1
|
Feng X, Zhang R, Yang Z, Zhang K, Xing J. Mechanism of Metabolic Dysfunction-associated Steatotic Liver Disease: Important role of lipid metabolism. J Clin Transl Hepatol 2024; 12:815-826. [PMID: 39280069 PMCID: PMC11393839 DOI: 10.14218/jcth.2024.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, has a high global prevalence and can progress to metabolic dysfunction-associated steatohepatitis, cirrhosis, and hepatocellular carcinoma. The pathogenesis of MASLD is primarily driven by disturbances in hepatic lipid metabolism, involving six key processes: increased hepatic fatty acid uptake, enhanced fatty acid synthesis, reduced oxidative degradation of fatty acids, increased cholesterol uptake, elevated cholesterol synthesis, and increased bile acid synthesis. Consequently, maintaining hepatic lipid metabolic homeostasis is essential for effective MASLD management. Numerous novel molecules and Chinese proprietary medicines have demonstrated promising therapeutic potential in treating MASLD, primarily by inhibiting lipid synthesis and promoting lipid oxidation. In this review, we summarized recent research on MASLD, elucidated the molecular mechanisms by which lipid metabolism disorders contribute to MASLD pathogenesis, and discussed various lipid metabolism-targeted therapeutic approaches for MASLD.
Collapse
Affiliation(s)
- Xiaoxi Feng
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Rutong Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhenye Yang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jun Xing
- Department of Digestive Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
2
|
Kong X, Tao S, Ji Z, Li J, Li H, Jin J, Zhao Y, Liu J, Zhao F, Chen J, Feng Z, Chen B, Shan Z. FATP2 regulates osteoclastogenesis by increasing lipid metabolism and ROS production. J Bone Miner Res 2024; 39:737-752. [PMID: 38477781 DOI: 10.1093/jbmr/zjae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Lipid metabolism plays a crucial role in maintaining bone homeostasis, particularly in osteoclasts (OCs) formation. Here, we found that the expression level of FATP2, a transporter for long-chain and very-long-chain fatty acids, was significantly upregulated during OC differentiation and in the bone marrow of mice fed a high-fat diet (HFD). Notably, the use of FATP2 siRNA or a specific inhibitor (Lipofermata) resulted in significant inhibition of OC differentiation, while only slightly affecting osteoblasts. In pathological models of bone loss induced by LPS or ovariectomy, in vivo treatment with Lipofermata was able to rescue the loss of bone mass by inhibiting OC differentiation. RNA sequencing revealed that Lipofermata reduced fatty acid β-oxidation and inhibited energy metabolism, while regulating ROS metabolism to decrease ROS production, ultimately inhibiting OC differentiation. Treatment with Lipofermata, either in vivo or in vitro, effectively rescued the overactivation of OCs, indicating that FATP2 regulated OC differentiation by modulating fatty acid uptake and energy metabolism. These findings suggested that targeting FATP2 may represent a promising therapeutic approach for pathological osteoporosis.
Collapse
Affiliation(s)
- Xiangxi Kong
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Siyue Tao
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Zhongyin Ji
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Jie Li
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, 315100, Zhejiang, China
| | - Hui Li
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Jiayan Jin
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Yihao Zhao
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Junhui Liu
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Jian Chen
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Zhenhua Feng
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| | - Binhui Chen
- Department of Orthopaedic Surgery, Ningbo Medical Center Li Huili Hospital, Ningbo, 315100, Zhejiang, China
| | - Zhi Shan
- Department of Orthopaedic Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, 310016, Zhejiang, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
3
|
Zhou S, Taskintuna K, Hum J, Gulati J, Olaya S, Steinman J, Golestaneh N. PGC-1α repression dysregulates lipid metabolism and induces lipid droplet accumulation in retinal pigment epithelium. Cell Death Dis 2024; 15:385. [PMID: 38824126 PMCID: PMC11144268 DOI: 10.1038/s41419-024-06762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
Drusen, the yellow deposits under the retina, are composed of lipids and proteins, and represent a hallmark of age-related macular degeneration (AMD). Lipid droplets are also reported in the retinal pigment epithelium (RPE) from AMD donor eyes. However, the mechanisms underlying these disease phenotypes remain elusive. Previously, we showed that Pgc-1α repression, combined with a high-fat diet (HFD), induce drastic AMD-like phenotypes in mice. We also reported increased PGC-1α acetylation and subsequent deactivation in the RPE derived from AMD donor eyes. Here, through a series of in vivo and in vitro experiments, we sought to investigate the molecular mechanisms by which PGC-1α repression could influence RPE and retinal function. We show that PGC-1α plays an important role in RPE and retinal lipid metabolism and function. In mice, repression of Pgc-1α alone induced RPE and retinal degeneration and drusen-like deposits. In vitro inhibition of PGC1A by CRISPR-Cas9 gene editing in human RPE (ARPE19- PGC1A KO) affected the expression of genes responsible for lipid metabolism, fatty acid β-oxidation (FAO), fatty acid transport, low-density lipoprotein (LDL) uptake, cholesterol esterification, cholesterol biosynthesis, and cholesterol efflux. Moreover, inhibition of PGC1A in RPE cells caused lipid droplet accumulation and lipid peroxidation. ARPE19-PGC1A KO cells also showed reduced mitochondrial biosynthesis, impaired mitochondrial dynamics and activity, reduced antioxidant enzymes, decreased mitochondrial membrane potential, loss of cardiolipin, and increased susceptibility to oxidative stress. Our data demonstrate the crucial role of PGC-1α in regulating lipid metabolism. They provide new insights into the mechanisms involved in lipid and drusen accumulation in the RPE and retina during aging and AMD, which may pave the way for developing novel therapeutic strategies targeting PGC-1α.
Collapse
Affiliation(s)
- Shuyan Zhou
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Kaan Taskintuna
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Jacob Hum
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Jasmine Gulati
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Stephanie Olaya
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Jeremy Steinman
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Nady Golestaneh
- Department of Ophthalmology, Georgetown University Medical Center, Washington, DC, 20007, USA.
- Department of Neurology, Georgetown University Medical Center, Washington, DC, 20007, USA.
- Department of Biochemistry and Molecular & Cellular Biology, Washington, DC, 20007, USA.
| |
Collapse
|
4
|
Pozo-Morales M, Cobham AE, Centola C, McKinney MC, Liu P, Perazzolo C, Lefort A, Libert F, Bai H, Rohner N, Singh SP. Starvation-resistant cavefish reveal conserved mechanisms of starvation-induced hepatic lipotoxicity. Life Sci Alliance 2024; 7:e202302458. [PMID: 38467419 PMCID: PMC10927358 DOI: 10.26508/lsa.202302458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Starvation causes the accumulation of lipid droplets in the liver, a somewhat counterintuitive phenomenon that is nevertheless conserved from flies to humans. Much like fatty liver resulting from overfeeding, hepatic lipid accumulation (steatosis) during undernourishment can lead to lipotoxicity and atrophy of the liver. Here, we found that although surface populations of Astyanax mexicanus undergo this evolutionarily conserved response to starvation, the starvation-resistant cavefish larvae of the same species do not display an accumulation of lipid droplets upon starvation. Moreover, cavefish are resistant to liver atrophy during starvation, providing a unique system to explore strategies for liver protection. Using comparative transcriptomics between zebrafish, surface fish, and cavefish, we identified the fatty acid transporter slc27a2a/fatp2 to be correlated with the development of fatty liver. Pharmacological inhibition of slc27a2a in zebrafish rescues steatosis and atrophy of the liver upon starvation. Furthermore, down-regulation of FATP2 in Drosophila larvae inhibits the development of starvation-induced steatosis, suggesting the evolutionarily conserved importance of the gene in regulating fatty liver upon nutrition deprivation. Overall, our study identifies a conserved, druggable target to protect the liver from atrophy during starvation.
Collapse
Affiliation(s)
- Macarena Pozo-Morales
- https://ror.org/01r9htc13 IRIBHM, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ansa E Cobham
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Cielo Centola
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Peiduo Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Camille Perazzolo
- https://ror.org/01r9htc13 IRIBHM, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Anne Lefort
- https://ror.org/01r9htc13 IRIBHM, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Frédérick Libert
- https://ror.org/01r9htc13 IRIBHM, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sumeet Pal Singh
- https://ror.org/01r9htc13 IRIBHM, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
5
|
Pozo-Morales M, Cobham AE, Centola C, McKinney MC, Liu P, Perazzolo C, Lefort A, Libert F, Bai H, Rohner N, Singh SP. Starvation resistant cavefish reveal conserved mechanisms of starvation-induced hepatic lipotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574986. [PMID: 38260657 PMCID: PMC10802416 DOI: 10.1101/2024.01.10.574986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Starvation causes the accumulation of lipid droplets in the liver, a somewhat counterintuitive phenomenon that is nevertheless conserved from flies to humans. Much like fatty liver resulting from overfeeding, hepatic lipid accumulation (steatosis) during undernourishment can lead to lipotoxicity and atrophy of the liver. Here, we found that while surface populations of Astyanax mexicanus undergo this evolutionarily conserved response to starvation, the starvation-resistant cavefish larvae of the same species do not display an accumulation of lipid droplets upon starvation. Moreover, cavefish are resistant to liver atrophy during starvation, providing a unique system to explore strategies for liver protection. Using comparative transcriptomics between zebrafish, surface fish, and cavefish, we identified the fatty acid transporter slc27a2a/fatp2 to be correlated with the development of fatty liver. Pharmacological inhibition of slc27a2a in zebrafish rescues steatosis and atrophy of the liver upon starvation. Further, down-regulation of FATP2 in drosophila larvae inhibits the development of starvation-induced steatosis, suggesting the evolutionary conserved importance of the gene in regulating fatty liver upon nutrition deprivation. Overall, our study identifies a conserved, druggable target to protect the liver from atrophy during starvation.
Collapse
Affiliation(s)
- Macarena Pozo-Morales
- IRIBHM, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Ansa E Cobham
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Cielo Centola
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Peiduo Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Camille Perazzolo
- IRIBHM, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Anne Lefort
- IRIBHM, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Frédérick Libert
- IRIBHM, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Sumeet Pal Singh
- IRIBHM, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| |
Collapse
|
6
|
Rao G, Peng X, Li X, An K, He H, Fu X, Li S, An Z. Unmasking the enigma of lipid metabolism in metabolic dysfunction-associated steatotic liver disease: from mechanism to the clinic. Front Med (Lausanne) 2023; 10:1294267. [PMID: 38089874 PMCID: PMC10711211 DOI: 10.3389/fmed.2023.1294267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/26/2023] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly defined as non-alcoholic fatty liver disease (NAFLD), is a disorder marked by the excessive deposition of lipids in the liver, giving rise to a spectrum of liver pathologies encompassing steatohepatitis, fibrosis/cirrhosis, and hepatocellular carcinoma. Despite the alarming increase in its prevalence, the US Food and Drug Administration has yet to approve effective pharmacological therapeutics for clinical use. MASLD is characterized by the accretion of lipids within the hepatic system, arising from a disarray in lipid provision (whether through the absorption of circulating lipids or de novo lipogenesis) and lipid elimination (via free fatty acid oxidation or the secretion of triglyceride-rich lipoproteins). This disarray leads to the accumulation of lipotoxic substances, cellular pressure, damage, and fibrosis. Indeed, the regulation of the lipid metabolism pathway is intricate and multifaceted, involving a myriad of factors, such as membrane transport proteins, metabolic enzymes, and transcription factors. Here, we will review the existing literature on the key process of lipid metabolism in MASLD to understand the latest progress in this molecular mechanism. Notably, de novo lipogenesis and the roles of its two main transcription factors and other key metabolic enzymes are highlighted. Furthermore, we will delve into the realm of drug research, examining the recent progress made in understanding lipid metabolism in MASLD. Additionally, we will outline prospective avenues for future drug research on MASLD based on our unique perspectives.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Peng
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of North Sichuan Medical College, North Sichuan Medical College, Nanchong, China
| | - Xinqiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Kang An
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, National Clinical Research Center for Geriatrics, Multimorbidity Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - He He
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xianghui Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Shuangqing Li
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, National Clinical Research Center for Geriatrics, Multimorbidity Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Lu Y, Yang X, Kuang Q, Wu Y, Tan X, Lan J, Qiang Z, Feng T. HBx induced upregulation of FATP2 promotes the development of hepatic lipid accumulation. Exp Cell Res 2023:113721. [PMID: 37437769 DOI: 10.1016/j.yexcr.2023.113721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
The hepatitis B Virus X (HBx) protein plays a crucial role in the HBV-induced hepatic steatosis. Fatty acid transport protein 2 (FATP2) is a key protein that is involved in hepatic lipogenesis, and it was found to be highly expressed in various metabolic diseases. However, Whether FATP2 is a key factor in the pathogenesis of HBx-induced hepatic steatosis remains unclear. In this study, we found that FATP2 was up-regulated by HBx in vitro and in vivo and participated in HBx-induced hepatic lipid accumulation. Treatment of HBx-expressing cell lines and mice with FATP2 inhibitor (FATP2i) lipofermata ameliorated HBx-induced lipid accumulation and reduced oxidative stress and inflammation caused by lipid accumulation. Moreover, the liver injury of mouse was restored after FATP2i treatment. In summary, our results reveal that FATP2 is a key driver factor for HBx-induced hepatic lipid accumulation, and inhibition of FATP2 can ameliorates lipid accumulation caused by HBx. This study provides new insights into the mechanism of HBV-induced hepatic steatosis.
Collapse
Affiliation(s)
- Yang Lu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyue Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Qin Kuang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Yong Wu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Xin Tan
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Jizhong Lan
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Qiang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China.
| | - Tao Feng
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China; Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
8
|
Joshi N, Sahay A, Mane A, Sundrani D, Randhir K, Wagh G, Thornburg K, Powell T, Yajnik C, Joshi S. Altered expression of nutrient transporters in syncytiotrophoblast membranes in preeclampsia placentae. Placenta 2023; 139:181-189. [PMID: 37421872 DOI: 10.1016/j.placenta.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/29/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
INTRODUCTION Expression of nutrient transporters in the placenta affects fetal growth. This study reports the protein expression of nutrient transporters in the syncytial membranes [microvillous membrane (MVM) and basal membrane (BM)] of normotensive control and preeclampsia placentae. METHODS Placentae were collected from fourteen normotensive control women and fourteen women with preeclampsia. The syncytiotrophoblast MVM and BM membranes were isolated. The protein expression of glucose transporter (GLUT1), vitamin B12 transporter (CD320) and fatty acid transporters (FATP2, FATP4) was assessed in both the membranes. RESULTS Comparison between membranes demonstrates similar CD320 protein expression in normotensive group whereas, in preeclampsia placentae it was higher in the BM as compared to MVM (p < 0.05). FATP2&4 protein expression was higher in the BM as compared to their respective MVM fraction in both the groups (p < 0.01 for both). Comparison between groups demonstrates higher GLUT1 expression in the MVM (p < 0.05) and BM (p < 0.05) whereas lower CD320 expression in the MVM (p < 0.05) of preeclampsia placentae as compared to their respective membranes in normotensive control. Furthermore, GLUT1 protein expression was positively associated and CD320 protein expression was negatively associated with maternal body mass index (BMI) (p < 0.05 for both). No difference was observed in the FATP2&4 protein expression. However, FATP4 protein expression was negatively associated with maternal blood pressure (p < 0.05 for MVM; p = 0.060 for BM) and birth weight (p < 0.05 for both membranes). DISCUSSION The current study for the first time demonstrates differential expression of various transporters in the syncytiotrophoblast membranes of the preeclampsia placentae which may influence fetal growth.
Collapse
Affiliation(s)
- Nikita Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Akriti Sahay
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Aditi Mane
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Deepali Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Karuna Randhir
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India
| | - Girija Wagh
- Department of Obstetrics and Gynecology, Bharati Medical College and Hospital, Bharati Vidyapeeth University, Pune, India
| | - Kent Thornburg
- Department of Medicine, Center for Developmental Health, Knight Cardiovascular Institute, Bob and Charlee Moore Institute for Nutrition and Wellness, Oregon Health and Science University, Portland, OR, United States
| | - Theresa Powell
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, India.
| |
Collapse
|
9
|
Shang K, Ma N, Che J, Li H, Hu J, Sun H, Cao B. SLC27A2 mediates FAO in colorectal cancer through nongenic crosstalk regulation of the PPARs pathway. BMC Cancer 2023; 23:335. [PMID: 37041476 PMCID: PMC10091540 DOI: 10.1186/s12885-023-10816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/06/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Peroxisome proliferator activated receptors (PPARs) are a nuclear hormone receptors superfamily that is closely related to fatty acid (FA) metabolism and tumor progression. Solute carrier family 27 member 2 (SLC27A2) is important for FA transportation and metabolism and is related to cancer progression. This study aims to explore the mechanisms of how PPARs and SLC27A2 regulate FA metabolism in colorectal cancer (CRC) and find new strategies for CRC treatment. METHODS Biological information analysis was applied to detect the expression and the correlation of PPARs and SLC27A2 in CRC. The protein-protein interaction (PPI) interaction networks were explored by using the STRING database. Uptake experiments and immunofluorescence staining were used to analyse the function and number of peroxisomes and colocalization of FA with peroxisomes, respectively. Western blotting and qRT‒PCR were performed to explore the mechanisms. RESULTS SLC27A2 was overexpressed in CRC. PPARs had different expression levels, and PPARG was significantly highly expressed in CRC. SLC27A2 was correlated with PPARs in CRC. Both SLC27A2 and PPARs were closely related to fatty acid oxidation (FAO)‒related genes. SLC27A2 affected the activity of ATP Binding Cassette Subfamily D Member 3 (ABCD3), also named PMP70, the most abundant peroxisomal membrane protein. We found that the ratios of p-Erk/Erk and p-GSK3β/GSK3β were elevated through nongenic crosstalk regulation of the PPARs pathway. CONCLUSIONS SLC27A2 mediates FA uptake and beta-oxidation through nongenic crosstalk regulation of the PPARs pathway in CRC. Targeting SLC27A2/FATP2 or PPARs may provide new insights for antitumour strategies.
Collapse
Affiliation(s)
- Kun Shang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Nina Ma
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Juanjuan Che
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Huihui Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Jiexuan Hu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Haolin Sun
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China.
| |
Collapse
|
10
|
Lopes MFDS, Felix JDS, Scaramele NF, Almeida MC, Furlan ADO, Troiano JA, de Athayde FRF, Lopes FL. Co-expression analysis of lncRNA and mRNA identifies potential adipogenesis regulatory non-coding RNAs involved in the transgenerational effects of tributyltin. PLoS One 2023; 18:e0281240. [PMID: 36735680 PMCID: PMC10045570 DOI: 10.1371/journal.pone.0281240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
The obesity epidemic is considered a global public health crisis, with an increase in caloric intake, sedentary lifestyles and/or genetic predispositions as contributing factors. Although the positive energy balance is one of the most significant causes of obesity, recent research has linked early exposure to Endocrine-Disrupting Chemicals (EDCs) such as the obesogen tributyltin (TBT) to the disease epidemic. In addition to their actions on the hormonal profile, EDCs can induce long-term changes in gene expression, possibly due to changes in epigenetic patterns. Long non-coding RNAs (lncRNAs) are epigenetic mediators that play important regulatory roles in several biological processes, through regulation of gene transcription and/or translation. In this study, we explored the differential expression of lncRNAs in gonadal white adipose tissue samples from adult male C57BL/6J F4 generation, female C57BL/6J offspring exposed (F0 generation) to 50 nM TBT or 0.1% DMSO (control of vehicle) via drinking water provided during pregnancy and lactation, analyzing RNA-seq data from a publicly available dataset (GSE105051). A total of 74 lncRNAs were differentially expressed (DE), 22 were up-regulated and 52 were down-regulated in the group whose F4 ancestor was exposed in utero to 50nM TBT when compared to those exposed to 0.1% DMSO (control). Regulation of DE lncRNAs and their potential partner genes in gonadal white adipose tissue of mice ancestrally exposed to EDC TBT may be related to the control of adipogenesis, as pathway enrichment analyses showed that these gene partners are mainly involved in the metabolism of lipids and glucose and in insulin-related pathways, which are essential for obesity onset and control.
Collapse
Affiliation(s)
- Maria Fernanda da Silva Lopes
- Department of Animal Production and Health, School of Veterinary Medicine, São Paulo State University Júlio de Mesquita Filho (Unesp), Araçatuba, Brazil
| | - Juliana de Souza Felix
- Department of Animal Production and Health, School of Veterinary Medicine, São Paulo State University Júlio de Mesquita Filho (Unesp), Araçatuba, Brazil
| | - Natália Francisco Scaramele
- Department of Animal Production and Health, School of Veterinary Medicine, São Paulo State University Júlio de Mesquita Filho (Unesp), Araçatuba, Brazil
| | - Mariana Cordeiro Almeida
- Department of Animal Production and Health, School of Veterinary Medicine, São Paulo State University Júlio de Mesquita Filho (Unesp), Araçatuba, Brazil
| | - Amanda de Oliveira Furlan
- Department of Animal Production and Health, School of Veterinary Medicine, São Paulo State University Júlio de Mesquita Filho (Unesp), Araçatuba, Brazil
| | - Jéssica Antonini Troiano
- Department of Animal Production and Health, School of Veterinary Medicine, São Paulo State University Júlio de Mesquita Filho (Unesp), Araçatuba, Brazil
- Faculdades de Dracena (UNIFADRA–Fundec), Dracena, São Paulo, Brazil
| | - Flávia Regina Florêncio de Athayde
- Department of Animal Production and Health, School of Veterinary Medicine, São Paulo State University Júlio de Mesquita Filho (Unesp), Araçatuba, Brazil
| | - Flávia Lombardi Lopes
- Department of Animal Production and Health, School of Veterinary Medicine, São Paulo State University Júlio de Mesquita Filho (Unesp), Araçatuba, Brazil
- * E-mail:
| |
Collapse
|
11
|
Fatty acid transport proteins (FATPs) in cancer. Chem Phys Lipids 2023; 250:105269. [PMID: 36462545 DOI: 10.1016/j.chemphyslip.2022.105269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/12/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Lipids play pivotal roles in cancer biology. Lipids have a wide range of biological roles, especially in cell membrane synthesis, serve as energetic molecules in regulating energy-demanding processes; and they play a significant role as signalling molecules and modulators of numerous cellular functions. Lipids may participate in the development of cancer through the fatty acid signalling pathway. Lipids consumed in the diet act as a key source of extracellular pools of fatty acids transported into the cellular system. Increased availability of lipids to cancer cells is due to increased uptake of fatty acids from adipose tissues. Lipids serve as a source of energy for rapidly dividing cancerous cells. Surviving requires the swift synthesis of biomass and membrane matrix to perform exclusive functions such as cell proliferation, growth, invasion, and angiogenesis. FATPs (fatty acid transport proteins) are a group of proteins involved in fatty acid uptake, mainly localized within cells and the cellular membrane, and have a key role in long-chain fatty acid transport. FATPs are composed of six isoforms that are tissue-specific and encoded by a specific gene. Previous studies have reported that FATPs can alter fatty acid metabolism, cell growth, and cell proliferation and are involved in the development of various cancers. They have shown increased expression in most cancers, such as melanoma, breast cancer, prostate cancer, renal cell carcinoma, hepatocellular carcinoma, bladder cancer, and lung cancer. This review introduces a variety of FATP isoforms and summarises their functions and their possible roles in the development of cancer.
Collapse
|
12
|
Zhang Y, Mahmood T, Wu Y, Tang Z, Wang Y, Wu W, Zhou H, Guo Y, Yuan J. Oxidized corn oil changes the liver lipid metabolism of broilers by upregulating peroxisome proliferators activate receptor-α. Poult Sci 2022; 102:102437. [PMID: 36621096 PMCID: PMC9841278 DOI: 10.1016/j.psj.2022.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The objective of the following study was to investigate the effects of naturally oxidized corn oil on the antioxidant capacity and lipid metabolism of broilers. A total of 450, 1-day-old Arbor Acres male broilers were randomly divided into 5 treatments with 6 replicate cages and 15 birds/cage. The dietary treatment array consisted of ratios of naturally oxidized corn oil to non-oxidized corn oil from 0:100, 25:75, 50:50, 75:25, and 100:0, respectively. Serum, liver, and abdominal fat samples were taken at 42 d. The results showed that the liver organ index, liver catalase (CAT) activity, malondialdehyde (MDA) content, and the serum aspartate aminotransferase (AST) content had significant quadratic relationships with the ratio of naturally oxidized corn oil (P < 0.05). Inflammatory infiltrating cells appeared in the liver of the 50% and 75% oxidized corn oil group. The percentage of abdominal fat, and serum free fatty acids (FFA) content increased linearly with the increased proportion of oxidized corn oil (P < 0.05). The mRNA expression of NADH quinone oxidoreductase 1 (NQO-1), nuclear factor kappa B (NF-κB), toll-like receptor-4 (TLR-4), peroxisome proliferators activate receptor-α (PPARα), carnitine acyltransferase (CPT1), and acyl-coenzyme oxidase (ACO) of the liver increased linearly while oxidized corn oil increased in the diet (P < 0.05). Diets containing 100% oxidized corn oil significantly changed the mRNA expression of liver Caveolin compared with other treatment groups (P < 0.05). Taken together, this study demonstrated that naturally oxidized corn oil could change liver lipid metabolism and accelerate lipid deposition of broilers by upregulating PPARα.
Collapse
Affiliation(s)
- Yuqing Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tahir Mahmood
- Adisseo Animal Nutrition, Dubai 00000, United Arab Emirates
| | - Yuqin Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhenhai Tang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Youli Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huajin Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Gao Y, Liu P, Wang D, Liu J, Yang L, Kang Y, Han B, Yin J, Zhu J, Wang K, Li C. Isolation and characterization of a novel protein from Momordica charantia L. Positively regulates lipid metabolism activity in vivo and in vitro. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Subhan MA, Torchilin VP. Neutrophils as an emerging therapeutic target and tool for cancer therapy. Life Sci 2021; 285:119952. [PMID: 34520766 DOI: 10.1016/j.lfs.2021.119952] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 02/09/2023]
Abstract
Activation of neutrophils is necessary for the protection of the host against microbial infection. This property can be used as mode of therapy for cancer treatment. Neutrophils have conflicting dual functions in cancer as either a tumor promoter or inhibitor. Neutrophil-based drug delivery has achieved increased attention in pre-clinical models. This review addresses in detail the different neutrophil constituents, the conflicting function of neutrophils and activation of the neutrophil as an important target of therapy for cancer treatment, and use of neutrophils or neutrophil membrane-derived vesicles as vehicles for drug delivery and targeting.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh..
| | - Vladimir P Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA; Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
15
|
Jiang L, Hong Y, Xie G, Zhang J, Zhang H, Cai Z. Comprehensive multi-omics approaches reveal the hepatotoxic mechanism of perfluorohexanoic acid (PFHxA) in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148160. [PMID: 34380288 DOI: 10.1016/j.scitotenv.2021.148160] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Perfluorohexanoic acid (PFHxA), one of the short-chain perfluoroalkyl acids (PFAAs), is considered as a substitute of perfluorooctane sulfonate (PFOS). This emerging organic pollutant is persistent and highly bioavailable to humans, raising concerns about its potential health risks. There are currently few researches on the toxicity of PFHxA. Liver has been suggested to be the main target of PFHxA toxicity, and the mechanism remains unclear. Herein, we investigated the transcriptomic, proteomic, and metabolomic landscape in PFHxA-exposed mice. Using these approaches, we identified several valuable biological processes involved in the process of liver injury, comprising fatty acid biosynthesis and degradation pathways, which might be induced by peroxisome proliferator-activated receptor (PPAR) signaling pathway. These processes further promoted oxidative stress and induced liver injury. Meanwhile, abnormalities in purine metabolism and glutathione metabolism were observed during the liver injury induced by PFHxA, indicating the production of oxidative stress. Finally, our present multi-omics studies provided new insights into the mechanisms involved in PFHxA-induced liver injury.
Collapse
Affiliation(s)
- Lilong Jiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; Shenzhen Research Institute and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Yanjun Hong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; Shenzhen Research Institute and Continuing Education, Hong Kong Baptist University, Shenzhen, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China.
| | - Guangshan Xie
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Jinghui Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hongna Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; Shenzhen Research Institute and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
16
|
Konger RL, Derr-Yellin E, Zimmers TA, Katona T, Xuei X, Liu Y, Zhou HM, Simpson ER, Turner MJ. Epidermal PPARγ Is a Key Homeostatic Regulator of Cutaneous Inflammation and Barrier Function in Mouse Skin. Int J Mol Sci 2021; 22:ijms22168634. [PMID: 34445339 PMCID: PMC8395473 DOI: 10.3390/ijms22168634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023] Open
Abstract
Both agonist studies and loss-of-function models indicate that PPARγ plays an important role in cutaneous biology. Since PPARγ has a high level of basal activity, we hypothesized that epidermal PPARγ would regulate normal homeostatic processes within the epidermis. In this current study, we performed mRNA sequencing and differential expression analysis of epidermal scrapings from knockout mice and wildtype littermates. Pparg-/-epi mice exhibited a 1.5-fold or greater change in the expression of 11.8% of 14,482 identified transcripts. Up-regulated transcripts included those for a large number of cytokines/chemokines and their receptors, as well as genes associated with inflammasome activation and keratinization. Several of the most dramatically up-regulated pro-inflammatory genes in Pparg-/-epi mouse skin included Igfl3, 2610528A11Rik, and Il1f6. RT-PCR was performed from RNA obtained from non-lesional full-thickness skin and verified a marked increase in these transcripts, as well as transcripts for Igflr1, which encodes the receptor for Igfl3, and the 2610528A11Rik receptor (Gpr15). Transcripts for Il4 were detected in Pparg-/-epi mouse skin, but transcripts for Il17 and Il22 were not detected. Down-regulated transcripts included sebaceous gland markers and a number of genes associated with lipid barrier formation. The change in these transcripts correlates with an asebia phenotype, increased transepidermal water loss, alopecia, dandruff, and the appearance of spontaneous inflammatory skin lesions. Histologically, non-lesional skin showed hyperkeratosis, while inflammatory lesions were characterized by dermal inflammation and epidermal acanthosis, spongiosis, and parakeratosis. In conclusion, loss of epidermal Pparg alters a substantial set of genes that are associated with cutaneous inflammation, keratinization, and sebaceous gland function. The data indicate that epidermal PPARγ plays an important role in homeostatic epidermal function, particularly epidermal differentiation, barrier function, sebaceous gland development and function, and inflammatory signaling.
Collapse
Affiliation(s)
- Raymond L. Konger
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; (E.D.-Y.); (T.K.)
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- The Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.A.Z.); (Y.L.)
- Correspondence: ; Tel.: +1-317-274-4154
| | - Ethel Derr-Yellin
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; (E.D.-Y.); (T.K.)
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Teresa A. Zimmers
- The Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.A.Z.); (Y.L.)
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Terrence Katona
- Department of Pathology & Laboratory Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA; (E.D.-Y.); (T.K.)
| | - Xiaoling Xuei
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Yunlong Liu
- The Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.A.Z.); (Y.L.)
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN 46202, USA
| | - Hong-Ming Zhou
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-M.Z.); (M.J.T.)
| | - Ed Ronald Simpson
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-M.Z.); (M.J.T.)
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Matthew J. Turner
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.-M.Z.); (M.J.T.)
- Department of Dermatology, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
17
|
Fatty acids and evolving roles of their proteins in neurological, cardiovascular disorders and cancers. Prog Lipid Res 2021; 83:101116. [PMID: 34293403 DOI: 10.1016/j.plipres.2021.101116] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
The dysregulation of fat metabolism is involved in various disorders, including neurodegenerative, cardiovascular, and cancers. The uptake of long-chain fatty acids (LCFAs) with 14 or more carbons plays a pivotal role in cellular metabolic homeostasis. Therefore, the uptake and metabolism of LCFAs must constantly be in tune with the cellular, metabolic, and structural requirements of cells. Many metabolic diseases are thought to be driven by the abnormal flow of fatty acids either from the dietary origin and/or released from adipose stores. Cellular uptake and intracellular trafficking of fatty acids are facilitated ubiquitously with unique combinations of fatty acid transport proteins and cytoplasmic fatty acid-binding proteins in every tissue. Extensive data are emerging on the defective transporters and metabolism of LCFAs and their clinical implications. Uptake and metabolism of LCFAs are crucial for the brain's functional development and cardiovascular health and maintenance. In addition, data suggest fatty acid metabolic transporter can normalize activated inflammatory response by reprogramming lipid metabolism in cancers. Here we review the current understanding of how LCFAs and their proteins contribute to the pathophysiology of three crucial diseases and the mechanisms involved in the processes.
Collapse
|
18
|
Abumrad NA, Cabodevilla AG, Samovski D, Pietka T, Basu D, Goldberg IJ. Endothelial Cell Receptors in Tissue Lipid Uptake and Metabolism. Circ Res 2021; 128:433-450. [PMID: 33539224 DOI: 10.1161/circresaha.120.318003] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipid uptake and metabolism are central to the function of organs such as heart, skeletal muscle, and adipose tissue. Although most heart energy derives from fatty acids (FAs), excess lipid accumulation can cause cardiomyopathy. Similarly, high delivery of cholesterol can initiate coronary artery atherosclerosis. Hearts and arteries-unlike liver and adrenals-have nonfenestrated capillaries and lipid accumulation in both health and disease requires lipid movement from the circulation across the endothelial barrier. This review summarizes recent in vitro and in vivo findings on the importance of endothelial cell receptors and uptake pathways in regulating FAs and cholesterol uptake in normal physiology and cardiovascular disease. We highlight clinical and experimental data on the roles of ECs in lipid supply to tissues, heart, and arterial wall in particular, and how this affects organ metabolism and function. Models of FA uptake into ECs suggest that receptor-mediated uptake predominates at low FA concentrations, such as during fasting, whereas FA uptake during lipolysis of chylomicrons may involve paracellular movement. Similarly, in the setting of an intact arterial endothelial layer, recent and historic data support a role for receptor-mediated processes in the movement of lipoproteins into the subarterial space. We conclude with thoughts on the need to better understand endothelial lipid transfer for fuller comprehension of the pathophysiology of hyperlipidemia, and lipotoxic diseases such as some forms of cardiomyopathy and atherosclerosis.
Collapse
Affiliation(s)
- Nada A Abumrad
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| | - Dmitri Samovski
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Terri Pietka
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| |
Collapse
|
19
|
Involvement of FATP2-mediated tubular lipid metabolic reprogramming in renal fibrogenesis. Cell Death Dis 2020; 11:994. [PMID: 33219209 PMCID: PMC7679409 DOI: 10.1038/s41419-020-03199-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
Abstract
Following a chronic insult, renal tubular epithelial cells (TECs) contribute to the development of kidney fibrosis through dysregulated lipid metabolism that lead to lipid accumulation and lipotoxicity. Intracellular lipid metabolism is tightly controlled by fatty acids (FAs) uptake, oxidation, lipogenesis, and lipolysis. Although it is widely accepted that impaired fatty acids oxidation (FAO) play a crucial role in renal fibrosis progression, other lipid metabolic pathways, especially FAs uptake, has not been investigated in fibrotic kidney. In this study, we aim to explore the potential mechanically role of FAs transporter in the pathogenesis of renal fibrosis. In the present study, the unbiased gene expression studies showed that fatty acid transporter 2 (FATP2) was one of the predominant expressed FAs transport in TECs and its expression was tightly associated with the decline of renal function. Treatment of unilateral ureteral obstruction (UUO) kidneys and TGF-β induced TECs with FATP2 inhibitor (FATP2i) lipofermata restored the FAO activities and alleviated fibrotic responses both in vivo and in vitro. Moreover, the expression of profibrotic cytokines including TGF-β, connective tissue growth factor (CTGF), fibroblast growth factor (FGF), and platelet-derived growth factor subunit B (PDGFB) were all decreased in FATP2i-treated UUO kidneys. Mechanically, FATP2i can effectively attenuate cell apoptosis and endoplasmic reticulum (ER) stress induced by TGF-β treatment in cultured TECs. Taking together, these findings reveal that FATP2 elicits a profibrotic response to renal interstitial fibrosis by inducing lipid metabolic reprogramming including abnormal FAs uptake and defective FAO in TECs.
Collapse
|
20
|
FATP2-targeted therapies - A role beyond fatty liver disease. Pharmacol Res 2020; 161:105228. [PMID: 33027714 DOI: 10.1016/j.phrs.2020.105228] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/31/2022]
Abstract
Fatty acid transport protein 2 (FATP2) is a multifunctional protein whose specific function is determined by the type of located cell, its intracellular location, or organelle-specific interactions. In the different diseases setting, a newfound appreciation for the biological function of FATP2 has come into view. Two main functions of FATP2 are to activate long-chain fatty acids (LCFAs) as a very long-chain acyl-coenzyme A (CoA) synthetase (ACSVL) and to transport LCFAs as a fatty acid transporter. FATP2 is not only involved in the occurrence of nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM), but also plays an important role in lithogenic diet-induced cholelithiasis, the formation of cancer tumor immunity, the progression of chronic kidney disease (CKD), and the regulation of zoledronate-induced nephrotoxicity. Herein, we review the updated information on the role of FATP2 in related diseases. In particular, we discuss the new functions of FATP2 and propose that FATP2 is a potential clinical biomarker and therapeutic target. In conclusion, regulatory strategies for FATP2 may bring new treatment options for cancer and lipid metabolism-related disorders.
Collapse
|
21
|
Khan S, Gaivin R, Abramovich C, Boylan M, Calles J, Schelling JR. Fatty acid transport protein-2 regulates glycemic control and diabetic kidney disease progression. JCI Insight 2020; 5:136845. [PMID: 32614804 DOI: 10.1172/jci.insight.136845] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022] Open
Abstract
Kidney disease is one of the most devastating complications of diabetes, and tubular atrophy predicts diabetic kidney disease (DKD) progression to end-stage renal disease. We have proposed that fatty acids bound to albumin contribute to tubular atrophy by inducing lipotoxicity, after filtration across damaged glomeruli, and subsequent proximal tubule reabsorption by a fatty acid transport protein-2-dependent (FATP2-dependent) mechanism. To address this possibility, genetic (Leprdb/db eNOS-/-) and induced (high-fat diet plus low-dose streptozotocin) mouse models of obesity and DKD were bred with global FATP2 gene-deleted mice (Slc27a2) and then phenotyped. DKD-prone mice with the Slc27a2-/- genotype demonstrated normalization of glomerular filtration rate, reduced albuminuria, improved kidney histopathology, and longer life span compared with diabetic Slc27a2+/+ mice. Genetic and induced DKD-prone Slc27a2-/- mice also exhibited markedly reduced fasting plasma glucose, with mean values approaching euglycemia, despite increased obesity and decreased physical activity. Glucose lowering in DKD-prone Slc27a2-/- mice was accompanied by β cell hyperplasia and sustained insulin secretion. Together, our data indicate that FATP2 regulates DKD pathogenesis by a combined lipotoxicity and glucotoxicity (glucolipotoxicity) mechanism.
Collapse
Affiliation(s)
- Shenaz Khan
- Department of Medicine, Division of Nephrology
| | | | | | | | - Jorge Calles
- Department of Medicine, Division of Endocrinology, MetroHealth Campus, and
| | - Jeffrey R Schelling
- Department of Medicine, Division of Nephrology.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
22
|
Black PN. A revolution in biochemistry and molecular biology education informed by basic research to meet the demands of 21st century career paths. J Biol Chem 2020; 295:10653-10661. [PMID: 32527726 DOI: 10.1074/jbc.aw120.011104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The National Science Foundation estimates that 80% of the jobs available during the next decade will require math and science skills, dictating that programs in biochemistry and molecular biology must be transformative and use new pedagogical approaches and experiential learning for careers in industry, research, education, engineering, health-care professions, and other interdisciplinary fields. These efforts require an environment that values the individual student and integrates recent advances from the primary literature in the discipline, experimentally directed research, data collection and analysis, and scientific writing. Current trends shaping these efforts must include critical thinking, experimental testing, computational modeling, and inferential logic. In essence, modern biochemistry and molecular biology education must be informed by, and integrated with, cutting-edge research. This environment relies on sustained research support, commitment to providing the requisite mentoring, access to instrumentation, and state-of-the-art facilities. The academic environment must establish a culture of excellence and faculty engagement, leading to innovation in the classroom and laboratory. These efforts must not lose sight of the importance of multidimensional programs that enrich science literacy in all facets of the population, students and teachers in K-12 schools, nonbiochemistry and molecular biology students, and other stakeholders. As biochemistry and molecular biology educators, we have an obligation to provide students with the skills that allow them to be innovative and self-reliant. The next generation of biochemistry and molecular biology students must be taught proficiencies in scientific and technological literacy, the importance of the scientific discourse, and skills required for problem solvers of the 21st century.
Collapse
Affiliation(s)
- Paul N Black
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
23
|
Guarino M, Kumar P, Felser A, Terracciano LM, Guixé-Muntet S, Humar B, Foti M, Nuoffer JM, St-Pierre MV, Dufour JF. Exercise Attenuates the Transition from Fatty Liver to Steatohepatitis and Reduces Tumor Formation in Mice. Cancers (Basel) 2020; 12:E1407. [PMID: 32486073 PMCID: PMC7352494 DOI: 10.3390/cancers12061407] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/18/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) leads to steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma. For sedentary patients, lifestyle interventions combining exercise and dietary changes are a cornerstone of treatment. However, the benefit of exercise alone when dietary changes have failed is uncertain. We query whether exercise alone arrests the progression of NASH and tumorigenesis in a choline-deficient, high-fat diet (CD-HFD) murine model. Male C57Bl/6N mice received a control diet or CD-HFD for 12 weeks. CD-HFD mice were randomized further for 8 weeks of sedentariness (SED) or treadmill exercise (EXE). CD-HFD for 12 weeks produced NAFL. After 20 weeks, SED mice developed NASH and hepatic adenomas. Exercise attenuated the progression to NASH. EXE livers showed lower triglycerides and tumor necrosis factor-α expression, less fibrosis, less ballooning, and a lower NAFLD activity score than did SED livers. Plasma transaminases and triglycerides were lower. Exercise activated AMP-activated protein kinase (AMPK) with inhibition of mTORC1 and decreased S6 phosphorylation, reducing hepatocellular adenoma. Exercise activated autophagy with increased LC3-II/LC3-I and mitochondrial recruitment of phosphorylated PTEN-induced kinase. Therefore, exercise attenuates the transition from NAFL to NASH, improves biochemical and histological parameters of NAFLD, and impedes the progression of fibrosis and tumorigenesis associated with enhanced activation of AMPK signaling and favors liver autophagy. Our work supports the benefits of exercise independently of dietary changes.
Collapse
Affiliation(s)
- Maria Guarino
- Hepatology, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; (M.G.); (P.K.); (S.G.-M.); (M.V.S.-P.)
- Gastroenterology, Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy
| | - Pavitra Kumar
- Hepatology, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; (M.G.); (P.K.); (S.G.-M.); (M.V.S.-P.)
| | - Andrea Felser
- University Institute of Clinical Chemistry, Bern University Hospital, 3010 Bern, Switzerland; (A.F.); (J.-M.N.)
| | | | - Sergi Guixé-Muntet
- Hepatology, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; (M.G.); (P.K.); (S.G.-M.); (M.V.S.-P.)
| | - Bostjan Humar
- Laboratory of the Swiss Hepato-Pancreato-Biliary (HPB) and Transplantation Center, Department of Surgery, University Hospital Zürich, 8091 Zürich, Switzerland;
| | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, University of Geneva, 1206 Geneva, Switzerland;
| | - Jean-Marc Nuoffer
- University Institute of Clinical Chemistry, Bern University Hospital, 3010 Bern, Switzerland; (A.F.); (J.-M.N.)
| | - Marie V. St-Pierre
- Hepatology, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; (M.G.); (P.K.); (S.G.-M.); (M.V.S.-P.)
| | - Jean-François Dufour
- Hepatology, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; (M.G.); (P.K.); (S.G.-M.); (M.V.S.-P.)
- University Clinic of Visceral Surgery and Medicine, Inselspital Bern, 3010 Bern, Switzerland
| |
Collapse
|