1
|
Makarava N, Kushwaha R, Baskakov IV. Reactive astrocytes in prion diseases: Friend or foe? PLoS Pathog 2024; 20:e1012286. [PMID: 38900746 PMCID: PMC11189187 DOI: 10.1371/journal.ppat.1012286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Rajesh Kushwaha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
2
|
Jones E, Hill E, Linehan J, Nazari T, Caulder A, Codner GF, Hutchison M, Mackenzie M, Farmer M, Coysh T, De Oliveira MW, Al-Doujaily H, Sandberg M, Viré E, Cunningham TJ, Asante EA, Brandner S, Collinge J, Mead S. Characterisation and prion transmission study in mice with genetic reduction of sporadic Creutzfeldt-Jakob disease risk gene Stx6. Neurobiol Dis 2024; 190:106363. [PMID: 37996040 PMCID: PMC7615600 DOI: 10.1016/j.nbd.2023.106363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, is thought to occur when the cellular prion protein (PrPC) spontaneously misfolds and assembles into prion fibrils, culminating in fatal neurodegeneration. In a genome-wide association study of sCJD, we recently identified risk variants in and around the gene STX6, with evidence to suggest a causal increase of STX6 expression in disease-relevant brain regions. STX6 encodes syntaxin-6, a SNARE protein primarily involved in early endosome to trans-Golgi network retrograde transport. Here we developed and characterised a mouse model with genetic depletion of Stx6 and investigated a causal role of Stx6 expression in mouse prion disease through a classical prion transmission study, assessing the impact of homozygous and heterozygous syntaxin-6 knockout on disease incubation periods and prion-related neuropathology. Following inoculation with RML prions, incubation periods in Stx6-/- and Stx6+/- mice differed by 12 days relative to wildtype. Similarly, in Stx6-/- mice, disease incubation periods following inoculation with ME7 prions also differed by 12 days. Histopathological analysis revealed a modest increase in astrogliosis in ME7-inoculated Stx6-/- animals and a variable effect of Stx6 expression on microglia activation, however no differences in neuronal loss, spongiform change or PrP deposition were observed at endpoint. Importantly, Stx6-/- mice are viable and fertile with no gross impairments on a range of neurological, biochemical, histological and skeletal structure tests. Our results provide some support for a pathological role of Stx6 expression in prion disease, which warrants further investigation in the context of prion disease but also other neurodegenerative diseases considering syntaxin-6 appears to have pleiotropic risk effects in progressive supranuclear palsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Emma Jones
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Elizabeth Hill
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Jacqueline Linehan
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Tamsin Nazari
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Adam Caulder
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Gemma F Codner
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Marie Hutchison
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Matthew Mackenzie
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Michael Farmer
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Thomas Coysh
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Michael Wiggins De Oliveira
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Huda Al-Doujaily
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Malin Sandberg
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Emmanuelle Viré
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Thomas J Cunningham
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Emmanuel A Asante
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - John Collinge
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Simon Mead
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK.
| |
Collapse
|
3
|
Carroll JA, Striebel JF, Baune C, Chesebro B, Race B. CD11c is not required by microglia to convey neuroprotection after prion infection. PLoS One 2023; 18:e0293301. [PMID: 37910561 PMCID: PMC10619787 DOI: 10.1371/journal.pone.0293301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Prion diseases are caused by the misfolding of a normal host protein that leads to gliosis, neuroinflammation, neurodegeneration, and death. Microglia have been shown to be critical for neuroprotection during prion infection of the central nervous system (CNS), and their presence extends survival in mice. How microglia impart these benefits to the infected host are unknown. Previous transcriptomics and bioinformatics studies suggested that signaling through the heterodimeric integrin receptor CD11c/CD18, expressed by microglia in the brain, might be important to microglial function during prion disease. Herein, we intracerebrally challenged CD11c-/- mice with prion strain RML and compared them to similarly infected C57BL/6 mice as controls. We initially assessed changes in the brain that are associated with disease such as astrogliosis, microgliosis, prion accumulation, and survival. Targeted qRT-PCR arrays were used to determine alterations in transcription in mice in response to prion infection. We demonstrate that expression of Itgax (CD11c) and Itgb2 (CD18) increases in the CNS in correlation with advancing prion infection. Gliosis, neuropathology, prion deposition, and disease progression in prion infected CD11c deficient mice were comparable to infected C57BL/6 mice. Additionally, both CD11c deficient and C57BL/6 prion-infected mouse cohorts had a similar consortium of inflammatory- and phagocytosis-associated genes that increased as disease progressed to clinical stages. Ingenuity Pathway Analysis of upregulated genes in infected C57BL/6 mice suggested numerous cell-surface transmembrane receptors signal through Spleen Tyrosine Kinase, a potential key regulator of phagocytosis and innate immune activation in the prion infected brain. Ultimately, the deletion of CD11c did not influence prion pathogenesis in mice and CD11c signaling is not involved in the neuroprotection provided by microglia, but our analysis identified a conspicuous phagocytosis pathway in the CNS of infected mice that appeared to be activated during prion pathogenesis.
Collapse
Affiliation(s)
- James A. Carroll
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - James F. Striebel
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Chase Baune
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bruce Chesebro
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Brent Race
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
4
|
Bruno R, Riccardi G, Iacobone F, Chiarotti F, Pirisinu L, Vanni I, Marcon S, D'Agostino C, Giovannelli M, Parchi P, Agrimi U, Nonno R, Di Bari MA. Strain-Dependent Morphology of Reactive Astrocytes in Human- and Animal-Vole-Adapted Prions. Biomolecules 2023; 13:biom13050757. [PMID: 37238627 DOI: 10.3390/biom13050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Reactive astrogliosis is one of the pathological hallmarks of prion diseases. Recent studies highlighted the influence of several factors on the astrocyte phenotype in prion diseases, including the brain region involved, the genotype backgrounds of the host, and the prion strain. Elucidating the influence of prion strains on the astrocyte phenotype may provide crucial insights for developing therapeutic strategies. Here, we investigated the relationship between prion strains and astrocyte phenotype in six human- and animal-vole-adapted strains characterized by distinctive neuropathological features. In particular, we compared astrocyte morphology and astrocyte-associated PrPSc deposition among strains in the same brain region, the mediodorsal thalamic nucleus (MDTN). Astrogliosis was detected to some extent in the MDTN of all analyzed voles. However, we observed variability in the morphological appearance of astrocytes depending on the strain. Astrocytes displayed variability in thickness and length of cellular processes and cellular body size, suggesting strain-specific phenotypes of reactive astrocytes. Remarkably, four out of six strains displayed astrocyte-associated PrPSc deposition, which correlated with the size of astrocytes. Overall, these data show that the heterogeneous reactivity of astrocytes in prion diseases depends at least in part on the infecting prion strains and their specific interaction with astrocytes.
Collapse
Affiliation(s)
- Rosalia Bruno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Geraldina Riccardi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Floriana Iacobone
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Flavia Chiarotti
- Reference Center for the Behavioral Sciences and Mental Health, Italian National Institute of Health, 00161 Rome, Italy
| | - Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Stefano Marcon
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Claudia D'Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Matteo Giovannelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40138 Bologna, Italy
| | - Umberto Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Michele Angelo Di Bari
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
5
|
Race B, Williams K, Baune C, Striebel JF, Long D, Thomas T, Lubke L, Chesebro B, Carroll JA. Microglia have limited influence on early prion pathogenesis, clearance, or replication. PLoS One 2022; 17:e0276850. [PMID: 36301895 PMCID: PMC9612458 DOI: 10.1371/journal.pone.0276850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Microglia (MG) are critical to host defense during prion infection, but the mechanism(s) of this neuroprotection are poorly understood. To better examine the influence of MG during prion infection, we reduced MG in the brains of C57BL/10 mice using PLX5622 and assessed prion clearance and replication using multiple approaches that included bioassay, immunohistochemistry, and Real-Time Quaking Inducted Conversion (RT-QuIC). We also utilized a strategy of intermittent PLX5622 treatments to reduce MG and allow MG repopulation to test whether new MG could alter prion disease progress. Lastly, we investigated the influence of MG using tga20 mice, a rapid prion model that accumulates fewer pathological features and less PrPres in the infected brain. In C57BL/10 mice we found that MG were excluded from the inoculation site early after infection, but Iba1 positive infiltrating monocytes/macrophage were present. Reducing MG in the brain prior to prion inoculation did not increase susceptibility to prion infection. Short intermittent treatments with PLX5622 in prion infected C57BL/10 mice after 80 dpi were unsuccessful at altering the MG population, gliosis, or survival. Additionally, MG depletion using PLX5622 in tga20 mice had only a minor impact on prion pathogenesis, indicating that the presence of MG might be less important in this fast model with less prion accumulation. In contrast to the benefits of MG against prion disease in late stages of disease, our current experiments suggest MG do not play a role in early prion pathogenesis, clearance, or replication.
Collapse
Affiliation(s)
- Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail: (BR); (JAC)
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Chase Baune
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - James F. Striebel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Dan Long
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Tina Thomas
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Lori Lubke
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - James A. Carroll
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail: (BR); (JAC)
| |
Collapse
|
6
|
Tahir W, Thapa S, Schatzl HM. Astrocyte in prion disease: a double-edged sword. Neural Regen Res 2022; 17:1659-1665. [PMID: 35017412 PMCID: PMC8820723 DOI: 10.4103/1673-5374.332202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/08/2021] [Accepted: 07/22/2021] [Indexed: 11/04/2022] Open
Abstract
Prion diseases are infectious protein misfolding disorders of the central nervous system that result from misfolding of the cellular prion protein (PrPC) into the pathologic isoform PrPSc. Pathologic hallmarks of prion disease are depositions of pathological prion protein PrPSc, neuronal loss, spongiform degeneration and astrogliosis in the brain. Prion diseases affect human and animals, there is no effective therapy, and they invariably remain fatal. For a long time, neuronal loss was considered the sole reason for neurodegeneration in prion pathogenesis, and the contribution of non-neuronal cells like microglia and astrocytes was considered less important. Recent evidence suggests that neurodegeneration during prion pathogenesis is a consequence of a complex interplay between neuronal and non-neuronal cells in the brain, but the exact role of these non-neuronal cells during prion pathology is still elusive. Astrocytes are non-neuronal cells that regulate brain homeostasis under physiological conditions. However, astrocytes can deposit PrPSc aggregates and propagate prions in prion-infected brains. Additionally, sub-populations of reactive astrocytes that include neurotrophic and neurotoxic species have been identified, differentially expressed in the brain during prion infection. Revealing the exact role of astrocytes in prion disease is hampered by the lack of in vitro models of prion-infected astrocytes. Recently, we established a murine astrocyte cell line persistently infected with mouse-adapted prions, and showed how such astrocytes differentially process various prion strains. Considering the complexity of the role of astrocytes in prion pathogenesis, we need more in vitro and in vivo models for exploring the contribution of sub-populations of reactive astrocytes, their differential regulation of signaling cascades, and the interaction with neurons and microglia during prion pathogenesis. This will help to establish novel in vivo models and define new therapeutic targets against prion diseases. In this review, we will discuss the complex role of astrocytes in prion disease, the existing experimental resources, the challenges to analyze the contribution of astrocytes in prion disease pathogenesis, and future strategies to improve the understanding of their role in prion disease.
Collapse
Affiliation(s)
- Waqas Tahir
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Simrika Thapa
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Hermann M. Schatzl
- Department of Comparative Biology & Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Siva Venkatesh IP, Bhaskar M, Basu A. Japanese encephalitis viral infection modulates proinflammatory cyto/chemokine profile in primary astrocyte and cell line of astrocytic origin. Metab Brain Dis 2022; 37:1487-1502. [PMID: 35486209 DOI: 10.1007/s11011-022-00991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
Japanese Encephalitis Virus (JEV) is a neurotropic virus that invades Central Nervous System (CNS) and causes severe neuroinflammation. Given the abundance and the position of astrocytes in the CNS, we speculate that they might play a critical role in the process of neuroinflammation. Unfortunately, the role of astrocytes in JEV-mediated neuroinflammation has long been understated. In this study, we have attempted to assess the role of astrocyte-mediated neuroinflammation upon JEV infection. Mouse model of JEV infection, generated by intraperitoneal injection, showed severe reactive astrogliosis. To further address our hypothesis, we employed immortalized astrocytic cell line (in vitro) and primary astrocyte-enriched culture (ex vivo) as experimental models. JEV infection in the astrocytes induces proinflammatory cytokines like MCP1/CCL2 and IL6 in both ex vivo and in vitro cultures as observed from the cytometric bead array analysis. A significantly altered cytokine profile was observed using PCR analysis in in vitro and ex vivo models upon infection, with respect to control, validating our previous results. We also show that there exists a major inconsistency in the viral replication kinetics, wherein the cell line showed a robust rate of replication whereas the primary astrocyte-enriched culture showed negligibly low number of plaques, underlining the importance of the selection of appropriate experimental model system. In conclusion, we claim that astrocytes significantly contribute to JEV-mediated neuroinflammation, despite not being a CNS immune cell.
Collapse
Affiliation(s)
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, 122052, India.
| |
Collapse
|
8
|
Arshad H, Watts JC. Genetically engineered cellular models of prion propagation. Cell Tissue Res 2022; 392:63-80. [PMID: 35581386 DOI: 10.1007/s00441-022-03630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/26/2022] [Indexed: 11/02/2022]
Abstract
For over three decades, cultured cells have been a useful tool for dissecting the molecular details of prion replication and the identification of candidate therapeutics for prion disease. A major issue limiting the translatability of these studies has been the inability to reliably propagate disease-relevant, non-mouse strains of prions in cells relevant to prion pathogenesis. In recent years, fueled by advances in gene editing technology, it has become possible to propagate prions from hamsters, cervids, and sheep in immortalized cell lines originating from the central nervous system. In particular, the use of CRISPR-Cas9-mediated gene editing to generate versions of prion-permissive cell lines that lack endogenous PrP expression has provided a blank canvas upon which re-expression of PrP leads to species-matched susceptibility to prion infection. When coupled with the ability to propagate prions in cells or organoids derived from stem cells, these next-generation cellular models should provide an ideal paradigm for identifying small molecules and other biological therapeutics capable of interfering with prion replication in animal and human prion disorders. In this review, we summarize recent advances that have widened the spectrum of prion strains that can be propagated in cultured cells and cutting-edge tissue-based models.
Collapse
Affiliation(s)
- Hamza Arshad
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower Rm. 4KD481, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building Rm. 5207, Toronto, ON, M5S 1A8, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Tower Rm. 4KD481, 60 Leonard Ave, Toronto, ON, M5T 0S8, Canada. .,Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building Rm. 5207, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
9
|
Heumüller SE, Hornberger AC, Hebestreit AS, Hossinger A, Vorberg IM. Propagation and Dissemination Strategies of Transmissible Spongiform Encephalopathy Agents in Mammalian Cells. Int J Mol Sci 2022; 23:ijms23062909. [PMID: 35328330 PMCID: PMC8949484 DOI: 10.3390/ijms23062909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023] Open
Abstract
Transmissible spongiform encephalopathies or prion disorders are fatal infectious diseases that cause characteristic spongiform degeneration in the central nervous system. The causative agent, the so-called prion, is an unconventional infectious agent that propagates by converting the host-encoded cellular prion protein PrP into ordered protein aggregates with infectious properties. Prions are devoid of coding nucleic acid and thus rely on the host cell machinery for propagation. While it is now established that, in addition to PrP, other cellular factors or processes determine the susceptibility of cell lines to prion infection, exact factors and cellular processes remain broadly obscure. Still, cellular models have uncovered important aspects of prion propagation and revealed intercellular dissemination strategies shared with other intracellular pathogens. Here, we summarize what we learned about the processes of prion invasion, intracellular replication and subsequent dissemination from ex vivo cell models.
Collapse
Affiliation(s)
- Stefanie-Elisabeth Heumüller
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Annika C. Hornberger
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Alina S. Hebestreit
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - André Hossinger
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
| | - Ina M. Vorberg
- Laboratory of Prion Cell Biology, German Center for Neurodegenerative Diseases Bonn (DZNE e.V.), Venusberg-Campus 1/99, 53127 Bonn, Germany; (S.-E.H.); (A.C.H.); (A.S.H.); (A.H.)
- German Center for Neurodegenerative Diseases (DZNE), Rheinische Friedrich-Wilhelms-Universität Bonn, Siegmund-Freud-Str. 25, 53127 Bonn, Germany
- Correspondence:
| |
Collapse
|
10
|
Primary glia cells from bank vole propagate multiple rodent-adapted scrapie prions. Sci Rep 2022; 12:2190. [PMID: 35140295 PMCID: PMC8828835 DOI: 10.1038/s41598-022-06198-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Since the beginning prion research has been largely dependent on animal models for deciphering the disease, drug development or prion detection and quantification. Thereby, ethical as well as cost and labour-saving aspects call for alternatives in vitro. Cell models can replace or at least complement animal studies, but their number is still limited and the application usually restricted to certain strains and host species due to often strong transmission barriers. Bank voles promise to be an exception as they or materials prepared from them are uniquely susceptible to prions from various species in vivo, in vitro and in cell-free applications. Here we present a mainly astrocyte-based primary glia cell assay from bank vole, which is infectible with scrapie strains from bank vole, mouse and hamster. Stable propagation of bank vole-adapted RML, murine 22L and RML, and hamster 263K scrapie is detectable from 20 or 30 days post exposure onwards. Thereby, the infected bank vole glia cells show similar or even faster prion propagation than likewise infected glia cells of the corresponding murine or hamster hosts. We propose that our bank vole glia cell assay could be a versatile tool for studying and comparing multiple prion strains with different species backgrounds combined in one cell assay.
Collapse
|
11
|
Abstract
Prion diseases are neurodegenerative disorders caused by conformational conversion of the cellular prion protein (PrPC) into scrapie prion protein (PrPSc). As the main component of prion, PrPSc acts as an infectious template that recruits and converts normal cellular PrPC into its pathogenic, misfolded isoform. Intriguingly, the phenomenon of prionoid, or prion-like, spread has also been observed in many other disease-associated proteins, such as amyloid β (Aβ), tau and α-synuclein. This Cell Science at a Glance and the accompanying poster highlight recently described physiological roles of prion protein and the advanced understanding of pathogenesis of prion disease they have afforded. Importantly, prion protein may also be involved in the pathogenesis of other neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Therapeutic studies of prion disease have also exploited novel strategies to combat these devastating diseases. Future studies on prion protein and prion disease will deepen our understanding of the pathogenesis of a broad spectrum of neurodegenerative conditions.
Collapse
Affiliation(s)
- Caihong Zhu
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zürich, Zürich, CH-8091, Switzerland
| |
Collapse
|
12
|
Wälzlein JH, Schwenke KA, Beekes M. Propagation of CJD Prions in Primary Murine Glia Cells Expressing Human PrP c. Pathogens 2021; 10:1060. [PMID: 34451524 PMCID: PMC8399260 DOI: 10.3390/pathogens10081060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
There are various existing cell models for the propagation of animal prions. However, in vitro propagation of human prions has been a long-standing challenge. This study presents the establishment of a long-term primary murine glia culture expressing the human prion protein homozygous for methionine at codon 129, which allows in vitro propagation of Creutzfeldt-Jakob disease (CJD) prions (variant CJD (vCJD) and sporadic CJD (sCJD) type MM2). Prion propagation could be detected by Western blotting of pathological proteinase K-resistant prion protein (PrPSc) from 120 days post exposure. The accumulation of PrPSc could be intensified by adding a cationic lipid mixture to the infectious brain homogenate at the time of infection. Stable propagation of human prions in a long-term murine glia cell culture represents a new tool for future drug development and for mechanistic studies in the field of human prion biology. In addition, our cell model can reduce the need for bioassays with human prions and thereby contributes to further implementation of the 3R principles aiming at replacement, reduction and refinement of animal experiments.
Collapse
|
13
|
Neuroinflammation in Prion Disease. Int J Mol Sci 2021; 22:ijms22042196. [PMID: 33672129 PMCID: PMC7926464 DOI: 10.3390/ijms22042196] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Neuroinflammation, typically manifest as microglial activation and astrogliosis accompanied by transcriptomic alterations, represents a common hallmark of various neurodegenerative conditions including prion diseases. Microglia play an overall neuroprotective role in prion disease, whereas reactive astrocytes with aberrant phenotypes propagate prions and contribute to prion-induced neurodegeneration. The existence of heterogeneous subpopulations and dual functions of microglia and astrocytes in prion disease make them potential targets for therapeutic intervention. A variety of neuroinflammation-related molecules are involved in prion pathogenesis. Therapeutics targeting neuroinflammation represents a novel approach to combat prion disease. Deciphering neuroinflammation in prion disease will deepen our understanding of pathogenesis of other neurodegenerative disorders.
Collapse
|
14
|
Kushwaha R, Sinha A, Makarava N, Molesworth K, Baskakov IV. Non-cell autonomous astrocyte-mediated neuronal toxicity in prion diseases. Acta Neuropathol Commun 2021; 9:22. [PMID: 33546775 PMCID: PMC7866439 DOI: 10.1186/s40478-021-01123-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
Under normal conditions, astrocytes perform a number of important physiological functions centered around neuronal support and synapse maintenance. In neurodegenerative diseases including Alzheimer’s, Parkinson’s and prion diseases, astrocytes acquire reactive phenotypes, which are sustained throughout the disease progression. It is not known whether in the reactive states associated with prion diseases, astrocytes lose their ability to perform physiological functions and whether the reactive states are neurotoxic or, on the contrary, neuroprotective. The current work addresses these questions by testing the effects of reactive astrocytes isolated from prion-infected C57BL/6J mice on primary neuronal cultures. We found that astrocytes isolated at the clinical stage of the disease exhibited reactive, pro-inflammatory phenotype, which also showed downregulation of genes involved in neurogenic and synaptogenic functions. In astrocyte-neuron co-cultures, astrocytes from prion-infected animals impaired neuronal growth, dendritic spine development and synapse maturation. Toward examining the role of factors secreted by reactive astrocytes, astrocyte-conditioned media was found to have detrimental effects on neuronal viability and synaptogenic functions via impairing synapse integrity, and by reducing spine size and density. Reactive microglia isolated from prion-infected animals were found to induce phenotypic changes in primary astrocytes reminiscent to those observed in prion-infected mice. In particular, astrocytes cultured with reactive microglia-conditioned media displayed hypertrophic morphology and a downregulation of genes involved in neurogenic and synaptogenic functions. In summary, the current study provided experimental support toward the non-cell autonomous mechanisms behind neurotoxicity in prion diseases and demonstrated that the astrocyte reactive phenotype associated with prion diseases is synaptotoxic.
Collapse
|
15
|
Pineau H, Sim VL. From Cell Culture to Organoids-Model Systems for Investigating Prion Strain Characteristics. Biomolecules 2021; 11:biom11010106. [PMID: 33466947 PMCID: PMC7830147 DOI: 10.3390/biom11010106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Prion diseases are the hallmark protein folding neurodegenerative disease. Their transmissible nature has allowed for the development of many different cellular models of disease where prion propagation and sometimes pathology can be induced. This review examines the range of simple cell cultures to more complex neurospheres, organoid, and organotypic slice cultures that have been used to study prion disease pathogenesis and to test therapeutics. We highlight the advantages and disadvantages of each system, giving special consideration to the importance of strains when choosing a model and when interpreting results, as not all systems propagate all strains, and in some cases, the technique used, or treatment applied, can alter the very strain properties being studied.
Collapse
Affiliation(s)
- Hailey Pineau
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada;
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Valerie L. Sim
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2B7, Canada;
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence:
| |
Collapse
|
16
|
Microglia in Prion Diseases: Angels or Demons? Int J Mol Sci 2020; 21:ijms21207765. [PMID: 33092220 PMCID: PMC7589037 DOI: 10.3390/ijms21207765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Prion diseases are rare transmissible neurodegenerative disorders caused by the accumulation of a misfolded isoform (PrPSc) of the cellular prion protein (PrPC) in the central nervous system (CNS). Neuropathological hallmarks of prion diseases are neuronal loss, astrogliosis, and enhanced microglial proliferation and activation. As immune cells of the CNS, microglia participate both in the maintenance of the normal brain physiology and in driving the neuroinflammatory response to acute or chronic (e.g., neurodegenerative disorders) insults. Microglia involvement in prion diseases, however, is far from being clearly understood. During this review, we summarize and discuss controversial findings, both in patient and animal models, suggesting a neuroprotective role of microglia in prion disease pathogenesis and progression, or—conversely—a microglia-mediated exacerbation of neurotoxicity in later stages of disease. We also will consider the active participation of PrPC in microglial functions, by discussing previous reports, but also by presenting unpublished results that support a role for PrPC in cytokine secretion by activated primary microglia.
Collapse
|