1
|
Hershkovitz D, Chen EJ, Ensminger AW, Dugan AS, Conway KT, Joyce AC, Segal G, Isberg RR. Genetic evidence for a regulated cysteine protease catalytic triad in LegA7, a Legionella pneumophila protein that impinges on a stress response pathway. mSphere 2024; 9:e0022224. [PMID: 39166849 PMCID: PMC11423584 DOI: 10.1128/msphere.00222-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/30/2024] [Indexed: 08/23/2024] Open
Abstract
Legionella pneumophila grows within membrane-bound vacuoles in phylogenetically diverse hosts. Intracellular growth requires the function of the Icm/Dot type-IVb secretion system, which translocates more than 300 proteins into host cells. A screen was performed to identify L. pneumophila proteins that stimulate mitogen-activated protein kinase (MAPK) activation, using Icm/Dot translocated proteins ectopically expressed in mammalian cells. In parallel, a second screen was performed to identify L. pneumophila proteins expressed in yeast that cause growth inhibition in MAPK pathway-stimulatory high-osmolarity medium. LegA7 was shared in both screens, a protein predicted to be a member of the bacterial cysteine protease family that has five carboxyl-terminal ankyrin repeats. Three conserved residues in the predicted catalytic triad of LegA7 were mutated. These mutations abolished the ability of LegA7 to inhibit yeast growth. To identify other residues important for LegA7 function, a generalizable selection strategy in yeast was devised to isolate mutants that have lost function and no longer cause growth inhibition on a high-osmolarity medium. Mutations were isolated in the two carboxyl-terminal ankyrin repeats, as well as an inter-domain region located between the cysteine protease domain and the ankyrin repeats. These mutations were predicted by AlphaFold modeling to localize to the face opposite from the catalytic site, arguing that they interfere with the positive regulation of the catalytic activity. Based on our data, we present a model in which LegA7 harbors a cysteine protease domain with an inter-domain and two carboxyl-terminal ankyrin repeat regions that modulate the function of the catalytic domain. IMPORTANCE Legionella pneumophila grows in a membrane-bound compartment in macrophages during disease. Construction of the compartment requires a dedicated secretion system that translocates virulence proteins into host cells. One of these proteins, LegA7, is shown to activate a stress response pathway in host cells called the mitogen-activated protein kinase (MAPK) pathway. The effects on the mammalian MAPK pathway were reconstructed in yeast, allowing the development of a strategy to identify the role of individual domains of LegA7. A domain similar to cysteine proteases is demonstrated to be critical for impinging on the MAPK pathway, and the catalytic activity of this domain is required for targeting this path. In addition, a conserved series of repeats, called ankyrin repeats, controls this activity. Data are provided that argue the interaction of the ankyrin repeats with unknown targets probably results in activation of the cysteine protease domain.
Collapse
Affiliation(s)
- Dar Hershkovitz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Emy J Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Genetics, Molecular and Cellular Biology, Graduate School of Biomedical Sciences Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alexander W Ensminger
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aisling S Dugan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Kaleigh T Conway
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Genetics, Molecular and Cellular Biology, Graduate School of Biomedical Sciences Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alex C Joyce
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Gil Segal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Hershkovitz D, Chen EJ, Ensminger AW, Dugan AS, Conway KT, Joyce AC, Segal G, Isberg RR. Genetic evidence for a regulated cysteine protease catalytic triad in LegA7, a Legionella pneumophila protein that impinges on a stress response pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585421. [PMID: 38562771 PMCID: PMC10983931 DOI: 10.1101/2024.03.17.585421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Legionella pneumophila grows within membrane-bound vacuoles in phylogenetically diverse hosts. Intracellular growth requires the function of the Icm/Dot type-IVb secretion system, which translocates more than 300 proteins into host cells. A screen was performed to identify L. pneumophila proteins that stimulate MAPK activation, using Icm/Dot translocated proteins ectopically expressed in mammalian cells. In parallel, a second screen was performed to identify L. pneumophila proteins expressed in yeast that cause growth inhibition in MAPK pathway-stimulatory high osmolarity medium. LegA7 was shared in both screens, a protein predicted to be a member of the bacterial cysteine protease family that has five carboxyl-terminal ankyrin repeats. Three conserved residues in the predicted catalytic triad of LegA7 were mutated. These mutations abolished the ability of LegA7 to inhibit yeast growth. To identify other residues important for LegA7 function, a generalizable selection strategy in yeast was devised to isolate mutants that have lost function and no longer cause growth inhibition on high osmolarity medium. Mutations were isolated in the two carboxyl-terminal ankyrin repeats, as well as an inter-domain region located between the cysteine protease domain and the ankyrin repeats. These mutations were predicted by AlphaFold modeling to localize to the face opposite from the catalytic site, arguing that they interfere with the positive regulation of the catalytic activity. Based on our data, we present a model in which LegA7 harbors a cysteine protease domain with an inter-domain and two carboxyl-terminal ankyrin repeat regions that modulate the function of the catalytic domain.
Collapse
Affiliation(s)
- Dar Hershkovitz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | - Emy J. Chen
- Department of Molecular Biology and Microbiology
- Program in Genetics, Molecular and Cellular Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02115, USA
| | | | - Aisling S. Dugan
- Department of Molecular Biology and Microbiology
- Current Address: Dept. of Biology, Brown University, Providence, RI 02912
| | - Kaleigh T. Conway
- Department of Molecular Biology and Microbiology
- Program in Genetics, Molecular and Cellular Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine,150 Harrison Ave., Boston, MA 02115, USA
| | | | - Gil Segal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 6997801, Israel
| | | |
Collapse
|
3
|
Yang Y, Mei L, Chen J, Chen X, Wang Z, Liu L, Yang A. Legionella pneumophila-mediated host posttranslational modifications. J Mol Cell Biol 2023; 15:mjad032. [PMID: 37156500 PMCID: PMC10720952 DOI: 10.1093/jmcb/mjad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/17/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023] Open
Abstract
Legionella pneumophila is a Gram-negative bacterium ubiquitously present in freshwater environments and causes a serious type of pneumonia called Legionnaires' disease. During infections, L. pneumophila releases over 300 effector proteins into host cells through an Icm/Dot type IV secretion system to manipulate the host defense system for survival within the host. Notably, certain effector proteins mediate posttranslational modifications (PTMs), serving as useful approaches exploited by L. pneumophila to modify host proteins. Some effectors catalyze the addition of host protein PTMs, while others mediate the removal of PTMs from host proteins. In this review, we summarize L. pneumophila effector-mediated PTMs of host proteins, including phosphorylation, ubiquitination, glycosylation, AMPylation, phosphocholination, methylation, and ADP-ribosylation, as well as dephosphorylation, deubiquitination, deAMPylation, deADP-ribosylation, dephosphocholination, and delipidation. We describe their molecular mechanisms and biological functions in the regulation of bacterial growth and Legionella-containing vacuole biosynthesis and in the disruption of host immune and defense machinery.
Collapse
Affiliation(s)
- Yi Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ligang Mei
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jing Chen
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaorong Chen
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhuolin Wang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Lu Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
4
|
Roberts CG, Franklin TG, Pruneda JN. Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system. EMBO J 2023; 42:e114318. [PMID: 37555693 PMCID: PMC10505922 DOI: 10.15252/embj.2023114318] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Regulation through post-translational ubiquitin signaling underlies a large portion of eukaryotic biology. This has not gone unnoticed by invading pathogens, many of which have evolved mechanisms to manipulate or subvert the host ubiquitin system. Bacteria are particularly adept at this and rely heavily upon ubiquitin-targeted virulence factors for invasion and replication. Despite lacking a conventional ubiquitin system of their own, many bacterial ubiquitin regulators loosely follow the structural and mechanistic rules established by eukaryotic ubiquitin machinery. Others completely break these rules and have evolved novel structural folds, exhibit distinct mechanisms of regulation, or catalyze foreign ubiquitin modifications. Studying these interactions can not only reveal important aspects of bacterial pathogenesis but also shed light on unexplored areas of ubiquitin signaling and regulation. In this review, we discuss the methods by which bacteria manipulate host ubiquitin and highlight aspects that follow or break the rules of ubiquitination.
Collapse
Affiliation(s)
- Cameron G Roberts
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Tyler G Franklin
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
5
|
Yang JL, Li D, Zhan XY. Concept about the Virulence Factor of Legionella. Microorganisms 2022; 11:microorganisms11010074. [PMID: 36677366 PMCID: PMC9867486 DOI: 10.3390/microorganisms11010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Pathogenic species of Legionella can infect human alveolar macrophages through Legionella-containing aerosols to cause a disease called Legionellosis, which has two forms: a flu-like Pontiac fever and severe pneumonia named Legionnaires' disease (LD). Legionella is an opportunistic pathogen that frequently presents in aquatic environments as a biofilm or protozoa parasite. Long-term interaction and extensive co-evolution with various genera of amoebae render Legionellae pathogenic to infect humans and also generate virulence differentiation and heterogeneity. Conventionally, the proteins involved in initiating replication processes and human macrophage infections have been regarded as virulence factors and linked to pathogenicity. However, because some of the virulence factors are associated with the infection of protozoa and macrophages, it would be more accurate to classify them as survival factors rather than virulence factors. Given that the molecular basis of virulence variations among non-pathogenic, pathogenic, and highly pathogenic Legionella has not yet been elaborated from the perspective of virulence factors, a comprehensive explanation of how Legionella infects its natural hosts, protozoans, and accidental hosts, humans is essential to show a novel concept regarding the virulence factor of Legionella. In this review, we overviewed the pathogenic development of Legionella from protozoa, the function of conventional virulence factors in the infections of protozoa and macrophages, the host's innate immune system, and factors involved in regulating the host immune response, before discussing a probably new definition for the virulence factors of Legionella.
Collapse
|
6
|
Tomaskovic I, Gonzalez A, Dikic I. Ubiquitin and Legionella: From bench to bedside. Semin Cell Dev Biol 2022; 132:230-241. [PMID: 35177348 DOI: 10.1016/j.semcdb.2022.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022]
Abstract
Legionella pneumophila, a Gram-negative intracellular bacterium, is one of the major causes of Legionnaires' disease, a specific type of atypical pneumonia. Despite intensive research efforts that elucidated many relevant structural, molecular and medical insights into Legionella's pathogenicity, Legionnaires' disease continues to present an ongoing public health concern. Legionella's virulence is based on its ability to simultaneously hijack multiple molecular pathways of the host cell to ensure its fast replication and dissemination. Legionella usurps the host ubiquitin system through multiple effector proteins, using the advantage of both conventional and unconventional (phosphoribosyl-linked) ubiquitination, thus providing optimal conditions for its replication. In this review, we summarize the current understanding of L. pneumophila from medical, biochemical and molecular perspectives. We describe the clinical disease presentation, its diagnostics and treatment, as well as host-pathogen interactions, with the emphasis on the ability of Legionella to target the host ubiquitin system upon infection. Furthermore, the interdisciplinary use of innovative technologies enables better insights into the pathogenesis of Legionnaires' disease and provides new opportunities for its treatment and prevention.
Collapse
Affiliation(s)
- Ines Tomaskovic
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Alexis Gonzalez
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, Max-von-Laue Straße 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Lockwood DC, Amin H, Costa TRD, Schroeder GN. The Legionella pneumophila Dot/Icm type IV secretion system and its effectors. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35639581 DOI: 10.1099/mic.0.001187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To prevail in the interaction with eukaryotic hosts, many bacterial pathogens use protein secretion systems to release virulence factors at the host–pathogen interface and/or deliver them directly into host cells. An outstanding example of the complexity and sophistication of secretion systems and the diversity of their protein substrates, effectors, is the Defective in organelle trafficking/Intracellular multiplication (Dot/Icm) Type IVB secretion system (T4BSS) of
Legionella pneumophila
and related species.
Legionella
species are facultative intracellular pathogens of environmental protozoa and opportunistic human respiratory pathogens. The Dot/Icm T4BSS translocates an exceptionally large number of effectors, more than 300 per
L. pneumophila
strain, and is essential for evasion of phagolysosomal degradation and exploitation of protozoa and human macrophages as replicative niches. Recent technological advancements in the imaging of large protein complexes have provided new insight into the architecture of the T4BSS and allowed us to propose models for the transport mechanism. At the same time, significant progress has been made in assigning functions to about a third of
L. pneumophila
effectors, discovering unprecedented new enzymatic activities and concepts of host subversion. In this review, we describe the current knowledge of the workings of the Dot/Icm T4BSS machinery and provide an overview of the activities and functions of the to-date characterized effectors in the interaction of
L. pneumophila
with host cells.
Collapse
Affiliation(s)
- Daniel C Lockwood
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| | - Himani Amin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gunnar N Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
8
|
Murata M, Kanamori R, Kitao T, Kubori T, Nagai H, Tagaya M, Arasaki K. Requirement of phosphatidic acid binding for distribution of bacterial protein targeting syntaxin 17. J Cell Sci 2022; 135:274561. [DOI: 10.1242/jcs.259538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/17/2022] [Indexed: 11/20/2022] Open
Abstract
A gram-negative bacterium, Legionella pneumophila is known to manipulate the host cellular functions. In these manipulations, bacterial proteins called Legionella effectors that L. pneumophila secretes into the host cytosol are necessary. A Legionella effector, Lpg1137, was identified as a serine protease responsible for degradation of syntaxin 17 (Stx17). However, how Lpg1137 can specifically recognize and degrade Stx17 remains unknown. Given that Stx17 is localized in the ER/mitochondria-associated membrane (MAM)/mitochondria, Lpg1137 likely distributes to these compartments to recognize Stx17. Here we show that the C-terminal region of Lpg1137 binds to phosphatidic acid (PA), a MAM/mitochondria-enriched phospholipid, and that this binding is required for the correct intracellular distribution of Lpg1137. Two basic residues in the C-terminal region are required for PA binding and their mutation causes mislocalization of Lpg1137. This mutant fails to degrade Stx17 while retaining a protease activity. Taken together, our data reveal that Lpg1137 utilizes PA for its distribution to the membranous compartments in which Stx17 is localized.
Collapse
Affiliation(s)
- Misaki Murata
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Riku Kanamori
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Tomoe Kitao
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagito, Gifu 501-1194, Japan
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagito, Gifu 501-1194, Japan
- G-CHAIN, Gifu University, 1-1 Yanagito, Gifu 501-1194, Japan
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, 1-1 Yanagito, Gifu 501-1194, Japan
- G-CHAIN, Gifu University, 1-1 Yanagito, Gifu 501-1194, Japan
| | - Mitsuo Tagaya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kohei Arasaki
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
9
|
Luo J, Wang L, Song L, Luo ZQ. Exploitation of the Host Ubiquitin System: Means by Legionella pneumophila. Front Microbiol 2022; 12:790442. [PMID: 35003021 PMCID: PMC8727461 DOI: 10.3389/fmicb.2021.790442] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/30/2021] [Indexed: 01/12/2023] Open
Abstract
Ubiquitination is a commonly used post-translational modification (PTM) in eukaryotic cells, which regulates a wide variety of cellular processes, such as differentiation, apoptosis, cell cycle, and immunity. Because of its essential role in immunity, the ubiquitin network is a common target of infectious agents, which have evolved various effective strategies to hijack and co-opt ubiquitin signaling for their benefit. The intracellular pathogen Legionella pneumophila represents one such example; it utilizes a large cohort of virulence factors called effectors to modulate diverse cellular processes, resulting in the formation a compartment called the Legionella-containing vacuole (LCV) that supports its replication. Many of these effectors function to re-orchestrate ubiquitin signaling with distinct biochemical activities. In this review, we highlight recent progress in the mechanism of action of L. pneumophila effectors involved in ubiquitination and discuss their roles in bacterial virulence and host cell biology.
Collapse
Affiliation(s)
- Jingjing Luo
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Lidong Wang
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
10
|
Vozandychova V, Stojkova P, Hercik K, Rehulka P, Stulik J. The Ubiquitination System within Bacterial Host-Pathogen Interactions. Microorganisms 2021; 9:638. [PMID: 33808578 PMCID: PMC8003559 DOI: 10.3390/microorganisms9030638] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Ubiquitination of proteins, like phosphorylation and acetylation, is an important regulatory aspect influencing numerous and various cell processes, such as immune response signaling and autophagy. The study of ubiquitination has become essential to learning about host-pathogen interactions, and a better understanding of the detailed mechanisms through which pathogens affect ubiquitination processes in host cell will contribute to vaccine development and effective treatment of diseases. Pathogenic bacteria (e.g., Salmonella enterica, Legionella pneumophila and Shigella flexneri) encode many effector proteins, such as deubiquitinating enzymes (DUBs), targeting the host ubiquitin machinery and thus disrupting pertinent ubiquitin-dependent anti-bacterial response. We focus here upon the host ubiquitination system as an integral unit, its interconnection with the regulation of inflammation and autophagy, and primarily while examining pathogens manipulating the host ubiquitination system. Many bacterial effector proteins have already been described as being translocated into the host cell, where they directly regulate host defense processes. Due to their importance in pathogenic bacteria progression within the host, they are regarded as virulence factors essential for bacterial evasion. However, in some cases (e.g., Francisella tularensis) the host ubiquitination system is influenced by bacterial infection, although the responsible bacterial effectors are still unknown.
Collapse
Affiliation(s)
- Vera Vozandychova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| | - Pavla Stojkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| | - Kamil Hercik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000 Prague, Czech Republic
| | - Pavel Rehulka
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic; (V.V.); (P.S.); (K.H.); (P.R.)
| |
Collapse
|
11
|
Abstract
Intracellular proliferation of Legionella pneumophila within a vacuole in human alveolar macrophages is essential for manifestation of Legionnaires’ pneumonia. Intravacuolar growth of the pathogen is totally dependent on remodeling the L. pneumophila-containing vacuole (LCV) by the ER and on its evasion of the endosomal-lysosomal degradation pathway. Diversion of the Legionella pneumophila-containing vacuole (LCV) from the host endosomal-lysosomal degradation pathway is one of the main virulence features essential for manifestation of Legionnaires’ pneumonia. Many of the ∼350 Dot/Icm-injected effectors identified in L. pneumophila have been shown to interfere with various host pathways and processes, but no L. pneumophila effector has ever been identified to be indispensable for lysosomal evasion. While most single effector mutants of L. pneumophila do not exhibit a defective phenotype within macrophages, we show that the MavE effector is essential for intracellular growth of L. pneumophila in human monocyte-derived macrophages (hMDMs) and amoebae and for intrapulmonary proliferation in mice. The mavE null mutant fails to remodel the LCV with endoplasmic reticulum (ER)-derived vesicles and is trafficked to the lysosomes where it is degraded, similar to formalin-killed bacteria. During infection of hMDMs, the MavE effector localizes to the poles of the LCV membrane. The crystal structure of MavE, resolved to 1.8 Å, reveals a C-terminal transmembrane helix, three copies of tyrosine-based sorting motifs, and an NPxY eukaryotic motif, which binds phosphotyrosine-binding domains present on signaling and adaptor eukaryotic proteins. Two point mutations within the NPxY motif result in attenuation of L. pneumophila in both hMDMs and amoeba. The substitution defects of P78 and D64 are associated with failure of vacuoles harboring the mutant to be remodeled by the ER and results in fusion of the vacuole to the lysosomes leading to bacterial degradation. Therefore, the MavE effector of L. pneumophila is indispensable for phagosome biogenesis and lysosomal evasion.
Collapse
|
12
|
Price CT, Abu Kwaik Y. Evolution and Adaptation of Legionella pneumophila to Manipulate the Ubiquitination Machinery of Its Amoebae and Mammalian Hosts. Biomolecules 2021; 11:biom11010112. [PMID: 33467718 PMCID: PMC7830128 DOI: 10.3390/biom11010112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin pathway is highly conserved across the eukaryotic domain of life and plays an essential role in a plethora of cellular processes. It is not surprising that many intracellular bacterial pathogens often target the essential host ubiquitin pathway. The intracellular bacterial pathogen Legionella pneumophila injects into the host cell cytosol multiple classes of classical and novel ubiquitin-modifying enzymes that modulate diverse ubiquitin-related processes in the host cell. Most of these pathogen-injected proteins, designated as effectors, mimic known E3-ubiquitin ligases through harboring F-box or U-box domains. The classical F-box effector, AnkB targets host proteins for K48-linked polyubiquitination, which leads to excessive proteasomal degradation that is required to generate adequate supplies of amino acids for metabolism of the pathogen. In contrast, the SidC and SdcA effectors share no structural similarity to known eukaryotic ligases despite having E3-ubiquitin ligase activity, suggesting that the number of E3-ligases in eukaryotes is under-represented. L. pneumophila also injects into the host many novel ubiquitin-modifying enzymes, which are the SidE family of effectors that catalyze phosphoribosyl-ubiquitination of serine residue of target proteins, independently of the canonical E1-2-3 enzymatic cascade. Interestingly, the environmental bacterium, L. pneumophila, has evolved within a diverse range of amoebal species, which serve as the natural hosts, while accidental transmission through contaminated aerosols can cause pneumonia in humans. Therefore, it is likely that the novel ubiquitin-modifying enzymes of L. pneumophila were acquired by the pathogen through interkingdom gene transfer from the diverse natural amoebal hosts. Furthermore, conservation of the ubiquitin pathway across eukaryotes has enabled these novel ubiquitin-modifying enzymes to function similarly in mammalian cells. Studies on the biological functions of these effectors are likely to reveal further novel ubiquitin biology and shed further lights on the evolution of ubiquitin.
Collapse
Affiliation(s)
- Christopher T.D. Price
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA;
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA;
- Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, KY 40202, USA
- Correspondence:
| |
Collapse
|
13
|
Tascón I, Li X, Lucas M, Nelson D, Vidaurrazaga A, Lin YH, Rojas AL, Hierro A, Machner MP. Structural insight into the membrane targeting domain of the Legionella deAMPylase SidD. PLoS Pathog 2020; 16:e1008734. [PMID: 32853279 PMCID: PMC7480848 DOI: 10.1371/journal.ppat.1008734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/09/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
AMPylation, the post-translational modification with adenosine monophosphate (AMP), is catalyzed by effector proteins from a variety of pathogens. Legionella pneumophila is thus far the only known pathogen that, in addition to encoding an AMPylase (SidM/DrrA), also encodes a deAMPylase, called SidD, that reverses SidM-mediated AMPylation of the vesicle transport GTPase Rab1. DeAMPylation is catalyzed by the N-terminal phosphatase-like domain of SidD. Here, we determined the crystal structure of full length SidD including the uncharacterized C-terminal domain (CTD). A flexible loop rich in aromatic residues within the CTD was required to target SidD to model membranes in vitro and to the Golgi apparatus within mammalian cells. Deletion of the loop (Δloop) or substitution of its aromatic phenylalanine residues rendered SidD cytosolic, showing that the hydrophobic loop is the primary membrane-targeting determinant of SidD. Notably, deletion of the two terminal alpha helices resulted in a CTD variant incapable of discriminating between membranes of different composition. Moreover, a L. pneumophila strain producing SidDΔloop phenocopied a L. pneumophila ΔsidD strain during growth in mouse macrophages and displayed prolonged co-localization of AMPylated Rab1 with LCVs, thus revealing that membrane targeting of SidD via its CTD is a critical prerequisite for its ability to catalyze Rab1 deAMPylation during L. pneumophila infection.
Collapse
Affiliation(s)
- Igor Tascón
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Xiao Li
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - María Lucas
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - D’anna Nelson
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ander Vidaurrazaga
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Yi-Han Lin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Adriana L. Rojas
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Aitor Hierro
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro, Bilbao, Spain
- * E-mail: (AH); (MPM)
| | - Matthias P. Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (AH); (MPM)
| |
Collapse
|
14
|
Kitao T, Nagai H, Kubori T. Divergence of Legionella Effectors Reversing Conventional and Unconventional Ubiquitination. Front Cell Infect Microbiol 2020; 10:448. [PMID: 32974222 PMCID: PMC7472693 DOI: 10.3389/fcimb.2020.00448] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
The intracellular bacterial pathogen Legionella pneumophila employs bacteria-derived effector proteins in a variety of functions to exploit host cellular systems. The ubiquitination machinery constitutes a crucial eukaryotic system for the regulation of numerous cellular processes, and is a representative target for effector-mediated bacterial manipulation. L. pneumophila transports over 300 effector proteins into host cells through its Dot/Icm type IV secretion system. Among these, several effector proteins have been found to function as ubiquitin ligases, including unprecedented enzymes that catalyze ubiquitination through unconventional mechanisms. Recent studies have identified many L. pneumophila effector proteins that can interfere with ubiquitination. These effectors include proteins that are distantly related to the ovarian tumor protein superfamily described as deubiquitinases (DUBs), which regulate important signaling cascades in human cells. Intriguingly, L. pneumophila DUBs are not limited to enzymes that exhibit canonical DUB activity. Some L. pneumophila DUBs can catalyze the cleavage of the unconventional linkage between ubiquitin and substrates. Furthermore, novel mechanisms have been found that adversely affect the function of specific ubiquitin ligases; for instance, effector-mediated posttranslational modifications of ubiquitin ligases result in the inhibition of their activity. In the context of L. pneumophila infection, the existence of enzymes that reverse ubiquitination primarily relates to a fine tuning of biogenesis and remodeling of the Legionella-containing vacuole as a replicative niche. The complexity of the effector arrays reflects sophisticated strategies that bacteria have adopted to adapt their host environment and enable their survival in host cells. This review summarizes the current state of knowledge on the divergent mechanisms of the L. pneumophila effectors that can reverse ubiquitination, which is mediated by other effectors as well as the host ubiquitin machinery.
Collapse
Affiliation(s)
- Tomoe Kitao
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Japan
- G-CHAIN, Gifu University, Gifu, Japan
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Japan
- G-CHAIN, Gifu University, Gifu, Japan
| |
Collapse
|
15
|
Bacterial DUBs: deubiquitination beyond the seven classes. Biochem Soc Trans 2020; 47:1857-1866. [PMID: 31845741 DOI: 10.1042/bst20190526] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022]
Abstract
Protein ubiquitination is a posttranslational modification that regulates many aspects of cellular life, including proteostasis, vesicular trafficking, DNA repair and NF-κB activation. By directly targeting intracellular bacteria or bacteria-containing vacuoles to the lysosome, ubiquitination is also an important component of cell-autonomous immunity. Not surprisingly, several pathogenic bacteria encode deubiquitinases (DUBs) and use them as secreted effectors that prevent ubiquitination of bacterial components. A systematic overview of known bacterial DUBs, including their cleavage specificities and biological roles, suggests multiple independent acquisition events from host-encoded DUBs and other proteases. The widely used classification of DUBs into seven well-defined families should only be applied to eukaryotic DUBs, since several bacterial DUBs do not follow this classification.
Collapse
|
16
|
Swart AL, Hilbi H. Phosphoinositides and the Fate of Legionella in Phagocytes. Front Immunol 2020; 11:25. [PMID: 32117224 PMCID: PMC7025538 DOI: 10.3389/fimmu.2020.00025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/08/2020] [Indexed: 01/28/2023] Open
Abstract
Legionella pneumophila is the causative agent of a severe pneumonia called Legionnaires' disease. The environmental bacterium replicates in free-living amoebae as well as in lung macrophages in a distinct compartment, the Legionella-containing vacuole (LCV). The LCV communicates with a number of cellular vesicle trafficking pathways and is formed by a plethora of secreted bacterial effector proteins, which target host cell proteins and lipids. Phosphoinositide (PI) lipids are pivotal determinants of organelle identity, membrane dynamics and vesicle trafficking. Accordingly, eukaryotic cells tightly regulate the production, turnover, interconversion, and localization of PI lipids. L. pneumophila modulates the PI pattern in infected cells for its own benefit by (i) recruiting PI-decorated vesicles, (ii) producing effectors acting as PI interactors, phosphatases, kinases or phospholipases, and (iii) subverting host PI metabolizing enzymes. The PI conversion from PtdIns(3)P to PtdIns(4)P represents a decisive step during LCV maturation. In this review, we summarize recent progress on elucidating the strategies, by which L. pneumophila subverts host PI lipids to promote LCV formation and intracellular replication.
Collapse
Affiliation(s)
- A Leoni Swart
- Faculty of Medicine, Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| | - Hubert Hilbi
- Faculty of Medicine, Institute of Medical Microbiology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
17
|
Affiliation(s)
- Rune Busk Damgaard
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
18
|
Viewing Legionella pneumophila Pathogenesis through an Immunological Lens. J Mol Biol 2019; 431:4321-4344. [PMID: 31351897 DOI: 10.1016/j.jmb.2019.07.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/25/2019] [Accepted: 07/13/2019] [Indexed: 12/14/2022]
Abstract
Legionella pneumophila is the causative agent of the severe pneumonia Legionnaires' disease. L. pneumophila is ubiquitously found in freshwater environments, where it replicates within free-living protozoa. Aerosolization of contaminated water supplies allows the bacteria to be inhaled into the human lung, where L. pneumophila can be phagocytosed by alveolar macrophages and replicate intracellularly. The Dot/Icm type IV secretion system (T4SS) is one of the key virulence factors required for intracellular bacterial replication and subsequent disease. The Dot/Icm apparatus translocates more than 300 effector proteins into the host cell cytosol. These effectors interfere with a variety of cellular processes, thus enabling the bacterium to evade phagosome-lysosome fusion and establish an endoplasmic reticulum-derived Legionella-containing vacuole, which facilitates bacterial replication. In turn, the immune system has evolved numerous strategies to recognize intracellular bacteria such as L. pneumophila, leading to potent inflammatory responses that aid in eliminating infection. This review aims to provide an overview of L. pneumophila pathogenesis in the context of the host immune response.
Collapse
|
19
|
Study of Legionella Effector Domains Revealed Novel and Prevalent Phosphatidylinositol 3-Phosphate Binding Domains. Infect Immun 2019; 87:IAI.00153-19. [PMID: 30962397 DOI: 10.1128/iai.00153-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/27/2019] [Indexed: 12/31/2022] Open
Abstract
Legionella pneumophila and other Legionella species replicate intracellularly using the Icm/Dot type IV secretion system. In L. pneumophila this system translocates >300 effectors into host cells and in the Legionella genus thousands of effectors were identified, the function of most of which is unknown. Fourteen L. pneumophila effectors were previously shown to specifically bind phosphoinositides (PIs) using dedicated domains. We found that PI-binding domains of effectors are usually not homologous to one another; they are relatively small and located at the effectors' C termini. We used the previously identified Legionella effector domains (LEDs) with unknown function and the above characteristics of effector PI-binding domains to discover novel PI-binding LEDs. We identified three predicted PI-binding LEDs that are present in 14 L. pneumophila effectors and in >200 effectors in the Legionella genus. Using an in vitro protein-lipid overlay assay, we found that 11 of these L. pneumophila effectors specifically bind phosphatidylinositol 3-phosphate (PI3P), almost doubling the number of L. pneumophila effectors known to bind PIs. Further, we identified in each of these newly discovered PI3P-binding LEDs conserved, mainly positively charged, amino acids that are essential for PI3P binding. Our results indicate that Legionella effectors harbor unique domains, shared by many effectors, which directly mediate PI3P binding.
Collapse
|
20
|
A bacterial effector deubiquitinase specifically hydrolyses linear ubiquitin chains to inhibit host inflammatory signalling. Nat Microbiol 2019; 4:1282-1293. [PMID: 31110362 DOI: 10.1038/s41564-019-0454-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Linear ubiquitin (Ub) chains regulate many cellular processes, including NF-κB immune signalling. Pathogenic bacteria have evolved to secrete effector proteins that harbour deubiquitinase activity into host cells to disrupt host ubiquitination signalling. All previously identified effector deubiquitinases hydrolyse isopeptide-linked polyubiquitin (polyUb). It has been a long-standing question whether bacterial pathogens have evolved an effector deubiquitinase to directly cleave linear Ub chains. In this study, we performed extensive screening of bacterial pathogens and found that Legionella pneumophila-the causative agent of human Legionnaire's disease-encodes an effector protein, RavD, which harbours deubiquitinase activity exquisitely specific for linear Ub chains. RavD hydrolyses linear Ub chains but not any type of isopeptide-linked polyUb. The crystal structure of RavD with linear diubiquitin reveals that RavD adopts a papain-like fold with a Cys-His-Ser catalytic triad. The Ub-binding surface and specific interacting residues in RavD determine its specificity for Met1 linkages. RavD prevents the accumulation of linear Ub chains on Legionella-containing vacuoles established by the pathogen in host cells to inhibit the NF-κB pathway during infection. This study identified a unique linear Ub chain-specific effector deubiquitinase and indicates its potential application as a tool to dissect linear polyUb-mediated signalling in mammalian cells.
Collapse
|