1
|
Lettau E, Lorent C, Appel J, Boehm M, Cordero PRF, Lauterbach L. Insights into electron transfer and bifurcation of the Synechocystis sp. PCC6803 hydrogenase reductase module. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149508. [PMID: 39245309 DOI: 10.1016/j.bbabio.2024.149508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
The NAD+-reducing soluble [NiFe] hydrogenase (SH) is the key enzyme for production and consumption of molecular hydrogen (H2) in Synechocystis sp. PCC6803. In this study, we focused on the reductase module of the SynSH and investigated the structural and functional aspects of its subunits, particularly the so far elusive role of HoxE. We demonstrated the importance of HoxE for enzyme functionality, suggesting a regulatory role in maintaining enzyme activity and electron supply. Spectroscopic analysis confirmed that HoxE and HoxF each contain one [2Fe2S] cluster with an almost identical electronic structure. Structure predictions, alongside experimental evidence for ferredoxin interactions, revealed a remarkable similarity between SynSH and bifurcating hydrogenases, suggesting a related functional mechanism. Our study unveiled the subunit arrangement and cofactor composition essential for biological electron transfer. These findings enhance our understanding of NAD+-reducing [NiFe] hydrogenases in terms of their physiological function and structural requirements for biotechnologically relevant modifications.
Collapse
Affiliation(s)
- Elisabeth Lettau
- RWTH Aachen University, iAMB - Institute of Applied Microbiology, Worringerweg 1, 52074 Aachen, Germany; Technische Universität Berlin, Institute of Chemistry, Straße des 14. Juni 135, 10623 Berlin, Germany.
| | - Christian Lorent
- Technische Universität Berlin, Institute of Chemistry, Straße des 14. Juni 135, 10623 Berlin, Germany
| | - Jens Appel
- Universität Kassel, Molecular Plant Biology, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Marko Boehm
- Universität Kassel, Molecular Plant Biology, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Paul R F Cordero
- RWTH Aachen University, iAMB - Institute of Applied Microbiology, Worringerweg 1, 52074 Aachen, Germany
| | - Lars Lauterbach
- RWTH Aachen University, iAMB - Institute of Applied Microbiology, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
2
|
Willemin MS, Armand F, Hamelin R, Maillard J, Holliger C. Conditional essentiality of the 11-subunit complex I-like enzyme in strict anaerobes: the case of Desulfitobacterium hafniense strain DCB-2. Front Microbiol 2024; 15:1388961. [PMID: 38993499 PMCID: PMC11238625 DOI: 10.3389/fmicb.2024.1388961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024] Open
Abstract
In oxidative phosphorylation, respiratory complex I serves as an entry point in the electron transport chain for electrons generated in catabolic processes in the form of NADH. An ancestral version of the complex, lacking the NADH-oxidising module, is encoded in a significant number of bacterial genomes. Amongst them is Desulfitobacterium hafniense, a strict anaerobe capable of conserving energy via organohalide respiration. This study investigates the role of the complex I-like enzyme in D. hafniense energy metabolism using rotenone as a specific complex I inhibitor under different growth conditions. The investigation revealed that the complex I-like enzyme was essential for growth with lactate and pyruvate but not in conditions involving H2 as an electron donor. In addition, a previously published proteomic dataset of strain DCB-2 was analysed to reveal the predominance of the complex under different growth conditions and to identify potential redox partners. This approach revealed seven candidates with expression patterns similar to Nuo homologues, suggesting the use of diverse electron sources. Based on these results, we propose a model where the complex I-like enzyme serves as an electron entry point into the respiratory chain for substrates delivering electrons within the cytoplasm, such as lactate or pyruvate, with ferredoxins shuttling electrons to the complex.
Collapse
Affiliation(s)
- Mathilde Stéphanie Willemin
- Laboratory for Environmental Biotechnology (LBE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Florence Armand
- Proteomic Core Facility (PCF), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Romain Hamelin
- Proteomic Core Facility (PCF), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Maillard
- Laboratory for Environmental Biotechnology (LBE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Christof Holliger
- Laboratory for Environmental Biotechnology (LBE), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
3
|
Vilela-Alves G, Rebelo Manuel R, Pedrosa N, Cardoso Pereira IA, Romão MJ, Mota C. Structural and biochemical characterization of the M405S variant of Desulfovibrio vulgaris formate dehydrogenase. Acta Crystallogr F Struct Biol Commun 2024; 80:98-106. [PMID: 38699971 PMCID: PMC11134731 DOI: 10.1107/s2053230x24003911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
Molybdenum- or tungsten-dependent formate dehydrogenases have emerged as significant catalysts for the chemical reduction of CO2 to formate, with biotechnological applications envisaged in climate-change mitigation. The role of Met405 in the active site of Desulfovibrio vulgaris formate dehydrogenase AB (DvFdhAB) has remained elusive. However, its proximity to the metal site and the conformational change that it undergoes between the resting and active forms suggests a functional role. In this work, the M405S variant was engineered, which allowed the active-site geometry in the absence of methionine Sδ interactions with the metal site to be revealed and the role of Met405 in catalysis to be probed. This variant displayed reduced activity in both formate oxidation and CO2 reduction, together with an increased sensitivity to oxygen inactivation.
Collapse
Affiliation(s)
- Guilherme Vilela-Alves
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Rita Rebelo Manuel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Neide Pedrosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Inês A. Cardoso Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Maria João Romão
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Cristiano Mota
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
4
|
Duffus BR, Gauglitz M, Teutloff C, Leimkühler S. Redox potentials elucidate the electron transfer pathway of NAD +-dependent formate dehydrogenases. J Inorg Biochem 2024; 253:112487. [PMID: 38306887 DOI: 10.1016/j.jinorgbio.2024.112487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/04/2024]
Abstract
Metal-dependent, nicotine adenine dinucleotide (NAD+)-dependent formate dehydrogenases (FDHs) are complex metalloenzymes coupling biochemical transformations through intricate electron transfer pathways. Rhodobacter capsulatus FDH is a model enzyme for understanding coupled catalysis, in that reversible CO2 reduction and formate oxidation are linked to a flavin mononuclotide (FMN)-bound diaphorase module via seven iron-sulfur (FeS) clusters as a dimer of heterotetramers. Catalysis occurs at a bis-metal-binding pterin (Mo) binding two molybdopterin guanine dinucleotides (bis-MGD), a protein-based Cys residue and a participatory sulfido ligand. Insights regarding the proposed electron transfer mechanism between the bis-MGD and the FMN have been complicated by the discovery that an alternative pathway might occur via intersubunit electron transfer between two [4Fe4S] clusters within electron transfer distance. To clarify this difference, the redox potentials of the bis-MGD and the FeS clusters were determined via redox titration by EPR spectroscopy. Redox potentials for the bis-MGD cofactor and five of the seven FeS clusters could be assigned. Furthermore, substitution of the active site residue Lys295 with Ala resulted in altered enzyme kinetics, primarily due to a more negative redox potential of the A1 [4Fe4S] cluster. Finally, characterization of the monomeric FdsGBAD heterotetramer exhibited slightly decreased formate oxidation activity and similar iron-sulfur clusters reduced relative to the dimeric heterotetramer. Comparison of the measured redox potentials relative to structurally defined FeS clusters support a mechanism by which electron transfer occurs within a heterotetrameric unit, with the interfacial [4Fe4S] cluster serving as a structural component toward the integrity of the heterodimeric structure to drive efficient catalysis.
Collapse
Affiliation(s)
- Benjamin R Duffus
- Institute for Biochemistry and Biology, Molecular Enzymology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Marcel Gauglitz
- Institute for Experimental Physics, Free University of Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Christian Teutloff
- Institute for Experimental Physics, Free University of Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | - Silke Leimkühler
- Institute for Biochemistry and Biology, Molecular Enzymology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
5
|
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023; 29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Collapse
Affiliation(s)
- Luisa B. Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - Biplab K. Maiti
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - José J. G. Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| |
Collapse
|
6
|
Harmer JR, Hakopian S, Niks D, Hille R, Bernhardt PV. Redox Characterization of the Complex Molybdenum Enzyme Formate Dehydrogenase from Cupriavidus necator. J Am Chem Soc 2023; 145:25850-25863. [PMID: 37967365 DOI: 10.1021/jacs.3c10199] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The oxygen-tolerant and molybdenum-dependent formate dehydrogenase FdsDABG from Cupriavidus necator is capable of catalyzing both formate oxidation to CO2 and the reverse reaction (CO2 reduction to formate) at neutral pH, which are both reactions of great importance to energy production and carbon capture. FdsDABG is replete with redox cofactors comprising seven Fe/S clusters, flavin mononucleotide, and a molybdenum ion coordinated by two pyranopterin dithiolene ligands. The redox potentials of these centers are described herein and assigned to specific cofactors using combinations of potential-dependent continuous wave and pulse EPR spectroscopy and UV/visible spectroelectrochemistry on both the FdsDABG holoenzyme and the FdsBG subcomplex. These data represent the first redox characterization of a complex metal dependent formate dehydrogenase and provide an understanding of the highly efficient catalytic formate oxidation and CO2 reduction activity that are associated with the enzyme.
Collapse
Affiliation(s)
- Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Sheron Hakopian
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Dimitri Niks
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Russ Hille
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
7
|
Kumar H, Leimkühler S. Changing the Electron Acceptor Specificity of Rhodobacter capsulatus Formate Dehydrogenase from NAD + to NADP . Int J Mol Sci 2023; 24:16067. [PMID: 38003259 PMCID: PMC10671435 DOI: 10.3390/ijms242216067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Formate dehydrogenases catalyze the reversible oxidation of formate to carbon dioxide. These enzymes play an important role in CO2 reduction and serve as nicotinamide cofactor recycling enzymes. More recently, the CO2-reducing activity of formate dehydrogenases, especially metal-containing formate dehydrogenases, has been further explored for efficient atmospheric CO2 capture. Here, we investigate the nicotinamide binding site of formate dehydrogenase from Rhodobacter capsulatus for its specificity toward NAD+ vs. NADP+ reduction. Starting from the NAD+-specific wild-type RcFDH, key residues were exchanged to enable NADP+ binding on the basis of the NAD+-bound cryo-EM structure (PDB-ID: 6TG9). It has been observed that the lysine at position 157 (Lys157) in the β-subunit of the enzyme is essential for the binding of NAD+. RcFDH variants that had Glu259 exchanged for either a positively charged or uncharged amino acid had additional activity with NADP+. The FdsBL279R and FdsBK276A variants also showed activity with NADP+. Kinetic parameters for all the variants were determined and tested for activity in CO2 reduction. The variants were able to reduce CO2 using NADPH as an electron donor in a coupled assay with phosphite dehydrogenase (PTDH), which regenerates NADPH. This makes the enzyme suitable for applications where it can be coupled with other enzymes that use NADPH.
Collapse
Affiliation(s)
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany;
| |
Collapse
|
8
|
Kalimuthu P, Hakopian S, Niks D, Hille R, Bernhardt PV. The Reversible Electrochemical Interconversion of Formate and CO 2 by Formate Dehydrogenase from Cupriavidus necator. J Phys Chem B 2023; 127:8382-8392. [PMID: 37728992 DOI: 10.1021/acs.jpcb.3c04652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The bacterial molybdenum (Mo)-containing formate dehydrogenase (FdsDABG) from Cupriavidus necator is a soluble NAD+-dependent enzyme belonging to the DMSO reductase family. The holoenzyme is complex and possesses nine redox-active cofactors including a bis(molybdopterin guanine dinucleotide) (bis-MGD) active site, seven iron-sulfur clusters, and 1 equiv of flavin mononucleotide (FMN). FdsDABG catalyzes the two-electron oxidation of HCOO- (formate) to CO2 and reversibly reduces CO2 to HCOO- under physiological conditions close to its thermodynamic redox potential. Here we develop an electrocatalytically active formate oxidation/CO2 reduction system by immobilizing FdsDABG on a glassy carbon electrode in the presence of coadsorbents such as chitosan and glutaraldehyde. The reversible enzymatic interconversion between HCOO- and CO2 by FdsDABG has been realized with cyclic voltammetry using a range of artificial electron transfer mediators, with methylene blue (MB) and phenazine methosulfate (PMS) being particularly effective as electron acceptors for FdsDABG in formate oxidation. Methyl viologen (MV) acts as both an electron acceptor (MV2+) in formate oxidation and an electron donor (MV+•) for CO2 reduction. The catalytic voltammetry was reproduced by electrochemical simulation across a range of sweep rates and concentrations of formate and mediators to provide new insights into the kinetics of the FdsDABG catalytic mechanism.
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Sheron Hakopian
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Dimitri Niks
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Russ Hille
- Department of Biochemistry, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
9
|
Dahlin LR, Meyers AW, Stefani SW, Webb EG, Wachter B, Subramanian V, Guarnieri MT. Heterologous expression of formate dehydrogenase enables photoformatotrophy in the emerging model microalga, Picochlorum renovo. Front Bioeng Biotechnol 2023; 11:1162745. [PMID: 37706077 PMCID: PMC10497104 DOI: 10.3389/fbioe.2023.1162745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/04/2023] [Indexed: 09/15/2023] Open
Abstract
Rising global greenhouse gas emissions and the impacts of resultant climate change necessitate development and deployment of carbon capture and conversion technologies. Amongst the myriad of bio-based conversion approaches under evaluation, a formate bio-economy has recently been proposed, wherein CO2-derived formate serves as a substrate for concurrent carbon and energy delivery to microbial systems. To date, this approach has been explored in chemolithotrophic and heterotrophic organisms via native or engineered formatotrophy. However, utilization of this concept in phototrophic organisms has yet to be reported. Herein, we have taken the first steps to establish formate utilization in Picochlorum renovo, a recently characterized eukaryotic microalga with facile genetic tools and promising applied biotechnology traits. Plastidial heterologous expression of a formate dehydrogenase (FDH) enabled P. renovo growth on formate as a carbon and energy source. Further, FDH expression enhanced cultivation capacity on ambient CO2, underscoring the potential for bypass of conventional CO2 capture and concentration limitations. This work establishes a photoformatotrophic cultivation regime that leverages light energy-driven formate utilization. The resultant photosynthetic formate platform has widespread implications for applied phototrophic cultivation systems and the bio-economy at large.
Collapse
Affiliation(s)
- Lukas R. Dahlin
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Alex W. Meyers
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Skylar W. Stefani
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Ellsbeth G. Webb
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Benton Wachter
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
| | | | - Michael T. Guarnieri
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, United States
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, United States
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO, United States
| |
Collapse
|
10
|
Kirk ML, Hille R. Spectroscopic Studies of Mononuclear Molybdenum Enzyme Centers. Molecules 2022; 27:4802. [PMID: 35956757 PMCID: PMC9370002 DOI: 10.3390/molecules27154802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
A concise review is provided of the contributions that various spectroscopic methods have made to our understanding of the physical and electronic structures of mononuclear molybdenum enzymes. Contributions to our understanding of the structure and function of each of the major families of these enzymes is considered, providing a perspective on how spectroscopy has impacted the field.
Collapse
Affiliation(s)
- Martin L. Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Russ Hille
- Department of Biochemistry, Boyce Hall 1463, University of California, Riverside, CA 82521, USA
| |
Collapse
|
11
|
Hille R, Niks D. Application of EPR and related methods to molybdenum-containing enzymes. Methods Enzymol 2022; 666:373-412. [PMID: 35465925 DOI: 10.1016/bs.mie.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A description is provided of the contributions made to our understanding of molybdenum-containing enzymes through the application of electron paramagnetic resonance spectroscopy and related methods, by way of illustrating how these can be applied to better understand enzyme structure and function. An emphasis is placed on the use of EPR to identify both the coordination environment of the molybdenum coordination sphere as well as the structures of paramagnetic intermediates observed transiently in the course of reaction that have led to the elucidation of reaction mechanism.
Collapse
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, CA, United States.
| | - Dimitri Niks
- Department of Biochemistry, University of California, Riverside, CA, United States
| |
Collapse
|
12
|
Hakopian S, Niks D, Hille R. The air-inactivation of formate dehydrogenase FdsDABG from Cupriavidus necator. J Inorg Biochem 2022; 231:111788. [DOI: 10.1016/j.jinorgbio.2022.111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 11/15/2022]
|
13
|
Maiti BK, Maia LB, Moura JJG. Sulfide and transition metals - A partnership for life. J Inorg Biochem 2021; 227:111687. [PMID: 34953313 DOI: 10.1016/j.jinorgbio.2021.111687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022]
Abstract
Sulfide and transition metals often came together in Biology. The variety of possible structural combinations enabled living organisms to evolve an array of highly versatile metal-sulfide centers to fulfill different physiological roles. The ubiquitous iron‑sulfur centers, with their structural, redox, and functional diversity, are certainly the best-known partners, but other metal-sulfide centers, involving copper, nickel, molybdenum or tungsten, are equally crucial for Life. This review provides a concise overview of the exclusive sulfide properties as a metal ligand, with emphasis on the structural aspects and biosynthesis. Sulfide as catalyst and as a substrate is discussed. Different enzymes are considered, including xanthine oxidase, formate dehydrogenases, nitrogenases and carbon monoxide dehydrogenases. The sulfide effect on the activity and function of iron‑sulfur, heme and zinc proteins is also addressed.
Collapse
Affiliation(s)
- Biplab K Maiti
- National Institute of Technology Sikkim, Department of Chemistry, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India.
| | - Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| | - José J G Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| |
Collapse
|
14
|
Arias-Cartin R, Uzel A, Seduk F, Gerbaud G, Pierrel F, Broc M, Lebrun R, Guigliarelli B, Magalon A, Grimaldi S, Walburger A. Identification and characterization of a non-canonical menaquinone-linked formate dehydrogenase. J Biol Chem 2021; 298:101384. [PMID: 34748728 PMCID: PMC8808070 DOI: 10.1016/j.jbc.2021.101384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 10/25/2022] Open
Abstract
The Molybdenum/Tungsten-bispyranopterin guanine dinucleotides (Mo/W-bisPGD) family of Formate Dehydrogenases (FDHs) plays roles in several metabolic pathways ranging from carbon fixation to energy harvesting owing to their reaction with a wide variety of redox partners. Indeed, this metabolic plasticity results from the diverse structures, cofactor content, and substrates employed by partner subunits interacting with the catalytic hub. Here, we unveiled two non-canonical FDHs in Bacillus subtilis which are organized into two-subunit complexes with unique features, ForCE1 and ForCE2. We show that the ForC catalytic subunit interacts with an unprecedented partner subunit, ForE, and that its amino acid sequence within the active site deviates from the consensus residues typically associated with FDH activity, as a histidine residue is naturally substituted with a glutamine. The ForE essential subunit mediates the utilization of menaquinone as an electron acceptor as shown by the formate:menadione oxidoreductase activity of both enzymes, their copurification with menaquinone, and the distinctive detection of a protein-bound neutral menasemiquinone radical by multifrequency electron paramagnetic resonance (EPR) experiments on the purified enzymes. Moreover, EPR characterization of both FDHs reveals the presence of several [Fe-S] clusters with distinct relaxation properties and a weakly anisotropic Mo(V) EPR signature, consistent with the characteristic Mo/bisPGD cofactor of this enzyme family. Altogether, this work enlarges our knowledge of the FDH family by identifying a non-canonical FDH, which differs in terms of architecture, amino acid conservation around the Mo cofactor, and reactivity.
Collapse
Affiliation(s)
- Rodrigo Arias-Cartin
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France; Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France.
| | - Alexandre Uzel
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France
| | - Farida Seduk
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France
| | - Guillaume Gerbaud
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France
| | - Fabien Pierrel
- Grenoble Alpes Université, CNRS, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Marianne Broc
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France
| | - Régine Lebrun
- Aix Marseille Université, CNRS, Plateforme Protéomique de l'IMM, IM2B Marseille Protéomique (MaP), 13009 Marseille, France
| | - Bruno Guigliarelli
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France
| | - Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France
| | - Stéphane Grimaldi
- Aix Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, 13009 Marseille, France.
| | - Anne Walburger
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13009 Marseille, France.
| |
Collapse
|
15
|
Ewens SD, Gomberg AFS, Barnum TP, Borton MA, Carlson HK, Wrighton KC, Coates JD. The diversity and evolution of microbial dissimilatory phosphite oxidation. Proc Natl Acad Sci U S A 2021; 118:e2020024118. [PMID: 33688048 PMCID: PMC7980464 DOI: 10.1073/pnas.2020024118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphite is the most energetically favorable chemotrophic electron donor known, with a half-cell potential (Eo') of -650 mV for the PO43-/PO33- couple. Since the discovery of microbial dissimilatory phosphite oxidation (DPO) in 2000, the environmental distribution, evolution, and diversity of DPO microorganisms (DPOMs) have remained enigmatic, as only two species have been identified. Here, metagenomic sequencing of phosphite-enriched microbial communities enabled the genome reconstruction and metabolic characterization of 21 additional DPOMs. These DPOMs spanned six classes of bacteria, including the Negativicutes, Desulfotomaculia, Synergistia, Syntrophia, Desulfobacteria, and Desulfomonilia_A Comparing the DPO genes from the genomes of enriched organisms with over 17,000 publicly available metagenomes revealed the global existence of this metabolism in diverse anoxic environments, including wastewaters, sediments, and subsurface aquifers. Despite their newfound environmental and taxonomic diversity, metagenomic analyses suggested that the typical DPOM is a chemolithoautotroph that occupies low-oxygen environments and specializes in phosphite oxidation coupled to CO2 reduction. Phylogenetic analyses indicated that the DPO genes form a highly conserved cluster that likely has ancient origins predating the split of monoderm and diderm bacteria. By coupling microbial cultivation strategies with metagenomics, these studies highlighted the unsampled metabolic versatility latent in microbial communities. We have uncovered the unexpected prevalence, diversity, biochemical specialization, and ancient origins of a unique metabolism central to the redox cycling of phosphorus, a primary nutrient on Earth.
Collapse
Affiliation(s)
- Sophia D Ewens
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Energy & Biosciences Institute, University of California, Berkeley, CA 94720
| | - Alexa F S Gomberg
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Tyler P Barnum
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Mikayla A Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523
| | - Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523
| | - John D Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720;
- Energy & Biosciences Institute, University of California, Berkeley, CA 94720
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
16
|
Zuchan K, Baymann F, Baffert C, Brugna M, Nitschke W. The dyad of the Y-junction- and a flavin module unites diverse redox enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148401. [PMID: 33684340 DOI: 10.1016/j.bbabio.2021.148401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 11/26/2022]
Abstract
The concomitant presence of two distinctive polypeptide modules, which we have chosen to denominate as the "Y-junction" and the "flavin" module, is observed in 3D structures of enzymes as functionally diverse as complex I, NAD(P)-dependent [NiFe]-hydrogenases and NAD(P)-dependent formate dehydrogenases. Amino acid sequence conservation furthermore suggests that both modules are also part of NAD(P)-dependent [FeFe]-hydrogenases for which no 3D structure model is available yet. The flavin module harbours the site of interaction with the substrate NAD(P) which exchanges two electrons with a strictly conserved flavin moiety. The Y-junction module typically contains four iron-sulphur centres arranged to form a Y-shaped electron transfer conduit and mediates electron transfer between the flavin module and the catalytic units of the respective enzymes. The Y-junction module represents an electron transfer hub with three potential electron entry/exit sites. The pattern of specific redox centres present both in the Y-junction and the flavin module is correlated to present knowledge of these enzymes' functional properties. We have searched publicly accessible genomes for gene clusters containing both the Y-junction and the flavin module to assemble a comprehensive picture of the diversity of enzymes harbouring this dyad of modules and to reconstruct their phylogenetic relationships. These analyses indicate the presence of the dyad already in the last universal common ancestor and the emergence of complex I's EFG-module out of a subgroup of NAD(P)- dependent formate dehydrogenases.
Collapse
Affiliation(s)
- Kilian Zuchan
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France
| | - Frauke Baymann
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France
| | - Carole Baffert
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France
| | - Myriam Brugna
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France.
| | - Wolfgang Nitschke
- Aix Marseille Univ, CNRS, BIP, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 09, France
| |
Collapse
|
17
|
Structure: Function Studies of the Cytosolic, Mo- and NAD+-Dependent Formate Dehydrogenase from Cupriavidus necator. INORGANICS 2020. [DOI: 10.3390/inorganics8070041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Here, we report recent progress our laboratories have made in understanding the maturation and reaction mechanism of the cytosolic and NAD+-dependent formate dehydrogenase from Cupriavidus necator. Our recent work has established that the enzyme is fully capable of catalyzing the reverse of the physiological reaction, namely, the reduction of CO2 to formate using NADH as a source of reducing equivalents. The steady-state kinetic parameters in the forward and reverse directions are consistent with the expected Haldane relationship. The addition of an NADH-regenerating system consisting of glucose and glucose dehydrogenase increases the yield of formate approximately 10-fold. This work points to possible ways of optimizing the reverse of the enzyme’s physiological reaction with commercial potential as an effective means of CO2 remediation. New insight into the maturation of the enzyme comes from the recently reported structure of the FdhD sulfurase. In E. coli, FdhD transfers a catalytically essential sulfur to the maturing molybdenum cofactor prior to insertion into the apoenzyme of formate dehydrogenase FdhF, which has high sequence similarity to the molybdenum-containing domain of the C. necator FdsA. The FdhD structure suggests that the molybdenum cofactor may first be transferred from the sulfurase to the C-terminal cap domain of apo formate dehydrogenase, rather than being transferred directly to the body of the apoenzyme. Closing of the cap domain over the body of the enzymes delivers the Mo-cofactor into the active site, completing the maturation of formate dehydrogenase. The structural and kinetic characterization of the NADH reduction of the FdsBG subcomplex of the enzyme provides further insights in reversing of the formate dehydrogenase reaction. Most notably, we observe the transient formation of a neutral semiquinone FMNH·, a species that has not been observed previously with holoenzyme. After initial reduction of the FMN of FdsB by NADH to the hydroquinone (with a kred of 680 s−1 and Kd of 190 µM), one electron is rapidly transferred to the Fe2S2 cluster of FdsG, leaving FMNH·. The Fe4S4 cluster of FdsB does not become reduced in the process. These results provide insight into the function not only of the C. necator formate dehydrogenase but also of other members of the NADH dehydrogenase superfamily of enzymes to which it belongs.
Collapse
|