1
|
Chiang W, Urban JM, Yanchik-Slade F, Stout A, Hammond JM, Nilsson BL, Gelbard HA, Krauss TD. Hybrid Amyloid Quantum Dot Nano-Bio Assemblies to Probe Neuroinflammatory Damage. ACS Chem Neurosci 2024; 15:3124-3135. [PMID: 39146244 PMCID: PMC11378299 DOI: 10.1021/acschemneuro.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
Various oligomeric species of amyloid-beta have been proposed to play different immunogenic roles in the cellular pathology of Alzheimer's Disease. The dynamic interconversion between various amyloid oligomers and fibrillar assemblies makes it difficult to elucidate the role each potential aggregation state may play in driving neuroinflammatory and neurodegenerative pathology. The ability to identify the amyloid species that are key and essential drivers of these pathological hallmarks of Alzheimer's Disease is of fundamental importance for also understanding downstream events including tauopathies that mediate neuroinflammation with neurologic deficits. Here, we report the design and construction of a quantum dot mimetic for larger spherical oligomeric amyloid species as an "endogenously" fluorescent proxy for this cytotoxic assembly of amyloid to investigate its role in inducing inflammatory and stress response states in neuronal and glial cell types. The design parameters and construction protocol developed here may be adapted for developing quantum dot nano-bio assemblies for other biological systems of interest, particularly neurodegenerative diseases involving other protein aggregates.
Collapse
Affiliation(s)
- Wesley Chiang
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Jennifer M Urban
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Francine Yanchik-Slade
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Angela Stout
- Center for Neurotherapeutics Discovery and Department of Neurology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Jennetta M Hammond
- Center for Neurotherapeutics Discovery and Department of Neurology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery and Department of Neurology, University of Rochester Medical Center, Rochester, New York 14642, United States
- Departments of Pediatrics, Neuroscience, and Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Todd D Krauss
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
- The Institute of Optics, University of Rochester Medical Center, Rochester, New York 14627-0216, United States
| |
Collapse
|
2
|
Niu Z, Gui X, Feng S, Reif B. Aggregation Mechanisms and Molecular Structures of Amyloid-β in Alzheimer's Disease. Chemistry 2024; 30:e202400277. [PMID: 38888453 DOI: 10.1002/chem.202400277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Amyloid plaques are a major pathological hallmark involved in Alzheimer's disease and consist of deposits of the amyloid-β peptide (Aβ). The aggregation process of Aβ is highly complex, which leads to polymorphous aggregates with different structures. In addition to aberrant aggregation, Aβ oligomers can undergo liquid-liquid phase separation (LLPS) and form dynamic condensates. It has been hypothesized that these amyloid liquid droplets affect and modulate amyloid fibril formation. In this review, we briefly introduce the relationship between stress granules and amyloid protein aggregation that is associated with neurodegenerative diseases. Then we highlight the regulatory role of LLPS in Aβ aggregation and discuss the potential relationship between Aβ phase transition and aggregation. Furthermore, we summarize the current structures of Aβ oligomers and amyloid fibrils, which have been determined using nuclear magnetic resonance (NMR) and cryo-electron microscopy (cryo-EM). The structural variations of Aβ aggregates provide an explanation for the different levels of toxicity, shed light on the aggregation mechanism and may pave the way towards structure-based drug design for both clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Zheng Niu
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Xinrui Gui
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shuang Feng
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Bernd Reif
- Bavarian NMR Center (B NMRZ), Department of Bioscience, TUM School of Natural Sciences, Technische Universität München (TUM), Garching, 85747, Germany
- Institute of Structural Biology (STB), Helmholtz-Zentrum, München (HMGU), Neuherberg, 85764, Germany
| |
Collapse
|
3
|
Kamalaldinezabadi SS, Watzlawik JO, Rosenberry TL, Paravastu AK, Stagg SM. Aggregation Dynamics of a 150 kDa Aβ42 Oligomer: Insights from Cryo Electron Microscopy and Multimodal Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605873. [PMID: 39131288 PMCID: PMC11312520 DOI: 10.1101/2024.07.30.605873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Protein misfolding is a widespread phenomenon that can result in the formation of protein aggregates, which are markers of various disease states, including Alzheimer's disease (AD). In AD, amyloid beta (Aβ) peptides, particularly Aβ40 and Aβ42, are key players in the disease's progression, as they aggregate to form amyloid plaques and contribute to neuronal toxicity. Recent research has shifted attention from solely Aβ fibrils to also include Aβ protofibrils and oligomers as potentially critical pathogenic agents. Particularly, oligomers demonstrate greater toxicity compared to other Aβ specie. Hence, there is an increased interest in studying the correlation between toxicity and their structure and aggregation pathway. The present study investigates the aggregation of a 150 kDa Aβ42 oligomer that does not lead to fibril formation over time. Using negative stain transmission electron microscopy (TEM), size exclusion chromatography (SEC), dynamic light scattering (DLS), and cryo-electron microscopy (cryo-EM), we demonstrate that 150 kDa Aβ42 oligomers form higher-order string-like assemblies over time. The strings are unique from the classical Aβ fibril structures. The significance of our work lies in elucidating molecular behavior of a novel non-fibrillar form of Aβ42 aggregate.
Collapse
Affiliation(s)
| | - Jens O. Watzlawik
- The Departments on Neuroscience and Pharmacology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Terrone L. Rosenberry
- The Departments on Neuroscience and Pharmacology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Anant K. Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Scott M. Stagg
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
4
|
Jang C, Portugal Barron D, Duo L, Ma C, Seabaugh H, Guo Z. EPR Studies of Aβ42 Oligomers Indicate a Parallel In-Register β-Sheet Structure. ACS Chem Neurosci 2024; 15:86-97. [PMID: 38109787 PMCID: PMC10767747 DOI: 10.1021/acschemneuro.3c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
Aβ aggregation leads to the formation of both insoluble amyloid fibrils and soluble oligomers. Understanding the structures of Aβ oligomers is important for delineating the mechanism of Aβ aggregation and developing effective therapeutics. Here, we use site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy to study Aβ42 oligomers prepared by using the protocol of Aβ-derived diffusible ligands. We obtained the EPR spectra of 37 Aβ42 oligomer samples, each spin-labeled at a unique residue position of the Aβ42 sequence. Analysis of the disordered EPR components shows that the N-terminal region has a lower local structural stability. Spin label mobility analysis reveals three structured segments at residues 9-11, 15-22, and 30-40. Intermolecular spin-spin interactions indicate a parallel in-register β-sheet structure, with residues 34-38 forming the structural core. Residues 16-21 also adopt the parallel in-register β-structure, albeit with weaker intermolecular packing. Our results suggest that there is a structural class of Aβ oligomers that adopt fibril-like conformations.
Collapse
Affiliation(s)
- Chelsea Jang
- Department of Neurology,
Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Diana Portugal Barron
- Department of Neurology,
Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Lan Duo
- Department of Neurology,
Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Christine Ma
- Department of Neurology,
Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hanna Seabaugh
- Department of Neurology,
Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zhefeng Guo
- Department of Neurology,
Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Yeh CT, Chang HW, Hsu WH, Huang SJ, Wu MH, Tu LH, Lee MC, Chan JCC. Beta Amyloid Oligomers with Higher Cytotoxicity have Higher Sidechain Dynamics. Chemistry 2023; 29:e202301879. [PMID: 37706579 DOI: 10.1002/chem.202301879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 09/15/2023]
Abstract
The underlying biophysical principle governing the cytotoxicity of the oligomeric aggregates of β-amyloid (Aβ) peptides has long been an enigma. Here we show that the size of Aβ40 oligomers can be actively controlled by incubating the peptides in reverse micelles. Our approach allowed for the first time a detailed comparison of the structures and dynamics of two Aβ40 oligomers of different sizes, viz., 10 and 23 nm, by solid-state NMR. From the chemical shift data, we infer that the conformation and/or the chemical environments of the residues from K16 to K28 are different between the 10-nm and 23-nm oligomers. We find that the 10-nm oligomers are more cytotoxic, and the molecular motion of the sidechain of its charged residue K16 is more dynamic. Interestingly, the residue A21 exhibits unusually high structural rigidity. Our data raise an interesting possibility that the cytotoxicity of Aβ40 oligomers could also be correlated to the motional dynamics of the sidechains.
Collapse
Affiliation(s)
- Chen-Tsen Yeh
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Han-Wen Chang
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Wen-Hsin Hsu
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Meng-Hsin Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Ling-Hsien Tu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Ming-Che Lee
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
6
|
Chiang W, Urban JM, Yanchik-Slade F, Stout A, Nilsson BL, Gelbard HA, Krauss TD. Hybrid Amyloid Quantum Dot Nanoassemblies to Probe Neuroinflammatory Damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555592. [PMID: 37693630 PMCID: PMC10491264 DOI: 10.1101/2023.08.30.555592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Various oligomeric species of amyloid-beta have been proposed to play different immunogenic roles in the cellular pathology of Alzheimer's Disease. However, investigating the role of a homogenous single oligomeric species has been difficult due to highly dynamic oligomerization and fibril formation kinetics that convert between many species. Here we report the design and construction of a quantum dot mimetic for larger spherical oligomeric amyloid species as an "endogenously" fluorescent proxy for this cytotoxic species to investigate its role in inducing inflammatory and stress response states in neuronal and glial cell types.
Collapse
Affiliation(s)
- Wesley Chiang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642
| | - Jennifer M. Urban
- Department of Chemistry, Rochester, New York 14627-0216, United States
| | | | - Angela Stout
- Center for Neurotherapeutics Discovery and Department of Neurology, University of Rochester Medical Center, Rochester, NY, 14642
| | | | - Harris A. Gelbard
- Center for Neurotherapeutics Discovery and Department of Neurology, University of Rochester Medical Center, Rochester, NY, 14642
- Departments of Pediatrics, Neuroscience, and Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642
| | - Todd D. Krauss
- Department of Chemistry, Rochester, New York 14627-0216, United States
- The Institute of Optics, Rochester, New York 14627-0216, United States
| |
Collapse
|
7
|
Kavungal D, Magalhães P, Kumar ST, Kolla R, Lashuel HA, Altug H. Artificial intelligence-coupled plasmonic infrared sensor for detection of structural protein biomarkers in neurodegenerative diseases. SCIENCE ADVANCES 2023; 9:eadg9644. [PMID: 37436975 PMCID: PMC10337894 DOI: 10.1126/sciadv.adg9644] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Diagnosis of neurodegenerative disorders (NDDs) including Parkinson's disease and Alzheimer's disease is challenging owing to the lack of tools to detect preclinical biomarkers. The misfolding of proteins into oligomeric and fibrillar aggregates plays an important role in the development and progression of NDDs, thus underscoring the need for structural biomarker-based diagnostics. We developed an immunoassay-coupled nanoplasmonic infrared metasurface sensor that detects proteins linked to NDDs, such as alpha-synuclein, with specificity and differentiates the distinct structural species using their unique absorption signatures. We augmented the sensor with an artificial neural network enabling unprecedented quantitative prediction of oligomeric and fibrillar protein aggregates in their mixture. The microfluidic integrated sensor can retrieve time-resolved absorbance fingerprints in the presence of a complex biomatrix and is capable of multiplexing for the simultaneous monitoring of multiple pathology-associated biomarkers. Thus, our sensor is a promising candidate for the clinical diagnosis of NDDs, disease monitoring, and evaluation of novel therapies.
Collapse
Affiliation(s)
- Deepthy Kavungal
- Bionanophotonic Systems Laboratory, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Pedro Magalhães
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Senthil T. Kumar
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Rajasekhar Kolla
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Hatice Altug
- Bionanophotonic Systems Laboratory, Institute of Bioengineering, School of Engineering, EPFL, Lausanne, Switzerland
| |
Collapse
|
8
|
Jeon J, Yau WM, Tycko R. Early events in amyloid-β self-assembly probed by time-resolved solid state NMR and light scattering. Nat Commun 2023; 14:2964. [PMID: 37221174 DOI: 10.1038/s41467-023-38494-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Self-assembly of amyloid-β peptides leads to oligomers, protofibrils, and fibrils that are likely instigators of neurodegeneration in Alzheimer's disease. We report results of time-resolved solid state nuclear magnetic resonance (ssNMR) and light scattering experiments on 40-residue amyloid-β (Aβ40) that provide structural information for oligomers that form on time scales from 0.7 ms to 1.0 h after initiation of self-assembly by a rapid pH drop. Low-temperature ssNMR spectra of freeze-trapped intermediates indicate that β-strand conformations within and contacts between the two main hydrophobic segments of Aβ40 develop within 1 ms, while light scattering data imply a primarily monomeric state up to 5 ms. Intermolecular contacts involving residues 18 and 33 develop within 0.5 s, at which time Aβ40 is approximately octameric. These contacts argue against β-sheet organizations resembling those found previously in protofibrils and fibrils. Only minor changes in the Aβ40 conformational distribution are detected as larger assemblies develop.
Collapse
Affiliation(s)
- Jaekyun Jeon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland/National Institute of Standards and Technology, Rockville, MD, 20850, USA
| | - Wai-Ming Yau
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
9
|
Kim JR. Oligomerization by co-assembly of β-amyloid and α-synuclein. Front Mol Biosci 2023; 10:1153839. [PMID: 37021111 PMCID: PMC10067735 DOI: 10.3389/fmolb.2023.1153839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Aberrant self-assembly of an intrinsically disordered protein is a pathological hallmark of protein misfolding diseases, such as Alzheimer's and Parkinson's diseases (AD and PD, respectively). In AD, the 40-42 amino acid-long extracellular peptide, β-amyloid (Aβ), self-assembles into oligomers, which eventually aggregate into fibrils. A similar self-association of the 140 amino acid-long intracellular protein, α-synuclein (αS), is responsible for the onset of PD pathology. While Aβ and αS are primarily extracellular and intracellular polypeptides, respectively, there is evidence of their colocalization and pathological overlaps of AD and PD. This evidence has raised the likelihood of synergistic, toxic protein-protein interactions between Aβ and αS. This mini review summarizes the findings of studies on Aβ-αS interactions related to enhanced oligomerization via co-assembly, aiming to provide a better understanding of the complex biology behind AD and PD and common pathological mechanisms among the major neurodegenerative diseases.
Collapse
|
10
|
Zhang N, Yan C, Yin C, Hu X, Guan P, Cheng Y. Structural Remodeling Mechanism of the Toxic Amyloid Fibrillary Mediated by Epigallocatechin-3-gallate. ACS OMEGA 2022; 7:48047-48058. [PMID: 36591187 PMCID: PMC9798747 DOI: 10.1021/acsomega.2c05995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Numerous therapeutic agents and strategies were designed targeting the therapies of Alzheimer's disease, but many have been suspended due to their severe clinical side effects (such as encephalopathy) on patients. The attractiveness for small molecules with good biocompatibility is therefore restarted. Epigallocatechin-3-gallate (EGCG), extracted from green tea, is expected to be a promising small-molecule drug candidate, which can remodel the structure of preformed β-sheet-rich oligomers/fibrils and then effectively interfere with neurodegenerative processes. However, as the structure of non-fibrillary aggregates cannot be directly characterized, the atomic details of the underlying inhibitory and destructive mechanisms still remain elusive to date. Here, all-atom molecular dynamics simulations and experiments were carried out to elucidate the EGCG-induced remodeling mechanism of amyloid β (Aβ) fibrils. We showed that EGCG was indeed an effective Aβ fibril inhibitor. EGCG was capable of mediating conformational rearrangement of Aβ1-42 fibrils (from a β-sheet to a random coil structure) and triggering the disintegration of fibrils in a dose-dependent manner. EGCG redirected the structure of Aβ by breaking the β-sheet structure and hydrogen bonds between peptide chains within the Aβ protofibrils, especially the parallel β-strand (L17VFFAEDVGS26). Moreover, reduced solvent exposure and multisite binding patterns all tended to induce the conformation conversion of Aβ17-42 pentameric protofibrils, destroying pre-formed fibrils and inhibiting continued fibril growth. Detailed data analysis revealed that structural features of EGCG with abundant benzene ring and phenolic hydroxyl moieties preferentially interact with the parallel β-strands to effectually hinder the interaction of the interpeptide chain and the growth of the ordered β-sheet structure. Furthermore, experimental studies confirmed that EGCG was able to disaggregate the preformed fibrils and alter the protein structure. This study will enable a deeper understanding of fundamental principles for design of structural-based inhibitors.
Collapse
Affiliation(s)
- Nan Zhang
- School
of Chemistry and Chemical Engineering, Xi’an
University of Science and Technology, Xi’an 710054, China
| | - Chaoren Yan
- School
of Medicine, Key Laboratory for Molecular Genetic Mechanisms and Intervention
Research on High Altitude Disease of Tibet Autonomous Region, Xizang Minzu University, Xianyang 712082, China
| | - Changji Yin
- Monash
Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, China
- Department
of Materials Science and Engineering, Monash
University, Melbourne 3800, Victoria, Australia
| | - Xiaoling Hu
- School
of Chemistry and Chemical Engineering, Northwestern
Polytechnical University, Xi’an 710072, China
| | - Ping Guan
- School
of Chemistry and Chemical Engineering, Northwestern
Polytechnical University, Xi’an 710072, China
| | - Yuan Cheng
- Monash
Suzhou Research Institute, Monash University, Suzhou Industrial Park, Suzhou 215000, China
- Department
of Materials Science and Engineering, Monash
University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
11
|
Shi JM, Li HY, Liu H, Zhu L, Guo YB, Pei J, An H, Li YS, Li SD, Zhang ZY, Zheng Y. N-terminal Domain of Amyloid-β Impacts Fibrillation and Neurotoxicity. ACS OMEGA 2022; 7:38847-38855. [PMID: 36340079 PMCID: PMC9631750 DOI: 10.1021/acsomega.2c04583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease is characterized by the presence of distinct amyloid-β peptide (Aβ) assemblies with diverse sizes, shapes, and toxicity. However, the primary determinants of Aβ aggregation and neurotoxicity remain unknown. Here, the N-terminal amino acid residues of Aβ42 that distinguished between humans and rats were substituted. The effects of these modifications on the ability of Aβ to aggregate and its neurotoxicity were investigated using biochemical, biophysical, and cellular techniques. The Aβ-derived diffusible ligand, protofibrils, and fibrils formed by the N-terminal mutational peptides, including Aβ42(R5G), Aβ42(Y10F), and rat Aβ42, were indistinguishable by conventional techniques such as size-exclusion chromatography, negative-staining transmission electron microscopy and silver staining, whereas the amyloid fibrillation detected by thioflavin T assay was greatly inhibited in vitro. Using circular dichroism spectroscopy, we discovered that both Aβ42 and Aβ42(Y10F) generated protofibrils and fibrils with a high proportion of parallel β-sheet structures. Furthermore, protofibrils formed by other mutant Aβ peptides and N-terminally shortened peptides were incapable of inducing neuronal death, with the exception of Aβ42 and Aβ42(Y10F). Our findings indicate that the N-terminus of Aβ is important for its fibrillation and neurotoxicity.
Collapse
Affiliation(s)
- Jing-Ming Shi
- Key
Laboratory for Molecular Genetic Mechanisms and Intervention Research
on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Hai-Yun Li
- Department
of Biochemistry and Molecular Biology, School of Basic Medicine, Xi’an Jiaotong University, Xi’an 710061, China
| | - Hang Liu
- Key
Laboratory for Molecular Genetic Mechanisms and Intervention Research
on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Li Zhu
- School
of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yi-Bo Guo
- Key
Laboratory for Molecular Genetic Mechanisms and Intervention Research
on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Jie Pei
- Lanzhou
Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Hao An
- School
of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yan-Song Li
- Key
Laboratory for Molecular Genetic Mechanisms and Intervention Research
on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Sha-Di Li
- Key
Laboratory for Molecular Genetic Mechanisms and Intervention Research
on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Ze-Yu Zhang
- Key
Laboratory for Molecular Genetic Mechanisms and Intervention Research
on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China
| | - Yi Zheng
- School
of Medicine, University of Electronic Science
and Technology of China, Chengdu 610054, China
| |
Collapse
|
12
|
Utomo RY, Okada S, Sumiyoshi A, Aoki I, Nakamura H. Development of an MRI contrast agent for both detection and inhibition of the amyloid-β fibrillation process. RSC Adv 2022; 12:5027-5030. [PMID: 35425501 PMCID: PMC8981495 DOI: 10.1039/d2ra00614f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
A curcumin derivative conjugated with Gd-DO3A (Gd-DO3A-Comp.B) was synthesised as an MRI contrast agent for detecting the amyloid-β (Aβ) fibrillation process. Gd-DO3A-Comp.B inhibited Aβ aggregation significantly and detected the fibril growth at 20 μM of Aβ with 10 μM of probe concentration by T1-weighted MR imaging. A curcumin derivative conjugated with Gd-DO3A (Gd-DO3A-Comp.B) was developed to significantly inhibit the amyloid-β (Aβ) aggregation and detect the fibril growth by T1-weighted MR imaging.![]()
Collapse
Affiliation(s)
- Rohmad Yudi Utomo
- School of Life Science and Technology, Tokyo Institute of Technology 4259 Nagatsuta, Midori Yokohama Kanagawa 226-8503 Japan
| | - Satoshi Okada
- School of Life Science and Technology, Tokyo Institute of Technology 4259 Nagatsuta, Midori Yokohama Kanagawa 226-8503 Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori Yokohama Kanagawa 226-8503 Japan .,JST, PRESTO 4259 Nagatsuta, Midori Yokohama Kanagawa 226-8503 Japan
| | - Akira Sumiyoshi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage Chiba 263-8555 Japan
| | - Ichio Aoki
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology 4-9-1 Anagawa, Inage Chiba 263-8555 Japan
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology 4259 Nagatsuta, Midori Yokohama Kanagawa 226-8503 Japan.,Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology 4259 Nagatsuta, Midori Yokohama Kanagawa 226-8503 Japan
| |
Collapse
|
13
|
Chang HW, Ma HI, Wu YS, Lee MC, Chung-Yueh Yuan E, Huang SJ, Cheng YS, Wu MH, Tu LH, Chan JCC. Site specific NMR characterization of abeta-40 oligomers cross seeded by abeta-42 oligomers. Chem Sci 2022; 13:8526-8535. [PMID: 35974768 PMCID: PMC9337746 DOI: 10.1039/d2sc01555b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/12/2022] [Indexed: 12/18/2022] Open
Abstract
Extracellular accumulation of β amyloid peptides of 40 (Aβ40) and 42 residues (Aβ42) has been considered as one of the hallmarks in the pathology of Alzheimer's disease. In this work, we are able to prepare oligomeric aggregates of Aβ with uniform size and monomorphic structure. Our experimental design is to incubate Aβ peptides in reverse micelles (RMs) so that the peptides could aggregate only through a single nucleation process and the size of the oligomers is confined by the physical dimension of the reverse micelles. The hence obtained Aβ oligomers (AβOs) are 23 nm in diameter and they belong to the category of high molecular-weight (MW) oligomers. The solid-state NMR data revealed that Aβ40Os adopt the structural motif of β-loop-β but the chemical shifts manifested that they may be structurally different from low-MW AβOs and mature fibrils. From the thioflavin-T results, we found that high-MW Aβ42Os can accelerate the fibrillization of Aβ40 monomers. Our protocol allows performing cross-seeding experiments among oligomeric species. By comparing the chemical shifts of Aβ40Os cross seeded by Aβ42Os and those of Aβ40Os prepared in the absence of Aβ42Os, we observed that the chemical states of E11, K16, and E22 were altered, whereas the backbone conformation of the β-sheet region near the C-terminus was structurally invariant. The use of reverse micelles allows hitherto the most detailed characterization of the structural variability of Aβ40Os. Extracellular accumulation of β amyloid peptides of 40 (Aβ40) and 42 residues (Aβ42) has been considered as one of the hallmarks in the pathology of Alzheimer's disease.![]()
Collapse
Affiliation(s)
- Han-Wen Chang
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ho-I. Ma
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yi-Shan Wu
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ming-Che Lee
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Eric Chung-Yueh Yuan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yu-Sheng Cheng
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Meng-Hsin Wu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Ling-Hsien Tu
- Department of Chemistry, National Taiwan Normal University, No. 88, Section 4, Ting-Chow Road, Taipei, 11677, Taiwan
| | - Jerry Chun Chung Chan
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
14
|
Yudi Utomo R, Asawa Y, Okada S, Ban HS, Yoshimori A, Bajorath J, Nakamura H. Development of curcumin-based amyloid β aggregation inhibitors for Alzheimer's disease using the SAR matrix approach. Bioorg Med Chem 2021; 46:116357. [PMID: 34391121 DOI: 10.1016/j.bmc.2021.116357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 02/09/2023]
Abstract
Amyloid β (Aβ) aggregation inhibitor activity cliff involving a curcumin structure was predicted using the SAR Matrix method on the basis of 697 known Aβ inhibitors from ChEMBL (data set 2487). Among the compounds predicted, compound B was found to possess approximately 100 times higher inhibitory activity toward Aβ aggregation than curcumin. TEM images indicate that compound B induced the shortening of Aβ fibrils and increased the generation of Aβ oligomers in a concentration dependent manner. Furthermore, compound K, in which the methyl ester of compound B was replaced by the tert-butyl ester, possessed low cytotoxicity on N2A cells and attenuated Aβ-induced cytotoxicity, indicating that compound K would have an ability for preventing neurotoxicity caused by Aβ aggregation.
Collapse
Affiliation(s)
- Rohmad Yudi Utomo
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta‑cho, Midori‑ku, Yokohama 226‑8501, Japan
| | - Yasunobu Asawa
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta‑cho, Midori‑ku, Yokohama 226‑8501, Japan
| | - Satoshi Okada
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta‑cho, Midori‑ku, Yokohama 226‑8501, Japan; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta‑cho, Midori‑ku, Yokohama 226‑8503, Japan
| | - Hyun Seung Ban
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, South Korea
| | - Atsushi Yoshimori
- Institute for Theoretical Medicine, Inc., 26‑1, Muraoka‑Higashi 2‑chome, Fujisawa, Kanagawa 251‑0012, Japan
| | - Jürgen Bajorath
- Department of Life Science Informatics, B‑IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität Friedrich-Hirzebruch-Allee 6, 53115 Bonn, Germany
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta‑cho, Midori‑ku, Yokohama 226‑8501, Japan; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta‑cho, Midori‑ku, Yokohama 226‑8503, Japan.
| |
Collapse
|
15
|
Sun Y, Kakinen A, Wan X, Moriarty N, Hunt CP, Li Y, Andrikopoulos N, Nandakumar A, Davis TP, Parish CL, Song Y, Ke PC, Ding F. Spontaneous Formation of β-sheet Nano-barrels during the Early Aggregation of Alzheimer's Amyloid Beta. NANO TODAY 2021; 38:101125. [PMID: 33936250 PMCID: PMC8081394 DOI: 10.1016/j.nantod.2021.101125] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Soluble low-molecular-weight oligomers formed during the early aggregation of amyloid peptides have been hypothesized as a major toxic species of amyloidogenesis. Herein, we performed the first synergic in silico, in vitro and in vivo validations of the structure, dynamics and toxicity of Aβ42 oligomers. Aβ peptides readily assembled into β-rich oligomers comprised of extended β-hairpins and β-strands. Nanosized β-barrels were observed with certainty with simulations, transmission electron microscopy and Fourier transform infrared spectroscopy, corroborated by immunohistochemistry, cell viability, apoptosis, inflammation, autophagy and animal behavior assays. Secondary and tertiary structural proprieties of these oligomers, such as the sequence regions with high β-sheet propensities and inter-residue contact frequency patterns, were similar to the properties known for Aβ fibrils. The unambiguous spontaneous formation of β-barrels in the early aggregation of Aβ42 supports their roles as the common toxic intermediates in Alzheimer's pathobiology and a target for Alzheimer's therapeutics.
Collapse
Affiliation(s)
- Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Address correspondence to: Yunxiang Sun: ; Yang Song: ; Pu Chun Ke: ; Feng Ding:
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Xulin Wan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Niamh Moriarty
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville VIC 3052, Australia
| | - Cameron P.J. Hunt
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville VIC 3052, Australia
| | - Yuhuan Li
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, 200032, China
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Nicholas Andrikopoulos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aparna Nandakumar
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Thomas P. Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Clare L. Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville VIC 3052, Australia
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Address correspondence to: Yunxiang Sun: ; Yang Song: ; Pu Chun Ke: ; Feng Ding:
| | - Pu Chun Ke
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Address correspondence to: Yunxiang Sun: ; Yang Song: ; Pu Chun Ke: ; Feng Ding:
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Address correspondence to: Yunxiang Sun: ; Yang Song: ; Pu Chun Ke: ; Feng Ding:
| |
Collapse
|
16
|
Structural details of amyloid β oligomers in complex with human prion protein as revealed by solid-state MAS NMR spectroscopy. J Biol Chem 2021; 296:100499. [PMID: 33667547 PMCID: PMC8042448 DOI: 10.1016/j.jbc.2021.100499] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Human PrP (huPrP) is a high-affinity receptor for oligomeric amyloid β (Aβ) protein aggregates. Binding of Aβ oligomers to membrane-anchored huPrP has been suggested to trigger neurotoxic cell signaling in Alzheimer’s disease, while an N-terminal soluble fragment of huPrP can sequester Aβ oligomers and reduce their toxicity. Synthetic oligomeric Aβ species are known to be heterogeneous, dynamic, and transient, rendering their structural investigation particularly challenging. Here, using huPrP to preserve Aβ oligomers by coprecipitating them into large heteroassemblies, we investigated the conformations of Aβ(1–42) oligomers and huPrP in the complex by solid-state MAS NMR spectroscopy. The disordered N-terminal region of huPrP becomes immobilized in the complex and therefore visible in dipolar spectra without adopting chemical shifts characteristic of a regular secondary structure. Most of the well-defined C-terminal part of huPrP is part of the rigid complex, and solid-state NMR spectra suggest a loss in regular secondary structure in the two C-terminal α-helices. For Aβ(1–42) oligomers in complex with huPrP, secondary chemical shifts reveal substantial β-strand content. Importantly, not all Aβ(1–42) molecules within the complex have identical conformations. Comparison with the chemical shifts of synthetic Aβ fibrils suggests that the Aβ oligomer preparation represents a heterogeneous mixture of β-strand-rich assemblies, of which some have the potential to evolve and elongate into different fibril polymorphs, reflecting a general propensity of Aβ to adopt variable β-strand-rich conformers. Taken together, our results reveal structural changes in huPrP upon binding to Aβ oligomers that suggest a role of the C terminus of huPrP in cell signaling. Trapping Aβ(1–42) oligomers by binding to huPrP has proved to be a useful tool for studying the structure of these highly heterogeneous β-strand-rich assemblies.
Collapse
|
17
|
Rivera-Marrero S, Bencomo-Martínez A, Orta Salazar E, Sablón-Carrazana M, García-Pupo L, Zoppolo F, Arredondo F, Dapueto R, Daniela Santi M, Kreimerman I, Pardo T, Reyes L, Galán L, León-Chaviano S, Espinosa-Rodríguez LA, Menéndez-Soto Del Valle R, Savio E, Díaz Cintra S, Rodríguez-Tanty C. A new naphthalene derivative with anti-amyloidogenic activity as potential therapeutic agent for Alzheimer's disease. Bioorg Med Chem 2020; 28:115700. [PMID: 33069076 DOI: 10.1016/j.bmc.2020.115700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 11/24/2022]
Abstract
The aggregation of β-amyloid peptides is associated to neurodegeneration in Alzheimer's disease (AD) patients. Consequently, the inhibition of both oligomerization and fibrillation of β-amyloid peptides is considered a plausible therapeutic approach for AD. Herein, the synthesis of new naphthalene derivatives and their evaluation as anti-β-amyloidogenic agents are presented. Molecular dynamic simulations predicted the formation of thermodynamically stable complexes between the compounds, the Aβ1-42 peptide and fibrils. In human microglia cells, these compounds inhibited the aggregation of Aβ1-42 peptide. The lead compound 8 showed a high affinity to amyloid plaques in mice brain ex vivo assays and an adequate log Poct/PBS value. Compound 8 also improved the cognitive function and decreased hippocampal β-amyloid burden in the brain of 3xTg-AD female mice. Altogether, our results suggest that 8 could be a novel therapeutic agent for AD.
Collapse
Affiliation(s)
- Suchitil Rivera-Marrero
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Alberto Bencomo-Martínez
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Erika Orta Salazar
- Institute of Neurobiology (INB), Developmental Neurobiology and Neurophysiology, UNAM Juriquilla Querétaro, Mexico
| | - Marquiza Sablón-Carrazana
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Laura García-Pupo
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Florencia Zoppolo
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Florencia Arredondo
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Rosina Dapueto
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - María Daniela Santi
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Ingrid Kreimerman
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Tania Pardo
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Laura Reyes
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Lídice Galán
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Samila León-Chaviano
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Luis A Espinosa-Rodríguez
- Center of Genetic Engineering and Biotechnology (CIGB), Ave 31 e/ 158 and 190, Havana, CP10600, Cuba
| | - Roberto Menéndez-Soto Del Valle
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Eduardo Savio
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Sofía Díaz Cintra
- Institute of Neurobiology (INB), Developmental Neurobiology and Neurophysiology, UNAM Juriquilla Querétaro, Mexico.
| | - Chryslaine Rodríguez-Tanty
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba.
| |
Collapse
|
18
|
Kaur A, Kaur A, Goyal D, Goyal B. How Does the Mono-Triazole Derivative Modulate Aβ 42 Aggregation and Disrupt a Protofibril Structure: Insights from Molecular Dynamics Simulations. ACS OMEGA 2020; 5:15606-15619. [PMID: 32637837 PMCID: PMC7331201 DOI: 10.1021/acsomega.0c01825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/08/2020] [Indexed: 05/31/2023]
Abstract
Clinical studies have identified that abnormal self-assembly of amyloid-β (Aβ) peptide into toxic fibrillar aggregates is associated with the pathology of Alzheimer's disease (AD). The most acceptable therapeutic approach to stop the progression of AD is to inhibit the formation of β-sheet-rich structures. Recently, we designed and evaluated a series of novel mono-triazole derivatives 4(a-x), where compound 4v was identified as the most potent inhibitor of Aβ42 aggregation and disaggregates preformed Aβ42 fibrils significantly. Moreover, 4v strongly averts the Cu2+-induced Aβ42 aggregation and disaggregates the preformed Cu2+-induced Aβ42 fibrils, halts the generation of reactive oxygen species, and shows neuroprotective effects in SH-SY5Y cells. However, the underlying molecular mechanism of inhibition of Aβ42 aggregation by 4v and disaggregation of preformed Aβ42 fibrils remains obscure. In this work, molecular dynamics (MD) simulations have been performed to explore the conformational ensemble of the Aβ42 monomer and a pentameric protofibril structure of Aβ42 in the presence of 4v. The MD simulations highlighted that 4v binds preferentially at the central hydrophobic core region of the Aβ42 monomer and chains D and E of the Aβ42 protofibril. The dictionary of secondary structure of proteins analysis indicated that 4v retards the conformational conversion of the helix-rich structure of the Aβ42 monomer into the aggregation-prone β-sheet conformation. The binding free energy calculated by the molecular mechanics Poisson-Boltzmann surface area method revealed an energetically favorable process with ΔG binding = -44.9 ± 3.3 kcal/mol for the Aβ42 monomer-4v complex. The free energy landscape analysis highlighted that the Aβ42 monomer-4v complex sampled conformations with significantly higher helical contents (35 and 49%) as compared to the Aβ42 monomer alone (17%). Compound 4v displayed hydrogen bonding with Gly37 (chain E) and π-π interactions with Phe19 (chain D) of the Aβ42 protofibril. Further, the per-residue binding free energy analysis also highlighted that Phe19 (chain D) and Gly37 (chain E) of the Aβ42 protofibril showed the maximum contribution in the binding free energy. The decreased binding affinity and residue-residue contacts between chains D and E of the Aβ42 protofibril in the presence of 4v indicate destabilization of the Aβ42 protofibril structure. Overall, the structural information obtained through MD simulations indicated that 4v stabilizes the native helical conformation of the Aβ42 monomer and persuades a destabilization in the protofibril structure of Aβ42. The results of the study will be useful in the rational design of potent inhibitors against amyloid aggregation.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department
of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Anupamjeet Kaur
- Department
of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Deepti Goyal
- Department
of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Bhupesh Goyal
- School
of Chemistry & Biochemistry, Thapar
Institute of Engineering & Technology, Patiala 147004, Punjab, India
| |
Collapse
|
19
|
Gao Y, Guo C, Watzlawik JO, Randolph PS, Lee EJ, Huang D, Stagg SM, Zhou HX, Rosenberry TL, Paravastu AK. Out-of-Register Parallel β-Sheets and Antiparallel β-Sheets Coexist in 150-kDa Oligomers Formed by Amyloid-β(1-42). J Mol Biol 2020; 432:4388-4407. [PMID: 32470558 DOI: 10.1016/j.jmb.2020.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
We present solid-state NMR measurements of β-strand secondary structure and inter-strand organization within a 150-kDa oligomeric aggregate of the 42-residue variant of the Alzheimer's amyloid-β peptide (Aβ(1-42)). We build upon our previous report of a β-strand spanned by residues 30-42, which arranges into an antiparallel β-sheet. New results presented here indicate that there is a second β-strand formed by residues 11-24. Contrary to expectations, NMR data indicate that this second β-strand is organized into a parallel β-sheet despite the co-existence of an antiparallel β-sheet in the same structure. In addition, the in-register parallel β-sheet commonly observed for amyloid fibril structure does not apply to residues 11-24 in the 150-kDa oligomer. Rather, we present evidence for an inter-strand registry shift of three residues that likely alternate in direction between adjacent molecules along the β-sheet. We corroborated this unexpected scheme for β-strand organization using multiple two-dimensional NMR and 13C-13C dipolar recoupling experiments. Our findings indicate a previously unknown assembly pathway and inspire a suggestion as to why this aggregate does not grow to larger sizes.
Collapse
Affiliation(s)
- Yuan Gao
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, Shanghai University, 99 Shangda Road, Shanghai, China
| | - Jens O Watzlawik
- Departments of Neuroscience and Pharmacology, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Peter S Randolph
- Institute of Molecular Biophysics, Florida State University, Tallahasse, FL 32306, USA
| | - Elizabeth J Lee
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Danting Huang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Scott M Stagg
- Institute of Molecular Biophysics, Florida State University, Tallahasse, FL 32306, USA; Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Huan-Xiang Zhou
- Department of Chemistry and Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Terrone L Rosenberry
- Departments of Neuroscience and Pharmacology, Mayo Clinic College of Medicine, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, GA 30332, USA.
| |
Collapse
|
20
|
Conformational Characterization of Native and L17A/F19A-Substituted Dutch-Type β-Amyloid Peptides. Int J Mol Sci 2020; 21:ijms21072571. [PMID: 32272787 PMCID: PMC7177254 DOI: 10.3390/ijms21072571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 01/26/2023] Open
Abstract
Some mutations which occur in the α/β-discordant region (resides 15 to 23) of β-amyloid peptide (Aβ) lead to familial Alzheimer’s disease (FAD). In vitro studies have shown that these genetic mutations could accelerate Aβ aggregation. We recently showed that mutations in this region could alter the structural propensity, resulting in a different aggregative propensity of Aβ. Whether these genetic mutations display similar effects remains largely unknown. Here, we characterized the structural propensity and aggregation kinetics of Dutch-type Aβ40 (Aβ40(E22Q)) and its L17A/F19A-substituted mutant (Aβ40(L17A/F19A/E22Q)) using circular dichroism spectroscopy, nuclear magnetic spectroscopy, and thioflavin T fluorescence assay. In comparison with wild-type Aβ40, we found that Dutch-type mutation, unlike Artic-type mutation (E22G), does not reduce the α-helical propensity of the α/β-discordant region in sodium dodecyl sulfate micellar solution. Moreover, we found that Aβ40(L17A/F19A/E22Q) displays a higher α-helical propensity of the α/β-discordant region and a slower aggregation rate than Aβ40(E22Q), suggesting that the inhibition of aggregation might be via increasing the α-helical propensity of the α/β-discordant region, similar to that observed in wild-type and Artic-type Aβ40. Taken together, Dutch-type and Artic-type mutations adopt different mechanisms to promote Aβ aggregation, however, the L17A/F19A mutation could increase the α-helical propensities of both Dutch-type and Artic-type Aβ40 and inhibit their aggregation.
Collapse
|
21
|
Penke B, Szűcs M, Bogár F. Oligomerization and Conformational Change Turn Monomeric β-Amyloid and Tau Proteins Toxic: Their Role in Alzheimer's Pathogenesis. Molecules 2020; 25:molecules25071659. [PMID: 32260279 PMCID: PMC7180792 DOI: 10.3390/molecules25071659] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
The structural polymorphism and the physiological and pathophysiological roles of two important proteins, β-amyloid (Aβ) and tau, that play a key role in Alzheimer's disease (AD) are reviewed. Recent results demonstrate that monomeric Aβ has important physiological functions. Toxic oligomeric Aβ assemblies (AβOs) may play a decisive role in AD pathogenesis. The polymorph fibrillar Aβ (fAβ) form has a very ordered cross-β structure and is assumed to be non-toxic. Tau monomers also have several important physiological actions; however, their oligomerization leads to toxic oligomers (TauOs). Further polymerization results in probably non-toxic fibrillar structures, among others neurofibrillary tangles (NFTs). Their structure was determined by cryo-electron microscopy at atomic level. Both AβOs and TauOs may initiate neurodegenerative processes, and their interactions and crosstalk determine the pathophysiological changes in AD. TauOs (perhaps also AβO) have prionoid character, and they may be responsible for cell-to-cell spreading of the disease. Both extra- and intracellular AβOs and TauOs (and not the previously hypothesized amyloid plaques and NFTs) may represent the novel targets of AD drug research.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
- Correspondence:
| | - Mária Szűcs
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|