1
|
Wu Z, Zhu J, Wen Y, Lei P, Xie J, Shi H, Wu R, Lou X, Hu Y. Hmga1-overexpressing lentivirus protects against osteoporosis by activating the Wnt/β-catenin pathway in the osteogenic differentiation of BMSCs. FASEB J 2023; 37:e22987. [PMID: 37555233 DOI: 10.1096/fj.202300488r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 08/10/2023]
Abstract
Postmenopausal osteoporosis is associated with bone formation inhibition mediated by the impaired osteogenic differentiation potential of bone marrow mesenchymal stem cells (BMSCs). However, identifying and confirming the essential genes in the osteogenic differentiation of BMSCs and osteoporosis remain challenging. The study aimed at revealing the key gene that regulated osteogenic differentiation of BMSCs and led to osteoporosis, thus exploring its therapeutic effect in osteoporosis. In the present study, six essential genes related to the osteogenic differentiation of BMSCs and osteoporosis were identified, namely, fibrillin 2 (Fbn2), leucine-rich repeat-containing 17 (Lrrc17), heat shock protein b7 (Hspb7), high mobility group AT-hook 1 (Hmga1), nexilin F-actin-binding protein (Nexn), and endothelial cell-specific molecule 1 (Esm1). Furthermore, the in vivo and in vitro experiments showed that Hmga1 expression was increased during the osteogenic differentiation of rat BMSCs, while Hmga1 expression was decreased in the bone tissue of ovariectomized (OVX) rats. Moreover, the expression of osteogenic differentiation-related genes, the activity of alkaline phosphatase (ALP), and the number of mineralized nodules were increased after Hmga1 overexpression, which was partially reversed by a Wnt signaling inhibitor (DKK1). In addition, after injecting Hmga1-overexpressing lentivirus into the bone marrow cavity of OVX rats, the bone loss, and osteogenic differentiation inhibition of BMSCs in OVX rats were partially reversed, while osteoclast differentiation promotion of BMSCs in OVX rats was unaffected. Taken together, the present study confirms that Hmga1 prevents OVX-induced bone loss by the Wnt signaling pathway and reveals that Hmga1 is a potential gene therapeutic target for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Zhixin Wu
- Department of Orthopedic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiayong Zhu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pengfei Lei
- Department of Orthopedic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Xie
- Department of Orthopedic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Haifei Shi
- Department of Orthopedic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ronghuan Wu
- Department of Orthopedic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xianfeng Lou
- Department of Orthopedic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yihe Hu
- Department of Orthopedic Surgery, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Lei T, Xiao Z, Bi W, Cai S, Yang Y, Du H. Targeting small heat shock proteins to degrade aggregates as a potential strategy in neurodegenerative diseases. Ageing Res Rev 2022; 82:101769. [PMID: 36283618 DOI: 10.1016/j.arr.2022.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 01/31/2023]
Abstract
Neurodegenerative diseases (NDs) are aging-related diseases that involve the death of neurons in the brain. Dysregulation of protein homeostasis leads to the production of toxic proteins or the formation of aggregates, which is the pathological basis of NDs. Small heat shock proteins (HSPB) is involved in the establishment of a protein quality control (PQC) system to maintain cellular homeostasis. HSPB can be secreted into the extracellular space and delivered by various routes, especially extracellular vehicles (EVs). HSPB plays an important role in influencing the aggregation phase of toxic proteins involved in heat shock transcription factor (HSF) regulation, oxidative stress, autophagy and apoptosis pathways. HSPB conferred neuroprotective effects by resisting toxic protein aggregation, reducing autophagy and reducing neuronal apoptosis. The HSPB treatment strategies, including targeted PQC system therapy and delivery of EVs-HSPB, can improve disease manifestations for NDs. This review aims to provide a comprehensive insight into the impact of HSPB in NDs and the feasibility of new technology to enhance HSPB expression and EVs-HSPB delivery for neurodegenerative disease.
Collapse
Affiliation(s)
- Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangzhuang Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Wangyu Bi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Shanglin Cai
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanjie Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
3
|
The Role of Small Heat Shock Proteins in Protein Misfolding Associated Motoneuron Diseases. Int J Mol Sci 2022; 23:ijms231911759. [PMID: 36233058 PMCID: PMC9569637 DOI: 10.3390/ijms231911759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Motoneuron diseases (MNDs) are neurodegenerative conditions associated with death of upper and/or lower motoneurons (MNs). Proteostasis alteration is a pathogenic mechanism involved in many MNDs and is due to the excessive presence of misfolded and aggregated proteins. Protein misfolding may be the product of gene mutations, or due to defects in the translation process, or to stress agents; all these conditions may alter the native conformation of proteins making them prone to aggregate. Alternatively, mutations in members of the protein quality control (PQC) system may determine a loss of function of the proteostasis network. This causes an impairment in the capability to handle and remove aberrant or damaged proteins. The PQC system consists of the degradative pathways, which are the autophagy and the proteasome, and a network of chaperones and co-chaperones. Among these components, Heat Shock Protein 70 represents the main factor in substrate triage to folding, refolding, or degradation, and it is assisted in this task by a subclass of the chaperone network, the small heat shock protein (sHSPs/HSPBs) family. HSPBs take part in proteostasis by bridging misfolded and aggregated proteins to the HSP70 machinery and to the degradative pathways, facilitating refolding or clearance of the potentially toxic proteins. Because of its activity against proteostasis alteration, the chaperone system plays a relevant role in the protection against proteotoxicity in MNDs. Here, we discuss the role of HSPBs in MNDs and which HSPBs may represent a valid target for therapeutic purposes.
Collapse
|
4
|
Huang J, Hai Z, Wang R, Yu Y, Chen X, Liang W, Wang H. Genome-wide analysis of HSP20 gene family and expression patterns under heat stress in cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:968418. [PMID: 36035708 PMCID: PMC9412230 DOI: 10.3389/fpls.2022.968418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/27/2022] [Indexed: 05/03/2023]
Abstract
Cucumber is an important vegetable in China, and its yield and cultivation area are among the largest in the world. Excessive temperatures lead to high-temperature disorder in cucumber. Heat shock protein 20 (HSP20), an essential protein in the process of plant growth and development, is a universal protective protein with stress resistance. HSP20 plays crucial roles in plants under stress. In this study, we characterized the HSP20 gene family in cucumber by studying chromosome location, gene duplication, phylogenetic relationships, gene structure, conserved motifs, protein-protein interaction (PPI) network, and cis-regulatory elements. A total of 30 CsHSP20 genes were identified, distributed across 6 chromosomes, and classified into 11 distinct subgroups based on conserved motif composition, gene structure analyses, and phylogenetic relationships. According to the synteny analysis, cucumber had a closer relationship with Arabidopsis and soybean than with rice and maize. Collinearity analysis revealed that gene duplication, including tandem and segmental duplication, occurred as a result of positive selection and purifying selection. Promoter analysis showed that the putative promoters of CsHSP20 genes contained growth, stress, and hormone cis-elements, which were combined with protein-protein interaction networks to reveal their potential function mechanism. We further analyzed the gene expression of CsHSP20 genes under high stress and found that the majority of the CsHSP20 genes were upregulated, suggesting that these genes played a positive role in the heat stress-mediated pathway at the seedling stage. These results provide comprehensive information on the CsHSP20 gene family in cucumber and lay a solid foundation for elucidating the biological functions of CsHSP20. This study also provides valuable information on the regulation mechanism of the CsHSP20 gene family in the high-temperature resistance of cucumber.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huahua Wang
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
5
|
Tedesco B, Cristofani R, Ferrari V, Cozzi M, Rusmini P, Casarotto E, Chierichetti M, Mina F, Galbiati M, Piccolella M, Crippa V, Poletti A. Insights on Human Small Heat Shock Proteins and Their Alterations in Diseases. Front Mol Biosci 2022; 9:842149. [PMID: 35281256 PMCID: PMC8913478 DOI: 10.3389/fmolb.2022.842149] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The family of the human small Heat Shock Proteins (HSPBs) consists of ten members of chaperones (HSPB1-HSPB10), characterized by a low molecular weight and capable of dimerization and oligomerization forming large homo- or hetero-complexes. All HSPBs possess a highly conserved centrally located α-crystallin domain and poorly conserved N- and C-terminal domains. The main feature of HSPBs is to exert cytoprotective functions by preserving proteostasis, assuring the structural maintenance of the cytoskeleton and acting in response to cellular stresses and apoptosis. HSPBs take part in cell homeostasis by acting as holdases, which is the ability to interact with a substrate preventing its aggregation. In addition, HSPBs cooperate in substrates refolding driven by other chaperones or, alternatively, promote substrate routing to degradation. Notably, while some HSPBs are ubiquitously expressed, others show peculiar tissue-specific expression. Cardiac muscle, skeletal muscle and neurons show high expression levels for a wide variety of HSPBs. Indeed, most of the mutations identified in HSPBs are associated to cardiomyopathies, myopathies, and motor neuropathies. Instead, mutations in HSPB4 and HSPB5, which are also expressed in lens, have been associated with cataract. Mutations of HSPBs family members encompass base substitutions, insertions, and deletions, resulting in single amino acid substitutions or in the generation of truncated or elongated proteins. This review will provide an updated overview of disease-related mutations in HSPBs focusing on the structural and biochemical effects of mutations and their functional consequences.
Collapse
Affiliation(s)
- B. Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - R. Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - P. Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - E. Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - F. Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - A. Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- *Correspondence: A. Poletti,
| |
Collapse
|
6
|
Muranova LK, Shatov VM, Slushchev AV, Gusev NB. Quaternary Structure and Hetero-Oligomerization of Recombinant Human Small Heat Shock Protein HspB7 (cvHsp). Int J Mol Sci 2021; 22:ijms22157777. [PMID: 34360542 PMCID: PMC8345930 DOI: 10.3390/ijms22157777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/02/2023] Open
Abstract
In this study, a reliable and simple method of untagged recombinant human HspB7 preparation was developed. Recombinant HspB7 is presented in two oligomeric forms with an apparent molecular weight of 36 kDa (probably dimers) and oligomers with an apparent molecular weight of more than 600 kDa. By using hydrophobic and size-exclusion chromatography, we succeeded in preparation of HspB7 dimers. Mild oxidation promoted the formation of large oligomers, whereas the modification of Cys 126 by iodoacetamide prevented it. The deletion of the first 13 residues or deletion of the polySer motif (residues 17–29) also prevented the formation of large oligomers of HspB7. Cys-mutants of HspB6 and HspB8 containing a single-Cys residue in the central part of the β7 strand in a position homologous to that of Cys137 in HspB1 can be crosslinked to the wild-type HspB7 through a disulfide bond. Immobilized on monoclonal antibodies, the wild-type HspB6 interacted with the wild-type HspB7. We suppose that formation of heterodimers of HspB7 with HspB6 and HspB8 may be important for the functional activity of these small heat shock proteins.
Collapse
|
7
|
Furtado GV, Yang J, Wu D, Papagiannopoulos CI, Terpstra HM, Kuiper EFE, Krauss S, Zhu WG, Kampinga HH, Bergink S. FOXO1 controls protein synthesis and transcript abundance of mutant polyglutamine proteins, preventing protein aggregation. Hum Mol Genet 2021; 30:996-1005. [PMID: 33822053 PMCID: PMC8170844 DOI: 10.1093/hmg/ddab095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 11/14/2022] Open
Abstract
FOXO1, a transcription factor downstream of the insulin/insulin like growth factor axis, has been linked to protein degradation. Elevated expression of FOXO orthologs can also prevent the aggregation of cytosine adenine guanine (CAG)-repeat disease causing polyglutamine (polyQ) proteins but whether FOXO1 targets mutant proteins for degradation is unclear. Here, we show that increased expression of FOXO1 prevents toxic polyQ aggregation in human cells while reducing FOXO1 levels has the opposite effect and accelerates it. Although FOXO1 indeed stimulates autophagy, its effect on polyQ aggregation is independent of autophagy, ubiquitin-proteasome system (UPS) mediated protein degradation and is not due to a change in mutant polyQ protein turnover. Instead, FOXO1 specifically downregulates protein synthesis rates from expanded pathogenic CAG repeat transcripts. FOXO1 orchestrates a change in the composition of proteins that occupy mutant expanded CAG transcripts, including the recruitment of IGF2BP3. This mRNA binding protein enables a FOXO1 driven decrease in pathogenic expanded CAG transcript- and protein levels, thereby reducing the initiation of amyloidogenesis. Our data thus demonstrate that FOXO1 not only preserves protein homeostasis at multiple levels, but also reduces the accumulation of aberrant RNA species that may co-contribute to the toxicity in CAG-repeat diseases.
Collapse
Affiliation(s)
- Gabriel Vasata Furtado
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Jing Yang
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Di Wu
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Christos I Papagiannopoulos
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Hanna M Terpstra
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - E F Elsiena Kuiper
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Sybille Krauss
- Faculty IV: School of Science and Technology, Institute of Biology, Human Biology / Neurobiology, University of Siegen, Adolf-Reichwein-Str. 2, 57076 Siegen, Germany
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Nanshan District, 1066 Xueyuan Avenue, Shenzhen 508055, China
| | - Harm H Kampinga
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Steven Bergink
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| |
Collapse
|
8
|
Structural basis of substrate recognition and thermal protection by a small heat shock protein. Nat Commun 2021; 12:3007. [PMID: 34021140 PMCID: PMC8140096 DOI: 10.1038/s41467-021-23338-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Small heat shock proteins (sHsps) bind unfolding proteins, thereby playing a pivotal role in the maintenance of proteostasis in virtually all living organisms. Structural elucidation of sHsp-substrate complexes has been hampered by the transient and heterogeneous nature of their interactions, and the precise mechanisms underlying substrate recognition, promiscuity, and chaperone activity of sHsps remain unclear. Here we show the formation of a stable complex between Arabidopsis thaliana plastid sHsp, Hsp21, and its natural substrate 1-deoxy-D-xylulose 5-phosphate synthase (DXPS) under heat stress, and report cryo-electron microscopy structures of Hsp21, DXPS and Hsp21-DXPS complex at near-atomic resolution. Monomeric Hsp21 binds across the dimer interface of DXPS and engages in multivalent interactions by recognizing highly dynamic structural elements in DXPS. Hsp21 partly unfolds its central α-crystallin domain to facilitate binding of DXPS, which preserves a native-like structure. This mode of interaction suggests a mechanism of sHsps anti-aggregation activity towards a broad range of substrates.
Collapse
|
9
|
Muranova LK, Shatov VM, Bukach OV, Gusev NB. Cardio-Vascular Heat Shock Protein (cvHsp, HspB7), an Unusual Representative of Small Heat Shock Protein Family. BIOCHEMISTRY (MOSCOW) 2021; 86:S1-S11. [PMID: 33827396 DOI: 10.1134/s0006297921140017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
HspB7 is one of ten human small heat shock proteins. This protein is expressed only in insulin-dependent tissues (heart, skeletal muscle, and fat tissue), and expression of HspB7 is regulated by many different factors. Single nucleotide polymorphism is characteristic for the HspB7 gene and this polymorphism correlates with cardio-vascular diseases and obesity. HspB7 has an unusual N-terminal sequence, a conservative α-crystallin domain, and very short C-terminal domain lacking conservative IPV tripeptide involved in a small heat shock proteins oligomer formation. Nevertheless, in the isolated state HspB7 forms both small oligomers (probably dimers) and very large oligomers (aggregates). HspB7 is ineffective in suppression of amorphous aggregation of model proteins induced by heating or reduction of disulfide bonds, however it is very effective in prevention of aggregation of huntingtin fragments enriched with Gln residues. HspB7 can be an effective sensor of electrophilic agents. This protein interacts with the contractile and cytoskeleton proteins (filamin C, titin, and actin) and participates in protection of the contractile apparatus and cytoskeleton from different adverse conditions. HspB7 possesses tumor suppressive activity. Further investigations are required to understand molecular mechanisms of HspB7 participation in numerous biological processes.
Collapse
Affiliation(s)
- Lydia K Muranova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladislav M Shatov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olesya V Bukach
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
10
|
Jin C, Shuai T, Tang Z. HSPB7 regulates osteogenic differentiation of human adipose derived stem cells via ERK signaling pathway. Stem Cell Res Ther 2020; 11:450. [PMID: 33097082 PMCID: PMC7583167 DOI: 10.1186/s13287-020-01965-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/05/2020] [Indexed: 01/18/2023] Open
Abstract
Background Heat shock protein B7 (HSPB7), which belongs to small heat shock protein family, has been reported to be involved in diverse biological processes and diseases. However, whether HSPB7 regulates osteogenic differentiation of human adipose derived stem cells (hASCs) remains unexplored. Methods The expression level of HSPB7 during the osteogenesis of hASCs was examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot analysis. Lentivirus transfection was used to knock down or overexpress HSPB7, which enabled us to investigate the effect of HSPB7 on osteogenic differentiation of hASCs. U0126 and extracellular signal-regulated protein kinase 1/2 (ERK1/2) siRNA were used to identify the mechanism of the HSPB7/ERK1/2 axis in regulating osteogenic differentiation of hASCs. Moreover, ectopic bone formation in nude mice and osteoporosis mice model was used to investigate the effect of HSPB7 on osteogenesis in vivo. Results In this study, we found the expression of HSPB7 was significantly downregulated during the osteogenic differentiation of hASCs. HSPB7 knockdown remarkably promoted osteogenic differentiation of hASCs, while HSPB7 overexpression suppressed osteogenic differentiation of hASCs both in vitro and in vivo. Moreover, we discovered that the enhancing effect of HSPB7 knockdown on osteogenic differentiation was related to the activation of extracellular signal-regulated protein kinase (ERK) signaling pathway. Inhibition of ERK signaling pathway with U0126 or silencing ERK1/2 effectively blocked the stimulation of osteogenic differentiation induced by HSPB7 knockdown. Additionally, we found that HSPB7 expression was markedly increased in mouse bone marrow mesenchymal stem cells (mBMSCs) from the osteoporotic mice which suggested that HSPB7 might be utilized as a potential target in the development of effective therapeutic strategies to treat osteoporosis and other bone diseases. Conclusion Taken together, these findings uncover a previously unrecognized function of HSPB7 in regulating osteogenic differentiation of hASCs, partly via the ERK signaling pathway.
Collapse
Affiliation(s)
- Chanyuan Jin
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ting Shuai
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Zhihui Tang
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
11
|
Proteinaceous Transformers: Structural and Functional Variability of Human sHsps. Int J Mol Sci 2020; 21:ijms21155448. [PMID: 32751672 PMCID: PMC7432308 DOI: 10.3390/ijms21155448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/04/2023] Open
Abstract
The proteostasis network allows organisms to support and regulate the life cycle of proteins. Especially regarding stress, molecular chaperones represent the main players within this network. Small heat shock proteins (sHsps) are a diverse family of ATP-independent molecular chaperones acting as the first line of defense in many stress situations. Thereby, the promiscuous interaction of sHsps with substrate proteins results in complexes from which the substrates can be refolded by ATP-dependent chaperones. Particularly in vertebrates, sHsps are linked to a broad variety of diseases and are needed to maintain the refractive index of the eye lens. A striking key characteristic of sHsps is their existence in ensembles of oligomers with varying numbers of subunits. The respective dynamics of these molecules allow the exchange of subunits and the formation of hetero-oligomers. Additionally, these dynamics are closely linked to the chaperone activity of sHsps. In current models a shift in the equilibrium of the sHsp ensemble allows regulation of the chaperone activity, whereby smaller oligomers are commonly the more active species. Different triggers reversibly change the oligomer equilibrium and regulate the activity of sHsps. However, a finite availability of high-resolution structures of sHsps still limits a detailed mechanistic understanding of their dynamics and the correlating recognition of substrate proteins. Here we summarize recent advances in understanding the structural and functional relationships of human sHsps with a focus on the eye-lens αA- and αB-crystallins.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a fatal, dominantly inherited, neurodegenerative disease caused by expansion of a CAG repeat in the coding region of the ATXN3 gene. No disease-modifying treatment is yet available for MJD/SCA3. This review discusses recently developed therapeutic strategies that hold promise as future effective treatments for this incurable disease. RECENT FINDINGS As a result of the exploration of multiple therapeutic approaches over the last decade, the MJD/SCA3 field is finally starting to see options for disease-modifying treatments for this disease come into view on the horizon. Recently developed strategies include DNA-targeted and RNA-targeted therapies, and approaches targeting protein quality control pathways and cellular homeostasis. SUMMARY While still in preclinical testing stages, antisense oligonucleotides, short hairpin RNAs and citalopram all show promise to reaching testing in clinical trials for MJD/SCA3. Two pharmacological approaches in early stages of development, the slipped-CAG DNA binding compound naphthyridine-azaquinolone and autophagosome-tethering compounds, also show potential therapeutic capacity for MJD/SCA3. Overall, a handful of therapeutic options are currently showing potential as future successful treatments for fatal MJD/SCA3.
Collapse
Affiliation(s)
- Maria do Carmo Costa
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Boelens WC. Structural aspects of the human small heat shock proteins related to their functional activities. Cell Stress Chaperones 2020; 25:581-591. [PMID: 32253739 PMCID: PMC7332592 DOI: 10.1007/s12192-020-01093-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 01/18/2023] Open
Abstract
Small heat shock proteins function as chaperones by binding unfolding substrate proteins in an ATP-independent manner to keep them in a folding-competent state and to prevent irreversible aggregation. They play crucial roles in diseases that are characterized by protein aggregation, such as neurodegenerative and neuromuscular diseases, but are also involved in cataract, cancer, and congenital disorders. For this reason, these proteins are interesting therapeutic targets for finding molecules that could affect the chaperone activity or compensate specific mutations. This review will give an overview of the available knowledge on the structural complexity of human small heat shock proteins, which may aid in the search for such therapeutic molecules.
Collapse
Affiliation(s)
- Wilbert C Boelens
- Department of Biomolecular Chemistry 284, Institute for Molecules and Materials (IMM), Radboud University, PO Box 9101, NL-6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Thiruvalluvan A, de Mattos EP, Brunsting JF, Bakels R, Serlidaki D, Barazzuol L, Conforti P, Fatima A, Koyuncu S, Cattaneo E, Vilchez D, Bergink S, Boddeke EHWG, Copray S, Kampinga HH. DNAJB6, a Key Factor in Neuronal Sensitivity to Amyloidogenesis. Mol Cell 2020; 78:346-358.e9. [PMID: 32268123 DOI: 10.1016/j.molcel.2020.02.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/31/2019] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
Abstract
CAG-repeat expansions in at least eight different genes cause neurodegeneration. The length of the extended polyglutamine stretches in the corresponding proteins is proportionally related to their aggregation propensity. Although these proteins are ubiquitously expressed, they predominantly cause toxicity to neurons. To understand this neuronal hypersensitivity, we generated induced pluripotent stem cell (iPSC) lines of spinocerebellar ataxia type 3 and Huntington's disease patients. iPSC generation and neuronal differentiation are unaffected by polyglutamine proteins and show no spontaneous aggregate formation. However, upon glutamate treatment, aggregates form in neurons but not in patient-derived neural progenitors. During differentiation, the chaperone network is drastically rewired, including loss of expression of the anti-amyloidogenic chaperone DNAJB6. Upregulation of DNAJB6 in neurons antagonizes glutamate-induced aggregation, while knockdown of DNAJB6 in progenitors results in spontaneous polyglutamine aggregation. Loss of DNAJB6 expression upon differentiation is confirmed in vivo, explaining why stem cells are intrinsically protected against amyloidogenesis and protein aggregates are dominantly present in neurons.
Collapse
Affiliation(s)
- Arun Thiruvalluvan
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Eduardo P de Mattos
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jeanette F Brunsting
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rob Bakels
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Despina Serlidaki
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paola Conforti
- Department of Biosciences, University of Milan, Milan, Italy; Istituto Nazionale di Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan, Italy
| | - Azra Fatima
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Elena Cattaneo
- Department of Biosciences, University of Milan, Milan, Italy; Istituto Nazionale di Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan, Italy
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Steven Bergink
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erik H W G Boddeke
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sjef Copray
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Harm H Kampinga
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
15
|
McLoughlin HS, Moore LR, Paulson HL. Pathogenesis of SCA3 and implications for other polyglutamine diseases. Neurobiol Dis 2020; 134:104635. [PMID: 31669734 PMCID: PMC6980715 DOI: 10.1016/j.nbd.2019.104635] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022] Open
Abstract
Tandem repeat diseases include the neurodegenerative disorders known as polyglutamine (polyQ) diseases, caused by CAG repeat expansions in the coding regions of the respective disease genes. The nine known polyQ disease include Huntington's disease (HD), dentatorubral-pallidoluysian atrophy (DRPLA), spinal bulbar muscular atrophy (SBMA), and six spinocerebellar ataxias (SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17). The underlying disease mechanism in the polyQ diseases is thought principally to reflect dominant toxic properties of the disease proteins which, when harboring a polyQ expansion, differentially interact with protein partners and are prone to aggregate. Among the polyQ diseases, SCA3 is the most common SCA, and second to HD in prevalence worldwide. Here we summarize current understanding of SCA3 disease mechanisms within the broader context of the broader polyQ disease field. We emphasize properties of the disease protein, ATXN3, and new discoveries regarding three potential pathogenic mechanisms: 1) altered protein homeostasis; 2) DNA damage and dysfunctional DNA repair; and 3) nonneuronal contributions to disease. We conclude with an overview of the therapeutic implications of recent mechanistic insights.
Collapse
Affiliation(s)
| | - Lauren R Moore
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|