1
|
Das D, Ainavarapu SRK. Protein engineering using circular permutation - structure, function, stability, and applications. FEBS J 2024; 291:3581-3596. [PMID: 38676939 DOI: 10.1111/febs.17146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/13/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
Protein engineering is important for creating novel variants from natural proteins, enabling a wide range of applications. Approaches such as rational design and directed evolution are routinely used to make new protein variants. Computational tools like de novo design can introduce new protein folds. Expanding the amino acid repertoire to include unnatural amino acids with non-canonical side chains in vitro by native chemical ligation and in vivo via codon expansion methods broadens sequence and structural possibilities. Circular permutation (CP) is an invaluable approach to redesigning a protein by rearranging the amino acid sequence, where the connectivity of the secondary structural elements is altered without changing the overall structure of the protein. Artificial CP proteins (CPs) are employed in various applications such as biocatalysis, sensing of small molecules by fluorescence, genome editing, ligand-binding protein switches, and optogenetic engineering. Many studies have shown that CP can lead to either reduced or enhanced stability or catalytic efficiency. The effects of CP on a protein's energy landscape cannot be predicted a priori. Thus, it is important to understand how CP can affect the thermodynamic and kinetic stability of a protein. In this review, we discuss the discovery and advancement of techniques to create protein CP, and existing reviews on CP. We delve into the plethora of biological applications for designed CP proteins. We subsequently discuss the experimental and computational reports on the effects of CP on the thermodynamic and kinetic stabilities of proteins of various topologies. An understanding of the various aspects of CP will allow the reader to design robust CP proteins for their specific purposes.
Collapse
Affiliation(s)
- Debanjana Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | |
Collapse
|
2
|
Asakereh I, Rutbeek NR, Singh M, Davidson D, Prehna G, Khajehpour M. The Streptococcus phage protein paratox is an intrinsically disordered protein. Protein Sci 2024; 33:e5037. [PMID: 38801244 PMCID: PMC11129628 DOI: 10.1002/pro.5037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024]
Abstract
The bacteriophage protein paratox (Prx) blocks quorum sensing in its streptococcal host by directly binding the signal receptor and transcription factor ComR. This reduces the ability of Streptococcus to uptake environmental DNA and protects phage DNA from damage by recombination. Past work characterizing the Prx:ComR molecular interaction revealed that paratox adopts a well-ordered globular fold when bound to ComR. However, solution-state biophysical measurements suggested that Prx may be conformationally dynamic. To address this discrepancy, we investigated the stability and dynamic properties of Prx in solution using circular dichroism, nuclear magnetic resonance, and several fluorescence-based protein folding assays. Our work shows that under dilute buffer conditions Prx is intrinsically disordered. We also show that the addition of kosmotropic salts or protein stabilizing osmolytes induces Prx folding. However, the solute stabilized fold is different from the conformation Prx adopts when it is bound to ComR. Furthermore, we have characterized Prx folding thermodynamics and folding kinetics through steady-state fluorescence and stopped flow kinetic measurements. Our results show that Prx is a highly dynamic protein in dilute solution, folding and refolding within the 10 ms timescale. Overall, our results demonstrate that the streptococcal phage protein Prx is an intrinsically disordered protein in a two-state equilibrium with a solute-stabilized folded form. Furthermore, the solute-stabilized fold is likely the predominant form of Prx in a solute-crowded bacterial cell. Finally, our work suggests that Prx binds and inhibits ComR, and thus quorum sensing in Streptococcus, by a combination of conformational selection and induced-fit binding mechanisms.
Collapse
Affiliation(s)
- Iman Asakereh
- Department of ChemistryUniversity of ManitobaWinnipegManitobaCanada
| | - Nicole R. Rutbeek
- Department of MicrobiologyUniversity of ManitobaWinnipegManitobaCanada
| | - Manvir Singh
- Department of ChemistryUniversity of ManitobaWinnipegManitobaCanada
| | - David Davidson
- Department of ChemistryUniversity of ManitobaWinnipegManitobaCanada
| | - Gerd Prehna
- Department of MicrobiologyUniversity of ManitobaWinnipegManitobaCanada
| | | |
Collapse
|
3
|
Park C, Han B, Choi Y, Jin Y, Kim KP, Choi SI, Seong BL. RNA-dependent proteome solubility maintenance in Escherichia coli lysates analysed by quantitative mass spectrometry: Proteomic characterization in terms of isoelectric point, structural disorder, functional hub, and chaperone network. RNA Biol 2024; 21:1-18. [PMID: 38361426 PMCID: PMC10878026 DOI: 10.1080/15476286.2024.2315383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
Protein aggregation, a consequence of misfolding and impaired proteostasis, can lead to cellular malfunctions such as various proteinopathies. The mechanisms protecting proteins from aggregation in complex cellular environments have long been investigated, often from a protein-centric viewpoint. However, our study provides insights into a crucial, yet overlooked actor: RNA. We found that depleting RNAs from Escherichia coli lysates induces global protein aggregation. Our quantitative mass spectrometry analysis identified over 900 statistically significant proteins from the Escherichia coli proteome whose solubility depends on RNAs. Proteome-wide characterization showed that the RNA dependency is particularly enriched among acidic proteins, intrinsically disordered proteins, and structural hub proteins. Moreover, we observed distinct differences in RNA-binding mode and Gene Ontology categories between RNA-dependent acidic and basic proteins. Notably, the solubility of key molecular chaperones [Trigger factor, DnaJ, and GroES] is largely dependent on RNAs, suggesting a yet-to-be-explored hierarchical relationship between RNA-based chaperone (termed as chaperna) and protein-based chaperones, both of which constitute the whole chaperone network. These findings provide new insights into the RNA-centric role in maintaining healthy proteome solubility in vivo, where proteins associate with a variety of RNAs, either stably or transiently.
Collapse
Affiliation(s)
- Chan Park
- Department of Microbiology, College of Medicine, Yonsei University, Seoul, Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, Korea
| | - Bitnara Han
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Korea
| | - Yura Choi
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, Korea
- The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon, Korea
| | - Yoontae Jin
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, Korea
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Seong Il Choi
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Baik L. Seong
- Department of Microbiology, College of Medicine, Yonsei University, Seoul, Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, Korea
| |
Collapse
|
4
|
Györffy D, Závodszky P, Szilágyi A. A Kinetic Transition Network Model Reveals the Diversity of Protein Dimer Formation Mechanisms. Biomolecules 2023; 13:1708. [PMID: 38136580 PMCID: PMC10741920 DOI: 10.3390/biom13121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Protein homodimers have been classified as three-state or two-state dimers depending on whether a folded monomer forms before association, but the details of the folding-binding mechanisms are poorly understood. Kinetic transition networks of conformational states have provided insight into the folding mechanisms of monomeric proteins, but extending such a network to two protein chains is challenging as all the relative positions and orientations of the chains need to be included, greatly increasing the number of degrees of freedom. Here, we present a simplification of the problem by grouping all states of the two chains into two layers: a dissociated and an associated layer. We combined our two-layer approach with the Wako-Saito-Muñoz-Eaton method and used Transition Path Theory to investigate the dimer formation kinetics of eight homodimers. The analysis reveals a remarkable diversity of dimer formation mechanisms. Induced folding, conformational selection, and rigid docking are often simultaneously at work, and their contribution depends on the protein concentration. Pre-folded structural elements are always present at the moment of association, and asymmetric binding mechanisms are common. Our two-layer network approach can be combined with various methods that generate discrete states, yielding new insights into the kinetics and pathways of flexible binding processes.
Collapse
Affiliation(s)
- Dániel Györffy
- Systems Biology of Reproduction Research Group, Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary;
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083 Budapest, Hungary
| | - Péter Závodszky
- Structural Biophysics Research Group, Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary;
| | - András Szilágyi
- Systems Biology of Reproduction Research Group, Institute of Enzymology, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary;
| |
Collapse
|
5
|
Mori Y, Mizukami T, Segawa S, Roder H, Maki K. Folding of Staphylococcal Nuclease Induced by Binding of Chemically Modified Substrate Analogues Sheds Light on Mechanisms of Coupled Folding/Binding Reactions. Biochemistry 2023; 62:1670-1678. [PMID: 37227385 PMCID: PMC10583223 DOI: 10.1021/acs.biochem.3c00094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Several proteins have been shown to undergo a shift in the mechanism of ligand binding-induced folding from conformational selection (CS; folding precedes binding) to induced fit (IF; binding precedes folding) with increasing ligand concentration. In previous studies of the coupled folding/binding reaction of staphylococcal nuclease (SNase) in the presence of a substrate analogue, adenosine-3',5'-diphosphate (prAp), we found that the two phosphate groups make important energetic contributions toward stabilizing its complex with the native protein as well as transient conformational states encountered at high ligand concentrations favoring IF. However, the structural contributions of each phosphate group during the reaction remain unclear. To address this question, we relied on fluorescence, nuclear magnetic resonance (NMR), absorption, and isothermal titration calorimetry to study the effects of deletion of the phosphate groups of prAp on the kinetics of ligand-induced folding, using a strategy analogous to mutational ϕ-value analysis to interpret the results. Kinetic measurements over a wide range of ligand concentrations, together with structural characterization of a transient protein-ligand encounter complex using 2D NMR, indicated that, at high ligand concentrations favoring IF, (i) the 5'-phosphate group interacts weakly with denatured SNase during early stages of the reaction, resulting in loose docking of the two domains of SNase, and (ii) the 3'-phosphate group engages in some specific contacts with the polypeptide in the transition state prior to formation of the native SNase-prAp complex.
Collapse
Affiliation(s)
- Yujiro Mori
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Takuya Mizukami
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Saho Segawa
- School of Science, Nagoya University, Nagoya, Aichi, 464-8602 Japan
| | - Heinrich Roder
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Kosuke Maki
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
6
|
Zhang Y, Liu X, Chen J. Coupled binding and folding of disordered SPIN N-terminal region in myeloperoxidase inhibition. Front Mol Biosci 2023; 10:1130189. [PMID: 36845554 PMCID: PMC9948029 DOI: 10.3389/fmolb.2023.1130189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Gram-positive pathogenic bacteria Staphylococcus express and secret staphylococcal peroxidase inhibitor (SPIN) proteins to help evade neutrophil-mediated immunity by inhibiting the activity of the main oxidative-defense player myeloperoxidase (MPO) enzyme. SPIN contains a structured 3-helix bundle C-terminal domain, which can specifically bind to MPO with high affinity, and an intrinsically disordered N-terminal domain (NTD), which folds into a structured β-hairpin and inserts itself into the active site of MPO for inhibition. Mechanistic insights of the coupled folding and binding process are needed in order to better understand how residual structures and/or conformational flexibility of NTD contribute to the different strengths of inhibition of SPIN homologs. In this work, we applied atomistic molecular dynamics simulations on two SPIN homologs, from S. aureus and S. delphini, respectively, which share high sequence identity and similarity, to explore the possible mechanistic basis for their different inhibition efficacies on human MPO. Direct simulations of the unfolding and unbinding processes at 450 K reveal that these two SPIN/MPO complexes systems follow surprisingly different mechanisms of coupled binding and folding. While coupled binding and folding of SPIN-aureus NTD is highly cooperative, SPIN-delphini NTD appears to mainly utilize a conformational selection-like mechanism. These observations are in contrast to an overwhelming prevalence of induced folding-like mechanisms for intrinsically disordered proteins that fold into helical structures upon binding. Further simulations of unbound SPIN NTDs at room temperature reveal that SPIN-delphini NTD has a much stronger propensity of forming β-hairpin like structures, consistent with its preference to fold and then bind. These may help explain why the inhibition strength is not well correlated with binding affinity for different SPIN homologs. Altogether, our work establishes the relationship between the residual conformational stability of SPIN-NTD and their inhibitory function, which can help us develop new strategies towards treating Staphylococcal infections.
Collapse
Affiliation(s)
| | | | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
7
|
Does Generic Cyclic Kinase Insert Domain of Receptor Tyrosine Kinase KIT Clone Its Native Homologue? Int J Mol Sci 2022; 23:ijms232112898. [PMID: 36361689 PMCID: PMC9656684 DOI: 10.3390/ijms232112898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are modular membrane proteins possessing both well-folded and disordered domains acting together in ligand-induced activation and regulation of post-transduction processes that tightly couple extracellular and cytoplasmic events. They ensure the fine-turning control of signal transmission by signal transduction. Deregulation of RTK KIT, including overexpression and gain of function mutations, has been detected in several human cancers. In this paper, we analysed by in silico techniques the Kinase Insert Domain (KID), a key platform of KIT transduction processes, as a generic macrocycle (KIDGC), a cleaved isolated polypeptide (KIDC), and a natively fused TKD domain (KIDD). We assumed that these KID species have similar structural and dynamic characteristics indicating the intrinsically disordered nature of this domain. This finding means that both polypeptides, cyclic KIDGC and linear KIDC, are valid models of KID integrated into the RTK KIT and will be helpful for further computational and empirical studies of post-transduction KIT events.
Collapse
|
8
|
A modular approach to map out the conformational landscapes of unbound intrinsically disordered proteins. Proc Natl Acad Sci U S A 2022; 119:e2113572119. [PMID: 35658083 PMCID: PMC9191344 DOI: 10.1073/pnas.2113572119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceIntrinsically disordered proteins have the unique ability to morph in response to multiple partners and thereby process sophisticated inputs and outputs. It is, however, a mystery whether their response is passive, that is, entirely determined by the partner, or controlled via an internal, yet unknown, folding mechanism. Here we introduce an approach to examine this key question and demonstrate its potential by dissecting the conformational properties of the partially disordered protein NCBD and obtaining important clues about how it performs its biological function.
Collapse
|
9
|
Golla H, Kannan A, Gopi S, Murugan S, Perumalsamy LR, Naganathan AN. Structural-Energetic Basis for Coupling between Equilibrium Fluctuations and Phosphorylation in a Protein Native Ensemble. ACS CENTRAL SCIENCE 2022; 8:282-293. [PMID: 35233459 PMCID: PMC8880421 DOI: 10.1021/acscentsci.1c01548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The functioning of proteins is intimately tied to their fluctuations in the native ensemble. The structural-energetic features that determine fluctuation amplitudes and hence the shape of the underlying landscape, which in turn determine the magnitude of the functional output, are often confounded by multiple variables. Here, we employ the FF1 domain from human p190A RhoGAP protein as a model system to uncover the molecular basis for phosphorylation of a buried tyrosine, which is crucial to the transcriptional activity associated with transcription factor TFII-I. Combining spectroscopy, calorimetry, statistical-mechanical modeling, molecular simulations, and in vitro phosphorylation assays, we show that the FF1 domain samples a diverse array of conformations in its native ensemble, some of which are phosphorylation-competent. Upon eliminating unfavorable charge-charge interactions through a single charge-reversal (K53E) or charge-neutralizing (K53Q) mutation, we observe proportionately lower phosphorylation extents due to the altered structural coupling, damped equilibrium fluctuations, and a more compact native ensemble. We thus establish a conformational selection mechanism for phosphorylation in the FF1 domain with K53 acting as a "gatekeeper", modulating the solvent exposure of the buried tyrosine. Our work demonstrates the role of unfavorable charge-charge interactions in governing functional events through the modulation of native ensemble characteristics, a feature that could be prevalent in ordered protein domains.
Collapse
Affiliation(s)
- Hemashree Golla
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Adithi Kannan
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Soundhararajan Gopi
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sowmiya Murugan
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Lakshmi R Perumalsamy
- Department
of Biomedical Sciences, Sri Ramachandra
Institute of Higher Education and Research, Chennai 600116, India
| | - Athi N. Naganathan
- Department
of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
10
|
The native state conformational heterogeneity in the energy landscape of protein folding. Biophys Chem 2022; 283:106761. [DOI: 10.1016/j.bpc.2022.106761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/18/2022]
|
11
|
Bhattacharjee R, Udgaonkar JB. Structural Characterization of the Cooperativity of Unfolding of a Heterodimeric Protein using Hydrogen Exchange-Mass Spectrometry. J Mol Biol 2021; 433:167268. [PMID: 34563547 DOI: 10.1016/j.jmb.2021.167268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Little is known about how the sequence of structural changes in one chain of a heterodimeric protein is coupled to those in the other chain during protein folding and unfolding reactions, and whether individual secondary structural changes in the two chains occur in one or many coordinated steps. Here, the unfolding mechanism of a small heterodimeric protein, double chain monellin, has been characterized using hydrogen exchange-mass spectrometry. Transient structure opening, which enables HX, was found to be describable by a five state N ↔ I1 ↔ I2 ↔ I3 ↔ U mechanism. Structural changes occur gradually in the first three steps, and cooperatively in the last step. β strands 2, 4 and 5, as well as the α-helix undergo transient unfolding during all three non-cooperative steps, while β1 and the two loops on both sides of the helix undergo transient unfolding during the first two steps. In the absence of GdnHCl, only β3 in chain A of the protein unfolds during the last cooperative step, while in the presence of 1 M GdnHCl, not only β3, but also β2 in chain B unfolds cooperatively. Hence, the extent of cooperative structural change and size of the cooperative unfolding unit increase when the protein is destabilized by denaturant. The naturally evolved two-chain variant of monellin folds and unfolds in a more cooperative manner than does a single chain variant created artificially, suggesting that increasing folding cooperativity, even at the cost of decreasing stability, may be a driving force in the evolution of proteins.
Collapse
Affiliation(s)
- Rupam Bhattacharjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India; Indian Institute of Science Education and Research, Pune, India. https://twitter.com/Rupam_B01
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India; Indian Institute of Science Education and Research, Pune, India.
| |
Collapse
|
12
|
Sen S, Kumar H, Udgaonkar JB. Microsecond Dynamics During the Binding-induced Folding of an Intrinsically Disordered Protein. J Mol Biol 2021; 433:167254. [PMID: 34537237 DOI: 10.1016/j.jmb.2021.167254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/26/2022]
Abstract
Tau is an intrinsically disordered protein implicated in many neurodegenerative diseases. The repeat domain fragment of tau, tau-K18, is known to undergo a disorder to order transition in the presence of lipid micelles and vesicles, in which helices form in each of the repeat domains. Here, the mechanism of helical structure formation, induced by a phospholipid mimetic, sodium dodecyl sulfate (SDS) at sub-micellar concentrations, has been studied using multiple biophysical probes. A study of the conformational dynamics of the disordered state, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS) has indicated the presence of an intermediate state, I, in equilibrium with the unfolded state, U. The cooperative binding of the ligand (L), SDS, to I has been shown to induce the formation of a compact, helical intermediate (IL5) within the dead time (∼37 µs) of a continuous flow mixer. Quantitative analysis of the PET-FCS data and the ensemble microsecond kinetic data, suggests that the mechanism of induction of helical structure can be described by a U ↔ I ↔ IL5 ↔ FL5 mechanism, in which the final helical state, FL5, forms from IL5 with a time constant of 50-200 µs. Finally, it has been shown that the helical conformation is an aggregation-competent state that can directly form amyloid fibrils.
Collapse
Affiliation(s)
- Sreemantee Sen
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India; Indian Institute of Science Education and Research, Pune, Pashan, Pune 411 008, India
| | - Harish Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India; Indian Institute of Science Education and Research, Pune, Pashan, Pune 411 008, India
| | - Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India; Indian Institute of Science Education and Research, Pune, Pashan, Pune 411 008, India.
| |
Collapse
|
13
|
Vauquelin G, Maes D. Induced fit versus conformational selection: From rate constants to fluxes… and back to rate constants. Pharmacol Res Perspect 2021; 9:e00847. [PMID: 34459109 PMCID: PMC8404059 DOI: 10.1002/prp2.847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
Induced fit- (IF) and conformational selection (CS) binding mechanisms have long been regarded to be mutually exclusive. Yet, they are now increasingly considered to produce the final ligand-target complex alongside within a thermodynamic cycle. This viewpoint benefited from the introduction of binding fluxes as a tool for analyzing the overall behavior of such cycle. This study aims to provide more vivid and applicable insights into this emerging field. In this respect, combining differential equation- based simulations and hitherto little explored alternative modes of calculation provide concordant information about the intricate workings of such cycle. In line with previous reports, we observe that the relative contribution of IF increases with the ligand concentration at equilibrium. Yet the baseline contribution may vary from one case to another and simulations as well as calculations show that this parameter is essentially regulated by the dissociation rate of both pathways. Closer attention should be paid to how the contributions of IF and CS compare at physiologically relevant drug/ligand concentrations. To this end, a simple equation discloses how changing a limited set of "microscopic" rate constants can extend the concentration range at which CS contributes most effectively. Finally, it could also be beneficial to extend the utilization of flux- based approaches to more physiologically relevant time scales and alternative binding models.
Collapse
Affiliation(s)
- Georges Vauquelin
- Department Molecular and Biochemical PharmacologyVrije Universiteit BrusselBrusselsBelgium
| | - Dominique Maes
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
14
|
Fernández A. Artificial Intelligence Deconstructs Drug Targeting In Vivo by Leveraging a Transformer Platform. ACS Med Chem Lett 2021; 12:1052-1055. [PMID: 34267868 DOI: 10.1021/acsmedchemlett.1c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Lead optimization in structure-based drug design ultimately requires that the therapeutic agent be evaluated in the cellular context. However, the in vivo control of the target structure remains unyielding to computational modeling. This situation may change as transformer technologies enable a deconstruction of in vivo cooperativity steering drug-induced protein folding.
Collapse
Affiliation(s)
- Ariel Fernández
- Daruma Institute for AI in Pharmaceutical Research, AF Innovation Pharma Consultancy, GmbH, 4000 Pemberton Court, Winston-Salem, North Carolina 27106, United States
- CONICET/INQUISUR, National Research Council for Science and Technology, Buenos Aires 1033, Argentina
| |
Collapse
|
15
|
Ganguly S, Murugan NA, Ghosh D, Narayanaswamy N, Govindaraju T, Basu G. DNA Minor Groove-Induced cis- trans Isomerization of a Near-Infrared Fluorescent Probe. Biochemistry 2021; 60:2084-2097. [PMID: 34142803 DOI: 10.1021/acs.biochem.1c00281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The discovery of small molecules that exhibit turn-on far-red or near-infrared (NIR) fluorescence upon DNA binding and understanding how they bind DNA are important for imaging and bioanalytical applications. Here we report the DNA-bound structure and the DNA binding mechanism of quinone cyanine dithiazole (QCy-DT), a recently reported AT-specific turn-on NIR fluorescent probe for double-stranded DNA. The nuclear magnetic resonance (NMR)-derived structure showed minor groove binding but no specific ligand-DNA interactions, consistent with an endothermic and entropy-driven binding mechanism deduced from isothermal titration calorimetry. Minor groove binding is typically fast because it minimally perturbs the DNA structure. However, QCy-DT exhibited unusually slow DNA binding. The cyanine-based probe is capable of cis-trans isomerization due to overlapping methine bridges, with 16 possible slowly interconverting cis/trans isomers. Using NMR, density functional theory, and free energy calculations, we show that the DNA-free and DNA-bound environments of QCy-DT prefer distinctly different isomers, indicating that the origin of the slow kinetics is a cis-trans isomerization and that the minor groove preferentially selects an otherwise unstable cis/trans isomer of QCy-DT. Flux analysis showed the conformational selection pathway to be the dominating DNA binding mechanism at low DNA concentrations, which switches to the induced fit pathway at high DNA concentrations. This report of cis/trans isomerization of a ligand, upon binding the DNA minor groove, expands the prevailing understanding of unique discriminatory powers of the minor groove and has an important bearing on using polymethine cyanine dyes to probe the kinetics of molecular interactions.
Collapse
Affiliation(s)
- Sudakshina Ganguly
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, West Bengal, India
| | - N Arul Murugan
- Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Debasis Ghosh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Nagarjun Narayanaswamy
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Gautam Basu
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata 700054, West Bengal, India
| |
Collapse
|
16
|
Fernández A. Artificial Intelligence Set to Reverse Engineer Drug Targeting in the Cell. ACS Pharmacol Transl Sci 2021; 4:1256-1259. [PMID: 34151218 DOI: 10.1021/acsptsci.1c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 11/28/2022]
Abstract
Therapeutic drugs are required to target proteins in the cell, not in vitro. Yet, drug-induced protein folding in vivo is off limits to computational modeling efforts. This situation may change as artificial intelligence empowers molecular dynamics and enables the deconstruction of in vivo cooperativity for structural adaptation.
Collapse
Affiliation(s)
- Ariel Fernández
- Daruma Institute for AI in Pharmaceutical Research, AF Innovation Pharma Consultancy, GmbH, 4000 Pemberton Court, Winston-Salem, North Carolina 27106, United States.,CONICET, Argentine National Research Council, Buenos Aires 1033, Argentina
| |
Collapse
|
17
|
Di Cera E. Mechanisms of ligand binding. BIOPHYSICS REVIEWS 2020; 1:011303. [PMID: 33313600 PMCID: PMC7714259 DOI: 10.1063/5.0020997] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022]
Abstract
Many processes in chemistry and biology involve interactions of a ligand with its molecular target. Interest in the mechanism governing such interactions has dominated theoretical and experimental analysis for over a century. The interpretation of molecular recognition has evolved from a simple rigid body association of the ligand with its target to appreciation of the key role played by conformational transitions. Two conceptually distinct descriptions have had a profound impact on our understanding of mechanisms of ligand binding. The first description, referred to as induced fit, assumes that conformational changes follow the initial binding step to optimize the complex between the ligand and its target. The second description, referred to as conformational selection, assumes that the free target exists in multiple conformations in equilibrium and that the ligand selects the optimal one for binding. Both descriptions can be merged into more complex reaction schemes that better describe the functional repertoire of macromolecular systems. This review deals with basic mechanisms of ligand binding, with special emphasis on induced fit, conformational selection, and their mathematical foundations to provide rigorous context for the analysis and interpretation of experimental data. We show that conformational selection is a surprisingly versatile mechanism that includes induced fit as a mathematical special case and even captures kinetic properties of more complex reaction schemes. These features make conformational selection a dominant mechanism of molecular recognition in biology, consistent with the rich conformational landscape accessible to biological macromolecules being unraveled by structural biology.
Collapse
Affiliation(s)
- Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| |
Collapse
|
18
|
Energetics and kinetics of substrate analog-coupled staphylococcal nuclease folding revealed by a statistical mechanical approach. Proc Natl Acad Sci U S A 2020; 117:19953-19962. [PMID: 32737158 DOI: 10.1073/pnas.1914349117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein conformational changes associated with ligand binding, especially those involving intrinsically disordered proteins, are mediated by tightly coupled intra- and intermolecular events. Such reactions are often discussed in terms of two limiting kinetic mechanisms, conformational selection (CS), where folding precedes binding, and induced fit (IF), where binding precedes folding. It has been shown that coupled folding/binding reactions can proceed along both CS and IF pathways with the flux ratio depending on conditions such as ligand concentration. However, the structural and energetic basis of such complex reactions remains poorly understood. Therefore, we used experimental, theoretical, and computational approaches to explore structural and energetic aspects of the coupled-folding/binding reaction of staphylococcal nuclease in the presence of the substrate analog adenosine-3',5'-diphosphate. Optically monitored equilibrium and kinetic data, combined with a statistical mechanical model, gave deeper insight into the relative importance of specific and Coulombic protein-ligand interactions in governing the reaction mechanism. We also investigated structural aspects of the reaction at the residue level using NMR and all-atom replica-permutation molecular dynamics simulations. Both approaches yielded clear evidence for accumulation of a transient protein-ligand encounter complex early in the reaction under IF-dominant conditions. Quantitative analysis of the equilibrium/kinetic folding revealed that the ligand-dependent CS-to-IF shift resulted from stabilization of the compact transition state primarily by weakly ligand-dependent Coulombic interactions with smaller contributions from specific binding energies. At a more macroscopic level, the CS-to-IF shift was represented as a displacement of the reaction "route" on the free energy surface, which was consistent with a flux analysis.
Collapse
|
19
|
Malagrinò F, Visconti L, Pagano L, Toto A, Troilo F, Gianni S. Understanding the Binding Induced Folding of Intrinsically Disordered Proteins by Protein Engineering: Caveats and Pitfalls. Int J Mol Sci 2020; 21:ijms21103484. [PMID: 32429036 PMCID: PMC7279032 DOI: 10.3390/ijms21103484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Many proteins lack a well-defined three-dimensional structure in isolation. These proteins, typically denoted as intrinsically disordered proteins (IDPs), may display a characteristic disorder-to-order transition when binding their physiological partner(s). From an experimental perspective, it is of great importance to establish the general grounds to understand how such folding processes may be explored. Here we discuss the caveats and the pitfalls arising when applying to IDPs one of the key techniques to characterize the folding of globular proteins, the Φ value analysis. This method is based on measurements of the free energy changes of transition and native states upon conservative, non-disrupting, mutations. On the basis of available data, we reinforce the validity of Φ value analysis in the study of IDPs and suggest future experiments to further validate this powerful experimental method.
Collapse
|