1
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Lim EW, Fallon RJ, Bates C, Ideguchi Y, Nagasaki T, Handzlik MK, Joulia E, Bonelli R, Green CR, Ansell BRE, Kitano M, Polis I, Roberts AJ, Furuya S, Allikmets R, Wallace M, Friedlander M, Metallo CM, Gantner ML. Serine and glycine physiology reversibly modulate retinal and peripheral nerve function. Cell Metab 2024; 36:2315-2328.e6. [PMID: 39191258 DOI: 10.1016/j.cmet.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/11/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
Metabolic homeostasis is maintained by redundant pathways to ensure adequate nutrient supply during fasting and other stresses. These pathways are regulated locally in tissues and systemically via the liver, kidney, and circulation. Here, we characterize how serine, glycine, and one-carbon (SGOC) metabolism fluxes across the eye, liver, and kidney sustain retinal amino acid levels and function. Individuals with macular telangiectasia (MacTel), an age-related retinal disease with reduced circulating serine and glycine, carrying deleterious alleles in SGOC metabolic enzymes exhibit an exaggerated reduction in circulating serine. A Phgdh+/- mouse model of this haploinsufficiency experiences accelerated retinal defects upon dietary serine/glycine restriction, highlighting how otherwise silent haploinsufficiencies can impact retinal health. We demonstrate that serine-associated retinopathy and peripheral neuropathy are reversible, as both are restored in mice upon serine supplementation. These data provide molecular insights into the genetic and metabolic drivers of neuro-retinal dysfunction while highlighting therapeutic opportunities to ameliorate this pathogenesis.
Collapse
Affiliation(s)
- Esther W Lim
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Regis J Fallon
- Lowy Medical Research Institute, La Jolla, CA 92037, USA
| | - Caleb Bates
- Lowy Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | - Michal K Handzlik
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Emeline Joulia
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Roberto Bonelli
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Courtney R Green
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Brendan R E Ansell
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Maki Kitano
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ilham Polis
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Shigeki Furuya
- Department of Bioscience and Biotechnology, Kyushu University, Fukuoka 812-0053, Japan
| | | | - Martina Wallace
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Martin Friedlander
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christian M Metallo
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
3
|
Perez-Estrada JR, Tangeman JA, Proto-Newton M, Sanaka H, Smucker B, Del Rio-Tsonis K. Metabolic states influence chicken retinal pigment epithelium cell fate decisions. Development 2024; 151:dev202462. [PMID: 39120084 PMCID: PMC11708821 DOI: 10.1242/dev.202462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
During tissue regeneration, proliferation, dedifferentiation and reprogramming are necessary to restore lost structures. However, it is not fully understood how metabolism intersects with these processes. Chicken embryos can regenerate their retina through retinal pigment epithelium (RPE) reprogramming when treated with fibroblast factor 2 (FGF2). Using transcriptome profiling, we uncovered extensive regulation of gene sets pertaining to proliferation, neurogenesis and glycolysis throughout RPE-to-neural retina reprogramming. By manipulating cell media composition, we determined that glucose, glutamine or pyruvate are individually sufficient to support RPE reprogramming, identifying glycolysis as a requisite. Conversely, the activation of pyruvate dehydrogenase by inhibition of pyruvate dehydrogenase kinases, induces epithelial-to-mesenchymal transition, while simultaneously blocking the activation of neural retina fate. We also identified that epithelial-to-mesenchymal transition fate is partially driven by an oxidative environment. Our findings provide evidence that metabolism controls RPE cell fate decisions and provide insights into the metabolic state of RPE cells, which are prone to fate changes in regeneration and pathologies, such as proliferative vitreoretinopathy.
Collapse
Affiliation(s)
- J. Raúl Perez-Estrada
- Department of Biology, Miami University, Oxford, OH 45056, USA
- Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Jared A. Tangeman
- Department of Biology, Miami University, Oxford, OH 45056, USA
- Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | | | | | - Byran Smucker
- Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
- Department of Statistics, Miami University, Oxford, OH 45056, USA
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University, Oxford, OH 45056, USA
- Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
4
|
Aldosari DI, Alshawakir YA, Alanazi IO, Alhomida AS, Ola MS. Differential Expression of Branched-Chain Aminotransferase in the Rat Ocular Tissues. J Histochem Cytochem 2024; 72:551-568. [PMID: 39212098 PMCID: PMC11452883 DOI: 10.1369/00221554241272338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Branched-chain amino acids (BCAAs) play vital roles in metabolic and physiological processes, with their catabolism initiated by two branched-chain aminotransferase isozymes: cytosolic (BCATc) and mitochondrial (BCATm). These enzymes have tissue and cell-specific compartmentalization and are believed to shuttle metabolites between cells and tissues. Although their expression and localization have been established in most tissues, ocular tissues remain unknown. In this study, we used immunohistochemical analyses to investigate the expression and localization of BCAT enzymes in the normal eye tissues. As expected, BCATc was highly expressed in the neuronal cells of the retina, particularly in the ganglion cell layers, inner nuclear layer, and plexiform layer, with little to no expression in Müller cells. BCATc was also present in the cornea, retinal pigment epithelium (RPE), choroid, ciliary body, and iris but not in the lens. In contrast, BCATm was expressed across all ocular tissues, with strong expression in the Muller cells of the retina, the endothelial and epithelial layers of the cornea, the choroid and iris, and the epithelial cells at the lens's front. The extensive expression and distribution of BCAT isozymes in the ocular tissue, suggests that BCAA transamination is widespread in the eye, potentially aiding in metabolite transport between ocular tissues. The findings provide new insights into the physiological role of BCATs in the eye, particularly within the neuronal retina.
Collapse
Affiliation(s)
| | | | - Ibrahim O. Alanazi
- King Saud University, Riyadh, Saudi Arabia and Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
5
|
Goswami MT, Weh E, Subramanya S, Weh KM, Durumutla HB, Hager H, Miller N, Chaudhury S, Andren A, Sajjakulnukit P, Zhang L, Besirli CG, Lyssiotis CA, Wubben TJ. Glutamine catabolism supports amino acid biosynthesis and suppresses the integrated stress response to promote photoreceptor survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.582525. [PMID: 38586045 PMCID: PMC10996599 DOI: 10.1101/2024.03.26.582525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Photoreceptor loss results in vision loss in many blinding diseases, and metabolic dysfunction underlies photoreceptor degeneration. So, exploiting photoreceptor metabolism is an attractive strategy to prevent vision loss. Yet, the metabolic pathways that maintain photoreceptor health remain largely unknown. Here, we investigated the dependence of photoreceptors on Gln catabolism. Gln is converted to glutamate via glutaminase (GLS), so mice lacking GLS in rod photoreceptors were generated to inhibit Gln catabolism. Loss of GLS produced rapid rod photoreceptor degeneration. In vivo metabolomic methodologies and metabolic supplementation identified Gln catabolism as critical for glutamate and aspartate biosynthesis. Concordant with this amino acid deprivation, the integrated stress response (ISR) was activated with protein synthesis attenuation, and inhibiting the ISR delayed photoreceptor loss. Furthermore, supplementing asparagine, which is synthesized from aspartate, delayed photoreceptor degeneration. Hence, Gln catabolism is integral to photoreceptor health, and these data reveal a novel metabolic axis in these metabolically-demanding neurons.
Collapse
Affiliation(s)
- Moloy T. Goswami
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
- equal contribution
| | - Eric Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
- equal contribution
| | - Shubha Subramanya
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Katherine M. Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Hima Bindu Durumutla
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas Miller
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Sraboni Chaudhury
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Andren
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter Sajjakulnukit
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Li Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Cagri G. Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J. Wubben
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Lains I, Han X, Gil J, Providencia J, Nigalye A, Alvarez R, Douglas VP, Mendez K, Katz R, Tsougranis G, Li J, Kelly RS, Kim IK, Lasky-Su J, Silva R, Miller JW, Liang L, Vavvas D, Miller JB, Husain D. Plasma Metabolites Associated with OCT Features of Age-Related Macular Degeneration. OPHTHALMOLOGY SCIENCE 2024; 4:100357. [PMID: 37869026 PMCID: PMC10587636 DOI: 10.1016/j.xops.2023.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/13/2023] [Accepted: 06/06/2023] [Indexed: 10/24/2023]
Abstract
Purpose The most widely used classifications of age-related macular degeneration (AMD) and its severity stages still rely on color fundus photographs (CFPs). However, AMD has a wide phenotypic variability that remains poorly understood and is better characterized by OCT. We and others have shown that patients with AMD have a distinct plasma metabolomic profile compared with controls. However, all studies to date have been performed solely based on CFP classifications. This study aimed to assess if plasma metabolomic profiles are associated with OCT features commonly seen in AMD. Design Prospectively designed, cross-sectional study. Participants Subjects with a diagnosis of AMD and a control group (> 50 years old) from Boston, United States, and Coimbra, Portugal. Methods All participants were imaged with CFP, used for AMD staging (Age-Related Eye Disease Study 2 classification scheme), and with spectral domain OCT (Spectralis, Heidelberg). OCT images were graded by 2 independent graders for the presence of characteristic AMD features, according to a predefined protocol. Fasting blood samples were collected for metabolomic profiling (using nontargeted high-resolution mass spectrometry by Metabolon Inc). Analyses were conducted using logistic regression models including the worst eye of each patient (AREDS2 classification) and adjusting for confounding factors. Each cohort (United States and Portugal) was analyzed separately and then results were combined by meta-analyses. False discovery rate (FDR) was used to account for multiple comparisons. Main Outcome Measures Plasma metabolite levels associated with OCT features. Results We included data on 468 patients, 374 with AMD and 94 controls, and on 725 named endogenous metabolites. Meta-analysis identified significant associations (FDR < 0.05) between plasma metabolites and 3 OCT features: hyperreflective foci (6), atrophy (6), and ellipsoid zone disruption (3). Most associations were seen with amino acids, and all but 1 metabolite presented specific associations with the OCT features assessed. Conclusions To our knowledge, we show for the first time that plasma metabolites have associations with specific OCT features seen in AMD. Our results support that the wide spectrum of presentations of AMD likely include different pathophysiologic mechanisms by identifying specific pathways associated with each OCT feature. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Ines Lains
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Xikun Han
- Department of Epidemiology, Harvard T H Chan School of Public Health, Boston, Massachusetts
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T H Chan School of Public Health, Boston, Massachusetts
| | - João Gil
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Ophthalmology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Joana Providencia
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Ophthalmology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
| | - Archana Nigalye
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Rodrigo Alvarez
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Vivian Paraskevi Douglas
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Kevin Mendez
- Systems Genetics and Genomics Unit, Channing Division of Network Medicine Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raviv Katz
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Gregory Tsougranis
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Jinglun Li
- Department of Biostatistics, Harvard T H Chan School of Public Health, Boston, Massachusetts
| | - Rachel S. Kelly
- Systems Genetics and Genomics Unit, Channing Division of Network Medicine Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ivana K. Kim
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Jessica Lasky-Su
- Systems Genetics and Genomics Unit, Channing Division of Network Medicine Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rufino Silva
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Ophthalmology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CCAC), Coimbra, Portugal
| | - Joan W. Miller
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Liming Liang
- Department of Biostatistics, Harvard T H Chan School of Public Health, Boston, Massachusetts
| | - Demetrios Vavvas
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - John B. Miller
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Deeba Husain
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Subramanya S, Goswami MT, Miller N, Weh E, Chaudhury S, Zhang L, Andren A, Hager H, Weh KM, Lyssiotis CA, Besirli CG, Wubben TJ. Rod photoreceptor-specific deletion of cytosolic aspartate aminotransferase, GOT1, causes retinal degeneration. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1306019. [PMID: 38725581 PMCID: PMC11081273 DOI: 10.3389/fopht.2023.1306019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/15/2023] [Indexed: 05/12/2024]
Abstract
Photoreceptor cell death is the cause of vision loss in many forms of retinal disease. Metabolic dysfunction within the outer retina has been shown to be an underlying factor contributing to photoreceptor loss. Therefore, a comprehensive understanding of the metabolic pathways essential to photoreceptor health and function is key to identifying novel neuroprotective strategies. Glutamic-oxaloacetic transaminase 1 (Got1) encodes for a cytosolic aspartate aminotransferase that reversibly catalyzes the transfer of an amino group between glutamate and aspartate and is an important aspect of the malate-aspartate shuttle (MAS), which transfers reducing equivalents from the cytosol to the mitochondrial matrix. Previous work has demonstrated that the activity of this enzyme is highest in photoreceptor inner segments. Furthermore, ex vivo studies have demonstrated that the retina relies on aspartate aminotransferase for amino acid metabolism. Importantly, aspartate aminotransferase has been suggested to be an early biomarker of retinal degeneration in retinitis pigmentosa and a possible target for neuroprotection. In the present study, we characterized the effect of Got1 deletion on photoreceptor metabolism, function, and survival in vivo by using a rod photoreceptor-specific, Got1 knockout mouse model. Loss of the GOT1 enzyme from rod photoreceptors resulted in age-related photoreceptor degeneration with an accumulation of retinal aspartate and NADH and alterations in the expression of genes involved in the MAS, the tricarboxylic acid (TCA) cycle, and redox balance. Hence, GOT1 is critical to in vivo photoreceptor metabolism, function, and survival.
Collapse
Affiliation(s)
- Shubha Subramanya
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Moloy T. Goswami
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Nicholas Miller
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Eric Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Sraboni Chaudhury
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Li Zhang
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Anthony Andren
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Heather Hager
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Katherine M. Weh
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Cagri G. Besirli
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Thomas J. Wubben
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Zhu S, Xu R, Engel AL, Wang Y, McNeel R, Hurley JB, Chao JR, Du J. Proline provides a nitrogen source in the retinal pigment epithelium to synthesize and export amino acids for the neural retina. J Biol Chem 2023; 299:105275. [PMID: 37741457 PMCID: PMC10616405 DOI: 10.1016/j.jbc.2023.105275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023] Open
Abstract
It is known that metabolic defects in the retinal pigment epithelium (RPE) can cause degeneration of its neighboring photoreceptors in the retina, leading to retinal degenerative diseases such as age-related macular degeneration. However, how RPE metabolism supports the health of the neural retina remains unclear. The retina requires exogenous nitrogen sources for protein synthesis, neurotransmission, and energy metabolism. Using 15N tracing coupled with mass spectrometry, we found human RPE can utilize the nitrogen in proline to produce and export 13 amino acids, including glutamate, aspartate, glutamine, alanine, and serine. Similarly, we found this proline nitrogen utilization in the mouse RPE/choroid but not in the neural retina of explant cultures. Coculture of human RPE with the retina showed that the retina can take up the amino acids, especially glutamate, aspartate, and glutamine, generated from proline nitrogen in the RPE. Intravenous delivery of 15N proline in vivo demonstrated 15N-derived amino acids appear earlier in the RPE before the retina. We also found proline dehydrogenase, the key enzyme in proline catabolism is highly enriched in the RPE but not the retina. The deletion of proline dehydrogenase blocks proline nitrogen utilization in RPE and the import of proline nitrogen-derived amino acids in the retina. Our findings highlight the importance of RPE metabolism in supporting nitrogen sources for the retina, providing insight into understanding the mechanisms of the retinal metabolic ecosystem and RPE-initiated retinal degenerative diseases.
Collapse
Affiliation(s)
- Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA; Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Rong Xu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Abbi L Engel
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Rachel McNeel
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - James B Hurley
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA; Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington, USA.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, USA; Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, USA.
| |
Collapse
|
9
|
Wu J, Duan C, Yang Y, Wang Z, Tan C, Han C, Hou X. Insights into the liver-eyes connections, from epidemiological, mechanical studies to clinical translation. J Transl Med 2023; 21:712. [PMID: 37817192 PMCID: PMC10566185 DOI: 10.1186/s12967-023-04543-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023] Open
Abstract
Maintenance of internal homeostasis is a sophisticated process, during which almost all organs get involved. Liver plays a central role in metabolism and involves in endocrine, immunity, detoxification and storage, and therefore it communicates with distant organs through such mechanisms to regulate pathophysiological processes. Dysfunctional liver is often accompanied by pathological phenotypes of distant organs, including the eyes. Many reviews have focused on crosstalk between the liver and gut, the liver and brain, the liver and heart, the liver and kidney, but with no attention paid to the liver and eyes. In this review, we summarized intimate connections between the liver and the eyes from three aspects. Epidemiologically, we suggest liver-related, potential, protective and risk factors for typical eye disease as well as eye indicators connected with liver status. For molecular mechanism aspect, we elaborate their inter-organ crosstalk from metabolism (glucose, lipid, proteins, vitamin, and mineral), detoxification (ammonia and bilirubin), and immunity (complement and inflammation regulation) aspect. In clinical application part, we emphasize the latest advances in utilizing the liver-eye axis in disease diagnosis and therapy, involving artificial intelligence-deep learning-based novel diagnostic tools for detecting liver disease and adeno-associated viral vector-based gene therapy method for curing blinding eye disease. We aim to focus on and provide novel insights into liver and eyes communications and help resolve existed clinically significant issues.
Collapse
Affiliation(s)
- Junhao Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Caihan Duan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Yuanfan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhe Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Chen Tan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Chaoqun Han
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| |
Collapse
|
10
|
Perez-Estrada JR, Tangeman JA, Proto-Newton M, Sanaka H, Smucker B, Del Rio-Tsonis K. DISTINCT METABOLIC STATES DIRECT RETINAL PIGMENT EPITHELIUM CELL FATE DECISIONS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559631. [PMID: 37808829 PMCID: PMC10557760 DOI: 10.1101/2023.09.26.559631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
During tissue regeneration, proliferation, dedifferentiation, and reprogramming are necessary to restore lost structures. However, it is not fully understood how metabolism intersects with these processes. Chicken embryos can regenerate their retina through retinal pigment epithelium (RPE) reprogramming when treated with fibroblast factor 2 (FGF2). Using transcriptome profiling, we uncovered extensive regulation of gene sets pertaining to proliferation, neurogenesis, and glycolysis throughout RPE-to-neural retina reprogramming. By manipulating cell media composition, we determined that glucose, glutamine, or pyruvate are sufficient to support RPE reprogramming identifying glycolysis as a requisite. Conversely, the induction of oxidative metabolism by activation of pyruvate dehydrogenase induces Epithelial-to-mesenchymal transition (EMT), while simultaneously blocking the activation of neural retina fate. We also identify that EMT is partially driven by an oxidative environment. Our findings provide evidence that metabolism controls RPE cell fate decisions and provide insights into the metabolic state of RPE cells, which are prone to fate changes in regeneration and pathologies, such as proliferative vitreoretinopathy.
Collapse
|
11
|
Zhang X, Xia M, Wu Y, Zhang F. Branched-Chain Amino Acids Metabolism and Their Roles in Retinopathy: From Relevance to Mechanism. Nutrients 2023; 15:2161. [PMID: 37432261 DOI: 10.3390/nu15092161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Retinopathy is one of the leading causes of irreversible blindness and vision loss worldwide. Imbalanced nutrients play important roles in the pathogenesis and pathophysiology of retinal diseases. Branched-Chain Amino Acids (BCAAs), as essential amino acids, perform a variety of biological functions, including protein synthesis, glucose metabolism, lipid metabolism, inflammation, and oxidative stress in metabolic tissues of diabetes and aging-related diseases. Recently, it has been shown that BCAAs are highly related to neuroprotection, oxidative stress, inflammatory and glutamate toxicity in the retina of retinopathy. Therefore, this review summarizes the alterations of BCAA levels in retinopathy, especially diabetic retinopathy and aging-related macular disease, and the genetics, functions, and mechanisms of BCAAs in the retina as well as other metabolic tissues for reference. All of these efforts aim to provide fundamental knowledge of BCAAs for further discoveries and research on retina health based on the sensing and signaling of essential amino acids.
Collapse
Affiliation(s)
- Xiaonan Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Liaoning Provence Key Laboratory of Genome Engineered Animal Models, National Center of Genetically Engineered Animal Models for International Research, Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116000, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Mengxue Xia
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Yingjie Wu
- Liaoning Provence Key Laboratory of Genome Engineered Animal Models, National Center of Genetically Engineered Animal Models for International Research, Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116000, China
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| |
Collapse
|
12
|
Zhu S, Xu R, Engel AL, Wang Y, McNeel R, Hurley JB, Chao JR, Du J. Proline provides a nitrogen source in the retinal pigment epithelium to synthesize and export amino acids for the neural retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537355. [PMID: 37131780 PMCID: PMC10153141 DOI: 10.1101/2023.04.18.537355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
It is known that metabolic defects in the retinal pigment epithelium (RPE) can cause degeneration of its neighboring photoreceptors in the retina, leading to retinal degenerative diseases such as age-related macular degeneration. However, how RPE metabolism supports the health of the neural retina remains unclear. The retina requires exogenous nitrogen sources for protein synthesis, neurotransmission, and energy metabolism. Using 15N tracing coupled with mass spectrometry, we found human RPE can utilize the nitrogen in proline to produce and export 13 amino acids, including glutamate, aspartate, glutamine, alanine and serine. Similarly, we found this proline nitrogen utilization in the mouse RPE/choroid but not in the neural retina of explant cultures. Co-culture of human RPE with the retina showed that the retina can take up the amino acids, especially glutamate, aspartate and glutamine, generated from proline nitrogen in the RPE. Intravenous delivery of 15N proline in vivo demonstrated 15N-derived amino acids appear earlier in the RPE before the retina. We also found proline dehydrogenase (PRODH), the key enzyme in proline catabolism is highly enriched in the RPE but not the retina. The deletion of PRODH blocks proline nitrogen utilization in RPE and the import of proline nitrogen-derived amino acids in the retina. Our findings highlight the importance of RPE metabolism in supporting nitrogen sources for the retina, providing insight into understanding the mechanisms of the retinal metabolic ecosystem and RPE-initiated retinal degenerative diseases.
Collapse
Affiliation(s)
- Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- Department of Pharmaceutical and Pharmacological Sciences, West Virginia University, Morgantown, WV 26506
| | - Rong Xu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
| | - Abbi L. Engel
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
| | - Rachel McNeel
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
| | - James B. Hurley
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
- Department of Biochemistry, University of Washington, Seattle, WA 98109
| | - Jennifer R. Chao
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
13
|
Saravanan M, Xu R, Roby O, Wang Y, Zhu S, Lu A, Du J. Tissue-Specific Sex Difference in Mouse Eye and Brain Metabolome Under Fed and Fasted States. Invest Ophthalmol Vis Sci 2023; 64:18. [PMID: 36892534 PMCID: PMC10010444 DOI: 10.1167/iovs.64.3.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
Purpose Visual physiology and various ocular diseases demonstrate sexual dimorphisms; however, how sex influences metabolism in different eye tissues remains undetermined. This study aims to address common and tissue-specific sex differences in metabolism in the retina, RPE, lens, and brain under fed and fasted conditions. Methods After ad libitum fed or being deprived of food for 18 hours, mouse eye tissues (retina, RPE/choroid, and lens), brain, and plasma were harvested for targeted metabolomics. The data were analyzed with both partial least squares-discriminant analysis and volcano plot analysis. Results Among 133 metabolites that cover major metabolic pathways, we found 9 to 45 metabolites that are sex different in different tissues under the fed state and 6 to 18 metabolites under the fasted state. Among these sex-different metabolites, 33 were changed in 2 or more tissues, and 64 were tissue specific. Pantothenic acid, hypotaurine, and 4-hydroxyproline were the top commonly changed metabolites. The lens and the retina had the most tissue-specific, sex-different metabolites enriched in the metabolism of amino acid, nucleotide, lipids, and tricarboxylic acid cycle. The lens and the brain had more similar sex-different metabolites than other ocular tissues. The female RPE and female brain were more sensitive to fasting with more decreased metabolites in amino acid metabolism, tricarboxylic acid cycles, and glycolysis. The plasma had the fewest sex-different metabolites, with very few overlapping changes with tissues. Conclusions Sex has a strong influence on eye and brain metabolism in tissue-specific and metabolic state-specific manners. Our findings may implicate the sexual dimorphisms in eye physiology and susceptibility to ocular diseases.
Collapse
Affiliation(s)
- Meghashri Saravanan
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Rong Xu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Olivia Roby
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Amy Lu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| |
Collapse
|
14
|
Dai W, Shen J, Yan J, Bott AJ, Maimouni S, Daguplo HQ, Wang Y, Khayati K, Guo JY, Zhang L, Wang Y, Valvezan A, Ding WX, Chen X, Su X, Gao S, Zong WX. Glutamine synthetase limits β-catenin-mutated liver cancer growth by maintaining nitrogen homeostasis and suppressing mTORC1. J Clin Invest 2022; 132:161408. [PMID: 36256480 PMCID: PMC9754002 DOI: 10.1172/jci161408] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022] Open
Abstract
Glutamine synthetase (GS) catalyzes de novo synthesis of glutamine that facilitates cancer cell growth. In the liver, GS functions next to the urea cycle to remove ammonia waste. As a dysregulated urea cycle is implicated in cancer development, the impact of GS's ammonia clearance function has not been explored in cancer. Here, we show that oncogenic activation of β-catenin (encoded by CTNNB1) led to a decreased urea cycle and elevated ammonia waste burden. While β-catenin induced the expression of GS, which is thought to be cancer promoting, surprisingly, genetic ablation of hepatic GS accelerated the onset of liver tumors in several mouse models that involved β-catenin activation. Mechanistically, GS ablation exacerbated hyperammonemia and facilitated the production of glutamate-derived nonessential amino acids, which subsequently stimulated mechanistic target of rapamycin complex 1 (mTORC1). Pharmacological and genetic inhibition of mTORC1 and glutamic transaminases suppressed tumorigenesis facilitated by GS ablation. While patients with hepatocellular carcinoma, especially those with CTNNB1 mutations, have an overall defective urea cycle and increased expression of GS, there exists a subset of patients with low GS expression that is associated with mTORC1 hyperactivation. Therefore, GS-mediated ammonia clearance serves as a tumor-suppressing mechanism in livers that harbor β-catenin activation mutations and a compromised urea cycle.
Collapse
Affiliation(s)
- Weiwei Dai
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Jianliang Shen
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Junrong Yan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Alex J. Bott
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Sara Maimouni
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Heineken Q. Daguplo
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yujue Wang
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Khoosheh Khayati
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Jessie Yanxiang Guo
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Lanjing Zhang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Alexander Valvezan
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA.,Center for Advanced Biotechnology and Medicine, Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, UCSF, San Francisco, California, USA
| | - Xiaoyang Su
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Shenglan Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
15
|
Qi X, Walton DA, Plafker KS, Boulton ME, Plafker SM. Sulforaphane recovers cone function in an Nrf2-dependent manner in middle-aged mice undergoing RPE oxidative stress. Mol Vis 2022; 28:378-393. [PMID: 36338670 PMCID: PMC9603948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/14/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has therapeutic efficacy in numerous animal models of human disease, including mouse models of retinal degeneration. However, despite dozens of clinical trials, the compound remains to be tested as a clinical treatment for ocular disease. Numerous cellular activities of SFN have been identified, including the activation of Nrf2, a transcription factor that induces a battery of target gene products to neutralize oxidative and xenobiotic stresses. As Nrf2 expression and function reportedly decrease with aging, we tested whether the loss of the transcription factor limits the therapeutic efficacy of SFN against retinal degeneration. METHODS Six- to 8-month-old wild-type and Nrf2 knockout mice were treated with SFN beginning 1 month after ribozyme-mediated knockdown of superoxide dismutase 2 (SOD2) mRNA in the RPE. The impacts of MnSOD (the protein product of SOD2) knockdown and the efficacy of SFN were evaluated using a combination of electroretinography (ERG), spectral domain optical coherence tomography (SD-OCT), and postmortem histology. RESULTS SFN restored the ERG photopic b-wave suppressed by MnSOD loss in wild-type mice, but not in the Nrf2 knockout mice. In contrast, ERG scotopic a- and b-wave loss was not restored for either genotype. SFN significantly improved retinal thickness in the Nrf2 knockout mice with MnSOD knockdown, but this was not observed in the wild-type mice. In both genotypes, SFN treatment reduced morphological markers of RPE atrophy and degeneration, although these improvements did not correlate proportionally with functional recovery. CONCLUSIONS These findings highlight the capacity of SFN to preserve cone function, as well as the potential challenges of using the compound as a standalone treatment for age-related retinal degeneration under conditions associated with reduced Nrf2 function.
Collapse
Affiliation(s)
- Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL
| | - Dorothy A. Walton
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Kendra S. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL
| | - Scott M. Plafker
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| |
Collapse
|
16
|
Zhu S, Huang J, Xu R, Wang Y, Wan Y, McNeel R, Parker E, Kolson D, Yam M, Webb B, Zhao C, Sigado J, Du J. Isocitrate dehydrogenase 3b is required for spermiogenesis but dispensable for retinal viability. J Biol Chem 2022; 298:102387. [PMID: 35985423 PMCID: PMC9478456 DOI: 10.1016/j.jbc.2022.102387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Isocitrate dehydrogenase 3 (IDH3) is a key enzyme in the mitochondrial tricarboxylic acid (TCA) cycle, which catalyzes the decarboxylation of isocitrate into α-ketoglutarate and concurrently converts NAD+ into NADH. Dysfunction of IDH3B, the β subunit of IDH3, has been previously correlated with retinal degeneration and male infertility in humans, but tissue-specific effects of IDH3 dysfunction are unclear. Here, we generated Idh3b-KO mice and found that IDH3B is essential for IDH3 activity in multiple tissues. We determined that loss of Idh3b in mice causes substantial accumulation of isocitrate and its precursors in the TCA cycle, particularly in the testes, whereas the levels of the downstream metabolites remain unchanged or slightly increased. However, the Idh3b-KO mice did not fully recapitulate the defects observed in humans. Global deletion of Idh3b only causes male infertility but not retinal degeneration in mice. Our investigation showed that loss of Idh3b causes an energetic deficit and disrupts the biogenesis of acrosome and flagellum, resulting in spermiogenesis arrestment in sperm cells. Together, we demonstrate that IDH3B controls its substrate levels in the TCA cycle, and it is required for sperm mitochondrial metabolism and spermiogenesis, highlighting the importance of the tissue-specific function of the ubiquitous TCA cycle.
Collapse
Affiliation(s)
- Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506; Department of Biochemistry, West Virginia University, Morgantown, WV 26506; Department of Pharmaceutical and Pharmacological Science, West Virginia University, Morgantown, WV 26506
| | - Jiancheng Huang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506; Department of Biochemistry, West Virginia University, Morgantown, WV 26506; Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Rong Xu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506; Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506; Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Yiming Wan
- Department of Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794
| | - Rachel McNeel
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506; Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Edward Parker
- Department of Ophthalmology, University of Washington, Seattle, WA 98109
| | - Douglas Kolson
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506
| | - Michelle Yam
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506; Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Bradley Webb
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Chen Zhao
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Jenna Sigado
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506; Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506; Department of Biochemistry, West Virginia University, Morgantown, WV 26506.
| |
Collapse
|
17
|
Yazdani M. Uncontrolled Oxygen Levels in Cultures of Retinal Pigment Epithelium: Have We Missed the Obvious? Curr Eye Res 2022; 47:651-660. [PMID: 35243933 DOI: 10.1080/02713683.2022.2050264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Retinal pigment epithelium (RPE) is the outermost layer of retina located between the photoreceptor cells and the choroid. This highly-polarized monolayer provides critical support for the functioning of the other parts of the retina, especially photoreceptors. Methods of culturing RPE have been under development since its establishment in 1920s. Despite considering various factors, oxygen (O2) levels in RPE microenvironments during culture preparation and experimental procedure have been overlooked. O2 is a crucial parameter in the cultures, and therefore, maintaining RPE cells at O2 levels different from their native environment (70-90 mm Hg of O2) could have unintended consequences. Owing to the importance of the topic, lack of sufficient discussion in the literature and to encourage future research, this paper will focus on uncontrolled O2 level in cultures of RPE cells.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway
| |
Collapse
|
18
|
Tang D, Liu X, Chen J. Mitoquinone intravitreal injection ameliorates retinal ischemia-reperfusion injury in rats involving SIRT1/Notch1/NADPH axis. Drug Dev Res 2022; 83:800-810. [PMID: 35014081 DOI: 10.1002/ddr.21911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/14/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022]
Abstract
Retinal ischemia-reperfusion injury (RIRI) is an important pathological process of many ocular diseases. Mitoquinone (MitoQ), a mitochondrial targeted antioxidant, is a potential compound for therapeutic development of RIRI. This study observed the effect of MitoQ on RIRI, and further explored its possible molecular mechanism. Temporary increase in intraocular pressure was used to establish rat model of RIRI to observe the effect of MitoQ treatment on retinal function, pathological injury, oxidative stress, inflammation and apoptosis. Immunohistochemistry and Western blot were used to detect expressions of cleaved caspase 3, B cell leukemia/lymphoma 2 associated X (Bax), nicotinamide adenine dinucleotide phosphate oxidase (NOX1), NOX4, cleaved-Notch 1, hairy and enhancer of split 1 (Hes1), and sirtuin 1 (SIRT 1) in retina were detected by immunohistochemistry and Western blot. MitoQ treatment significantly improved retinal function and pathological injury, inhibited the over-production of reactive oxygen species, increased the expression of superoxide dismutase 1 (SOD 1), suppressed the releases of inflammatory cytokines, and inhibited retinal cells apoptosis. MitoQ also down-regulated the expressions of cleaved caspase 3, Bax, NOX 1, NOX 4, cleaved-Notch 1, and Hes 1, increased the expression of SIRT 1 protein and its activity. These effects were significantly reversed by SIRT1 inhibitor EX527. Our data suggests that MitoQ, as a potentially effective drug for improving RIRI, may act through the SIRT1/Notch1/NADPH signal axis.
Collapse
Affiliation(s)
- Dongyong Tang
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xin Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun Chen
- Department of Traditional Chinese Medicine Surgery, Clinical College, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
19
|
Abstract
The outer retina is nourished from the choroid, a capillary bed just inside the sclera. O2, glucose, and other nutrients diffuse out of the choroid and then filter through a monolayer of retinal pigment epithelium (RPE) cells to fuel the retina. Recent studies of energy metabolism have revealed striking differences between retinas and RPE cells in the ways that they extract energy from fuels. The purpose of this review is to suggest and evaluate the hypothesis that the retina and RPE have complementary metabolic roles that make them depend on each other for survival and for their abilities to perform essential and specialized functions. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- James B Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington 98115, USA;
| |
Collapse
|
20
|
Du J, Zhu S, Lim RR, Chao JR. Proline metabolism and transport in retinal health and disease. Amino Acids 2021; 53:1789-1806. [PMID: 33871679 PMCID: PMC8054134 DOI: 10.1007/s00726-021-02981-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
The retina is one of the most energy-demanding tissues in the human body. Photoreceptors in the outer retina rely on nutrient support from the neighboring retinal pigment epithelium (RPE), a monolayer of epithelial cells that separate the retina and choroidal blood supply. RPE dysfunction or cell death can result in photoreceptor degeneration, leading to blindness in retinal degenerative diseases including some inherited retinal degenerations and age-related macular degeneration (AMD). In addition to having ready access to rich nutrients from blood, the RPE is also supplied with lactate from adjacent photoreceptors. Moreover, RPE can phagocytose lipid-rich outer segments for degradation and recycling on a daily basis. Recent studies show RPE cells prefer proline as a major metabolic substrate, and they are highly enriched for the proline transporter, SLC6A20. In contrast, dysfunctional or poorly differentiated RPE fails to utilize proline. RPE uses proline to fuel mitochondrial metabolism, synthesize amino acids, build the extracellular matrix, fight against oxidative stress, and sustain differentiation. Remarkably, the neural retina rarely imports proline directly, but it uptakes and utilizes intermediates and amino acids derived from proline catabolism in the RPE. Mutations of genes in proline metabolism are associated with retinal degenerative diseases, and proline supplementation is reported to improve RPE-initiated vision loss. This review will cover proline metabolism in RPE and highlight the importance of proline transport and utilization in maintaining retinal metabolism and health.
Collapse
Affiliation(s)
- Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA. .,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA. .,One Medical Center Dr, WVU Eye Institute, PO Box 9193, Morgantown, WV, 26505, USA.
| | - Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA.,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Rayne R Lim
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
21
|
Jaroszynska N, Harding P, Moosajee M. Metabolism in the Zebrafish Retina. J Dev Biol 2021; 9:10. [PMID: 33804189 PMCID: PMC8006245 DOI: 10.3390/jdb9010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Retinal photoreceptors are amongst the most metabolically active cells in the body, consuming more glucose as a metabolic substrate than even the brain. This ensures that there is sufficient energy to establish and maintain photoreceptor functions during and after their differentiation. Such high dependence on glucose metabolism is conserved across vertebrates, including zebrafish from early larval through to adult retinal stages. As the zebrafish retina develops rapidly, reaching an adult-like structure by 72 hours post fertilisation, zebrafish larvae can be used to study metabolism not only during retinogenesis, but also in functionally mature retinae. The interplay between rod and cone photoreceptors and the neighbouring retinal pigment epithelium (RPE) cells establishes a metabolic ecosystem that provides essential control of their individual functions, overall maintaining healthy vision. The RPE facilitates efficient supply of glucose from the choroidal vasculature to the photoreceptors, which produce metabolic products that in turn fuel RPE metabolism. Many inherited retinal diseases (IRDs) result in photoreceptor degeneration, either directly arising from photoreceptor-specific mutations or secondary to RPE loss, leading to sight loss. Evidence from a number of vertebrate studies suggests that the imbalance of the metabolic ecosystem in the outer retina contributes to metabolic failure and disease pathogenesis. The use of larval zebrafish mutants with disease-specific mutations that mirror those seen in human patients allows us to uncover mechanisms of such dysregulation and disease pathology with progression from embryonic to adult stages, as well as providing a means of testing novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Philippa Harding
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK;
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK;
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
22
|
Pan WW, Wubben TJ, Besirli CG. Photoreceptor metabolic reprogramming: current understanding and therapeutic implications. Commun Biol 2021; 4:245. [PMID: 33627778 PMCID: PMC7904922 DOI: 10.1038/s42003-021-01765-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Acquired and inherited retinal disorders are responsible for vision loss in an increasing proportion of individuals worldwide. Photoreceptor (PR) death is central to the vision loss individuals experience in these various retinal diseases. Unfortunately, there is a lack of treatment options to prevent PR loss, so an urgent unmet need exists for therapies that improve PR survival and ultimately, vision. The retina is one of the most energy demanding tissues in the body, and this is driven in large part by the metabolic needs of PRs. Recent studies suggest that disruption of nutrient availability and regulation of cell metabolism may be a unifying mechanism in PR death. Understanding retinal cell metabolism and how it is altered in disease has been identified as a priority area of research. The focus of this review is on the recent advances in the understanding of PR metabolism and how it is critical to reduction-oxidation (redox) balance, the outer retinal metabolic ecosystem, and retinal disease. The importance of these metabolic processes is just beginning to be realized and unraveling the metabolic and redox pathways integral to PR health may identify novel targets for neuroprotective strategies that prevent blindness in the heterogenous group of retinal disorders.
Collapse
Affiliation(s)
- Warren W Pan
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J Wubben
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Xu R, Wang Y, Du J. Tracing Nitrogen Metabolism in Mouse Tissues with Gas Chromatography-Mass Spectrometry. Bio Protoc 2021; 11:e3925. [PMID: 33732812 DOI: 10.21769/bioprotoc.3925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 11/02/2022] Open
Abstract
Nitrogen-containing metabolites including ammonia, amino acids, and nucleotides, are essential for cell metabolism, growth, and neural transmission. Nitrogen metabolism is tightly coordinated with carbon metabolism in the breakdown and biosynthesis of amino acids and nucleotides. Both nuclear magnetic resonance spectroscopy and mass spectrometry including gas chromatography-mass spectrometry (GC MS) and liquid chromatography (LC MS) have been used to measure nitrogen metabolism. Here we describe a protocol to trace nitrogen metabolism in multiple mouse tissues using 15N-ammonia coupled with GC MS. This protocol includes detailed procedures in tracer injection, tissue preparation, metabolite extraction, GC MS analysis and natural abundance corrections. This protocol will provide a useful tool to study tissue-specific nitrogen in metabolically active tissues such as the retina, brain, liver, and tumor.
Collapse
Affiliation(s)
- Rong Xu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, USA.,Department of Biochemistry, West Virginia University, Morgantown, USA
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, USA.,Department of Biochemistry, West Virginia University, Morgantown, USA
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, USA.,Department of Biochemistry, West Virginia University, Morgantown, USA
| |
Collapse
|
24
|
Li B, Zhang T, Liu W, Wang Y, Xu R, Zeng S, Zhang R, Zhu S, Gillies MC, Zhu L, Du J. Metabolic Features of Mouse and Human Retinas: Rods versus Cones, Macula versus Periphery, Retina versus RPE. iScience 2020; 23:101672. [PMID: 33196018 PMCID: PMC7644940 DOI: 10.1016/j.isci.2020.101672] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Photoreceptors, especially cones, which are enriched in the human macula, have high energy demands, making them vulnerable to metabolic stress. Metabolic dysfunction of photoreceptors and their supporting retinal pigment epithelium (RPE) is an important underlying cause of degenerative retinal diseases. However, how cones and the macula support their exorbitant metabolic demand and communicate with RPE is unclear. By profiling metabolite uptake and release and analyzing metabolic genes, we have found cone-rich retinas and human macula share specific metabolic features with upregulated pathways in pyruvate metabolism, mitochondrial TCA cycle, and lipid synthesis. Human neural retina and RPE have distinct but complementary metabolic features. Retinal metabolism centers on NADH production and neurotransmitter biosynthesis. The retina needs aspartate to sustain its aerobic glycolysis and mitochondrial metabolism. RPE metabolism is directed toward NADPH production and biosynthesis of acetyl-rich metabolites, serine, and others. RPE consumes multiple nutrients, including proline, to produce metabolites for the retina.
Collapse
Affiliation(s)
- Bo Li
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA.,Department of Ophthalmology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225100, China
| | - Ting Zhang
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Wei Liu
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yekai Wang
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA
| | - Rong Xu
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA
| | - Shaoxue Zeng
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Rui Zhang
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Siyan Zhu
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA
| | - Mark C Gillies
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Ling Zhu
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Jianhai Du
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA
| |
Collapse
|
25
|
Zhang R, Engel AL, Wang Y, Li B, Shen W, Gillies MC, Chao JR, Du J. Inhibition of Mitochondrial Respiration Impairs Nutrient Consumption and Metabolite Transport in Human Retinal Pigment Epithelium. J Proteome Res 2020; 20:909-922. [PMID: 32975122 DOI: 10.1021/acs.jproteome.0c00690] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mitochondrial respiration in mammalian cells not only generates ATP to meet their own energy needs but also couples with biosynthetic pathways to produce metabolites that can be exported to support neighboring cells. However, how defects in mitochondrial respiration influence these biosynthetic and exporting pathways remains poorly understood. Mitochondrial dysfunction in retinal pigment epithelium (RPE) cells is an emerging contributor to the death of their neighboring photoreceptors in degenerative retinal diseases including age-related macular degeneration. In this study, we used targeted-metabolomics and 13C tracing to investigate how inhibition of mitochondrial respiration influences the intracellular and extracellular metabolome. We found inhibition of mitochondrial respiration strikingly influenced both the intracellular and extracellular metabolome in primary RPE cells. Intriguingly, the extracellular metabolic changes sensitively reflected the intracellular changes. These changes included substantially enhanced glucose consumption and lactate production; reduced release of pyruvate, citrate, and ketone bodies; and massive accumulation of multiple amino acids and nucleosides. In conclusion, these findings reveal a metabolic signature of nutrient consumption and release in mitochondrial dysfunction in RPE cells. Testing medium metabolites provides a sensitive and noninvasive method to assess mitochondrial function in nutrient utilization and transport.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States.,Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Abbi L Engel
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109, United States
| | - Yekai Wang
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Bo Li
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Weiyong Shen
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Mark C Gillies
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, Washington 98109, United States
| | - Jianhai Du
- Department of Ophthalmology, West Virginia University, Morgantown, West Virginia 26506, United States.,Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
26
|
Buchanan JL, Taylor EB. Mitochondrial Pyruvate Carrier Function in Health and Disease across the Lifespan. Biomolecules 2020; 10:biom10081162. [PMID: 32784379 PMCID: PMC7464753 DOI: 10.3390/biom10081162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022] Open
Abstract
As a nodal mediator of pyruvate metabolism, the mitochondrial pyruvate carrier (MPC) plays a pivotal role in many physiological and pathological processes across the human lifespan, from embryonic development to aging-associated neurodegeneration. Emerging research highlights the importance of the MPC in diverse conditions, such as immune cell activation, cancer cell stemness, and dopamine production in Parkinson’s disease models. Whether MPC function ameliorates or contributes to disease is highly specific to tissue and cell type. Cell- and tissue-specific differences in MPC content and activity suggest that MPC function is tightly regulated as a mechanism of metabolic, cellular, and organismal control. Accordingly, recent studies on cancer and diabetes have identified protein–protein interactions, post-translational processes, and transcriptional factors that modulate MPC function. This growing body of literature demonstrates that the MPC and other mitochondrial carriers comprise a versatile and dynamic network undergirding the metabolism of health and disease.
Collapse
Affiliation(s)
- Jane L. Buchanan
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA;
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA;
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Correspondence:
| |
Collapse
|