrology and Urology Research CenterClinical Sciences InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Salman Daneshi
- Department of Public HealthSchool of HealthJiroft University of Medical SciencesJiroftIran
| | - Alireza Razzaghi
- Social Determinants of Health Research CenterResearch Institute for Prevention of Non‐Communicable DiseasesQazvin University of Medical SciencesQazvinIran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of OrthopedicsFaculty of MedicineTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
7
|
Tang H, Liu X, Ke J, Tang Y, Luo S, Li XK, Huang M. New perspectives of exosomes in urologic malignancies - Mainly focus on biomarkers and tumor microenvironment. Pathol Res Pract 2024; 263:155645. [PMID: 39476607 DOI: 10.1016/j.prp.2024.155645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/09/2024] [Accepted: 10/02/2024] [Indexed: 11/10/2024]
Abstract
Bladder cancer (BCa) and renal cell carcinoma (RCC) are prevalent urologic malignancies (UM) characterized by high morbidity and frequent recurrence. Current diagnostic approaches, often invasive, often indicate an advanced disease stage. And the complex tumor microenvironment often promotes tumor progression and induces resistance to chemotherapy. Current diagnostic and therapeutic modalities often fail to achieve satisfactory outcomes for patients. Exosomes transport diverse cargoes, including cytokines, proteins, lipids, non-coding RNAs, and microRNAs, crucial for intercellular communication. Exosomes have shown potential as biomarkers for UM, participating in tumor progression, especially within the tumor microenvironment (TME), including tumor cell apoptosis, proliferation, migration, invasion, depletion of immune cell function, epithelial-mesenchymal transition (EMT), angiogenesis, and more.In this review, we summarize research advances related to exosomes in UM, focusing on the role of exosomes as biomarkers in bladder and renal cancer, highlighting their significance within the TME.
Collapse
Affiliation(s)
- Hai Tang
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xing Liu
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jingwei Ke
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yiquan Tang
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Songtao Luo
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xu Kun Li
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Mingwei Huang
- Urology department, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
8
|
Tam S, Wear D, Morrone CD, Yu WH. The complexity of extracellular vesicles: Bridging the gap between cellular communication and neuropathology. J Neurochem 2024; 168:2391-2422. [PMID: 38650384 DOI: 10.1111/jnc.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Brain-derived extracellular vesicles (EVs) serve a prominent role in maintaining homeostasis and contributing to pathology in health and disease. This review establishes a crucial link between physiological processes leading to EV biogenesis and their impacts on disease. EVs are involved in the clearance and transport of proteins and nucleic acids, responding to changes in cellular processes associated with neurodegeneration, including autophagic disruption, organellar dysfunction, aging, and other cell stresses. In neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, etc.), EVs contribute to the spread of pathological proteins like amyloid β, tau, ɑ-synuclein, prions, and TDP-43, exacerbating neurodegeneration and accelerating disease progression. Despite evidence for both neuropathological and neuroprotective effects of EVs, the mechanistic switch between their physiological and pathological functions remains elusive, warranting further research into their involvement in neurodegenerative disease. Moreover, owing to their innate ability to traverse the blood-brain barrier and their ubiquitous nature, EVs emerge as promising candidates for novel diagnostic and therapeutic strategies. The review uniquely positions itself at the intersection of EV cell biology, neurophysiology, and neuropathology, offering insights into the diverse biological roles of EVs in health and disease.
Collapse
Affiliation(s)
- Stephanie Tam
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Darcy Wear
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Wai Haung Yu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Zhang W, Shi Y, Oyang L, Cui S, Li S, Li J, Liu L, Li Y, Peng M, Tan S, Xia L, Lin J, Xu X, Wu N, Peng Q, Tang Y, Luo X, Liao Q, Jiang X, Zhou Y. Endoplasmic reticulum stress-a key guardian in cancer. Cell Death Discov 2024; 10:343. [PMID: 39080273 PMCID: PMC11289465 DOI: 10.1038/s41420-024-02110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) is a cellular stress response characterized by excessive contraction of the endoplasmic reticulum (ER). It is a pathological hallmark of many diseases, such as diabetes, obesity, and neurodegenerative diseases. In the unique growth characteristic and varied microenvironment of cancer, high levels of stress are necessary to maintain the rapid proliferation and metastasis of tumor cells. This process is closely related to ERS, which enhances the ability of tumor cells to adapt to unfavorable environments and promotes the malignant progression of cancer. In this paper, we review the roles and mechanisms of ERS in tumor cell proliferation, apoptosis, metastasis, angiogenesis, drug resistance, cellular metabolism, and immune response. We found that ERS can modulate tumor progression via the unfolded protein response (UPR) signaling of IRE1, PERK, and ATF6. Targeting the ERS may be a new strategy to attenuate the protective effects of ERS on cancer. This manuscript explores the potential of ERS-targeted therapies, detailing the mechanisms through which ERS influences cancer progression and highlighting experimental and clinical evidence supporting these strategies. Through this review, we aim to deepen our understanding of the role of ER stress in cancer development and provide new insights for cancer therapy.
Collapse
Grants
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 82302987, 82203233, 82202966, 82173142 National Natural Science Foundation of China (National Science Foundation of China)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- 2023JJ60469, 2023JJ40413, 2023JJ30372, 2023JJ30375, 2020JJ5336 Natural Science Foundation of Hunan Province (Hunan Provincial Natural Science Foundation)
- he Research Project of Health Commission of Hunan Province (202203034978, 202202055318, 202203231032, 202109031837, 202109032010, 20201020), Science and Technology Innovation Program of Hunan Province(2023ZJ1122, 2023RC3199, 2023RC1073), Hunan Provincial Science and Technology Department (2020TP1018), the Changsha Science and Technology Board (kh2201054), Ascend Foundation of National cancer center (NCC201909B06) and by Hunan Cancer Hospital Climb Plan (ZX2020001-3, YF2020002)
- the Research Project of Health Commission of Hunan Province (202203034978, 202202055318, 202203231032, 202109031837, 202109032010, 20201020), Science and Technology Innovation Program of Hunan Province(2023ZJ1122, 2023RC3199, 2023RC1073), Hunan Provincial Science and Technology Department (2020TP1018), the Changsha Science and Technology Board (kh2201054), Ascend Foundation of National cancer center (NCC201909B06) and by Hunan Cancer Hospital Climb Plan (ZX2020001-3, YF2020002)
Collapse
Affiliation(s)
- Wenlong Zhang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yidan Shi
- The High School Attached to Hunan Normal University, Changsha, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Shiwen Cui
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shizhen Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jinyun Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Lin Liu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Yun Li
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Xuemeng Xu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China
- Department of Oncology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
- Hengyang Medical School, University of South China, Hengyang, Hunan, China.
- Hunan Engineering Research Center of Tumor Organoids Technology and Application, Public Service Platform of Tumor Organoids Technology, Changsha, Hunan, China.
| |
Collapse
|
10
|
Yin C, Liufu C, Zhu T, Ye S, Jiang J, Wang M, Wang Y, Shi B. Bladder Cancer in Exosomal Perspective: Unraveling New Regulatory Mechanisms. Int J Nanomedicine 2024; 19:3677-3695. [PMID: 38681092 PMCID: PMC11048230 DOI: 10.2147/ijn.s458397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/06/2024] [Indexed: 05/01/2024] Open
Abstract
Bladder cancer, a prevalent malignant neoplasm of the urinary tract, exhibits escalating morbidity and mortality rates. Current diagnosis standards rely on invasive and costly cystoscopy and histopathology, underscoring the urgency for non-invasive, high-throughput, and cost-effective novel diagnostic techniques to ensure timely detection and standardized treatment. Recent years have witnessed the rise of exosome research in bladder cancer studies. Exosomes contain abundant bioactive molecules that can help elucidate the intricate mechanisms underlying bladder cancer pathogenesis and metastasis. Exosomes hold potential as biomarkers for early bladder cancer diagnosis while also serving as targeted drug delivery vehicles to enhance treatment efficacy and mitigate adverse effects. Furthermore, exosome analyses offer insights into the complex molecular signaling networks implicated in bladder cancer progression, revealing novel therapeutic targets. This review provides a comprehensive overview of prevalent exosome isolation techniques and highlights the promising clinical utility of exosomes in both diagnostic and therapeutic applications in bladder cancer management.
Collapse
Affiliation(s)
- Cong Yin
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- Shenzhen University Health Science Center, Shenzhen, People’s Republic of China
| | - Cen Liufu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
- Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Tao Zhu
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
- Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Shuai Ye
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- Shenzhen University Health Science Center, Shenzhen, People’s Republic of China
| | - Jiahao Jiang
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
- Clinical College of Anhui Medical University, Shenzhen, People’s Republic of China
| | - Mingxia Wang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
| | - Yan Wang
- Department of Urology, Peking University Shenzhen Hospital, Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, People’s Republic of China
| | - Bentao Shi
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
11
|
Gou Z, Li J, Liu J, Yang N. The hidden messengers: cancer associated fibroblasts-derived exosomal miRNAs as key regulators of cancer malignancy. Front Cell Dev Biol 2024; 12:1378302. [PMID: 38694824 PMCID: PMC11061421 DOI: 10.3389/fcell.2024.1378302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs), a class of stromal cells in the tumor microenvironment (TME), play a key role in controlling cancer cell invasion and metastasis, immune evasion, angiogenesis, and resistance to chemotherapy. CAFs mediate their activities by secreting soluble chemicals, releasing exosomes, and altering the extracellular matrix (ECM). Exosomes contain various biomolecules, such as nucleic acids, lipids, and proteins. microRNA (miRNA), a 22-26 nucleotide non-coding RNA, can regulate the cellular transcription processes. Studies have shown that miRNA-loaded exosomes secreted by CAFs engage in various regulatory communication networks with other TME constituents. This study focused on the roles of CAF-derived exosomal miRNAs in generating cancer malignant characteristics, including immune modulation, tumor growth, migration and invasion, epithelial-mesenchymal transition (EMT), and treatment resistance. This study thoroughly examines miRNA's dual regulatory roles in promoting and suppressing cancer. Thus, changes in the CAF-derived exosomal miRNAs can be used as biomarkers for the diagnosis and prognosis of patients, and their specificity can be used to develop newer therapies. This review also discusses the pressing problems that require immediate attention, aiming to inspire researchers to explore more novel avenues in this field.
Collapse
Affiliation(s)
- Zixuan Gou
- Bethune First Clinical School of Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jianming Liu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Na Yang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Lin Y, Jiang H, Li J, Ren F, Wang Y, Qiu Y, Li J, Li M, Wang Y, Yang L, Song Y, Jia H, Zhai W, Kuang Y, Yu H, Zhu W, Liu S, Morii E, Ensinger C, David C, Zheng H, Ji J, Wang H, Chang Z. Microenvironment-induced CREPT expression by cancer-derived small extracellular vesicles primes field cancerization. Theranostics 2024; 14:662-680. [PMID: 38169511 PMCID: PMC10758052 DOI: 10.7150/thno.87344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024] Open
Abstract
Rationale: Cancer local recurrence increases the mortality of patients, and might be caused by field cancerization, a pre-malignant alteration of normal epithelial cells. It has been suggested that cancer-derived small extracellular vesicles (CDEs) may contribute to field cancerization, but the underlying mechanisms remain poorly understood. In this study, we aim to identify the key regulatory factors within recipient cells under the instigation of CDEs. Methods: In vitro experiments were performed to demonstrate that CDEs promote the expression of CREPT in normal epithelial cells. TMT-based quantitative mass spectrometry was employed to investigate the proteomic differences between normal cells and tumor cells. Loss-of-function approaches by CRISPR-Cas9 system were used to assess the role of CREPT in CDEs-induced field cancerization. RNA-seq was performed to explore the genes regulated by CREPT during field cancerization. Results: CDEs promote field cancerization by inducing the expression of CREPT in non-malignant epithelial cells through activating the ERK signaling pathway. Intriguingly, CDEs failed to induce field cancerization when CREPT was deleted, highlighting the importance of CREPT. Transcriptomic analyses revealed that CDEs elicited inflammatory responses, primarily through activation of the TNF signaling pathway. CREPT, in turn, regulates the transduction of downstream signals of TNF by modulating the expression of TNFR2 and PI3K, thereby promoting inflammation-to-cancer transition. Conclusion: CREPT not only serves as a biomarker for field cancerization, but also emerges as a target for preventing the cancer local recurrence.
Collapse
Affiliation(s)
- Yuting Lin
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Hanguo Jiang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Jun Li
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Ying Qiu
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Jianghua Li
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
| | - Mengdi Li
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Liu Yang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Yunhao Song
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Huihui Jia
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Wanli Zhai
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Yanshen Kuang
- Department of General Surgery, General Hospital of PLA, Beijing 100700, China
| | - Hanyang Yu
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Wenyuan Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai 200032, China
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Christian Ensinger
- Institute of Pathology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Charles David
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Hanqiu Zheng
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hongxia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, National Engineering Laboratory for Anti-tumor Therapeutics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, School of Life Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Wan S, Li KP, Wang CY, Yang JW, Chen SY, Wang HB, Li XR, Yang L. Immunologic Crosstalk of Endoplasmic Reticulum Stress Signaling in Bladder Cancer. Curr Cancer Drug Targets 2024; 24:701-719. [PMID: 38265406 DOI: 10.2174/0115680096272663231121100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 01/25/2024]
Abstract
Bladder cancer (BC) is a common malignant tumor of the urinary system. While current approaches involving adjuvant chemotherapy, radiotherapy, and immunotherapy have shown significant progress in BC treatment, challenges, such as recurrence and drug resistance, persist, especially in the case of muscle-invasive bladder cancer (MIBC). It is mainly due to the lack of pre-existing immune response cells in the tumor immune microenvironment. Micro-environmental changes (such as hypoxia and under-nutrition) can cause the aggregation of unfolded and misfolded proteins in the lumen, which induces endoplasmic reticulum (ER) stress. ER stress and its downstream signaling pathways are closely related to immunogenicity and tumor drug resistance. ER stress plays a pivotal role in a spectrum of processes within immune cells and the progression of BC cells, encompassing cell proliferation, autophagy, apoptosis, and resistance to therapies. Recent studies have increasingly recognized the potential of natural compounds to exhibit anti-BC properties through ER stress induction. Still, the efficacy of these natural compounds remains less than that of immune checkpoint inhibitors (ICIs). Currently, the ER stress-mediated immunogenic cell death (ICD) pathway is more encouraging, which can enhance ICI responses by mediating immune stemness. This article provides an overview of the recent developments in understanding how ER stress influences tumor immunity and its implications for BC. Targeting this pathway may soon emerge as a compelling therapeutic strategy for BC.
Collapse
Affiliation(s)
- Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Kun-Peng Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Chen-Yang Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou730000, PR China
| | - Jian-Wei Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
| | - Si-Yu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Hua-Bin Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Xiao-Ran Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, PR China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, PR China
| |
Collapse
|
14
|
Yang Y, Miao L, Lu Y, Sun Y, Wang S. Exosome, the glass slipper for Cinderella of cancer-bladder cancer? J Nanobiotechnology 2023; 21:368. [PMID: 37805491 PMCID: PMC10560442 DOI: 10.1186/s12951-023-02130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023] Open
Abstract
Exosomes are lipid bilayer vesicles with a diameter of 40-100 nm secreted by almost all cells. They have been found play crucial regulatory roles in various diseases. With the development of exosomes engineering technology, exosome-based drug delivery has also rapidly evolved. Bladder cancer is a worldwide disease with high morbidity and recurrence but lack of funding, so it is also called Cinderella. Some explorations have demonstrated that exosomes are important in the development, prognosis, diagnosis and drug delivery of bladder cancer. With the rapid development of Mass spectrometry and next-generation sequencing, increasing numbers of differentially expressed molecules derived from exosomes have been found in bladder cancer. Exosomes and their contents are largely involved in bladder cancer progression, engineering of these exosomes with the targeted genes improves their potential for drug delivery of bladder cancer. Furthermore, exosomes and their contents are relate to many characteristics of bladder cancer. Herein, we briefly search 59 researches to explore the cargoes encapsuled in exosomes of bladder cancer patients. We also summarize the biogenesis, function, expression profiles, engineering approaches and biological mechanisms of exosomes and their contents for the diagnosis, prognosis and drug delivery for bladder cancer. We aim to make it clear whether exosomes are the glass slippers of Cinderella.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Lintao Miao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Yuchao Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Yi Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| |
Collapse
|
15
|
Petrosyan E, Fares J, Fernandez LG, Yeeravalli R, Dmello C, Duffy JT, Zhang P, Lee-Chang C, Miska J, Ahmed AU, Sonabend AM, Balyasnikova IV, Heimberger AB, Lesniak MS. Endoplasmic Reticulum Stress in the Brain Tumor Immune Microenvironment. Mol Cancer Res 2023; 21:389-396. [PMID: 36652630 PMCID: PMC10159901 DOI: 10.1158/1541-7786.mcr-22-0920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Immunotherapy has emerged as a powerful strategy for halting cancer progression. However, primary malignancies affecting the brain have been exempt to this success. Indeed, brain tumors continue to portend severe morbidity and remain a globally lethal disease. Extensive efforts have been directed at understanding how tumor cells survive and propagate within the unique microenvironment of the central nervous system (CNS). Cancer genetic aberrations and metabolic abnormalities provoke a state of persistent endoplasmic reticulum (ER) stress that in turn promotes tumor growth, invasion, therapeutic resistance, and the dynamic reprogramming of the infiltrating immune cells. Consequently, targeting ER stress is a potential therapeutic approach. In this work, we provide an overview of how ER stress response is advantageous to brain tumor development, discuss the significance of ER stress in governing antitumor immunity, and put forth therapeutic strategies of regulating ER stress to augment the effect of immunotherapy for primary CNS tumors.
Collapse
Affiliation(s)
- Edgar Petrosyan
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Jawad Fares
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Luis G. Fernandez
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Ragini Yeeravalli
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Crismita Dmello
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Joseph T. Duffy
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Peng Zhang
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Catalina Lee-Chang
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Jason Miska
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Atique U. Ahmed
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Adam M. Sonabend
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Irina V. Balyasnikova
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Amy B. Heimberger
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Maciej S. Lesniak
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| |
Collapse
|
16
|
Xie S, He J, Feng B, Rao D, Wang S, He Y. A potential biological signature of 7-methylguanosine-related lncRNA to predict the immunotherapy effects in bladder cancer. Heliyon 2023; 9:e15897. [PMID: 37215925 PMCID: PMC10199227 DOI: 10.1016/j.heliyon.2023.e15897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Background Bladder urothelial carcinoma (BLCA) is the second prevalent genitourinary carcinoma globally. N7-methylguanosine (m7G) is important for tumorigenesis and progression. This study aimed to build a predictive model for m7G-related long non-coding RNAs (lncRNAs), elucidate their role in the tumor immune microenvironment (TIME), and predict immunotherapy response in BLCA. Methods We first used univariate Cox regression and coexpression analyses to identify m7G-related lncRNAs. Next, the prognostic model was built by utilizing LASSO regression analysis. Then, the prognostic significance of the model was examined utilizing Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curves, nomogram, and univariate, multivariate Cox regression. We also analyzed Gene set enrichment analyses (GSEA), immune analysis and principal component analysis (PCA) in risk groups. To further predict immunotherapy effectiveness, we evaluated the predictive ability for immunotherapy in 2 risk groups and clusters using tumor immune dysfunction and exclusion (TIDE) score and Immunophenoscore (IPS). Results Seven lncRNAs related to m7G were used to create a model. The calibration plots for the model suggested a strong fit with the prediction of overall survival (OS). The area under the curve (AUC) for first, second, and third years was respectively, 0.722, 0.711, and 0.686. In addition, the risk score had strong correlation with TIME features and genes linked to immune checkpoint blockade (ICB). TIDE scores were dramatically different between two risk groups (p < 0.05), and IPS scores were markedly different between two clusters (p < 0.05). Conclusion Our research constructed a novel m7G-related lncRNAs that could be used to predict patient outcomes and the effectiveness of immunotherapy in BLCA. Immunotherapy may be more effective for the low-risk group and cluster 2.
Collapse
Affiliation(s)
- Shangxun Xie
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, People's Republic of China
| | - Jibao He
- Department of Urology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province 210028, People's Republic of China
| | - Baofu Feng
- Nanjing Medical University, Nanjing, Jiangsu Province 210028, People's Republic of China
| | - Dapang Rao
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, People's Republic of China
| | - Shuaibin Wang
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, People's Republic of China
| | - Youhua He
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, People's Republic of China
| |
Collapse
|
17
|
Xie S, He J, Feng B, Rao D, Wang S, He Y. A potential biological signature of 7-methylguanosine-related lncRNA to predict the immunotherapy effects in bladder cancer. Heliyon 2023; 9:e15897. [PMID: 37215925 DOI: 10.1016/j.heliyon.2023.e15897.pmid:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 10/31/2024] Open
Abstract
BACKGROUND Bladder urothelial carcinoma (BLCA) is the second prevalent genitourinary carcinoma globally. N7-methylguanosine (m7G) is important for tumorigenesis and progression. This study aimed to build a predictive model for m7G-related long non-coding RNAs (lncRNAs), elucidate their role in the tumor immune microenvironment (TIME), and predict immunotherapy response in BLCA. METHODS We first used univariate Cox regression and coexpression analyses to identify m7G-related lncRNAs. Next, the prognostic model was built by utilizing LASSO regression analysis. Then, the prognostic significance of the model was examined utilizing Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curves, nomogram, and univariate, multivariate Cox regression. We also analyzed Gene set enrichment analyses (GSEA), immune analysis and principal component analysis (PCA) in risk groups. To further predict immunotherapy effectiveness, we evaluated the predictive ability for immunotherapy in 2 risk groups and clusters using tumor immune dysfunction and exclusion (TIDE) score and Immunophenoscore (IPS). RESULTS Seven lncRNAs related to m7G were used to create a model. The calibration plots for the model suggested a strong fit with the prediction of overall survival (OS). The area under the curve (AUC) for first, second, and third years was respectively, 0.722, 0.711, and 0.686. In addition, the risk score had strong correlation with TIME features and genes linked to immune checkpoint blockade (ICB). TIDE scores were dramatically different between two risk groups (p < 0.05), and IPS scores were markedly different between two clusters (p < 0.05). CONCLUSION Our research constructed a novel m7G-related lncRNAs that could be used to predict patient outcomes and the effectiveness of immunotherapy in BLCA. Immunotherapy may be more effective for the low-risk group and cluster 2.
Collapse
Affiliation(s)
- Shangxun Xie
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, People's Republic of China
| | - Jibao He
- Department of Urology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province 210028, People's Republic of China
| | - Baofu Feng
- Nanjing Medical University, Nanjing, Jiangsu Province 210028, People's Republic of China
| | - Dapang Rao
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, People's Republic of China
| | - Shuaibin Wang
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, People's Republic of China
| | - Youhua He
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, People's Republic of China
| |
Collapse
|
18
|
Groves AM, Paris N, Hernady E, Johnston CJ, Aljitawi O, Lee YF, Kerns SL, Marples B. Prevention of Radiation-Induced Bladder Injury: A Murine Study Using Captopril. Int J Radiat Oncol Biol Phys 2023; 115:972-982. [PMID: 36400304 DOI: 10.1016/j.ijrobp.2022.10.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE Pelvic radiation therapy (RT) can cause debilitating bladder toxicities but few clinical interventions exist to prevent injury or alleviate symptoms. From a large genome-wide association study in patients with prostate cancer it was previously reported that SNPs tagging AGT, part of the renin-angiotensin system (RAS), correlated with patient-reported late hematuria, identifying a potential targetable pathway to prevent RT-induced bladder injury. To investigate this association, we performed a preclinical study to determine whether RAS modulation protected the bladder against RT injury. METHODS AND MATERIALS C57BL/6 male mice were treated with an oral angiotensin converting enzyme inhibitor (ACEi: 0.3g/L captopril) 5 days before focal bladder X-irradiation with either single dose (SD) 30 Gy or 3 fractions of 8 Gy (8 Gy × 3 in 5 days). RT was delivered using XStrahl SARRP Muriplan CT-image guidance with parallel-opposed lateral beams. ACEi was maintained for 20 weeks post RT. Bladder toxicity was assessed using assays to identify local injury that included urinalysis, functional micturition, bladder-released exosomes, and histopathology, as well as an assessment of systemic changes in inflammatory-mediated circulating immune cells. RESULTS SD and fractionated RT increased urinary frequency and reduced the volume of individual voids at >14 weeks, but not at 4 weeks, compared with nonirradiated animals. Urothelial layer width was positively correlated with mean volume of individual voids (P = .0428) and negatively correlated with number of voids (P = .028), relating urothelial thinning to changes in RT-mediated bladder dysfunction. These chronic RT-induced changes in micturition patterns were prevented by captopril treatment. Focal bladder irradiation significantly increased the mean particle count of urine extracellular vesicles and the monocyte and neutrophil chemokines CCL2 and MIP-2, and the proportions of circulating inflammatory-mediated neutrophils and monocytes, which was also prevented by captopril. Exploratory transcriptomic analysis of bladder tissue implicated inflammatory and erythropoietic pathways. CONCLUSIONS This study demonstrated that systemic modulation of the RAS protected against and alleviated RT-induced late bladder injury but larger confirmatory studies are needed.
Collapse
Affiliation(s)
- Angela M Groves
- Departments of Radiation Oncology, University of Rochester, Rochester, New York
| | - Nicole Paris
- Departments of Radiation Oncology, University of Rochester, Rochester, New York
| | - Eric Hernady
- Departments of Radiation Oncology, University of Rochester, Rochester, New York
| | - Carl J Johnston
- Departments of Pediatrics, University of Rochester, Rochester, New York
| | - Omar Aljitawi
- Departments of Medicine, Hematology/Oncology, University of Rochester, Rochester, New York
| | - Yi-Fen Lee
- Departments of Urology, University of Rochester, Rochester, New York
| | - Sarah L Kerns
- Departments of Radiation Oncology, University of Rochester, Rochester, New York
| | - Brian Marples
- Departments of Radiation Oncology, University of Rochester, Rochester, New York.
| |
Collapse
|
19
|
Izadpanah A, Willingham K, Chandrasekar B, Alt EU, Izadpanah R. Unfolded protein response and angiogenesis in malignancies. Biochim Biophys Acta Rev Cancer 2023; 1878:188839. [PMID: 36414127 PMCID: PMC10167724 DOI: 10.1016/j.bbcan.2022.188839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
Abstract
Cellular stress, arising from accumulation of unfolded proteins, occurs frequently in rapidly proliferating cancer cells. This cellular stress, in turn, activates the unfolded protein response (UPR), an interconnected set of signal transduction pathways that alleviate the proteostatic stress. The UPR is implicated in cancer cell survival and proliferation through upregulation of pro-tumorigenic pathways that ultimately promote malignant metabolism and neoangiogenesis. Here, we reviewed mechanisms of signaling crosstalk between the UPR and angiogenesis pathways, as well as transmissible ER stress and the role in tumor growth and development. To characterize differences in UPR and UPR-mediated angiogenesis in malignancy, we employed a data mining approach using patient tumor data from The Cancer Genome Atlas (TCGA). The analysis of TCGA revealed differences in UPR between malignant samples versus their non-malignant counterparts.
Collapse
Affiliation(s)
- Amin Izadpanah
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA
| | - Kurtis Willingham
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bysani Chandrasekar
- Department of Medicine, University of Missouri School of Medicine and Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Eckhard U Alt
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Reza Izadpanah
- Applied Stem Cell Laboratory, Department of Medicine/Heart and Vascular Institute, Tulane University School of Medicine, New Orleans, LA, USA; Department of Surgery, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
20
|
Robado de Lope L, Sánchez‐Herrero E, Serna‐Blasco R, Provencio M, Romero A. Cancer as an infective disease: the role of EVs in tumorigenesis. Mol Oncol 2023; 17:390-406. [PMID: 36168102 PMCID: PMC9980310 DOI: 10.1002/1878-0261.13316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Abstract
Cancer is conventionally considered an evolutionary disease where tumor cells adapt to the environment and evolve eventually leading to the formation of metastasis through the seeding and growth of metastasis-initiating cells in distant organs. Tumor cell and tumor-stroma communication via soluble factors and extracellular vesicles (EVs) are essential for the success of the metastatic process. As the field of EVs advances, growing data support the role of tumor-derived EVs not only in modifying the microenvironment to facilitate tumor progression but also in inducing changes in cells outside the primary tumor that may lead to a malignant transformation. Thus, an alternative hypothesis has emerged suggesting the conceptualization of cancer as an 'infective' disease. Still, tackling EVs as a possible cancer treatment has not been widely explored. A major understanding is needed to unveil possible additional contributions of EVs in progression and metastasis, which may be essential for the development of novel approaches to treat cancer patients. Here, we review the contribution of EVs to cancer progression and the possible implication of these factors in the oncogenic transformation of indolent cells.
Collapse
Affiliation(s)
- Lucia Robado de Lope
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
| | - Estela Sánchez‐Herrero
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Atrys HealthBarcelonaSpain
| | - Roberto Serna‐Blasco
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
| | - Mariano Provencio
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| | - Atocha Romero
- Liquid Biopsy LaboratoryBiomedical Sciences Research Institute Puerta de Hierro‐MajadahondaSpain
- Medical Oncology DepartmentHospital Universitario Puerta de Hierro‐MajadahondaSpain
| |
Collapse
|
21
|
Abstract
Skeletal muscle plays a paramount role in physical activity, metabolism, and energy balance, while its homeostasis is being challenged by multiple unfavorable factors such as injury, aging, or obesity. Exosomes, a subset of extracellular vesicles, are now recognized as essential mediators of intercellular communication, holding great clinical potential in the treatment of skeletal muscle diseases. Herein, we outline the recent research progress in exosomal isolation, characterization, and mechanism of action, and emphatically discuss current advances in exosomes derived from multiple organs and tissues, and engineered exosomes regarding the regulation of physiological and pathological development of skeletal muscle. These remarkable advances expand our understanding of myogenesis and muscle diseases. Meanwhile, the engineered exosome, as an endogenous nanocarrier combined with advanced design methodologies of biomolecules, will help to open up innovative therapeutic perspectives for the treatment of muscle diseases.
Collapse
|
22
|
Molony RD, Wu CH, Lee YF. E-liquid exposure induces bladder cancer cells to release extracellular vesicles that promote non-malignant urothelial cell transformation. Sci Rep 2023; 13:142. [PMID: 36599909 PMCID: PMC9813241 DOI: 10.1038/s41598-022-27165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
The vaping of electronic cigarettes (E-cigarettes) has recently emerged as a popular alternative to traditional cigarette smoking, but its association with bladder cancer (BC) risk remains to be established. BC patients exhibit high rates of recurrent disease, possibly as a consequence of the field cancerization effect. We have shown that BC-derived extracellular vesicles (BCEVs) can permanently alter recipient urothelial cells in predisposed fields such that they become fully transformed malignant cells. To model the role that BCEVs may play in this potentially oncogenic setting, we treated TCCSUP BC cells with cigarette smoke extract, unflavored E-liquid, or menthol flavored E-liquid. Those treated BCEVs were then tested for their tumorigenic potential. We found that these smoking- and E-cigarette-related BCEVs were able to promote oxidative stress, inflammatory signaling, and DNA damage in recipient SV-HUC urothelial cells. Strikingly, menthol E-liquid-induced BCEVs significantly increased rates of malignant urothelial cell transformation. While further in vivo validation of the simultaneous effects of E-liquid and E-liquid-induced BCEVs on field cancerization is needed, these data highlight the possibility that E-cigarettes may compound user risk in a manner that can contribute to higher rates of BC incidence or recurrence.
Collapse
Affiliation(s)
- Ryan D. Molony
- grid.16416.340000 0004 1936 9174Department of Urology, School of Medicine and Dentistry, University of Rochester Medical Center, University of Rochester, 601 Elmwood Ave, Box 656, Rochester, NY 14642 USA
| | - Chia-Hao Wu
- grid.16416.340000 0004 1936 9174Department of Urology, School of Medicine and Dentistry, University of Rochester Medical Center, University of Rochester, 601 Elmwood Ave, Box 656, Rochester, NY 14642 USA
| | - Yi-Fen Lee
- grid.16416.340000 0004 1936 9174Department of Urology, School of Medicine and Dentistry, University of Rochester Medical Center, University of Rochester, 601 Elmwood Ave, Box 656, Rochester, NY 14642 USA ,grid.16416.340000 0004 1936 9174Wilmot Cancer Center, University of Rochester, Rochester, USA ,grid.16416.340000 0004 1936 9174Department of Pathology, University of Rochester, Rochester, USA
| |
Collapse
|
23
|
Xin T, Sun Y, Meng H, Zhang N, Peng B, Yang X, Hu J, Cao M. Identification of endoplasmic reticulum stress-related lncRNAs in lung adenocarcinoma by bioinformatics and experimental validation. Ann Med 2023; 55:2251500. [PMID: 37643369 PMCID: PMC10467521 DOI: 10.1080/07853890.2023.2251500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Endoplasmic reticulum stress (ERs) is an important cellular self-defence mechanism, which is closely related to tumorigenesis and development. However, the role of endoplasmic reticulum stress state in the development of lung adenocarcinoma (LUAD) has not been clarified. METHODS The lncRNAs associated with endoplasmic reticulum stress were identified by co-expression analysis in public databases, and by the least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression modelling, we constructed a prognostic model based on endoplasmic reticulum stress-related lncRNAs (ERs-related lncRNAs), performed immune analysis, TME, TMB and clinical drug prediction for model-related risk scores, and performed correlation validation in public databases and at the human tissue level. RESULTS Five ERs-related lncRNAs were used to construct an ERs-related lncRNA signature (ERs-related LncSig), which can predict the prognosis of LUAD. Patients in the high-risk group had worse survival, and differences existed in immune cell infiltration, immune function, immune checkpoint analysis, tumour microenvironment (TME), tumour mutational burden (TMB), immunotherapy efficacy, and sensitivity to some commonly used chemotherapeutic agents between high and low risk groups. CONCLUSION Our study demonstrated that ERs-related lncRNA signature can be used for the prognostic evaluation of LUAD patients and may provide new insights into clinical decision-making and personalised medicine for LUAD.
Collapse
Affiliation(s)
- Tong Xin
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yue Sun
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ningzhi Zhang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bo Peng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinxin Yang
- Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jing Hu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mengru Cao
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
24
|
Applications of Exosomes in Diagnosing Muscle Invasive Bladder Cancer. Pharmaceutics 2022; 14:pharmaceutics14102027. [PMID: 36297462 PMCID: PMC9607910 DOI: 10.3390/pharmaceutics14102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Muscle Invasive Bladder Cancer (MIBC) is a subset of bladder cancer with a significant risk for metastases and death. It accounts for nearly 25% of bladder cancer diagnoses. A diagnostic work-up for MIBC is inclusive of urologic evaluation, radiographic imaging with a CT scan, urinalysis, and cystoscopy. These evaluations, especially cystoscopy, are invasive and carry the risk of secondary health concerns. Non-invasive diagnostics such as urine cytology are an attractive alternative currently being investigated to mitigate the requirement for cystoscopy. A pitfall in urine cytology is the lack of available options with high reliability, specificity, and sensitivity to malignant bladder cells. Exosomes are a novel biomarker source which could resolve some of the concerns with urine cytology, due to the high specificity as the surrogates of tumor cells. This review serves to define muscle invasive bladder cancer, current urine cytology methods, the role of exosomes in MIBC, and exosomes application as a diagnostic tool in MIBC. Urinary exosomes as the specific populations of extracellular vesicles could provide additional biomarkers with specificity and sensitivity to bladder malignancies, which are a consistent source of cellular information to direct clinicians for developing treatment strategies. Given its strong presence and differentiation ability between normal and cancerous cells, exosome-based urine cytology is highly promising in providing a perspective of a patient’s bladder cancer.
Collapse
|
25
|
Lee N, Canagasingham A, Bajaj M, Shanmugasundaram R, Hutton A, Bucci J, Graham P, Thompson J, Ni J. Urine exosomes as biomarkers in bladder cancer diagnosis and prognosis: From functional roles to clinical significance. Front Oncol 2022; 12:1019391. [PMID: 36203422 PMCID: PMC9530625 DOI: 10.3389/fonc.2022.1019391] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Bladder cancer is one of the top ten most common cancers and top ten causes of cancer death globally. 5-year survival rates have decreased in Australia from 66% to 55% in the past three decades. The current gold standard for diagnosis is cystoscopy. However, cystoscopies are an invasive and health-resource intensive procedure which has sub-optimal sensitivity for flat lesions such as CIS (carcinoma in situ) and low specificity for differentiating inflammation from cancer - hence requiring biopsies under anesthesia. Frequent and life-long surveillance cystoscopy is required for most patients since there are high rates of progression and local recurrence in high-risk non-muscle invasive cancer (NMIBC) as well as poor outcomes associated with delayed detection of muscle-invasive bladder cancer (MIBC). There is an unmet need for a non-invasive test to provide better discrimination and risk-stratification of bladder cancer which could aid clinicians by improving patient selection for cystoscopy; enhanced risk stratification methods may guide the frequency of surveillance cystoscopies and inform treatment choices. Exosomes, which are nano-sized extracellular vesicles containing genetic material and proteins, have been shown to have functional roles in the development and progression of bladder cancer. Exosomes have also been demonstrated to be a robust source of potential biomarkers for bladder cancer diagnosis and prognosis and may also have roles as therapeutic agents. In this review, we summarize the latest evidence of biological roles of exosomes in bladder cancer and highlight their clinical significance in bladder cancer diagnosis, surveillance and treatment.
Collapse
Affiliation(s)
- Nicholas Lee
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | | | - Mohit Bajaj
- Department of Urology, St George Hospital, Kogarah, NSW, Australia
| | | | - Anthony Hutton
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Department of Urology, St George Hospital, Kogarah, NSW, Australia
| | - Joseph Bucci
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
| | - Peter Graham
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
| | - James Thompson
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Department of Urology, St George Hospital, Kogarah, NSW, Australia
- *Correspondence: James Thompson, ; Jie Ni,
| | - Jie Ni
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, Faculty of Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
- *Correspondence: James Thompson, ; Jie Ni,
| |
Collapse
|
26
|
Wang Y, Zhu H, Wang X. Prognosis and immune infiltration analysis of endoplasmic reticulum stress-related genes in bladder urothelial carcinoma. Front Genet 2022; 13:965100. [PMID: 36186448 PMCID: PMC9520708 DOI: 10.3389/fgene.2022.965100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/29/2022] [Indexed: 11/14/2022] Open
Abstract
Background: Abnormal activation of endoplasmic reticulum (ER) stress sensors and their downstream signalling pathways is a key regulator of tumour growth, tumour metastasis and the response to chemotherapy, targeted therapy and immunotherapy. However, the study of ER stress on the immune microenvironment of bladder urothelial carcinoma (BLCA) is still insufficient. Methods: Firstly, 23 ER stress genes were selected to analyse their expression differences and prognostic value in BLCA based on the existing BLCA genome atlas data. According to the expression level of ER stress-related genes in BLCA, two independent clusters were identified using consensus cluster analysis. Subsequently, the correlation between these two clusters in terms of the immune microenvironment and their prognostic value was analysed. Finally, we analysed the prognostic value of the key ER stress gene HSP90B1 in BLCA and its corresponding mechanism that affects the immune microenvironment. Results: Consensus clustering showed a worse prognosis and higher expression of immunoassay site-related genes (HAVCR2, PDCD1, CTLA4, CD274, LAG3, TIGIT and PDCD1LG2) in cluster 1 compared with cluster 2. Additionally, both TIMER and CIBERSORT algorithms showed that the expression of immune infiltrating cells in cluster 1 was significantly higher than that in cluster 2. Subsequently, HSP90B1 was identified as a key ER stress gene in BLCA, and its high expression indicated poor prognosis and was closely related to PD1. We also analysed the correlation between HSP90B1 expression and immune-infiltrating cell related biomarkers, which showed positive results. Finally, we verified the prognostic value of HSP90B1 in BLCA using an immunohistochemical assay in a tissue microarray of 100 patients with BLCA, validating the potential of HSP90B1 as a prognostic biomarker in patients with BLCA. Conclusion: Our work reveals that ER stress genes play a crucial role in the BLCA immunological milieu, and HSP90B1 is a potential prognostic biomarker and therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yaxuan Wang
- Department of Medical School, Nantong University, Nantong, China
| | - Haixia Zhu
- Department of Central Laboratory, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Xiaolin Wang
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, Nantong, China
- *Correspondence: Xiaolin Wang,
| |
Collapse
|
27
|
Zhang M, Jin X, Gao M, Zhang Y, Tang BZ. A Self-Reporting Fluorescent Salicylaldehyde-Chlorambucil Conjugate as a Type-II ICD Inducer for Cancer Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205701. [PMID: 35863361 DOI: 10.1002/adma.202205701] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Immunogenic cell death (ICD) can activate the anticancer immune response and is highly attractive to improve cancer treatment efficacy. ICD is closely related to endoplasmic reticulum (ER) stress, and a series of ICD inducers has recently been reported based on ER-targeted photodynamic/photothermal agents or metal complexes. However, these ER-targeted ICD inducers suffer from complicated synthesis and heavy-metal cytotoxicity. Inspired by the promising clinical potential of small organic molecules, herein, an ER-targeted fluorescent self-reporting ICD inducer, SA-Cbl, is developed by simple conjugation of the chemotherapeutic drug chlorambucil (Cbl) with salicylaldehyde (SA). SA-Cbl can selectively accumulate in the ER to induce rapid ROS generation and an unfolded protein response process, which leads to a fast release of damage-associated molecular patterns and efficient dendritic cells maturation. Meanwhile, the ER-targeted accumulation and ER-stress-inducing process can be in situ monitored based on the turn-on fluorescence of SA-Cbl, which is highly pH- and polarity-sensitive and can selectively interact with ER proteins. Compared with the traditional chemotherapy drug doxorubicin, the superior anticancer immunity effect of SA-Cbl is verified via an in vivo tumor model. This study thus provides a new strategy for developing fluorescent self-reporting ICD inducers by decoration of chemotherapeutic drugs with pH and polarity-sensitive organic fluorophores.
Collapse
Affiliation(s)
- Minjie Zhang
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Medicine, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Xin Jin
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Medicine, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Medicine, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yunjiao Zhang
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, School of Medicine, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
28
|
Pei L, Zhu Q, Zhuang X, Ruan H, Zhao Z, Qin H, Lin Q. Identification of leucine-rich repeat-containing protein 59 (LRRC59) located in the endoplasmic reticulum as a novel prognostic factor for urothelial carcinoma. Transl Oncol 2022; 23:101474. [PMID: 35816851 PMCID: PMC9287365 DOI: 10.1016/j.tranon.2022.101474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Urothelial carcinoma (UC) is one of the most common cancers worldwide. The biological heterogeneity of UCs causes considerable difficulties in predicting treatment outcomes and usually leads to clinical mismanagement. The identification of more sensitive and efficient predictive biomarkers is important in the diagnosis and classification of UCs. Herein, we report leucine-rich repeat-containing protein 59 (LRRC59) located in the endoplasmic reticulum as a novel predictive factor and potential therapeutic target for UCs. METHODS Using whole-slide image analysis in our cohort of 107 UC samples, we performed immunohistochemistry to evaluate the prognostic value of LRRC59 expression in UCs. In vitro experiments using RNAi were conducted to explore the role of LRRC59 in promoting UC cell proliferation and migration. RESULTS A significant correlation between LRRC59 and unfavorable prognosis of UCs in our cohort was demonstrated. Subsequent clinical analysis also revealed that elevated expression levels of LRRC59 were significantly associated with higher pathological grades and advanced stages of UC. Subsequently, knockdown of LRRC59 in UM-UC-3 and T24 cells using small interfering RNA significantly inhibited cell proliferation and migration, resulting in cell cycle arrest at the G1 phase. Conversely, the overexpression of LRRC59 in UC cells enhanced cell proliferation and migration. An integrated bioinformatics analysis revealed a significant functional network of LRRC59 involving protein misfolding, ER stress, and ubiquitination. Finally, in vitro experiments demonstrated that LRRC59 modulates ER stress signaling. CONCLUSIONS LRRC59 expression was significantly correlated with UC prognosis. LRRC59 might not only serve as a novel prognostic biomarker for risk stratification of patients with UC but also exhibit as a potential therapeutic target in UC that warrants further investigation.
Collapse
Affiliation(s)
- Lu Pei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qingfeng Zhu
- Department of Urology, Lishui Municipal Central Hospital, Lishui, China
| | - Xiaoping Zhuang
- Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Honglian Ruan
- School of Public Health, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong 511436, China
| | - Zhiguang Zhao
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou 325027, China
| | - Haide Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Qiongqiong Lin
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou 325027, China.
| |
Collapse
|
29
|
Ye J, Liu X. Interactions between endoplasmic reticulum stress and extracellular vesicles in multiple diseases. Front Immunol 2022; 13:955419. [PMID: 36032078 PMCID: PMC9402983 DOI: 10.3389/fimmu.2022.955419] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Immune responses can severely perturb endoplasmic reticulum (ER) function. As a protein-folding factory and dynamic calcium storage compartment, the ER plays a pivotal role in resisting pathogens and in the development of autoimmune diseases and various other diseases, including cancer, cardiovascular, neurological, orthopedic, and liver-related diseases, metabolic disorders, etc. In recent years, an increasing number of studies have shown that extracellular vesicles (EVs) play important roles in these conditions, suggesting that cells carry out some physiological functions through EVs. The formation of EVs is dependent on the ER. ER stress, as a state of protein imbalance, is both a cause and consequence of disease. ER stress promotes the transmission of pathological messages to EVs, which are delivered to target cells and lead to disease development. Moreover, EVs can transmit pathological messages to healthy cells, causing ER stress. This paper reviews the biological functions of EVs in disease, as well as the mechanisms underlying interactions between ER stress and EVs in multiple diseases. In addition, the prospects of these interactions for disease treatment are described.
Collapse
Affiliation(s)
- Jingyao Ye
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuehong Liu
- The Third School of Clinical Medicine of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Xuehong Liu,
| |
Collapse
|
30
|
Bogush TA, Basharina AA, Safarov ZM, Mizaeva IE, Grishanina AN, Bogush EA, Gridneva YV, Volkova MI, Matveev VB, Kosorukov VS. Molecular Diagnostics of the Involvement of Visually Normal Mucosa in the Malignancy Process in Urothelial Bladder Cancer. Mol Biol 2022. [DOI: 10.1134/s0026893322040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Lin Q, Pei L, Zhao Z, Zhuang X, Qin H. Glycoprotein α-Subunit of Glucosidase II (GIIα) is a novel prognostic biomarker correlated with unfavorable outcome of urothelial carcinoma. BMC Cancer 2022; 22:817. [PMID: 35879690 PMCID: PMC9316353 DOI: 10.1186/s12885-022-09884-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background Urothelial carcinoma (UC) is among the most prevalent malignancies. The muscle-invasive bladder cancer (MIBC) shows an invasive feature and has poor prognosis, while the non-muscle invasive bladder cancer (NMIBC) shows a better prognosis as compared with the MIBC. However, a significant proportion (10%–30%) of NMIBC cases progress to MIBC. Identification of efficient biomarkers for the prediction of the course of UC remains challenging nowadays. Recently, there is an emerging study showed that post-translational modifications (PTMs) by glycosylation is an important process correlated with tumor angiogenesis, invasion and metastasis. Herein, we reported a data-driven discovery and experimental validation of GANAB, a key regulator of glycosylation, as a novel prognostic marker in UC. Methods In the present study, we conducted immunohistochemistry (IHC) assay to evaluate the correlation between the expression levels of GANAB protein and the prognosis of UC in our cohort of 107 samples using whole slide image (WSI) analysis. In vitro experiments using RNAi were also conducted to investigate the biological functions of GANAB in UC cell lines. Results We observed that positive GANAB protein expression was significantly correlated with poor prognosis of UC in our cohort, with p-value of 0.0017 in Log-rank test. Notably, tumor cells at the invasive front of the tumor margin showed stronger GANAB expression than the tumor cells inside the tumor body in UCs. We further validated that the elevated expression levels of GANAB were significantly correlated with high grade tumors (p-values of 1.72 × 10–10), advanced stages (6.47 × 10–6), and elevated in luminal molecular subtypes. Moreover, knocking-down GANAB using RNAi in UM-UC-3 and T24 cells inhibited cell proliferation and migration in vitro. Knockdown of GANAB resulted in cell cycle arrest at G1 phase. We demonstrated that GANAB mediated HIF1A and ATF6 transcriptional activation in the ER stress signaling, and regulated the gene expression of cell cycle-related transcriptional factors E2F7 and FOXM1. Conclusions The elevated expression of GANAB is a novel indicator of poorer prognosis of UC. Our data suggests that GANAB is not only a new and promising prognostic biomarker for UC, but also may provide important cues for the development of PTM-based therapeutics for UC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09884-8.
Collapse
Affiliation(s)
- Qiongqiong Lin
- Department of Pathology, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Pei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Zhiguang Zhao
- Department of Pathology, the Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoping Zhuang
- Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Haide Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China. .,Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
32
|
Chulpanova DS, Pukhalskaia TV, Rizvanov AA, Solovyeva VV. Contribution of Tumor-Derived Extracellular Vesicles to Malignant Transformation of Normal Cells. Bioengineering (Basel) 2022; 9:bioengineering9060245. [PMID: 35735488 PMCID: PMC9220176 DOI: 10.3390/bioengineering9060245] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor-cell-derived extracellular vesicles (EVs) are known to carry biologically active molecules of parental cells, which can actively modulate the tumor microenvironment. EVs produced by tumor cells play significant roles in the development and maintenance of tumor growth, metastasis, immune escape, and other important processes. However, the ability of EVs to induce the transformation of normal cells has hardly been investigated. This review discusses studies that describe the ability of tumor-cell-derived EVs to alter the metabolism and morphology of normal cells, causing changes associated with malignant transformation. Additionally, the horizontal transfer of oncogenes through EVs of tumor cells and the induction of epigenetic changes in normal cells, which leads to genomic instability and subsequent oncogenic transformation of normal cells, are also discussed.
Collapse
|
33
|
Isali I, McClellan P, Calaway A, Prunty M, Abbosh P, Mishra K, Ponsky L, Markt S, Psutka SP, Bukavina L. Gene network profiling in muscle-invasive bladder cancer: A systematic review and meta-analysis. Urol Oncol 2022; 40:197.e11-197.e23. [PMID: 35039218 PMCID: PMC10123538 DOI: 10.1016/j.urolonc.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/17/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Determining meta-analysis of transcriptional profiling of muscle-invasive bladder cancer (MIBC) through Gene Expression Omnibus (GEO) datasets has not been investigated. This study aims to define gene expression profiles in MIBC and to identify potential candidate genes and pathways. OBJECTIVES To review and evaluate gene expression studies in MIBC through publicly available RNA sequencing (RNA-Seq) and microarray data in order to identify potential prognostic and therapeutic targets for MIBC. METHODS A systematic literature search of the Ovid MEDLINE, PubMed, and Wiley Cochrane Central Register of Controlled Trials databases was performed using the terms "gene," "gene expression," and "bladder cancer" January 1, 1990 through March 2021 focused on populations with MIBC. RESULTS In the final analysis, GEO datasets were included. Fixed effect model was employed in the meta-analysis. Gene networking connections and gene-set functional analyses of the identified genes as differentially expressed in MIBC were performed using ImaGEO and GeneMANIA software. A heatmap for the upregulated and downregulated genes was generated along with the correlated pathways. CONCLUSION A total of 9 genes were reported in this analysis. Six genes were reported as upregulated (ProTα, SPINT1, UBE2E1, RAB25, KPNB1, HDAC1) and 3 genes as downregulated (NUP188, IPO13, NUP124). Genes were found to be involved in "ubiquitin mediated proteolysis," "protein processing in endoplasmic reticulum," "transcriptional misregulation in cancer," and "RNA transport" pathways.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH
| | - Phillip McClellan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH
| | - Adam Calaway
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH; Case Comprehensive Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH
| | - Megan Prunty
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH
| | - Phillip Abbosh
- Department of Urology, Fox Chase Cancer Center, Philadelphia, PA
| | - Kirtishri Mishra
- Department of Urology, Fox Chase Cancer Center, Philadelphia, PA
| | - Lee Ponsky
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH; Case Comprehensive Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH
| | - Sarah Markt
- Department of Population and Quantitative Health Science, Case Western Reserve School of Medicine, Cleveland, OH
| | - Sarah P Psutka
- Department of Urology, University of Washington School of Medicine, Seattle, WA
| | - Laura Bukavina
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH; Case Comprehensive Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH.
| |
Collapse
|
34
|
Extracellular Vesicle-Mediated Mitochondrial Reprogramming in Cancer. Cancers (Basel) 2022; 14:cancers14081865. [PMID: 35454774 PMCID: PMC9032679 DOI: 10.3390/cancers14081865] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Mitochondria are important organelles involved in several key cellular processes including energy production and cell death regulation. For this reason, it is unsurprising that mitochondrial function and structure are altered in several pathological states including cancer. Cancer cells present variate strategies to generate sufficient energy to sustain their high proliferation rates. These adaptative strategies can be mediated by extracellular signals such as extracellular vesicles. These vesicles can alter recipient cellular behavior by delivering their molecular cargo. This review explores the different EV-mediated mitochondrial reprogramming mechanisms supporting cancer survival and progression. Abstract Altered metabolism is a defining hallmark of cancer. Metabolic adaptations are often linked to a reprogramming of the mitochondria due to the importance of these organelles in energy production and biosynthesis. Cancer cells present heterogeneous metabolic phenotypes that can be modulated by signals originating from the tumor microenvironment. Extracellular vesicles (EVs) are recognized as key players in intercellular communications and mediate many of the hallmarks of cancer via the delivery of their diverse biological cargo molecules. Firstly, this review introduces the most characteristic changes that the EV-biogenesis machinery and mitochondria undergo in the context of cancer. Then, it focuses on the EV-driven processes which alter mitochondrial structure, composition, and function to provide a survival advantage to cancer cells in the context of the hallmarks of cancers, such as altered metabolic strategies, migration and invasiveness, immune surveillance escape, and evasion of apoptosis. Finally, it explores the as yet untapped potential of targeting mitochondria using EVs as delivery vectors as a promising cancer therapeutic strategy.
Collapse
|
35
|
Yan C, Yu J. Noncoding RNA in Extracellular Vesicles Regulate Differentiation of Mesenchymal Stem Cells. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2021.806001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To achieve the desired outcome in tissue engineering regeneration, mesenchymal stem cells need to undergo a series of biological processes, including differentiating into the ideal target cells. The extracellular vesicle (EV) in the microenvironment contributes toward determining the fate of the cells with epigenetic regulation, particularly from noncoding RNA (ncRNA), and exerts transportation and protective effects on ncRNAs. We focused on the components and functions of ncRNA (particularly microRNA) in the EVs. The EVs modified by the ncRNA favor tissue regeneration and pose a potential challenge.
Collapse
|
36
|
Ortiz-Bonilla CJ, Uccello TP, Gerber SA, Lord EM, Messing EM, Lee YF. Bladder Cancer Extracellular Vesicles Elicit a CD8 T Cell-Mediated Antitumor Immunity. Int J Mol Sci 2022; 23:ijms23062904. [PMID: 35328324 PMCID: PMC8949613 DOI: 10.3390/ijms23062904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 11/25/2022] Open
Abstract
Tumor-derived extracellular vesicles (TEVs) play crucial roles in mediating immune responses, as they carry and present functional MHC-peptide complexes that enable them to modulate antigen-specific CD8+ T-cell responses. However, the therapeutic potential and immunogenicity of TEV-based therapies against bladder cancer (BC) have not yet been tested. Here, we demonstrated that priming with immunogenic Extracellular Vesicles (EVs) derived from murine MB49 BC cells was sufficient to prevent MB49 tumor growth in mice. Importantly, antibody-mediated CD8+ T-cell depletion diminished the protective effect of MB49 EVs, suggesting that MB49 EVs elicit cytotoxic CD8+ T-cell-mediated protection against MB49 tumor growth. Such antitumor activity may be augmented by TEV-enhanced immune cell infiltration into the tumors. Interestingly, MB49 EV priming was unable to completely prevent, but significantly delayed, unrelated syngeneic murine colon MC-38 tumor growth. Cytokine array analyses revealed that MB49 EVs were enriched with pro-inflammatory factors that might contribute to increasing tumor-infiltrating immune cells in EV-primed MC-38 tumors. These results support the potential application of TEVs in personalized medicine, and open new avenues for the development of adjuvant therapies based on patient-derived EVs aimed at preventing disease progression.
Collapse
Affiliation(s)
- Carlos J. Ortiz-Bonilla
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Taylor P. Uccello
- Department of Immunology, Microbiology and Virology, University of Rochester Medical Center, Rochester, NY 14642, USA; (T.P.U.); (S.A.G.); (E.M.L.)
| | - Scott A. Gerber
- Department of Immunology, Microbiology and Virology, University of Rochester Medical Center, Rochester, NY 14642, USA; (T.P.U.); (S.A.G.); (E.M.L.)
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Edith M. Lord
- Department of Immunology, Microbiology and Virology, University of Rochester Medical Center, Rochester, NY 14642, USA; (T.P.U.); (S.A.G.); (E.M.L.)
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Edward M. Messing
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yi-Fen Lee
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
- Correspondence: ; Tel.: +1-(585)-275-9702
| |
Collapse
|
37
|
Wang Z, Wu L, Wang H, Zhang Y, Xiao H. Agonist-induced extracellular vesicles contribute to the transfer of functional bombesin receptor-subtype 3 to recipient cells. Cell Mol Life Sci 2022; 79:72. [PMID: 35032194 PMCID: PMC11072852 DOI: 10.1007/s00018-021-04114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/03/2022]
Abstract
Extracellular vesicles (EVs) are important carriers for biomolecules in the microenvironment that greatly promote intercellular and extracellular communications. However, it is unclear whether bombesin receptor-subtype 3 (BRS-3), an orphan G-protein coupled receptor, can be packed into EVs and functionally transferred to recipient cells. In this study, we applied the synthetic agonist and antagonist to activate and inhibit the BRS-3 in HEK293-BRS-3 cells, whose EVs release was BRS-3 activation dependent. The presence of BRS-3 in harvested EVs was further confirmed by an enhanced green fluorescent protein tag. After recipient cells were co-cultured with these EVs, the presence of BRS-3 in the recipient cells was discovered, whose function was experimentally validated. Quantitative proteomics approach was utilized to decipher the proteome of the EVs derived from HEK293-BRS-3 cells after different stimulations. More than 900 proteins were identified, including 51 systematically dysregulated EVs proteins. The Ingenuity Pathway Analysis (IPA) revealed that RhoA signaling pathway was as an essential player for the secretion of EVs. Selective inhibition of RhoA signaling pathway after BRS-3 activation dramatically reversed the increased secretion of EVs. Our data, collectively, demonstrated that EVs contributed to the transfer of functional BRS-3 to the recipient cells, whose secretion was partially regulated by RhoA signaling pathway.
Collapse
Affiliation(s)
- Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lehao Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huiyu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
38
|
Anti-Cancer Role and Therapeutic Potential of Extracellular Vesicles. Cancers (Basel) 2021; 13:cancers13246303. [PMID: 34944923 PMCID: PMC8699603 DOI: 10.3390/cancers13246303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-cell communication is an important mechanism in biological processes. Extracellular vesicles (EVs), also referred to as exosomes, microvesicles, and prostasomes, are microvesicles secreted by a variety of cells. EVs are nanometer-scale vesicles composed of a lipid bilayer and contain biological functional molecules, such as microRNAs (miRNAs), mRNAs, and proteins. In this review, "EVs" is used as a comprehensive term for vesicles that are secreted from cells. EV research has been developing over the last four decades. Many studies have suggested that EVs play a crucial role in cell-cell communication. Importantly, EVs contribute to cancer malignancy mechanisms such as carcinogenesis, proliferation, angiogenesis, metastasis, and escape from the immune system. EVs derived from cancer cells and their microenvironments are diverse, change in nature depending on the condition. As EVs are thought to be secreted into body fluids, they have the potential to serve as diagnostic markers for liquid biopsy. In addition, cells can encapsulate functional molecules in EVs. Hence, the characteristics of EVs make them suitable for use in drug delivery systems and novel cancer treatments. In this review, the potential of EVs as anti-cancer therapeutics is discussed.
Collapse
|
39
|
Yan X, Chen M, Xiao C, Fu J, Sun X, Hu Z, Zhou H. Effect of unfolded protein response on the immune infiltration and prognosis of transitional cell bladder cancer. Ann Med 2021; 53:1048-1058. [PMID: 34187252 PMCID: PMC8253203 DOI: 10.1080/07853890.2021.1918346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Bladder cancer (BC) is one of the most common human malignancies worldwide. Previous researches have shown that the unfolded protein response (UPR) pathway could contribute to the tumorigenesis of BC. However, the role of UPR in the immune infiltration, progression, and prognosis of BC is unclear.Methods: The GSVA and ssGSEA methods were used for assessing the UPR score and immune cells infiltration score in three BC public datasets, respectively. The relationship between the UPR pathway and clinicopathological characteristics was analyzed by the Kruskal-Wallis, Wilcox test, and log-rank test. The association of the UPR pathway with various tumor-infiltrating immune cells was evaluated with the correlation analysis. Univariate Cox regression analysis was performed to identify risk factors significantly associated with prognosis. The predictive models were built based on risk factors and visualized with nomograms. The performance of our models was evaluated with the calibration curve, Harrell's concordance index (c-index), and receiver operating characteristic (ROC) analysis.Results: We found that the UPR pathway and many UPR-related genes were significantly associated with the pathologic grade, tumor type, and invasive progression of transitional cell bladder cancer (TCBC), and a high UPR score predicted a poor prognosis in patients. The UPR score was positively correlated with the infiltration abundance of many tumor immune cells in TCBC. Besides, we constructed predictive models based on the UPR score, and good performance was observed, with c-indexes ranging from 0.74 to 0.87.Conclusions: Our study proved that the UPR pathway may have an important impact on the progression, prognosis, and tumor immune infiltration in TCBC, and the models we built may provide effective and reliable guides for prognosis assessment and treatment decision-making for TCBC patients.
Collapse
Affiliation(s)
- Xiaokai Yan
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Min Chen
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chiying Xiao
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiandong Fu
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xia Sun
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zuohuai Hu
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hang Zhou
- Department of Oncology, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
40
|
Chung WM, Molony RD, Lee YF. Non-stem bladder cancer cell-derived extracellular vesicles promote cancer stem cell survival in response to chemotherapy. Stem Cell Res Ther 2021; 12:533. [PMID: 34627375 PMCID: PMC8502272 DOI: 10.1186/s13287-021-02600-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chemosenstive non-stem cancer cells (NSCCs) constitute the bulk of tumors and are considered as part of the cancer stem cell (CSC) niche in the tumor microenvironment (TME). Tumor-derived extracellular vesicles (EVs) mediate the communication between tumors and the TME. In this study, we sought to investigate the impacts of EVs released by NSCCs on the maintenance of CSC properties and chemoresistance. METHODS We employed murine MB49 bladder cancer (BC) sub-lines representing CSCs and NSCCs as a model system. Chemotherapy drugs were used to treat NSCCs in order to collect conditioned EVs. The impacts of NSCC-derived EVs on CSC progression were evaluated through sphere formation, cytotoxicity, migration, and invasion assays, and by analyzing surface marker expression on these BC cells. Differential proteomic analyses were conducted to identify cargo protein candidates involved in the EV-mediated communication between NSCCs and CSCs. RESULTS NSCC-derived EVs contained cargo proteins enriched in proteostasis-related functions, and significantly altered the development of CSCs such that they were more intrinsically chemoresistant, aggressive, and better able to undergo self-renewal. CONCLUSIONS We thus identified a novel communication mechanism whereby NSCC-EVs can alter the relative fitness of CSCs to promote disease progression and the acquisition of chemoresistance.
Collapse
Affiliation(s)
- Wei-Min Chung
- Department of Urology, University of Rochester Medical Center, 601 Elmwood Ave, Box 656, Rochester, NY, 14642, USA
| | - Ryan D Molony
- Department of Urology, University of Rochester Medical Center, 601 Elmwood Ave, Box 656, Rochester, NY, 14642, USA
| | - Yi-Fen Lee
- Department of Urology, University of Rochester Medical Center, 601 Elmwood Ave, Box 656, Rochester, NY, 14642, USA.
- Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
41
|
Rimmer MP, Gregory CD, Mitchell RT. Extracellular vesicles in urological malignancies. Biochim Biophys Acta Rev Cancer 2021; 1876:188570. [PMID: 34019971 PMCID: PMC8351753 DOI: 10.1016/j.bbcan.2021.188570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are small lipid bound structures released from cells containing bioactive cargoes. Both the type of cargo and amount loaded varies compared to that of the parent cell. The characterisation of EVs in cancers of the male urogenital tract has identified several cargoes with promising diagnostic and disease monitoring potential. EVs released by cancers of the male urogenital tract promote cell-to-cell communication, migration, cancer progression and manipulate the immune system promoting metastasis by evading the immune response. Their use as diagnostic biomarkers represents a new area of screening and disease detection, potentially reducing the need for invasive biopsies. Many validated EV cargoes have been found to have superior sensitivity and specificity than current diagnostic tools currently in use. The use of EVs to improve disease monitoring and develop novel therapeutics will enable clinicians to individualise patient management in the exciting era of personalised medicine.
Collapse
Affiliation(s)
- Michael P Rimmer
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, UK.
| | - Christopher D Gregory
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, UK.
| |
Collapse
|
42
|
Proteomic Profiling of Tissue Exosomes Indicates Continuous Release of Malignant Exosomes in Urinary Bladder Cancer Patients, Even with Pathologically Undetectable Tumour. Cancers (Basel) 2021; 13:cancers13133242. [PMID: 34209558 PMCID: PMC8267924 DOI: 10.3390/cancers13133242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Invasive urothelial bladder cancer (UBC) has high recurrence rates even after radical cystectomy (RC). Exosomes are membrane-bound nanovesicles, which have been shown to contribute to carcinogenesis and metastasis. We previously showed that urinary exosomes display a malignant profile in UBC patients despite the absence of detectable tumour. Here, we investigated exosomes from sampling sites close to or distant from the former tumour, aiming to understand the effect of the tumour on the local milieu. Ten patients scheduled for cystectomy after transurethral bladder resection (TUR-B), without remaining detectable tumour, were included. Exosomes were isolated from tissue explants of both the previous tumour site and distant bladder tissue. Proteins were quantified by mass spectrometry in seven patients. Exosomes from the previous tumour site were enriched in inflammatory but not cancer-related pathways compared to distant tissue. However, the 69 most abundant proteins in tissue-derived exosomes regardless of site, 20 of which were also found in urinary exosomes from our previous study, were enriched for cancer-related metabolic pathways and associated with poor prognosis in an external mRNA dataset. The enrichment of cancer-related pathways in the most abundant proteins, regardless of sampling site, confirms our hypothesis that despite the absence of detectable tumour, the entire bladder releases exosomes that contribute to metastasis and highlights the need for early RC.
Collapse
|
43
|
Nie Z, Chen M, Wen X, Gao Y, Huang D, Cao H, Peng Y, Guo N, Ni J, Zhang S. Endoplasmic Reticulum Stress and Tumor Microenvironment in Bladder Cancer: The Missing Link. Front Cell Dev Biol 2021; 9:683940. [PMID: 34136492 PMCID: PMC8201605 DOI: 10.3389/fcell.2021.683940] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer is a common malignant tumor of the urinary system. Despite recent advances in treatments such as local or systemic immunotherapy, chemotherapy, and radiotherapy, the high metastasis and recurrence rates, especially in muscle-invasive bladder cancer (MIBC), have led to the evaluation of more targeted and personalized approaches. A fundamental understanding of the tumorigenesis of bladder cancer along with the development of therapeutics to target processes and pathways implicated in bladder cancer has provided new avenues for the management of this disease. Accumulating evidence supports that the tumor microenvironment (TME) can be shaped by and reciprocally act on tumor cells, which reprograms and regulates tumor development, metastasis, and therapeutic responses. A hostile TME, caused by intrinsic tumor attributes (e.g., hypoxia, oxidative stress, and nutrient deprivation) or external stressors (e.g., chemotherapy and radiation), disrupts the normal synthesis and folding process of proteins in the endoplasmic reticulum (ER), culminating in a harmful situation called ER stress (ERS). ERS is a series of adaptive changes mediated by unfolded protein response (UPR), which is interwoven into a network that can ultimately mediate cell proliferation, apoptosis, and autophagy, thereby endowing tumor cells with more aggressive behaviors. Moreover, recent studies revealed that ERS could also impede the efficacy of anti-cancer treatment including immunotherapy by manipulating the TME. In this review, we discuss the relationship among bladder cancer, ERS, and TME; summarize the current research progress and challenges in overcoming therapeutic resistance; and explore the concept of targeting ERS to improve bladder cancer treatment outcomes.
Collapse
Affiliation(s)
- Zhenyu Nie
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Mei Chen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Xiaohong Wen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Denggao Huang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Hui Cao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yanling Peng
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Na Guo
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Jie Ni
- Cancer Care Center, St. George Hospital, Sydney, NSW, Australia.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Shufang Zhang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| |
Collapse
|
44
|
Geng H, Zhou Q, Guo W, Lu L, Bi L, Wang Y, Min J, Yu D, Liang Z. Exosomes in bladder cancer: novel biomarkers and targets. J Zhejiang Univ Sci B 2021; 22:341-347. [PMID: 33973417 DOI: 10.1631/jzus.b2000711] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Exosomes are nanometer-sized vesicles that contain various types of biologically active components, including proteins, nucleic acids, carbohydrates, and lipids, which vary with the type and physiological state of the cell. In recent years, several studies have showed that exosomes can provide new non-invasive diagnostic and prognostic biomarkers in patients affected by cancers, including bladder cancer (BC), and the lipid bilayer membrane structure makes exosomes as promising delivery vehicles for therapeutic applications. Exosomes have the characteristics of high abundance, high stability, tissue specificity, and wide distribution in body fluids, and are secreted as various types by cells in different states, thereby possessing great potential as biomarkers for BC. Herein, we briefly summarize the functions and roles of exosomes in the occurrence and development of BC and the current progress of research on exosomes in BC, while focusing on potential clinical applications of the diagnosis, treatment, and prognosis of BC.
Collapse
Affiliation(s)
- Hao Geng
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Qingchen Zhou
- Department of Urology, the First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Wenhao Guo
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ling Lu
- Department of Child Healthcare, Women and Children Health Hospital of Zhenjiang, Zhenjiang 212001, China
| | - Liangkuan Bi
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yi Wang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Jie Min
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Dexin Yu
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| | - Zhaofeng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
45
|
Zhang HH, Li C, Ren JW, Liu L, Du XH, Gao J, Liu T, Li SZ. OTUB1 facilitates bladder cancer progression by stabilizing ATF6 in response to endoplasmic reticulum stress. Cancer Sci 2021; 112:2199-2209. [PMID: 33686769 PMCID: PMC8177800 DOI: 10.1111/cas.14876] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/20/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
The unfolded protein response (UPR) plays an important role in carcinogenesis, but the functional role and mechanism of UPR‐associated bladder carcinogenesis remain to be characterized. Upon UPR activation, ATF6α is activated to upregulate the transcription of UPR target genes. Although the mechanism of ATF6 activation has been studied extensively, the negative regulation of ATF6 stabilization is not well understood. Here, we report that the deubiquitinase otubain 1 (OTUB1) facilitates bladder cancer progression by stabilizing ATF6 in response to endoplasmic reticulum stress. OTUB1 expression is raised in bladder cancer patients. Genetic ablation of OTUB1 markedly inhibited bladder cancer cell proliferation, viability, and migration both in vitro and in vivo. Mechanistically, luciferase pathway screening showed that ATF6 signaling was clearly activated compared with other pathways. OTUB1 was found to activate ATF6 signaling by inhibiting its ubiquitylation, thereby remodeling the stressed cells through transcriptional regulation. Our results show that high OTUB1 expression promotes bladder cancer progression by stabilizing ATF6 and that OTUB1 is a potential therapeutic target in bladder cancer.
Collapse
Affiliation(s)
- Hui-Hui Zhang
- Department of Laboratory Medicine, Hunan Normal University School of Medicine, Changsha, China.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Chao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | | | - Lian Liu
- Department of Laboratory Medicine, Hunan Normal University School of Medicine, Changsha, China
| | - Xue-Hua Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Tao Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shang-Ze Li
- Department of Laboratory Medicine, Hunan Normal University School of Medicine, Changsha, China.,Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.,School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
46
|
Qin X, Lin X, Liu L, Li Y, Li X, Deng Z, Chen H, Chen H, Niu Z, Li Z, Hu Y. Macrophage-derived exosomes mediate silica-induced pulmonary fibrosis by activating fibroblast in an endoplasmic reticulum stress-dependent manner. J Cell Mol Med 2021; 25:4466-4477. [PMID: 33834616 PMCID: PMC8093963 DOI: 10.1111/jcmm.16524] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Macrophages play a key role in silicosis, and exosomes are potent mediators of intercellular communication. This suggests that macrophage-derived exosomes have a potential contribution to the pathogenesis of silicosis. To investigate whether macrophage-derived exosomes promote or inhibit lung fibrosis, in vitro, silica-exposed macrophage-derived exosomes (SiO2 -Exos) were collected and cocultured with fibroblasts. The expression of collagen I and α-SMA was evaluated. Furthermore, the endoplasmic reticulum (ER) stress markers BIP, XBP1s and P-eIF2α were assessed after treatment with or without the ER stress inhibitor 4-PBA. In vivo, mice were pre-treated with the exosome secretion inhibitor GW4869 prior to silica exposure. After sacrifice, lung tissues were histologically examined, and the expression of proinflammatory cytokines (TNF-α, IL-1β and IL-6) in bronchoalveolar lavage fluid (BALF) was measured. The results showed that the expression of collagen I and α-SMA was up-regulated after treatment with SiO2 -Exos, accompanied by increased expression of BIP, XBP1s and P-eIF2α. Pre-treatment with 4-PBA reversed this effect. More importantly, an in vivo study demonstrated that pre-treatment with GW4869 decreased lung fibrosis and the expression of TNF-α, IL-1β and IL-6 in BALF. These results suggested that SiO2 -Exos are profibrogenic and that the facilitating effect is dependent on ER stress.
Collapse
Affiliation(s)
- Xiaofeng Qin
- Department of PathologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Xiaofang Lin
- Department of PathologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Lang Liu
- Department of Occupational DiseasesHunan Prevention and Treatment Institute for Occupational DiseasesChangshaChina
| | - Ying Li
- Department of Occupational DiseasesHunan Prevention and Treatment Institute for Occupational DiseasesChangshaChina
| | - Xiang Li
- Department of PathologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Department of PathologyXiangya HospitalCentral South UniversityChangshaChina
| | - Zhenghao Deng
- Department of PathologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Department of PathologyXiangya HospitalCentral South UniversityChangshaChina
| | - Huiping Chen
- Department of PathologyXiangya HospitalCentral South UniversityChangshaChina
| | - Hui Chen
- Department of PathologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Zhiyuan Niu
- Department of PathologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Zisheng Li
- Department of PathologyXiangya HospitalCentral South UniversityChangshaChina
| | - Yongbin Hu
- Department of PathologySchool of Basic Medical ScienceCentral South UniversityChangshaChina
- Department of PathologyXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
47
|
Hayatudin R, Fong Z, Ming LC, Goh BH, Lee WL, Kifli N. Overcoming Chemoresistance via Extracellular Vesicle Inhibition. Front Mol Biosci 2021; 8:629874. [PMID: 33842540 PMCID: PMC8024536 DOI: 10.3389/fmolb.2021.629874] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/22/2021] [Indexed: 12/22/2022] Open
Abstract
With the ever-growing number of cancer deaths worldwide, researchers have been working hard to identify the key reasons behind the failure of cancer therapies so the efficacy of those therapies may be improved. Based on extensive research activities and observations done by researchers, chemoresistance has been identified as a major contributor to the drastic number of deaths among cancer patients. Several factors have been linked to formation of chemoresistance, such as chemotherapy drug efflux, immunosuppression, and epithelial-mesenchymal transition (EMT). Lately, increasing evidence has shed light on the role of extracellular vesicles (EVs) in the regulation of chemoresistance. However, there is limited research into the possibility that inhibiting EV release or uptake in cancer cells may curb chemoresistance, allowing chemotherapy drugs to target cancer cells without restriction. Prominent inhibitors of EV uptake and release in cancer cells have been compiled and contrasted in this review. This is in the hope of sparking greater interest in the field of EV-mediated chemoresistance, as well as to provide an overview of the field for fundamental and clinical research communities, particularly in the field of cancer resistance research. In-depth studies of EV-mediated chemoresistance and EV inhibitors in cancer cells would spur significant improvement in cancer treatments which are currently available.
Collapse
Affiliation(s)
- Raeesah Hayatudin
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Zhijack Fong
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Bey-Hing Goh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Nurolaini Kifli
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| |
Collapse
|
48
|
Georgantzoglou N, Pergaris A, Masaoutis C, Theocharis S. Extracellular Vesicles as Biomarkers Carriers in Bladder Cancer: Diagnosis, Surveillance, and Treatment. Int J Mol Sci 2021; 22:ijms22052744. [PMID: 33803085 PMCID: PMC7963171 DOI: 10.3390/ijms22052744] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular vesicles, enriched in biomolecular cargo consisting of nucleic acids, proteins, and lipids, which take part in intercellular communication and play a crucial role in both physiologic functions and oncogenesis. Bladder cancer is the most common urinary malignancy and its incidence is steadily rising in developed countries. Despite the high five-year survival in patients diagnosed at early disease stage, survival substantially drops in patients with muscle-invasive or metastatic disease. Therefore, early detection of primary disease as well as recurrence is of paramount importance. The role that exosomal biomarkers could play in bladder cancer patient diagnosis and surveillance, as well as their potential therapeutic applications, has not been extensively studied in this malignancy. In the present review, we summarize all relevant data obtained so far from cell lines, animal models, and patient biofluids and tissues. Current literature suggests that urine is a rich source of extracellular vesicle-derived biomarkers, compared with blood and bladder tissue samples, with potential applications in bladder cancer management. Further studies improving sample collection procedures and optimizing purification and analytical methods should augment bladder cancer diagnostic, prognostic, and therapeutic input of extracellular vesicles biomarkers in the future.
Collapse
|
49
|
Stefanius K, Servage K, Orth K. Exosomes in cancer development. Curr Opin Genet Dev 2021; 66:83-92. [PMID: 33477017 DOI: 10.1016/j.gde.2020.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023]
Abstract
Exosomes are secreted small extracellular vesicles (EVs) packaged with diverse biological cargo. They mediate complex intercellular communications among cells in maintenance of normal physiology or to trigger profound disease progression. Increasing numbers of studies have identified exosome-mediated functions contributing to cancer progression, including roles in paracrine cell-to-cell communication, stromal reprogramming, angiogenesis, and immune responses. Despite the growing body of knowledge, the specific role of exosomes in mediating pre-cancerous conditions is not fully understood and their ability to transform a healthy cell is still controversial. Here we review recent studies describing functions attributed to exosomes in different stages of carcinogenesis. We also explore how exosomes ultimately contribute to the progression of a primary tumor to metastatic disease.
Collapse
Affiliation(s)
- Karoliina Stefanius
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Kelly Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
50
|
Jiang Z, Zhang G, Huang L, Yuan Y, Wu C, Li Y. Transmissible Endoplasmic Reticulum Stress: A Novel Perspective on Tumor Immunity. Front Cell Dev Biol 2020; 8:846. [PMID: 33117793 PMCID: PMC7575690 DOI: 10.3389/fcell.2020.00846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/06/2020] [Indexed: 02/05/2023] Open
Abstract
As the first compartment of the protein secretory pathway, the endoplasmic reticulum (ER) acts as a protein synthesis factory, maintaining proteostasis and ER homeostasis. However, a variety of intrinsic and extrinsic perturbations, such as cancer, can disrupt the homeostasis and result in a large accumulation of misfolded/unfolded proteins in the ER lumen, thereby provoking a specific cellular state addressed as “ER stress”. Then the unfolded protein response (UPR), an adaptive signaling pathway, is triggered to address the stress and restore the homeostasis. A novel aspect of ER stress is that it can be transmitted from cancer cells to tumor-infiltrating myeloid cells through certain cancer cell-released soluble factors, which is termed as transmissible ER stress (TERS) or ER stress resonance (ERSR). In this review, we provide a comprehensive overview of the link between cancer and ER stress as well as the possible soluble factors mediating TERS. We further elaborate the cell-extrinsic effects of TERS on tumor immunity, and how it indirectly modulates cancer development and progression, which is expected to add a new dimension to anticancer therapy.
Collapse
Affiliation(s)
- Zhou Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Geru Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yihang Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|