1
|
Knappe E, Rudolph F, Klein C, Seibler P. Cytokine Profiling in Human iPSC-Derived Dopaminergic Neuronal and Microglial Cultures. Cells 2023; 12:2535. [PMID: 37947613 PMCID: PMC10650774 DOI: 10.3390/cells12212535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Aside from the degeneration of dopaminergic neurons, inflammation is a key component in the movement disorder Parkinson's disease (PD). Microglia activation as well as elevated cytokine levels were observed in the brains of PD patients, but the specific role of microglia in the disease process is unknown. Here, we generate human cellular models by differentiating iPSCs into dopaminergic neurons and microglia. We combine these cells in co-culture to perform cytokine profiling, representing the final functional outcome of various signaling pathways. For this, we used unstimulated conditions and treatment with inflammatory stressors. Importantly, only co-cultures but not the monocultures responded to IL-1β treatment suggesting co-culture-related crosstalk. Moreover, we identified the main types of released cytokines and chemokines in this model system and found a preference for the activation of the chemotaxis pathway in response to all treatments, which informs future studies on the cell-type-specific reaction to inflammatory stimulation. Finally, we detected protein level changes in PD risk factor GPNMB upon stress in microglia, further confirming the link between PD-associated genes and inflammation in human-derived cellular models.
Collapse
Affiliation(s)
| | | | | | - Philip Seibler
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (E.K.); (F.R.); (C.K.)
| |
Collapse
|
2
|
Hajianfar G, Kalayinia S, Hosseinzadeh M, Samanian S, Maleki M, Sossi V, Rahmim A, Salmanpour MR. Prediction of Parkinson's disease pathogenic variants using hybrid Machine learning systems and radiomic features. Phys Med 2023; 113:102647. [PMID: 37579523 DOI: 10.1016/j.ejmp.2023.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 05/08/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023] Open
Abstract
PURPOSE In Parkinson's disease (PD), 5-10% of cases are of genetic origin with mutations identified in several genes such as leucine-rich repeat kinase 2 (LRRK2) and glucocerebrosidase (GBA). We aim to predict these two gene mutations using hybrid machine learning systems (HMLS), via imaging and non-imaging data, with the long-term goal to predict conversion to active disease. METHODS We studied 264 and 129 patients with known LRRK2 and GBA mutations status from PPMI database. Each dataset includes 513 features such as clinical features (CFs), conventional imaging features (CIFs) and radiomic features (RFs) extracted from DAT-SPECT images. Features, normalized by Z-score, were univariately analyzed for statistical significance by the t-test and chi-square test, adjusted by Benjamini-Hochberg correction. Multiple HMLSs, including 11 features extraction (FEA) or 10 features selection algorithms (FSA) linked with 21 classifiers were utilized. We also employed Ensemble Voting (EV) to classify the genes. RESULTS For prediction of LRRK2 mutation status, a number of HMLSs resulted in accuracies of 0.98 ± 0.02 and 1.00 in 5-fold cross-validation (80% out of total data points) and external testing (remaining 20%), respectively. For predicting GBA mutation status, multiple HMLSs resulted in high accuracies of 0.90 ± 0.08 and 0.96 in 5-fold cross-validation and external testing, respectively. We additionally showed that SPECT-based RFs added value to the specific prediction of of GBA mutation status. CONCLUSION We demonstrated that combining medical information with SPECT-based imaging features, and optimal utilization of HMLS can produce excellent prediction of the mutations status in PD patients.
Collapse
Affiliation(s)
- Ghasem Hajianfar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran; Technological Virtual Collaboration (TECVICO Corp.), Vancouver BC, Canada
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Hosseinzadeh
- Technological Virtual Collaboration (TECVICO Corp.), Vancouver BC, Canada; Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sara Samanian
- Firoozgar Hospital Medical Genetics Laboratory, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Arman Rahmim
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Mohammad R Salmanpour
- Technological Virtual Collaboration (TECVICO Corp.), Vancouver BC, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Immunity orchestrates a bridge in gut-brain axis of neurodegenerative diseases. Ageing Res Rev 2023; 85:101857. [PMID: 36669690 DOI: 10.1016/j.arr.2023.101857] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Neurodegenerative diseases, in particular for Alzheimer's disease (AD), Parkinson's disease (PD) and Multiple sclerosis (MS), are a category of diseases with progressive loss of neuronal structure or function (encompassing neuronal death) leading to neuronal dysfunction, whereas the underlying pathogenesis remains to be clarified. As the microbiological ecosystem of the intestinal microbiome serves as the second genome of the human body, it is strongly implicated as an essential element in the initiation and/or progression of neurodegenerative diseases. Nevertheless, the precise underlying principles of how the intestinal microflora impact on neurodegenerative diseases via gut-brain axis by modulating the immune function are still poorly characterized. Consequently, an overview of initiating the development of neurodegenerative diseases and the contribution of intestinal microflora on immune function is discussed in this review.
Collapse
|
4
|
Kung PJ, Elsayed I, Reyes-Pérez P, Bandres-Ciga S. Immunogenetic Determinants of Parkinson’s Disease Etiology. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S13-S27. [PMID: 35367971 PMCID: PMC9535568 DOI: 10.3233/jpd-223176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Parkinson’s disease (PD) is increasingly recognised as a systemic disorder in which inflammation might play a causative role rather than being a consequence or an epiphenomenon of the neurodegenerative process. Although growing genetic evidence links the central and peripheral immune system with both monogenic and sporadic PD, our understanding on how the immune system contributes to PD pathogenesis remains a daunting challenge. In this review, we discuss recent literature aimed at exploring the role of known genes and susceptibility loci to PD pathogenesis through immune system related mechanisms. Furthermore, we outline shared genetic etiologies and interrelations between PD and autoimmune diseases and underlining challenges and limitations faced in the translation of relevant allelic and regulatory risk loci to immune-pathological mechanisms. Lastly, with the field of immunogenetics expanding rapidly, we place these insights into a future context highlighting the prospect of immune modulation as a promising disease-modifying strategy.
Collapse
Affiliation(s)
- Pin-Jui Kung
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Inas Elsayed
- Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
- International Parkinson Disease Genomics Consortium (IPDGC)-Africa, University of Gezira, Wad Medani, Sudan
| | - Paula Reyes-Pérez
- Laboratorio Internacional de Investigacion sobre el Genoma Humano, Universidad Autonoma de México, Queretaro, Mexico
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Pan Y, Liu J, Ren J, Luo Y, Sun X. Epac: A Promising Therapeutic Target for Vascular Diseases: A Review. Front Pharmacol 2022; 13:929152. [PMID: 35910387 PMCID: PMC9330031 DOI: 10.3389/fphar.2022.929152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular diseases affect the circulatory system and comprise most human diseases. They cause severe symptoms and affect the quality of life of patients. Recently, since their identification, exchange proteins directly activated by cAMP (Epac) have attracted increasing scientific interest, because of their role in cyclic adenosine monophosphate (cAMP) signaling, a well-known signal transduction pathway. The role of Epac in cardiovascular disease and cancer is extensively studied, whereas their role in kidney disease has not been comprehensively explored yet. In this study, we aimed to review recent studies on the regulatory effects of Epac on various vascular diseases, such as cardiovascular disease, cerebrovascular disease, and cancer. Accumulating evidence has shown that both Epac1 and Epac2 play important roles in vascular diseases under both physiological and pathological conditions. Additionally, there has been an increasing focus on Epac pharmacological modulators. Therefore, we speculated that Epac could serve as a novel therapeutic target for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yunfeng Pan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Jia Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiahui Ren
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yun Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Zhang M, Li C, Ren J, Wang H, Yi F, Wu J, Tang Y. The Double-Faceted Role of Leucine-Rich Repeat Kinase 2 in the Immunopathogenesis of Parkinson’s Disease. Front Aging Neurosci 2022; 14:909303. [PMID: 35645775 PMCID: PMC9131027 DOI: 10.3389/fnagi.2022.909303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 12/17/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is one of the most common causative genes in Parkinson’s disease (PD). The complex structure of this multiple domains’ protein determines its versatile functions in multiple physiological processes, including migration, autophagy, phagocytosis, and mitochondrial function, among others. Mounting studies have also demonstrated the role of LRRK2 in mediating neuroinflammation, the prominent hallmark of PD, and intricate functions in immune cells, such as microglia, macrophages, and astrocytes. Of those, microglia were extensively studied in PD, which serves as the resident immune cell of the central nervous system that is rapidly activated upon neuronal injury and pathogenic insult. Moreover, the activation and function of immune cells can be achieved by modulating their intracellular metabolic profiles, in which LRRK2 plays an emerging role. Here, we provide an updated review focusing on the double-faceted role of LRRK2 in regulating various cellular physiology and immune functions especially in microglia. Moreover, we will summarize the latest discovery of the three-dimensional structure of LRRK2, as well as the function and dysfunction of LRRK2 in immune cell-related pathways.
Collapse
Affiliation(s)
- Mengfei Zhang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chaoyi Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Ren
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huakun Wang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Yi
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junjiao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Tang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
- Aging Research Center, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Xu E, Boddu R, Abdelmotilib HA, Sokratian A, Kelly K, Liu Z, Bryant N, Chandra S, Carlisle SM, Lefkowitz EJ, Harms AS, Benveniste EN, Yacoubian TA, Volpicelli-Daley LA, Standaert DG, West AB. Pathological α-synuclein recruits LRRK2 expressing pro-inflammatory monocytes to the brain. Mol Neurodegener 2022; 17:7. [PMID: 35012605 PMCID: PMC8751347 DOI: 10.1186/s13024-021-00509-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Leucine rich repeat kinase 2 (LRRK2) and SNCA are genetically linked to late-onset Parkinson's disease (PD). Aggregated α-synuclein pathologically defines PD. Recent studies identified elevated LRRK2 expression in pro-inflammatory CD16+ monocytes in idiopathic PD, as well as increased phosphorylation of the LRRK2 kinase substrate Rab10 in monocytes in some LRRK2 mutation carriers. Brain-engrafting pro-inflammatory monocytes have been implicated in dopaminergic neurodegeneration in PD models. Here we examine how α-synuclein and LRRK2 interact in monocytes and subsequent neuroinflammatory responses. METHODS Human and mouse monocytes were differentiated to distinct transcriptional states resembling macrophages, dendritic cells, or microglia, and exposed to well-characterized human or mouse α-synuclein fibrils. LRRK2 expression and LRRK2-dependent Rab10 phosphorylation were measured with monoclonal antibodies, and myeloid cell responses to α-synuclein fibrils in R1441C-Lrrk2 knock-in mice or G2019S-Lrrk2 BAC mice were evaluated by flow cytometry. Chemotaxis assays were performed with monocyte-derived macrophages stimulated with α-synuclein fibrils and microglia in Boyden chambers. RESULTS α-synuclein fibrils robustly stimulate LRRK2 and Rab10 phosphorylation in human and mouse macrophages and dendritic-like cells. In these cells, α-synuclein fibrils stimulate LRRK2 through JAK-STAT activation and intrinsic LRRK2 kinase activity in a feed-forward pathway that upregulates phosphorylated Rab10. In contrast, LRRK2 expression and Rab10 phosphorylation are both suppressed in microglia-like cells that are otherwise highly responsive to α-synuclein fibrils. Corroborating these results, LRRK2 expression in the brain parenchyma occurs in pro-inflammatory monocytes infiltrating from the periphery, distinct from brain-resident microglia. Mice expressing pathogenic LRRK2 mutations G2019S or R1441C have increased numbers of infiltrating pro-inflammatory monocytes in acute response to α-synuclein fibrils. In primary cultured macrophages, LRRK2 kinase inhibition dampens α-synuclein fibril and microglia-stimulated chemotaxis. CONCLUSIONS Pathologic α-synuclein activates LRRK2 expression and kinase activity in monocytes and induces their recruitment to the brain. These results predict that LRRK2 kinase inhibition may attenuate damaging pro-inflammatory monocyte responses in the brain.
Collapse
Affiliation(s)
- Enquan Xu
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA
| | - Ravindra Boddu
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA
| | | | - Arpine Sokratian
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA
| | - Kaela Kelly
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA
| | - Zhiyong Liu
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA
| | - Nicole Bryant
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA
| | - Sidhanth Chandra
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Samantha M Carlisle
- Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Elliot J Lefkowitz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ashley S Harms
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35216, USA
| | - Etty N Benveniste
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Talene A Yacoubian
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35216, USA
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35216, USA
| | - David G Standaert
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35216, USA
| | - Andrew B West
- Duke Center for Neurodegeneration Research, Duke University, Durham, NC, 27710, USA.
- Department of Pharmacology and Cancer Biology, Duke University, 3 Genome Court, Durham, NC, 27710, USA.
| |
Collapse
|
8
|
Sim H, Seo JH, Kim J, Oh M, Lee JE, Baek A, Lee SY, Chung SK, Son MY, Chae JI, Jeon YJ, Kim J. Quantitative Proteomic Analysis of Primitive Neural Stem Cells from LRRK2 G2019S-Associated Parkinson's Disease Patient-Derived iPSCs. Life (Basel) 2020; 10:E331. [PMID: 33297425 PMCID: PMC7762312 DOI: 10.3390/life10120331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, causing movement defects. The incidence of PD is constantly increasing and this disease is still incurable. Thus, understanding PD pathophysiology would be pivotal for the development of PD therapy, and various PD models have thus been already developed. Through recent advances in reprogramming techniques, a primitive neural stem cell (pNSC) derived from PD patient induced pluripotent stem cells (iPSCs) could be potentially used as a reproducible and reliable experimental system to analyze the effect of the leucine-rich repeat kinase 2 G2019S mutation (LK2GS) in neural cells. Here, we investigated the advantages of such a model system through quantitative proteomic analysis of pNSCs from normal control iPSCs and familial PD patient iPSCs harboring LK2GS. We confirmed that the expression of molecules known to be involved in PD pathogenesis, such as oxidative stress-, cell adhesion-, and cytoskeleton-related proteins, were altered in the LK2GS pNSC. In addition, we showed that down-regulation of Ku80, which was found in the proteomic analysis with LK2GS pNSCs, resulted in apoptosis induced by DNA damage response. Taken together, we suggest that pNSCs from PD iPSCs could provide a reliable and useful model system to study PD. Moreover, the highly expandable pNSC is suitable for multi-omics approaches to understand PD pathologies and discover therapeutic targets for PD.
Collapse
Affiliation(s)
- Hyuna Sim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.S.); (M.O.); (J.-E.L.); (A.B.); (M.-Y.S.)
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry, BK21 Plus, Jeonbuk National University, Jeonju 54896, Korea; (J.-H.S.); (J.K.); (J.-I.C.)
| | - Jumi Kim
- Department of Dental Pharmacology, School of Dentistry, BK21 Plus, Jeonbuk National University, Jeonju 54896, Korea; (J.-H.S.); (J.K.); (J.-I.C.)
| | - Minyoung Oh
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.S.); (M.O.); (J.-E.L.); (A.B.); (M.-Y.S.)
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Joo-Eun Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.S.); (M.O.); (J.-E.L.); (A.B.); (M.-Y.S.)
| | - Areum Baek
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.S.); (M.O.); (J.-E.L.); (A.B.); (M.-Y.S.)
| | - Seo-Young Lee
- Division of Herbal Medicine Research, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea;
| | - Sun-Ku Chung
- Division of Clinical Medicine, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea;
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.S.); (M.O.); (J.-E.L.); (A.B.); (M.-Y.S.)
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry, BK21 Plus, Jeonbuk National University, Jeonju 54896, Korea; (J.-H.S.); (J.K.); (J.-I.C.)
| | - Young-Joo Jeon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.S.); (M.O.); (J.-E.L.); (A.B.); (M.-Y.S.)
| | - Janghwan Kim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (H.S.); (M.O.); (J.-E.L.); (A.B.); (M.-Y.S.)
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
9
|
Small GTPases of the Ras and Rho Families Switch on/off Signaling Pathways in Neurodegenerative Diseases. Int J Mol Sci 2020. [DOI: 10.3390/ijms21176312
expr 858053618 + 832508766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Small guanosine triphosphatases (GTPases) of the Ras superfamily are key regulators of many key cellular events such as proliferation, differentiation, cell cycle regulation, migration, or apoptosis. To control these biological responses, GTPases activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in some small GTPases also guanine nucleotide dissociation inhibitors (GDIs). Moreover, small GTPases transduce signals by their downstream effector molecules. Many studies demonstrate that small GTPases of the Ras family are involved in neurodegeneration processes. Here, in this review, we focus on the signaling pathways controlled by these small protein superfamilies that culminate in neurodegenerative pathologies, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). Specifically, we concentrate on the two most studied families of the Ras superfamily: the Ras and Rho families. We summarize the latest findings of small GTPases of the Ras and Rho families in neurodegeneration in order to highlight these small proteins as potential therapeutic targets capable of slowing down different neurodegenerative diseases.
Collapse
|
10
|
Arrazola Sastre A, Luque Montoro M, Gálvez-Martín P, Lacerda HM, Lucia A, Llavero F, Zugaza JL. Small GTPases of the Ras and Rho Families Switch on/off Signaling Pathways in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E6312. [PMID: 32878220 PMCID: PMC7504559 DOI: 10.3390/ijms21176312] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Small guanosine triphosphatases (GTPases) of the Ras superfamily are key regulators of many key cellular events such as proliferation, differentiation, cell cycle regulation, migration, or apoptosis. To control these biological responses, GTPases activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in some small GTPases also guanine nucleotide dissociation inhibitors (GDIs). Moreover, small GTPases transduce signals by their downstream effector molecules. Many studies demonstrate that small GTPases of the Ras family are involved in neurodegeneration processes. Here, in this review, we focus on the signaling pathways controlled by these small protein superfamilies that culminate in neurodegenerative pathologies, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Specifically, we concentrate on the two most studied families of the Ras superfamily: the Ras and Rho families. We summarize the latest findings of small GTPases of the Ras and Rho families in neurodegeneration in order to highlight these small proteins as potential therapeutic targets capable of slowing down different neurodegenerative diseases.
Collapse
Affiliation(s)
- Alazne Arrazola Sastre
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
- Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
| | - Miriam Luque Montoro
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 180041 Granada, Spain;
- R&D Human Health, Bioibérica S.A.U., 08950 Barcelona, Spain
| | | | - Alejandro Lucia
- Faculty of Sport Science, European University of Madrid, 28670 Madrid, Spain;
- Research Institute of the Hospital 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Francisco Llavero
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
- Faculty of Sport Science, European University of Madrid, 28670 Madrid, Spain;
| | - José Luis Zugaza
- Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; (A.A.S.); (M.L.M.)
- Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|